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Abstract A major challenge in swarm robotics is efficiently deploying robots into
unknown environments, minimising energy and time costs. This is especially im-
portant with small aerial robots which have extremely limited flight autonomy. This
paper compares three deployment strategies characterised by nominal computation,
memory, communication and sensing requirements, and hence are suitable for flying
robots. Energy consumption is decreased by reducing unnecessary flight following
two premises: 1) exploiting environmental information gathered by the robots; 2)
avoiding diminishing returns and reducing interference between robots. Using a 3-
D dynamics simulator we examine energy and time metrics, and also scalability ef-
fects. Results indicate that a novel strategy that controls the density of flying robots
is most promising in reducing swarm energy costs while maintaining rapid search
times. Furthermore, we highlight the energy-time tradeoff and the importance of
measuring both metrics, and also the significance of electronics power in calculat-
ing total energy consumption, even if it is small relative to locomotion power.

1 Introduction

Autonomous systems must manage their own energy resources to complete mis-
sions successfully [15]. This is notably evident with small aerial robots, which have
severely limited flight autonomy (typically 10–15 minutes [19, 23]). Although en-
ergy efficient algorithms are paramount in creating truly autonomous aerial robots,
prior research is sparse [23]. Previously we developed an algorithm for indoor aerial
swarm search [22] that exploited the ability of our robots to attach to ceilings, sav-
ing energy [19]. This paper expands this work and compares methods to deploy
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a swarm of aerial robots into unknown environments, aiming to reduce the total
swarm energy cost with rapid operation for a search task.

A complex problem in swarm robotics is controlling deployment into unknown
environments. If robots deploy to unnecessary locations, energy is wasted. Further-
more, they may interfere with other robots, e.g. by increasing collision risk [20].
Conversely, if an area receives insufficient robots the task may be unachievable or
performance reduced. Rapid deployment is desired to expedite tasks such as disaster
mitigation. However, time and energy are not independent, and often there is a trade-
off [13, 6, 10]. Previous research considered only ground robots. However, aerial
robots have significantly different energy dynamics, require substantially more en-
ergy to locomote [19], and the small payload entails reduced sensing and processing
capabilities. Time and energy were previously either examined independently, or
only with multi-objective functions that mask trends in the individual metrics. Prior
work also usually neglected the energy consumption of sensors and processors [12].

This paper compares three strategies suitable for aerial swarms, characterised
by minimal computation, communication and sensing requirements. They are suit-
able for microcontrollers rather than powerful CPUs and are simple to implement
to avoid further complicating autonomous flight control. Total swarm energy and
search time are examined in 3-D simulation using a complete energy model vali-
dated on real robots [19]. Finally, scalability performance is examined by increasing
the robot group size.

2 Related Work

In work by Rybski et al. [21], increasing the number of deployed robots led to
the phenomenon of diminishing returns, as proposed by economists [1]. Additional
robots increased performance by decreasing amounts until a peak was reached, after
which additional robots no longer improved performance. Moreover, Rosenfeld et
al. [20] examined scalability in foraging tasks and noted that after a peak in per-
formance, additional robots usually decreased performance (negative returns) due
to spatial constraints and interference. Spatial constraints are stronger in confined
areas, such as narrow corridors, causing congestion and increased collision risk.
Therefore, it is important to control deployment to minimise time and energy costs.

The tradeoff between group size and efficiency was examined by Hayes [6] in a
search task. A multi-objective performance function was used incorporating search
time, energy and robot initialisation costs. This analysis allowed the prediction of
the optimal number of robots to complete the search. However, Hayes’ analysis
assumed an obstacle-free square arena and ignored spatial constraints and interfer-
ence. Similarly, Mei et al. [11] researched methods to determine the optimal group
size under constraints of energy, time and environment area. It was shown that en-
ergy limitations significantly affected the required group size. However, the envi-
ronment size was known a priori and a centralised planner used.
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For operation in unknown environments, Howard et al. [7] developed an al-
gorithm that deployed robots one at a time, thereby avoiding interference. Each
subsequent deployed robot exploited environment information acquired from pre-
viously deployed robots and was guided to optimal environment locations. How-
ever, Howard’s approach is slow [7]. Alternatively, Zlot et al. [25] present a mar-
ket economy-based architecture [5] for efficient multi-robot exploration. This max-
imises search area while minimising total travel distance. However, high bandwidth
communication is required. Both Howard’s and Zlot’s approaches are computation-
ally expensive with centralised processing, usually undesirable in swarm robotics.
Unfortunately, neither authors provide quantitative results for energy or time costs.

For simple robots with decentralised control, Chang et al. [2] deployed robots
based on perceived local environment size, reducing unnecessary locomotion. When
larger areas are discovered, additional robots are requested to aid exploration, reduc-
ing search time. However, this was assessed with ground robots in a simple discrete
2-D simulator with basic environments that reduced spatial constraints and inter-
ference. Additionally, the deposition of artificial pheromones was used to control
deployment, but no such sensor currently exists for real flying robots.

Alternatively, researchers have developed mechanisms to improve efficiency by
controlling robot activation. For example, Liu et al. [9] examined energy efficient
task allocation in foraging robots. The ratio of active foragers to resting robots was
adjusted based on simple adaptation rules. These rules included internal cues of
successful foraging, environmental cues from collisions, and social cues of suc-
cessful foraging by other robots. However, foraging differs from search because
(un)successful foraging over time indicates the robot’s utility, which can be used
to control activity. Furthermore, foraging often involves retrieval to a communal
nest, facilitating global coordination through local communication. Finally, a basic
energy model was used and time costs were not examined.

In summary, previous research focused only on ground robots, but aerial robots
have considerably different energy characteristics [19]. We compare three strategies
that are scalable, decentralised, require no a priori environment information, and
are suitable for aerial robots with nominal computation, sensing and communication
requirements.

3 Aerial Swarm Search Without Global Information

The aerial swarm search algorithm considered here [22] is based on principles of
sensor networks, which perform distributed processing of local information through
wireless communication [7]. This work is based on the quadrotor robots we are de-
veloping for indoor swarming [17]. The robots are equipped with infrared distance
sensors for obstacle detection [17]. A 3-D relative-positioning sensor gives the range
and bearing to nearby robots and low-bandwidth short range communication, facil-
itating coordination [18]. Wireless LAN provides longer range communication. To
prolong missions the robots can attach to ferromagnetic ceilings [19]. Alternatively,
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Gecko inspired dry adhesives [14] or mechanical perching could be utilised [8, 4],
or simply robots could land (merely loosing their elevated perception capabilities).

Robots operate in two control states: “Beacons” or “Explorers”. Beacons are
static robots passively attached to the ceiling to conserve energy and form a robotic
sensor network [19]. Explorers are flying robots, deploying into the environment
guided by Beacons. Beacons sense their local environment and communicate with
neighbouring Beacons to guide nearby Explorers. Explorers start clustered on the
ground below a pre-deployed Beacon. When deployed, Explorers take off and fol-
low the guidance signal of the nearest Beacon, flying from Beacon to Beacon across
the network. Beacons next to unexplored space indicate adjacent locations where a
new Beacon is required. Explorers that arrive at these locations attach to the ceiling
and become Beacons. Beacons can revert back to Explorers once an area has been
searched and redeploy to unexplored areas. We utilise depth-first search [3] which
exhaustively explores a subarea of the environment before searching other unex-
plored areas. This avoids search duplication and unnecessary locomotion compared
with stochastic methods, thus reducing the total swarm flight time [22]. Navigation
in unknown environments is afforded by the hop-counts of local communication
signals propagated across the network [22]. By exploiting the ceiling attachment
capability, the swarm energy cost is reduced by 3–400% [22]. A video demonstrat-
ing the search behaviour in simulation is available online1. A second video demon-
strating the current progress in developing this search strategy on real robots is also
available2, which shows entirely autonomous flight.

4 Deployment Strategies

To reduce energy costs and search time, the initial deployment of robots from the
ground and the redeployment of Beacons from the ceiling once an area is searched
are controlled. Three strategies are compared that are scalable, decentralised, and
require low computational and communication resources. The strategies exploit en-
vironment information as it is acquired by the robots to reduce unnecessary locomo-
tion [7, 2], and reduce diminishing returns and interference between robots [20, 9].
A video showing the three deployment strategies is available online3.

4.1 Linear-Temporal Incremental Deployment (LTID)

The simplest strategy, labelled LTID, deploys robots one at a time with a fixed time
interval between consecutive launches. This was used in our prior work [22] and is

1 http://lis.epfl.ch/˜stirling/videos/Swarm_Search.avi
2 http://lis.epfl.ch/˜stirling/videos/Eyebot_Autonomous_Flight.mp4
3 http://lis.epfl.ch/˜stirling/videos/Deployment_Strategies.mp4
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similar to the linear dispatching presented by Chang et al. [2]. Longer inter-launch
intervals (λ ) slow deployment, but decrease the number of concurrent flying robots.
This reduces spatial interference and unnecessary flight by exploiting environmental
information acquired from the expanding Beacon network. Once a subarea of the
environment has been searched, Beacons redeploy as Explorers to new unexplored
areas. Before this redeployment commences, there may be multiple Explorers flying
into this subarea where they are not required, which is reduced with longer inter-
launch intervals. Thus, LTID reduces energy consumption by reducing interference
and unnecessary locomotion.

To implement LTID, robots are assigned a unique ID {1, ...,N} and initially
launch after λ×ID seconds. Redeploying beacons also wait λ before detaching.
LTID does not adapt online, but λ could be optimised a priori if the type of environ-
ment is known [22]. The advantages of LTID are its simplicity and no requirements
for sensing, communication or significant processing. Therefore, LTID serves as a
baseline strategy from which the other two strategies can be compared.

4.2 Single Incremental Deployment (SID)

SID is similar to LTID and deploys one robot at a time, but waits for the previous
robot to become a Beacon before launching the next. This is similar to Howard et
al.’s [7] approach in that the swarm waits for the previous robot to examine the
newly discovered environment, but no centralised processing or map is required.
SID reduces unnecessary flight time because the next robot will only (re)deploy
once the Beacon network has sensed the environment and perceived if and where
a new Beacon is required. Thereby, Explorers always fly directly to the desired de-
ployment location. To implement SID, the swarm communicates if an Explorer is
flying. This can be achieved by propagating local messages across the Beacon net-
work. However, here we employ a simplified mechanism using long-range wireless
communication. Beacons signal to the whole swarm if they perceive a flying Ex-
plorer and robots only (re)deploy if no signal is received. To ensure only a single
robot deploys at a time, random timeouts are used. When no flying Explorer sig-
nal is present, robots wait a short random time period (typically 1–2s). If after this
period there is no flying Explorer signal, the robot can deploy.

Robots usually deploy more slowly than with LTID, increasing search times.
Therefore, although SID may reduce flight energy consumption compared with
LTID, the energy consumption of sensors and processors may be elevated due to
the increased runtime. Additionally, there may be a robot that is closer to the de-
sired destination due to the redeployment of Beacons, but since the launch selection
is based on random timeouts, the closest robot is not guaranteed to deploy. Vari-
ous strategies exist that would ensure the closest robot is selected [24]. SID is a
fixed deployment scheme without adjustable parameters. SID requires no additional
sensing or computation, but very low bandwidth communication is required for co-
ordination.
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4.3 Adaptive Group Size (AGS)

AGS is a novel strategy that adapts the density of flying robots, inspired by Liu et
al.’s [9] rules to control robot foraging activity. However, we consider a search task
rather than a foraging task (see Sect. 2), and we aim to explicitly avoid collisions.
AGS initially rapidly deploys robots, every 2–3 seconds. Flying Explorers measure
the density of neighbouring flying robots using their relative-positioning sensor [18]
and will probabilistically land if the density is higher than a predefined threshold.
This decreases the ratio of flying robots, reducing diminishing returns and interfer-
ence. Robots which have landed launch again when there are no robots flying in
the vicinity. The density of flying robots ρ is given by: ρ = ∑

N
i=1

4
di

, where di is the
distance to neighbouring robot i. The constant 4 is a normalisation factor such that
a single flying robot 4.0m away (considered a safe flight separation) gives ρ the
unit value 1. If ρ is greater than a threshold τ (typically 3.0–8.0) the robot will try
to land. To prevent multiple robots landing simultaneously, robots wait a random
timeout period (typically 1–2s) while they signal their intention to land. After this
timeout robots can land if no signal of a neighbouring robot’s intention to land is
received. Otherwise, the robot with the highest ID has priority in landing. Robots
could attach to the ceiling [19] instead of landing, but this could interfere with the
Beacon network.

AGS uses the perceived density of flying robots to avoid diminishing returns. For
example, if robots land in high density areas where collision risk is considerable,
interference is reduced. Furthermore, the perceived density implicitly encodes local
environment information. If many robots are flying in a confined space the density
will be high. Avoiding high densities reduces the deployment of robots to locations
where they may not be required. Therefore, energy consumption is reduced by de-
creasing unnecessary flight time and interference. AGS can be optimised by varying
the threshold τ . No significant processing or high bandwidth communication is re-
quired. However, a sensor is required to measure the density, which could be simple
Time of Flight sensors or local communication instead of relative-positioning [18].

5 Experimental Method

Comparing strategies requires extensive simulation analysis since it is infeasible
to gather sufficient data for statistical analysis with real flight tests given the large
parameter space and the challenging logistics of conducting numerous flight experi-
ments. Therefore, a realistic 3-D dynamics simulator was utilised [16], as discussed
below in Sect. 5.1

Performance was measured over 100 trials with robots clustered in random start-
ing locations in randomly generated maze-like corridor environments. Environments
were constructed from 40 connected 3×3m cells (see [22] for details). Fig. 1 shows
a typical environment and the swarm deploying with Beacons and a flying Explorer.
For the first experiments 20 robots were available to deploy. Subsequent experiments
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Fig. 1 Left: Typical randomly generated maze environment. Right: The swarm deploying with
robots on the ground, a flying Explorer and Beacons on the ceiling

assessed the scalability performance, so the number of robots was increased from
20 to 30. We measured search time, coverage area and swarm energy consumption,
calculated with an energy model of the rotor thrust-power curve of a real quadrotor
helicopter [19], shown in Fig. 2. This model facilitated the accurate prediction of
flight endurance within a 1% error. The model was extended to include the energy
used by sensors and processors, detailed in Table 1. This creates three electronics
power consumption rates: when the robot was flying (high power); when a Beacon
on the ceiling (medium power); and when resting on the ground (low power). This
equates to a power consumption of 120W for flying Explorers, 5W for Beacons,
and 0.5W for robots resting on the ground. These rates were validated on real flying
robots [19] and are similar to other rotorcraft, e.g. [23]. Moreover, the performance
trends are robust to changes in model parameters since the power rates are differen-
tiated by an order of magnitude.

Table 1 Power consumption of components used to develop the energy model for aerial robots

Component Power (W ) Comment
Total rotor power 100–120 Depends on payload [19]
Flight computer 2.44 Sensors & microprocessor [19]
Microprocessor 0.125 Microchip PIC32 40MHz
802.11a WiFi 1.5, 1.22, 0.01 Send, receive & sleep power [15]
Infrared distance sensor 0.165 Sharp GP2Y0A02YK
Ultrasonic altitude 0.015 MaxBotics LV-MaxSonar-EZ4
3-D Relative positioning ∼ 7 For 20 robots [18]



8 Timothy Stirling and Dario Floreano

Fig. 2 Thrust-power curve of the quadrotor propulsion system validated in [19]

5.1 Simulation and Flight Dynamics

A custom 3-D dynamics simulation was developed using the Open Dynamics En-
gine4 (ODE). An input force vector Ftot is applied to a rigid body with mass m
giving accelerations: V̇ = 1

m Ftot . Angular accelerations and torque were neglected
since they are stabilised by the flight controller [17]. Gaussian noise was added to
simulate turbulence and imprecise control, with standard deviations (s.d.) set em-
pirically (2.5×10−2 N) as the platform has not yet been characterised. However, the
altitude fluctuation was modelled from previous work in [17]. Ftot is given by:

Ftot = Fg +Fc +Fd + εN , (1)

where εN is a Gaussian noise vector for roll, pitch and thrust standard deviations:
εN ∼ N (0, σ̂). Fg denotes the platform weight with Fg = [0,0,m ·g]T . Fc is the
control force vector formed from desired pitch fp and roll fp forces, combined with
the altitude control fa from a PID controller [17]: Fc = [ fp, fr, fa]

T . Drag force is
calculated with:

Fd =−1
2

ρV 2ACd , (2)

where ρ is the specific air-density, V is air-speed, A is the frontal reference area and
Cd is the estimated drag coefficient.

Sensor noise was Gaussian with s.d. measured from characterisation experi-
ments: 2.5cm for the ultrasound altitude sensor and 5cm for infrared distance sen-
sors used for obstacle avoidance. The relative-positioning sensor has been charac-
terised in [18]: the range s.d. is 17cm and bearing s.d. is 6.1◦.

4 www.ode.org
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6 Results

To compare performances both the total swarm energy consumption and search time
metrics are examined separately. Subsequently, a multi-objective function is used
that linearly combines energy and time into a simple single parameter-free metric,
the Energy-Time-Product (ETP), measured in Joule-Seconds (Js) [2]. The ETP is in-
spired by the Power-Delay Product frequently used in electronics engineering. Both
energy and time metrics are taken to have equal unit weighting, which assumes the
equal importance of these factors and also avoids arbitrary parameterisation. Al-
ternative weighting of parameters is discussed in Sect. 7. With AGS and LTID we
varied the inter-launch interval with λ = 6, 8, 10, 12, 18 and 24 seconds, and the
density-threshold τ from 3.0 to 8.0, respectively. Finally, scalability performance is
examined by increasing the robot group size. Shapiro-Wilk tests indicated small de-
viations from normal-distributions, so Kruskal-Wallace χ2 and Spearman’s Rho rs
non-parametric tests were used to examine the statistical significance of any effects.
Medians are shown with standard deviations in parenthesis.

6.1 Overall Comparisons

Importantly, there was no significant difference in median coverage area (99.4%)
across all strategies (χ2 = 18.42, df = 12, p = 0.1), permitting fair comparisons.
The mean coverage area was 95.7%. Comparing all strategies over all parameters,
the fastest was AGS with τ = 6.0 with a median search time of 307.9s (57.6) (Fig.
3(a)). The most energy efficient was AGS with τ = 4.0, with a median of 178.5kJ
(33.8) (Fig. 3(b)). The slowest strategy was SID taking 1013.9s (118.6), 229.3%
slower than AGS with τ = 6.0. The least energy efficient was LTID with λ = 6 with
a median of 253.4kJ (59.2), requiring 42.0% more energy than AGS with τ = 4.0.
Comparing ETP performances (Fig. 3(c)), LTID suffers from a tradeoff between
search time and energy-efficiency achieving its lowest ETP of 800.5×105 Js (26.5)
with λ = 10 s. Since AGS showed low energy consumption with fast search times
it produced the lowest overall ETP of 579.7×105 Js (183.1), with τ = 6.0. Finally,
because SID suffers from slow deployment the median ETP was high, 1866.3×
105 Js (459.8).

With LTID, increasing the time between consecutive robot launches (λ ) signif-
icantly decreased the median swarm energy consumption (rs = −0.47, df = 598,
p < 0.001) and increased median search time (rs = 0.80, df = 598, p < 0.001).
Increasing λ from 6s to 24s reduces the median energy consumption by 27.6%
and increases median search time by 95.6%. Energy consumption is deceased by
reducing robot deployment to unnecessary locations and decreasing interference,
decreasing flight energy. Although energy consumption decreased as λ increased,
the search time increased more strongly, so the median ETP increased.

SID has no tunable parameters. SID had the slowest search time since only a
single robot flies at a time. Robots deployed only when and where necessary, which



10 Timothy Stirling and Dario Floreano

minimised unnecessary flight energy over all deployment strategies, confirmed with
multiple comparisons at the p < 0.001 level (using Wilcoxon ranksum tests). How-
ever, SID did not achieve the lowest energy consumption because of the energy
consumption of the Beacons’ sensors and processors over the long search duration.
Therefore, even although the power consumption of electronics is small compared
with the rotor power it is important to consider within a complete energy model.
The median ETP was high due to the slow search time.

With AGS, varying the threshold τ significantly affected the median search time
(χ2 = 116.3, df = 5, p< 0.001) and median swarm energy consumption (χ2 = 102.1,
df = 5, p < 0.001). Both energy and time metrics form a ∪-shape. This is because at
low thresholds flying robots have a higher probability of landing when encountering
neighbours, which incurs a time and energy cost. Conversely, increasing τ reduces
the effect of controlling the group size and so increases interference and unnecessary
flight, thereby increasing energy consumption and search time. Therefore, there is
an optimal threshold (τ = 6.0) that minimises the ETP.

6.2 Scalability Performance

To assess scalability performance the median ETP was compared when the num-
ber of robots was increased from 20 to 30. For LTID and AGS the parameters that
minimised the ETP for 20 robots (λ = 10s and τ = 6.0, respectively) were the same
for 26 and 30 robots, so were used for all group sizes. Since increasing the swarm
size can increase the expected coverage area [22] and associated search time and
flight energy, we restricted results to trials that achieved 100% coverage, ensuring
fair comparisons. Results are shown in Fig. 3(d). Increasing the robot group size sig-
nificantly increases the median ETP for both AGS (rs = 0.28, df = 598, p < 0.001)
and LTID (rs = 0.41, df = 598, p < 0.001), but not for SID (rs = 0.007, df = 598,
p > 0.86). LTID increases at a higher rate compared to AGS. AGS minimises the
median ETP over all tested group sizes. The median ETP of SID is approximately
constant because only a single robot flies at a time, so there is no unnecessary flight
time. However, SID never becomes competitive even for large group sizes. The ETP
trends for both AGS and LTID mask a decrease in median search time (9.6% and
9.1%, respectively) and an increase in median energy cost (15.6% and 29.4%, re-
spectively). This is due to the increased parallelisation afforded by additional robots
accelerating the search and consequently increasing flight energy. Importantly, for
all strategies the median ETP (and energy consumption) per robot decreases as the
group size increases, indicating good scalability performance.
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(a) Median Search Time (b) Median Energy

(c) Median ETP (d) ETP Scalability

Fig. 3 Median a) search time, b) swarm energy cost and c) Energy-Time-Product (ETP) tested
with 20 robots over 100 trials. Standard error bars (standard deviation divide by square root of
sample size) are shown. The energy results show the constituent ground, beacon and flight costs.
The inter-launch interval λ of LTID and the flying robot density-threshold τ of AGS were varied.
d) Median ETP performance as the group size increases. AGS has the lowest energy consumption,
fastest search time, lowest ETP and good scalability performance
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7 Conclusion and Future Work

In this paper we compared three strategies to deploy flying robots for a search task
in unknown environments using a complete energy model for electronics and mo-
tors validated on real flying robots. All strategies were characterised by nominal
computation, memory and communication requirements, and were necessarily sim-
ple to facilitate implementation on aerial systems without further complexifying
autonomous flight control. To summarise:

• LTID demonstrated that slowing deployment facilitates a significant reduction
in energy consumption up to 27.6%, but this increased search time by 95.6%.
This tradeoff can be optimised by adjusting the inter-launch interval. No com-
munication or additional sensing is required and the implementation is simple.
Therefore, LTID serves as a useful benchmark strategy.

• SID ensures only one robot flies at a time and leads to low energy consumption,
but a very high search time. This indicates that mitigating deployment of robots to
unnecessary locations by exploiting acquired environmental information signifi-
cantly reduces flight energy. However, the increased energy consumption of sen-
sors and processors prevents SID achieving the best overall energy-efficiency. No
additional sensing is required, but very low-bandwidth communication is used
for coordination.

• The AGS strategy results showed that, by controlling the density of flying robots,
the swarm energy consumption can be reduced while also achieving rapid search.
AGS require a sensor to measure the local robot density.

With optimal parameters, AGS (τ = 6.0) has an ETP 27.6% better than LTID
(λ = 10s) and 69.3% better than SID. All strategies showed good scalability per-
formance, with a decreased median ETP per robot as group sizes increased; SID
displayed constant performance, but AGS consistently achieved the best ETP.

When comparing algorithm performance, the choice of metrics is crucial. Pre-
vious researchers often examined either the time cost [20] or energy consumption
[9, 7] independently. Alternatively, multi-objective functions are used, combining
multiple weighted metrics, e.g. Hayes [6]. However, this is not straightforward due
to the choice of metrics, weighting and formulation. Additionally, although compar-
isons are simplified, individual metric trends are obfuscated. To clearly understand
the underlying trends, we have shown both energy and time costs independently as
well as the ETP to allow selection of the best energy-time efficient strategy. The ETP
has equal weighting of time and energy costs providing a simple metric. However,
relative weightings could be easily applied to the provided energy and time results,
depending on their relative importance in different applications. The ETP facilitated
comparisons between different robot group sizes during the scalability tests.

This work was confined to one type of corridor environment of a fixed size.
Properties such as size and complexity or the existence of open areas may affect
the performance of the three strategies and response to parameters (λ and τ). These
effects were examined with LTID previously in [22]. Summarising, the gains in
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energy efficiency with LTID are more pronounced in higher complexity environ-
ments with more corridor junctions. This is because robots will redeploy to new
areas more frequently and experience greater interference. Therefore, it is expected
that these characteristics will generalise to SID and AGS. Such complex environ-
ments are common in buildings such as offices, especially in disaster situations. It
would also be feasible to autonomously optimise the control parameters based on
perceived environmental conditions, a subject of future work. Finally, the effects
of small obstructions (e.g., lights) on the relative-positioning sensor was neglected.
Current testing indicates the sensor is robust to small obstructions and experiences
only slight attenuation, while large obstacles are handled algorithmically [22].

Currently we have developed the autonomous flight behaviours of the underlying
swarm search behaviour, validating the feasibility of the approach. In the future we
aim to verify the presented results with real flying robots. We are also investigating
methods to extend these strategies to further reduce flight energy, e.g. by selection
of the closest robot to the desired destination with strategies amenable to swarm
robotics [24]. Additionally we will test all strategies in more varied environments
aiming to draw more general performance predictions.

In conclusion, aerial swarms are gaining interest due to their suitability for many
applications such as search or disaster mitigation because they can rapidly cover
obstacle-rich terrain [22]. The work presented here facilitates the future deployment
of flying robots with limited autonomy to successfully cover larger environments,
while understanding the impact on time costs. The three presented strategies provide
different performances with different sensing and communication requirements, fa-
cilitating selection according to robot capabilities and application requirements.
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