000185495 001__ 185495
000185495 005__ 20181203023047.0
000185495 0247_ $$2doi$$a10.1103/PhysRevLett.110.015701
000185495 022__ $$a0031-9007
000185495 02470 $$2ISI$$a000313006100031
000185495 037__ $$aARTICLE
000185495 245__ $$aQuasiuniversal Connectedness Percolation of Polydisperse Rod Systems
000185495 260__ $$bAmerican Physical Society$$c2013$$aCollege Pk
000185495 269__ $$a2013
000185495 300__ $$a5
000185495 336__ $$aJournal Articles
000185495 520__ $$aThe connectedness percolation threshold (eta(c)) and critical coordination number (Z(c)) of systems of penetrable spherocylinders characterized by a length polydispersity are studied by way of Monte Carlo simulations for several aspect ratio distributions. We find that (i) eta(c) is a nearly universal function of the weight-averaged aspect ratio, with an approximate inverse dependence that extends to aspect ratios that are well below the slender rod limit and (ii) that percolation of impenetrable spherocylinders displays a similar quasiuniversal behavior. For systems with a sufficiently high degree of polydispersity, we find that Z(c) can become smaller than unity, in analogy with observations reported for generalized and complex networks. DOI: 10.1103/PhysRevLett.110.015701
000185495 700__ $$0242859$$g182526$$uEcole Polytech Fed Lausanne, LPM, Stn 17, CH-1015 Lausanne, Switzerland$$aNigro, Biagio
000185495 700__ $$0240278$$g121842$$uEcole Polytech Fed Lausanne, LPM, Stn 17, CH-1015 Lausanne, Switzerland$$aGrimaldi, Claudio
000185495 700__ $$0240512$$g115532$$uEcole Polytech Fed Lausanne, LPM, Stn 17, CH-1015 Lausanne, Switzerland$$aRyser, Peter
000185495 700__ $$aChatterjee, Avik P.$$uSUNY Coll Environm Sci & Forestry, Dept Chem, Syracuse, NY 13210 USA
000185495 700__ $$aVan Der Schoot, Paul
000185495 773__ $$j110$$tPhysical Review Letters$$k1
000185495 909C0 $$0252100$$pLPM
000185495 909CO $$particle$$ooai:infoscience.tind.io:185495
000185495 917Z8 $$x107917
000185495 937__ $$aEPFL-ARTICLE-185495
000185495 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000185495 980__ $$aARTICLE