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Influence of a nonradiative reservoir on polariton spin multistability
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In this work, we study the influence of the excitation conditions on power-dependent spin switching and spin
multistability of exciton polaritons in planar semiconductor microcavities. We obtain experimental evidence for
the influence of a reservoir of nonradiative states which make a determining contribution to the dynamics of
polaritons. While the spinor Gross-Pitaevskii equation (SGPE) fails in reproducing some critical experimental
trends, an extended set of equations including a nonradiative reservoir allows us to reproduce the experiments
quantitatively. We find that the energy renormalization of the exciton field due to the reservoir is crucial to describe
power-dependent spin switching. The reservoir is also responsible for the effective repulsive interactions between
polaritons of opposite spin obtained in the framework of the SGPE. Two important parameters, the coupling
of the spinor polariton fields to the reservoir and the decay of the reservoir, are determined experimentally. We
present indications that the reservoir originates from the formation of biexcitons and is constituted of localized

exciton states.
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I. INTRODUCTION

Since its prediction by N. A. Gippius et al.' in 2007,
polariton spin multistability rapidly appeared as a very
promising phenomenon to realize spin-based optoelectronics
devices with microcavity polaritons. Several proposals have
shown the exceptional potential of this effect to realize spin
memories’ and polariton spintronic circuits.* In a recent
work, we demonstrated experimentally spin multistability
with a single macroscopically occupied polariton level in a
microcavity with patterned traps.* Moreover, we evidenced
the spin trigger effect, which is the spin analog for the Schmitt
trigger in electronics, showing the possibility of developing
advanced devices by simply using the intrinsic properties
of microcavity polaritons. The potential of polaritons in
spintronics is confirmed by other experimental achievements
like the observation of spin rings>° and the polarization control
of bistability propagation.’

The physics of spin multistability teaches us a lot about
polariton spinor interactions. Indeed this phenomenon can only
be observed in the presence of asymmetric spinor interactions.
Because of that, spin-up and spin-down polaritons exhibit
decoupled optical bistability curves. This leads to power-
dependent spin switching and to spin multistability. Whereas
the asymmetry of the spinor interactions is well accepted, the
strengths of these interactions are still under intensive debate.
In particular, the interactions between polaritons of opposite
spins, which are expected to be attractive, have been suggested
to be positive in several experiments.*® Moreover, we have
shown that although the spinor Gross-Pitaevskii equations
(SGPEs5) are very efficient in reproducing qualitatively most
of the features of spin multistability, they fail in meeting a
satisfactory qualitative agreement.*

In the present work, we performed an exhaustive series
of experiments in order to determine the behavior of mul-
tistability as a function of the different excitation parameters
and, particularly, the cavity detuning. In agreement with recent
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states that are mostly populated in the presence of polaritons of
opposite spins. We propose a theory going beyond the SGPE,
including a reservoir dynamics. We obtain a good quantitative
agreement with our experiments.

The paper is organized as follows. In Sec. II we introduce
the phenomenology of polariton spin multistability based on
experimental evidence. In Sec. Il we model our experiments in
the framework of the SGPE. We discuss the spinor interactions
based on the experimental data. We highlight the crucial role
of density-dependent nonlinear losses in the presence of po-
laritons of opposite spins, creating nonradiative states. We also
show the limitations of the model in quantitative reproduction
of the experiments (intensity jumps, narrowing of bistability
width). In Sec. IV, we develop a more general theory in order to
take into account the many-body effects and the energy renor-
malization due to the nonradiative reservoir. We show how this
backaction is responsible for the effective repulsive interactions
between polaritons of opposite spins. We successfully test
the agreement of this theory with a series of experiments. In
Sec. V, we discuss several physical issues of our theory with
an emphasis on our understanding of the origin and role of the
nonradiative reservoir. In Sec. VI, we describe theoretically the
conditions for observing polarization multistability. Finally,
we give a general conclusion to our work in Sec. VII.

II. PHENOMENOLOGY OF SPIN MULTISTABILITY

The first investigations of multistability with spinor systems
were done in the early 1980s, with Na atom vapors showing a
Zeeman splitting in the ground-state (GS) level.'""'> However,
from the 1990s on, the research in this field dwindled, probably
because no equivalent could be achieved in solid-state systems.
The main difficulty in observing spin multistability is that it
requires both the control of spinor interactions in the system
and a strong spin coherence. The emergence of spintronics
stimulated its theoretical investigation in different solid-
state systems like ring cavities,'> magneto-optic cavities,'*

propositions,®*!” we obtain strong indications that an impor-  spatial solitons in fibers,'> and, more recently, microcavity
tant contribution to the dynamics comes from nonradiative  polaritons.' ¢
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FIG. 1. (Color online) (a) Microcavity sample and mesa struc-
tures. The sample is wedged to tune the cavity length.'® (b) Spatially
resolved polariton spectrum in a 3-um mesa. (c) Experimental
conditions: we excite the ground state (GS) near-resonantly. We select
a GS energy and a A such that the laser energy is close to the biexciton
resonance. The first excited state E1 is about 1 meV above the GS
and its population is negligible.

The great potentialities of polaritons arise from the fact that
they are light-matter quasiparticles with a very light effective
mass and a de Broglie wavelength of a few microns. Polaritons
inherit excellent coherence properties from their photonic
nature, while their electronic nature favors significant spinor
interactions in the nonlinear regime.!” In addition, quantum
confinement can be achieved in micrometer-sized structures,'
and the coherent optical control of trapped polariton wave
functions can be realized via simple optical means.'”

Polariton optical bistability has been widely studied over
the last 15 years.”>>* In this section, we show that spinor
interactions strongly modify optical bistability. We first show
how this can lead to high-efficiency spin switching. Then we
give the experimental evidence of spin multistability.*

Our sample is a GaAs/AlAs semiconductor microcavity
with an embedded Ing04GagosAs quantum well [Fig. 1(a)].
Polaritons are trapped in patterned mesa structures engineered
on top of the cavity spacer.!® In 3-um mesas, quantum
confinement yields spectral discretization strong enough to
allow us to work with single energy levels. The typical
polariton line width y is 100 peV and the energy spacing
between the first excited state (E1) and the GS can reach
1 meV [Fig. 1(b)]. The mesa is excited using a single-mode
continuous wave laser at normal incidence in the transmission
configuration. We tune spinor interactions by adjusting the
laser circular polarization degree opump and power P and
detuning A from the GS. We also take advantage of the
biexciton resonance to enhance nonlinearities [Fig. 1(c)].

Owing to selection rules on the total angular momentum,
only polaritons with spin £1 can be created by the cavity
mode.'® Polaritons are thus properly described using the
%-pseudospin formalism. Their spin state can be mapped in
the Bloch sphere and is in one-to-one correspondence with
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FIG. 2. (Color online) (a) Poincaré sphere. The right and left
circularly polarized states are located at the north and south poles of
the sphere, respectively. Linearly polarized states are on the equator.
The other points of the sphere correspond to elliptically polarized
states. (b) Bloch sphere. The |1) and || ) states are represented at the
poles of the sphere. The states on the equator correspond to states
with spin oriented in the (x,y) plane.

the light polarization state on the Poincaré sphere (see Fig. 2).
Right or left circularly polarized light (o + or o —) creates—
and is emitted by—spin-up (1)) or spin-down (|| )) polaritons,
respectively. Linearly polarized light creates polaritons in
a coherent superposition of these spin states |1) such as
M) = %(M) + €% |])), where ¢ is a phase factor.'®

A. Polariton spinor bistability

Conventional optical bistability is obtained in our system
under circularly polarized excitation. In Fig. 3(a), we show
a bistability curve obtained experimentally with pure o+
excitation. We measure the emission intensity as a function
of the excitation power. When increasing the excitation
power, the spin-up polariton density increases almost linearly
up to a threshold power (upper threshold) where it jumps
to a high-intensity branch. When decreasing the excitation
power, spin-up polaritons remain on the high-intensity branch,
describing a hysteresis loop, until another threshold is reached
(lower threshold). Because o+ excitation creates only spin-up
polaritons, we observe a bistability cycle for spin-up polaritons
only and almost no signal for spin-down polaritons. The
internal polariton density is dominated by spin-up polaritons,
and thus the transmitted light polarization is o+ during the
whole experiment [see Fig. 3(e)].

The experiments under elliptical excitation are displayed
in Figs. 3(b) to 3(d). They reveal a much more complex
phenomenology, with an interplay between the bistability
cycles of spin-up and spin-down populations. The main
features of this spinor bistability are the following.

(1) The upper bistability thresholds of both polariton spin
populations coincide even when the excitation polarization is
not completely linear, showing that the blue shift of one spin
population induces the blue shift of the other spin population
[Figs. 3(c) and 3(d)].

(ii) When the minority spin population jumps up, the
majority spin population jumps down to an intermediate-
intensity bistability branch, whose intensity can be down to
half the intensity of the upper branch [Fig. 3(b)].

(iii)) The hysteresis of the minority population is inhibited
by the density of the majority population, even close to linearly
polarized excitation. This gives rise to an independence of the
lower bistability thresholds, which can be significant even
under linearly polarized excitation. These observations suggest
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FIG. 3. (Color online) (a)—(d) Spinor bistability. Number of po-
laritons in the different polarizations when the pump power is ramped
up (solid line) and down (dashed line) for different polarizations of
the pump laser. (e)—(h) Power-dependent spin switch. Polarization of
the polaritons along the power scan. The experiment was done at a
position where the polariton energy was 8’ = —1.49 meV, relative to
the exciton energy. The laser detuning was A = 0.39 meV.
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that important loss mechanisms occur in the presence
of polaritons of opposite spins.

(iv) The upper thresholds occur at lower powers under linear
excitation polarization than under circular polarization. This
suggests that interactions between countercircular polaritons
could be stronger than those between cocircular polaritons, in
opposition to theoretical predictions. Actually, we will show
that the lower threshold under linear polarization is rather a
signature of a nonradiative contribution to the dynamics of
polaritons.

B. Polarization switching

It is possible to calculate the emission polarization degree
pc from the data in Figs. 3(a) to 3(d) using the relation

Iy — I,
Ia+ +I —’

where I, and I,_ are the emission intensities from spin-up
and spin-down polaritons, respectively. In Figs. 3(e) to 3(h),
we show the circular polarization degrees versus the excitation
power. In the forward direction, the emission polarization
degree pc is close to the excitation polarization degree pPpump-
In the case of o+ excitation, pc = 1 during the whole
scan (forward and backward) of the excitation power. Note
that the discrepancy at very low power (<500 uW) is an
experimental artifact due to the very low signal-to-noise ratio
of the transmission at such powers.

The independence of the bistability thresholds of spin-up
and spin-down polaritons induces drastic changes in the
spin polarization. In Fig. 3(f), when the excitation power
is increased, spin-up polaritons jump to the high-intensity
branch at P = 1.7 mW, causing a switch of pc from 0.5 to
1. pc switches back to 0.5 at P =2 mW, where spin-down
polaritons reach their upper threshold. When the excitation

pPc =

P=0.7mW
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FIG. 4. (Color online) Principle of spin multistability. Blue curves display pc vs P for a fixed ppump Obtained during the power-dependent
spin switch experiment, when P is decreased and a fully circularly polarized plateau appears between the lower bistability thresholds [see red
curves in Figs. 3(e) to 3(h)]. Polaritons are initially prepared on a pc = +1 plateau at a given value of the excitation power [filled (yellow)
circle]. We then look at the evolution of pc when ppump is scanned backward (black curves) and forward (red curves). Depending on the
excitation power, this produces either two distinct polarization hystereses (a) or two intersecting polarization hystereses (b). In the intersection

region, pc = —1, 0, and +1 are three stable states of the system.
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power is decreased, the independence of the lower thresholds
(between 2 and 0.25 mW) also causes a switch of p¢ to 1.

For excitation polarizations closer to linear polarization,
the upper thresholds of spin-up and spin-down polaritons
are no longer independent. The switch occurs only between
their lower thresholds, as shown in Figs. 3(g) and 3(h).
Between the lower thresholds, the emission is characterized
by a fully circularly polarized plateau (|pc| = 1), denoting
that the polariton spin population inside the microcavity is
fully polarized. The size of the |pc| = 1 plateaus decreases
as a function of |ppumpl, While their polarity depends on the
sign of ppump. The system thus behaves as a high-contrast
power-dependent spin switch.

C. Spin multistability

At a constant excitation power, the switch in polariton
spin state is controlled by the excitation polarization degree.
Multistability arises from the presence of robust polarization
hysteresis upon back-and-forth scan of opymp.

The system is first prepared in a fully polarized state. This
is done either by using an elliptically polarized excitation and
driving the power-dependent spin switch until it reaches a
fully circularly polarized plateau (fcp) or simply by using
a circularly polarized excitation. The polarization is then
scanned, while the excitation power is maintained constant.
Depending on the excitation power, the system exhibits either
two distinct polarization hysteresis curves [see Fig. 4(a)] or
a multistability cycle, i.e., two merged polarization curves
[Fig. 4(b)].

In the case of the multistability cycle, the system admits
three stable spin states for a given excitation condition (P,
Ppump> A) [Fig. 5(a)]. When the laser frequency corresponds
to the biexciton resonance, the threshold independence is
enhanced. In that particular case, the system can switch directly
from |1) to |]) and hence behave as a spin Schmitt trigger
[Fig. 5(b)]. The specifications of this multistable system such
as its width and central polarization can be tuned by changing
the excitation parameters.

D. Multistability symmetry

The symmetry of the multistability cycle strongly depends
on the direction of the excitation linear polarization axis. By

(a) 1.0 (b)F

0.5
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-0.5 |-

-04 -0.2 0.0 0.2 04 -04 -02 0.0 0.2 0.4
Excitation polarization degreep,

FIG. 5. (Color online) (a) Multistability arises from hysteresis in
polarization-controlled spin switching at a constant excitation power.
In dashed areas, three spin states are available for a given excitation
condition (circles), enabling multivalued logic operations. (b) For a
laser frequency at the biexciton resonance, the system behaves as a
Schmitt trigger for spins.
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FIG. 6. (Color online) Symmetry. By rotating the linear polar-
ization axis of the excitation, the multistability cycle can be made
strongly asymmetric. The widths of the polarization hystereses are
also modified. (a)-(c) Angles are indicated with respect to the
reference orientation 6, which corresponds to an orientation along
D+, i.e., along one linear polarization splitting axis of the sample.
(d) Polarization-resolved transmission spectrum in 3-pum mesas.
The excitation linear polarization axis was rotated with respect to
our reference horizontal polarization axis, in steps of 4°. For each
orientation, we scanned the laser energy over 70 GHz at steps of
0.5 GHz. We obtained a linear polarization splitting of about 20 eV,
with orthogonal axes at £45° with respect to our reference horizontal
polarization axis. These axes correspond to the [001] (D+ ) and [010]
(D—) crystallographic axes of our microcavity sample.

rotating the linear polarization direction of the excitation, it
is possible to displace the position of the multistability region
and to tune the asymmetry in the widths of the polarization
hystereses. This is illustrated in Fig. 6. The most symmetric
case [Fig. 6(a)] corresponds to a linear polarization close
to the D+ axis, coinciding with one axis of a small linear
polarization splitting observed in our sample. In Figs. 6(b) and
6(c) the multistability center is displaced to the left and to the
right, respectively. Experimentally, the multistability behavior
can hardly be achieved when the excitation polarization is
exactly along the direction of the linear polarization splitting
axes. The multistability width then becomes very small and
bistability is easily lost. As we show below, the introduction
of a linear polarization splitting in the theory is needed to
reproduce these asymmetric multistability cycles. Simulations
also confirm that multistability is more difficult to achieve
close to the polarization splitting axes.

III. SPINOR GROSS-PITAEVSKII EQUATION

In this section we discuss the description of our experiments
based on the SGPEs. We define two polariton fields, v, |,
for spin-up and spin-down polaritons, respectively, that are
coupled to each other by spinor interactions. The main
characteristic of this model is the anisotropy of polariton spinor
interactions, i.e., the fact that the interaction strengths between
polaritons of same (o) or opposite (ap) spin are different.
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One can understand the origins of this anisotropy through a
microscopic analysis of polariton-polariton interaction. It has
been shown that because of excitons’ composite nature, carrier
exchange processes are the dominant scattering mechanisms.>
The strong dependence of the exchange interactions on the
spin of the carriers involved is reflected in the anisotropy of
polariton spinor interactions. The blue shifts of spin-up and
spin-down polaritons are thus given by Aey = any +aon
and Ae| = ajn| + asny, respectively.

We consider the main features of the spinor bistability
experiments (Sec. Il A), which are the coincidence of the
upper thresholds, the appearance of an intermediate-intensity
branch due to nonlinear losses in the presence of polaritons of
opposite spins, the independence of the lower thresholds, and
the effect of linear polarization splitting. We first ignore the
renormalization of the Hopfield factors and the contribution of
nonradiative states to the polariton dynamics.

The two coupled equations for the field amplitudes ¥+ in
the (o0 +, o —) basis read

d i 2 2
lalﬁm =|-A- 5()/ + Bl 417) + anldry

€in¥y.p
2

+062|1/f¢,¢|2] Yy + +Fy, (D

where F} | is the excitation field, y the polariton line width,
and €, the strength of the linear polarization splitting. The
intensity losses observed in the presence of polaritons with
opposite spins are modeled by the introduction of a nonlinear
contribution to the decay rates through the parameter S.

A. Comparison with experiments

The results of the theoretical investigations using the SGPE
are summarized in Fig. 7. In Figs. 7(a) to 7(d), we model the
experimental trends in Figs. 3(a) to 3(d). The qualitative agree-
mentis very satisfactory. Under circularly polarized excitation,
the conventional bistability is obtained [Fig. 7(a)]. Under
elliptically polarized excitation, both spin-up and spin-down
populations exhibit bistability. The bistability hysteresis of the
minor population is inhibited and an intermediate-intensity
branch is formed in the presence of both spin populations. In
Fig. 7(b), ppump = 0.5, the upper thresholds are different and a
significant loss of intensity is observed for spin-up when spin-
down polaritons reach their upper threshold. As in Fig. 3(b),
the bistability width of spin-down polaritons is very narrow.
At ppump = 0.17 [Fig. 7(c)], the upper thresholds coincide
and the lower thresholds remain different. The independence
of the lower thresholds under linearly polarized excitation
is also reproduced. In Fig. 7(d), we use ppymp = —0.001 to
highlight the system’s sensitivity to the sign of Opump.

In the framework of the SGPE, exciton-photon detuning is
not taken into account. Hence, it is important to note that the
values of the interaction constants «, «, and B are effective
values that should be adjusted according to the polariton GS
energy. We chose to scale ap and B as functions of «;. In
the case of Fig. 7, the parameters are A = 0.39 meV, y =
0.05 meV, oy = 0.33¢;, and B >~ 0.2«rq, while the value of
is arbitrary in our mean-field theory, because it just leads to a
rescaling of the laser power.
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FIG. 7. (Color online) Spinor bistability (SGPE) theoretical
simulations. (a)—(d) Qualitative reproductions of the experimental
observations in Figs. 3(a)-3(d). (e) Illustration that a nonzero «; is
needed; (f) the necessity of a nonzero .

1. Role of ay and

We are first concerned with modeling the coincidence of
the upper bistability thresholds under elliptically polarized
excitation. As explained previously, the upper thresholds can
coincide only if the increase in one spin population causes the
blue shift of the other. Therefore we need to use a positive o,
in Eq. (1). This means that in order to model spinor bistability
in the framework of the SGPE we need to consider repulsive
effective interactions between polaritons of opposite spins.
Several effects, like the onset of saturation of strong coupling,
the proximity to the biexciton resonance, and the additional
blues shift due to nonradiative states, may contribute to an
effective a, > 0. We discuss this issue in Sec. V. As an
example, we show in Fig. 7(e) that with oy < 0 it is not
possible to obtain the same upper thresholds under elliptically
polarized excitation. Increasing o, brings the upper threshold
of spin-down polaritons closer to that of spin-up polaritons.

The importance of nonlinear losses is shown in Fig. 7(f). We
show that in the case of &, > O and 8 = 0, the lower thresholds
also tend to be the same for spin-up and spin-down polaritons
close to linearly polarized excitation. In fact, in the absence of
any nonlinear loss mechanism, repulsive interactions will tend
to equalize the bistability thresholds, and the coincidence of
lower thresholds occurs for smaller o, than the coincidence of
upper thresholds.

Another important issue is the formation of an intermediate-
intensity branch in the presence of both spin populations. This
phenomenon can only be reproduced by the introduction of
nonlinear losses.

To summarize, the coincidence of spin-up and spin-
down bistability thresholds can only be reproduced with
effective repulsive interactions (a; > 0). In order to recover
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FIG. 8. (Color online) Poincaré sphere in the multistability regime. (a) Experimental data presented in Fig. 5. (b) Theory. The experimental
features of spin multistability are well reproduced: the jumps, the multistability gap, the pseudospin precession, and the conservation of
coherence. The pseudospin trajectory (red triangles) is clearly distinct from the trajectory of the excitation (blue triangles). Coherence is

maintained (|p| =~ 1) during the whole cycle.

independent lower thresholds and to reproduce the formation
of an intermediate-intensity branch, it is necessary to consider
nonlinear contributions to the polariton decay rates (8 > 0).

Let us now compare our findings with the original predic-
tion by Gippius, made in the ideal case of noninteracting spin-
up and spin-down populations (e, = 0and 8 = 0). In this case,
multistability can be achieved as soon as Py /2 < P < Py, /2
(Pyp and Py, are the lower and upper bistability thresholds,
respectively). Our experiments show that it is not possible to
treat spin-up and spin-down independently. In addition, the
achievement of the spin trigger regime is a direct consequence
of the presence of nonlinear losses and we were not able to
simulate it without them.

2. Macroscopic spin coherence

The coherence of spin-up and spin-down polaritons was
unambiguously evidenced by measuring the pseudospin tra-
jectory in the Poincaré sphere during a multistability cycle.
We resolved emission polarization along the three axes of the
Poincaré sphere in order to access the three Stokes parameters,
i.e., the emission polarization degrees in the circular pc, linear
pL, and diagonal pp bases, given by

_ I(er_Iaf _ IH—IV
e it Tty

_Ipe—Ip
Iny + Ip-’
2

The experimental results are shown in Fig. 8(a). The vertical
position corresponds to the circular polarization degree. The
azimuthal angle ¢ on the sphere corresponds to the phase
difference between spin-up and spin-down polaritons. It
depends on the linear and diagonal polarization degrees:

PL PD

¢ = arctan p—D. 3)
oL
The inclination angle 8 is related to the ellipticity of light and
is given by

Pc

P+ oL

6 = arccos

“

The norm of the pseudospin vector is a measurement of the

spin coherence
lpl = /P& + o+ pj < 1. 5)

The experiment starts on the o— pole of the sphere,
where the pseudospin is pinned before jumping abruptly close
to the D+ state. A wide precession towards the H state is then
observed before the second jump to the o+ pole occurs. On the
backward path, a third jump brings the pseudospin farther from
the D+ state, producing a gap in the precession trajectory. The
pseudospin then precesses towards the V state and, finally,
jumps back to the o — state. The trajectory of the excitation is
displayed in Fig. 8(b) (blue triangles). It corresponds to the tra-
jectory of a linearly polarized (H) excitation beam transmitted
through a quarter-wave plate. Clearly, the trajectories of the
polariton and excitation pseudospins are strikingly different.
The precession of the polariton pseudospin close to linearly
polarized excitation is similar to that observed in polariton
scattering experiments.'” It results from the excitation-induced
splitting between spin-up and spin-down polariton states,
which acts qualitatively as an effective magnetic field on
polariton spins: When almost linearly polarized polaritons are
injected into the microcavity, their spins start precessing to
the left or to the right depending on the direction of this
effective magnetic field along the pole axis. This direction
is given by the sign of the excitation circular polarization rate.
Obviously, the observed rotation depends on both the value of
the excitation induced splitting and the polariton lifetime. We
observe that the spin coherence is preserved during the whole
multistability cycle, as expected for such a resonant experi-
ment. In Fig. 8(b), we show that the experimental features are
well reproduced by the spinor Gross-Pitaevskii model.

3. Linear polarization splitting

A final success of this model concerns the effect of the
linear polarization splitting observed in our microcavity. Such
a splitting will act as a second effective magnetic field on
the polariton pseudospin. This new field lays in the equatorial

045303-6



INFLUENCE OF A NONRADIATIVE RESERVOIR ON . ..

plane of the Poincaré sphere roughly in the direction of the
D+ axis (see Sec. IID). Because this linear polarization
splitting is only a few tens of micro—electron volts (see
Fig. 6) it has almost no effect when the excitation-induced
splitting is large (when the pseudospin is close to the poles)
but it contributes quite strongly to the dynamics when both
polariton spin populations are in resonance with the laser
(when the pseudospin is close the equator). In the latter
case, the pseudospin trajectory rotates around the D+ axis,
explaining the possible shift of the pseudospin from the equator
towards more elliptical polarizations depending on the relative
direction of the pseudospin trajectory compared to the D+
axis. This explains the results in Fig. 8.

B. Limitations of the SGPE

The SGPE model presented above reproduces successfully
the main experimental observations and the phenomenology
of spin multistability. However, this approach is not sufficient
to meet quantitative agreement. In particular, the following
experimental observations could not be reproduced in the
calculations.

(i) The upper threshold is at lower power under linearly
polarized excitation (see Fig. 3).

(i) The intensity jumps in the spinor bistability are un-
derestimated by the model (Figs. 3 and 5), and so are the
ratio between the high- and the-intermediate intensity branches
and the polarization degree near linear excitation during the
multistability cycle (Fig. 7).

(iii) In the Bloch sphere experiment, the pseudospin vector
remains closer to the poles than in theory (Fig. 8). This is a
direct consequence of the previous point. Indeed, the described
underestimation of the increase in the major population at
the lower thresholds leads to an underestimation of the
polarization degree.

To understand these limitations, it is important to recall that
the SGPE model does not account for the energy shift induced
by the nonradiative population.

The change in effective detuning when the polaritons blue
shift is not modeled by the SGPE using polariton fields
directly. Actually, when the polariton density is increased,
the exciton energy should renormalize independently of the
cavity photon’s energy, leading to an effective change in the
cavity detuning. The Hopfield factors thus change drastically
at the bistability thresholds. We thus expect that the photonic
Hopfield factor of the lower polaritons is larger on the upper
branch, which leads to a higher emission intensity. This effect
is simply taken into account in the theory by working directly
in the exciton-photon basis.

A more profound shortcoming of model 1 is that the blue
shift due to the nonradiative reservoir is ignored. We show in
the next section that taking its effect into account does improve
the quantitative agreement with experiments.

IV. EXTENDED THEORY

A. Evidence of a reservoir

The SGPE theory gives a reasonable qualitative repro-
duction of the experimental observations. In Sec. III B, we
have, however, pointed out the limitations of the model from
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the quantitative point of view. In this section, we show that
taking into account the blue shift of the exciton level due to
the interactions with a (bi-)excitonic reservoir substantially
improves the accuracy of the theory.

The creation of an excitonic reservoir is indeed expected
because of the long exciton lifetime in the absence of
radiative coupling. In our SGPE model, we have introduced
the nonlinear loss term, which was physically attributed to the
formation of biexcitons.* These biexcitons do not immediately
disappear from the quantum well and can also scatter towards
dark or high-k exciton pairs. All these contributions cause a
blue shift of the exciton level. To include this effect, we need
to consider the following system of five equations:

d

. i 2
I— =|—éx— = + + grn
PR |: X 2()/X Blxy.417) + grnr

2 2 Qr
ol |7 Foalx | xry + - Pr (6a)
.d i n Qr
1— = —€& — Ve —_
a1 (Z 0 2)/ (2 ) Xt
€lin —iw
+7(P¢,¢ + F;, e Lt (6b)
d
—ng =211 |y, 1> — yrng. (6¢)

dt

where x (¢) is the exciton (photon) field with energy ex
and decay rate yx(), 2z the Rabi splitting, ng the reservoir
density, g, the exciton-reservoir interaction constant, and yg
the reservoir decay rate. All the other terms appeared in
Eq. (1) and have been adjusted to the exciton-photon basis
(we consider here that the linear polarization splitting has a
photonic origin). The nonlinear feeding of the reservoir by
pairing excitons of opposite spins is still modeled by the
parameter B. The value of g, is assumed to be [«] + «2]/2,
which gives a good order of magnitude of the biexciton-exciton
interaction and provides a repulsive interaction as o; > o.

Linear contributions to the scattering of polaritons to
the nonradiative reservoir such as phonon absorption’ are
not included in the present model. If it is assumed that
spin relaxation is slower than the decay rate, then a linear
scattering to the reservoir can be effectively described by
evenly renormalizing the polariton spinor interaction constants
a; and o, by the same factor. In the opposite regime of fast
spin relaxation, it was shown in Ref. 9 that this renormalization
leads to an effective sign change of «; from negative to positive
and to the same conclusions as the SGPE, (1), with a positive
ay. Therefore linear scattering processes to the reservoir are
not sufficient to solve the limitations of the SGPE discussed
previously.

The dependence of the upper bistability threshold on
the excitation polarization is the most direct experimental
evidence of the reservoir. Our SGPE predicts an increase
in the power threshold by roughly a factor of two when
going from circularly to linearly polarized excitation, because
interactions between countercircularly polarized excitons are
much weaker than interactions between cocircularly polarized
excitons (see Fig. 7). In experiments, however, the upper
bistability threshold under linear polarization can be much
lower than under circular excitation.
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FIG. 9. (Color online) Illustration of the effect of interactions
between the reservoir and the lower polariton branch on the upper
thresholds. The upper threshold under linear excitation can decrease
dramatically when these interactions are taken into account. In
this example, the upper threshold under linear excitation (b) is a
factor of two smaller than that under circular excitation (a). The
reservoir interactions are also responsible for the suppression of
the polariton density when both polariton spin polarizations are on
the upper bistability branch (b). Parameters: A = 0.22 meV, §' =
—1.96 meV, yc =0.05meV, yx =0.05meV, o/a; = —0.15,
B/a; = 0.5, and Qg = 1.5meV.

The role of the reservoir can be understood as follows.
Under circular excitation, there is only one polariton po-
larization so the reservoir is not populated. As expected
from conventional bistability, the upper bistability threshold
increases with the laser-polariton detuning. Under elliptical
and linear excitation, the reservoir becomes populated because
of the presence of polaritons of opposite spins. The interaction
with the reservoir brings the polariton levels closer to the
laser frequency, which reduces the effective laser-polariton
detuning. The upper threshold is lower than the SGPE
prediction.

A quantitative illustration of the above is given in Fig. 9,
where we show a simulation of the bistability under circular
and linear polarization when taking into account the interac-
tions between polaritons and the reservoir. Because of the blue
shift due to the reservoir the upper bistability threshold is a
factor of two smaller under linearly polarized excitation.

A second experimental feature that reflects the backaction
of the reservoir on the polaritons is the suppression of the
polariton density under linearly polarized excitation, when
both polariton spin polarizations are on the upper branch.
While the SGPE does show this feature qualitatively, the
magnitude of the density suppression and jump is only of
the order of 10%. As also shown in Fig. 9, when the blue shift
due to the reservoir is included, the experimentally observed
suppression of more than a factor of two is reproduced.

The same effect is observed at fixed, weakly elliptical,
excitation polarization, when the laser power is decreased and
the minority polarization reaches its lower threshold. After
it has fallen down, the majority density typically increases
by a factor of two (see Fig. 3). We illustrate in Fig. 10 that
the reservoir is needed to reproduce this effect theoretically.
In Fig. 10(a), the polariton blue shift was modeled with an
effective o, > 0 and the jump is only of the order of 10%. In
Fig. 10(b), where the reservoir blue shift is included, the jump
is of a factor two, as observed experimentally [Figs. 3(b)-3(d)].
In these simulations, we have used a negative value of a,, but
in the presence of polariton-reservoir interactions, the sign of
o, only plays a minor role (see discussion below).
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FIG. 10. (Color online) Illustration of the theoretical reproduction
of the suppression of the polariton density when both spin polariza-
tions are on the upper branch. (a) SGPE. (b) Blue shift of polaritons
induced by the reservoir is crucial to reproduce this effect with the
same strength as in the experiments. Same parameters as in Fig. 9.

The reason is that the polariton field is pushed away from
resonance with the laser frequency due to the interaction
with the reservoir, which leads to a density reduction. The
magnitude of the density reduction reveals that the blue shift
due to the reservoir is of the order of the (nonlinearly enhanced)
polariton line width.

B. Interpreting experimental detuning studies

The quantitative reproduction of the experimental data
with our extended model allows us to compare the variations
of the fitting parameters with the exciton-photon detuning
to theoretical expectations. This analysis provides a good
indication of the model validity.

The two ingredients of our model that are expected to vary
most with the exciton-photon detuning are the exciton line
width yx and the nonlinear loss rate 8. The widening of the
line width for increasing polariton energy is indeed expected
due to the stronger interaction of polaritons with excitonic
states feeling the excitonic disorder. One should thus consider
an effective exciton line width, very broad when the polariton
energy falls within the inhomogeneous exciton line width and
much smaller when it lies below.2° The nonlinear loss rate, on
the other hand, is expected to be maximal when the energy of
the polaritons is at the biexciton resonance.

In Table I, we summarize how the fitting parameters vary
with the polariton detuning with respect to the exciton energy
8’ = €, — €x. Two trends are indeed obvious: the exciton line
width increases monotonically with the laser-exciton detuning
(hwy — €x = 8" + A). The nonlinear loss rate S increases
when the laser frequency approaches the biexciton resonance.

1. Large negative detuning

Let us now present the comparison between experimental
data and theoretical simulations in more detail. In Fig. 11,
we show the experimental data and theoretical simulations at

TABLE I. Model parameters for the extended SPGE for various
values of the polariton-exciton detuning &'

6/
—248meV —171meV —149meV —12meV
B/ay 0.05 0.5 0.5 2
yx (meV) 0.01 0.05 0.05 0.3
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FIG. 11. (Color online) Comparison between theoretical (a)—(c)
and experimental (d), (e) bistability curves at a large negative detun-
ing, 8’ = —2.48 meV. (a), (d) For small laser-polariton detuning, A =
0.03 meV, separate thresholds are observed under almost linearly
polarized excitation. A higher value of the detuning, A = 0.09 meV, is
considered for almost-linear (b), (e) and circular (c), (f) polarization.
Simulation parameters: yc = 0.05 meV, yy = 0.01 meV, oy /0 =
—0.15, B/a; = 0.05, Qg = 1.5 meV.

a large negative detuning, where the lower polariton is far
from the exciton energy and from the biexciton resonance.
The experimental bistability is obtained for a very low value
of the laser-polariton detuning, A = 0.09 meV, indicating
a very narrow effective polariton line width (the minimal
value of the detuning to obtain bistability scales with the
line width as Ap;, = \/57/ /2).%0 At this critical detuning, the
thresholds for the two polarizations to jump to the upper
branch do not coincide [Figs. 11(a) and 11(d)]. Instead,
when the dominant polarization jumps up, the other one is
suppressed. This behavior is indicative of either an attraction
between the two polarization components or nonlinear losses.
The latter mechanism is, however, not compatible with the
small hysteresis observed in the minority polarization. These
experiments thus give an indication of attractive interactions
between countercircularly polarized polaritons, o, < 0.

At a laser-polariton detuning A = 0.09 meV, the upper
thresholds for both polarizations coincide [Figs. 11(b) and
11(e)]. As indicated above and also described in Ref. 6, the
buildup of a reservoir can explain this feature. The simulations
in Fig. 11(b) confirm this hypothesis. The reservoir blue
shift is able to compensate for the attractive interactions
between countercircularly polarized polaritons, so that both
polarizations jump up simultaneously, as if o, were positive.
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FIG. 12. (Color online) Comparison between experimental and
theoretical bistability curves when the biexciton resonance is ap-
proached, 8’ = —1.71 meV. (a), (b) Theory. (c), (d) Experiment.
Simulation parameters: yx = 0.05 meV, 8/a; = 0.5.

2. Increasing detunings

Upon increasing the cavity detuning, and thus the lower
polariton energy, one should consider an increase in the
excitonic line width, because strong coupling can no longer
protect excitons against the structural disorder in the quantum
wells.”” Consequently, even under circular polarization, the
critical detuning for bistability increases. This feature can
be reproduced in theoretical simulations by increasing the
exciton line width (Figs. 12-14). Because the laser energy
approaches the biexciton resonance, it is not surprising that
the experimental observations require a larger value of § for a
satisfactory theoretical reproduction (see Table I).

The constant g that gives the blue shift due to the reservoir
is not expected to be changed. The simulations show, however,
that a smaller value of gg is needed to obtain satisfactory
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FIG. 13. (Color online) Comparison between experimental and
theoretical bistability curves close to the biexciton resonance §' =
—1.49meV. (a), (b) Theory. (c), (d) Experiment. Simulation param-
eters: yx = 0.05meV, 8/a; =0.5.
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FIG. 14. (Color online) Comparison between experimental and
theoretical bistability curves close to the exciton energy &8 =
—1.2 meV. (a), (b) Theory. (c), (d) Experiment. Simulation parame-
ters: yx = 0.3 meV, B/a; = 2.

agreement. Even though there is some ambiguity in choosing
the model parameters, the simulations indicate that it is not
possible to reproduce the data at all detunings 8" and A with a
single value of the parameter gz. We actually expect that the
assumption that the blue shift depends linearly on the reservoir
density is a poor approximation for high reservoir densities,
because the blue shift is probably sublinear.

Because, to the best of our knowledge, the functional
behavior of the blue shift on the reservoir density is not known,
we keep using the linear dependence as a phenomenological
model but adapt the value of gg when the detuning is changed
(and thus the polariton density on the upper branch changes).

V. DISCUSSION

A. The nature of the reservoir

Our model only includes nonlinear losses of the form
Bnyny. The experimental observation that led to this choice
was the narrowing of the hysteresis width of the minority spin
component when the majority density is high. We conjectured
that the physical mechanism for this loss process is biexciton
formation. The parameter 8 that quantifies the nonlinear loss
rate is seen to increase with increasing laser frequency, in
agreement with our hypothesis that the biexciton resonance
plays a prominent role in this physics.

The reproduction of the experimental results using our
simulations shows that the blue shift Ae = ggrng is of the
order of the polariton line width. The feeding of the reservoir
is determined by the nonlinear losses at arate Pz = Bnqn,.On
the parameter §, there are restrictions from the measurements
at a large polarization degree. The narrowing of the minority
hysteresis [see, e.g., Fig. 10(b)] fixes quite precisely the ratio
B/c;. This means that the creation rate of reservoir particles is
fairly well known. Because the reservoir density is determined
by the competition between creation and losses, the reservoir
loss rate can be extracted fairly precisely as well. The resulting
value, yg = 0.1 meV, is, however, much larger than the lifetime
one would expect for biexcitons. It is actually expected to be
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an order of magnitude smaller, because only slow nonradiative
losses contribute.

A longer lifetime of the biexcitons would require, in our
model, a smaller value of the interaction constant gg by the
same factor. The results of our theoretical model are roughly
invariant under a replacement gg — xgg, Yr — Yr/X, Where
x is a proportionality factor. With the current experimental
data it is difficult to fix both parameters independently. A
larger value of y is, however, more convenient numerically,
because the dynamics reaches the steady state more rapidly.
Physically, it is more likely that yg is of the order of 0.01 meV
and that the effective gy is one order of magnitude smaller
than the exciton-exciton interaction constant. This might be
related to the decrease in g with increasing reservoir density
(see Sec. IV B).

B. The value of o,

An elementary question in the characterization of the spinor
polariton system is the ratio of co- to counterpolarized interac-
tion strengths o, /1. Unfortunately, the present experiments
do not give much information on this parameter. When two spin
components are present, the reservoir builds up. This made it
difficult to assess experimentally the interactions between two
polaritons of opposite spin polarization in our experiments.
For the fitting of the experimental data, we used op /o) =
—0.1, which gave satisfactory results. A zero interaction
strength between two excitons of opposite polarization is
indeed obtained within the Born approximation, where the
true interaction strength is predicted to be negative. A negative
value of o, is confirmed by experiments in the parametric
scattering regime.> However, similar quantitative agreement
could be obtained with a strictly zero value, o, = 0.

C. The independence of the lower thresholds

For a single component optical field, the lower bistability
threshold is reached approximately when the blue shift equals
the laser detuning orjn = A, where the density is then given
by n = 1/y?, so that the lower threshold power equals ;1 =
A y?/a;. In the case of a two-component nonlinear medium,
two lower thresholds are present. Close to linear polarization,
the difference in lower thresholds is mainly determined by the
change in the nonlinear losses. Where the minority component
(say o) falls down, the line width is enhanced by the nonlinear
losses and equals effectively y + Bn. On the other hand,
where the majority component falls down, the line width is
basically determined by the linear one, y. The difference in
lower thresholds can thus be estimated by

Sy = O%[Ai?ﬁ(y - ARy )
where n(T+) is the density of polaritons in the majority
component before the minority one falls down. Here Af:frf/ -
denotes the effective laser detuning, when the system is on the
upper/lower branch. It is reduced with respect to the bare laser
detuning A due to the blue shift exerted by the reservoir on
the polaritons.

The difference between the lower thresholds gives a strong
experimental indication of biexciton resonance. In Fig. 15,
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FIG. 15. (Color online) Polariton energy §' = —1.49 meV. The
laser detuning with respect to the exciton A’ is changed from —1.24
to —0.58 meV. For each value of A’, a series of spinor bistability
experiments is performed. We record the lower threshold difference
for linearly polarized excitation p, =0 [(red) squares] and for
elliptically polarized excitation p, = 0.17 [(blue) diamonds]. The
threshold difference is enhancement when the laser energy is 1.1 meV
lower than the exciton energy, i.e., at the biexciton resonance.

we plot this difference as a function of the laser frequency at
a fixed exciton-photon detuning. It shows a clear maximum
at a laser-exciton detuning of —1.1 meV, which is exactly
where the biexciton resonance is expected. Indeed, the binding
energy of the biexciton in our structure is around 2 meV?® and
a scattering resonance occurs when the total energy of the two
scattering particles equals the energy of the bound state, i.e.,
for the single particle, at half the binding energy below the
exciton energy.”’ According to Eq. (7), this resonant behavior
of 8 It can be attributed to a resonance in the nonlinear loss
rate .

D. The role of the polariton line width

The power-dependent polarization switching behavior is
sensitive to the polariton line width. For experiments where
the polariton is close to the exciton and the line width is
broad, no overlapping hysteresis loops are observed for the
two polarizations. For a broader polariton line, a higher
laser detuning is therefore needed to reach bistability, and
consequently the polariton density on the upper branch is
also higher. When the majority component jumps to the
upper branch, the minority one sees its line width drastically
increased so that it enters the optical limiter regime [see
Fig. 14(a)]. Only at even higher laser detuning does the
minority component start to show bistable behavior as well.

At large positive cavity detunings, the polariton line width
becomes very large and polarization multistability can thus
hardly be observed. Similar observations were made in our
two-dimensional microcavity, as well as in the experiments by
Sarkar et al.® The narrow line width of mesas is actually one of
their main advantages for achieving polarization multistability
with respect to two-dimensional microcavities, where disorder
and in-plane propagation cause broadening.

PHYSICAL REVIEW B 87, 045303 (2013)

VI. POLARIZATION MULTISTABILITY

Up to now, we have extensively discussed what can be
learned from forward and backward laser power scans at fixed
laser polarization. In the present section, we analyze in more
detail the scans of the laser polarization at a fixed laser inten-
sity. Such scans can give rise to polarization multistability: at
zero laser polarization, three different polariton polarizations
can exist for the system.

A. Multistability in the (n;,n,) plane

A useful representation of the physics of multistability
consists in reversing the nonlinear equations, calculating the
parameters of the excitation field as a function of the polariton
field."! Figure 16 shows contours of fixed laser polarization
in the polariton population plane (n4,n), computed with the
SGPE. The light (dark) regions represent areas with positive
(negative) laser polarization. In the two “anomalous” regions
(labeled A1 and A2), the laser polarization is opposite to the
polariton polarization. In the same graph, a single contour
of fixed laser intensity is shown by the thick (red) line. The
dynamically unstable regions of this contour are plotted by the
dashed line. In Fig. 16 there are two separated curves, with
the higher and lower polariton populations respectively. The
closed curve corresponds to the system being on the low inten-
sity branch of the power hysteresis cycle. During a polarization
scan such as the one in Fig. 16(b), the system must follow the
red line but simultaneously undergo a monotonic change of
the laser polarization. When the thick (red) line enters the
anomalous regions the system cannot follow continuously
the red line without reversing the laser polarization variation.
The red line becomes unstable and the system must jump to
the closest stable region where the monotonic polarization
change is possible [thin, dashed (green) lines in Fig. 16(a)].
In the stable regions of the thick (red) line, there are three
points with zero laser polarization. Polarization multistability
can then occur. The complete trajectory shows two jumps in

FIG. 16. (Color online) (a) Contour lines for constant laser
polarization (thin lines) as a function of the polariton population
in the two spin components (n4,n,). Light (dark) shading indicates
regions with positive (negative) laser polarization. The thick (red)
line gives a single contour for a constant laser intensity. Dashed
parts indicate the dynamically unstable regions of the contour. The
thin, dashed (green) lines show the jumps in the trajectory of a
scan of the laser polarization at a fixed laser intensity. (b) Polariton
polarization along the laser polarization scan. Parameters for the
SGPE: as/o; = 0.1, B/ay = 0.05, AJy =4, a1, /y> = 16.
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FIG. 17. (Color online) The same as Fig. 16, but for a larger value
of B/a; = 0.3. (a), (b) The laser intensity is the same as in Fig. 16;
(©), (d)itis a1 /y3 = 25.

the backward and two jumps in the forward direction and a
crossing between two of these jumps revealing multistability.

For increasing laser intensity, the red contour line moves to
the upper right, out of the anomalous region (not shown).
Polarization multistability therefore disappears at a high
laser intensity. The effect of repulsive interactions between
countercircularly polarized interactions is to decrease the size
of the anomalous region, because the spin population which
is favored by the laser is also helped by the other population.
For the same reason, polariton-polariton attraction increases
the domain of the multistability. Nonlinear polariton losses
also increase the anomalous region, because the majority po-
laritons keep the minority density down through the nonlinear
losses.

For larger nonlinear losses, the constant-intensity contour
is qualitatively modified. The two separated curves can merge
and form a single curve, as illustrated in Fig. 17. Following
a polarization scan, the polariton polarization no longer stays
close to zero polarization, but it jumps directly from high
positive to high negative polarization. This is the so-called
Schmidt trigger regime. Note that a zero polariton polarization
region still exists, and experimentally, this “middle branch”
can be reached by applying additional laser pulses.

When the laser power is increased for large nonlinear
losses, the shape of the constant intensity contour changes
[see Fig. 17(c)], but the evolution of the polariton polarization
is qualitatively the same [see Fig. 17(d)].

B. The role of nonlinear losses and the reservoir

The phenomenon of polarization multistability depends
crucially on the possibility for the polaritons to sus-
tain, through hysteresis, a positive polarization when the
laser polarization is already negative, i.e., the existence of
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anomalous regions Al and A2. As discussed above, repulsive
interactions tend to decrease the size of these regions, whereas
attractive interactions and nonlinear losses tend to increase
them.

The probably attractive polariton-polariton interactions are
overcompensated by the effective repulsions through the
buildup of a reservoir. This effect hinders the observation
of multistability. Fortunately, the nonlinear losses that are
associated with the creation of the reservoir increase the
anomalous region, so that we can observe multistability in
the region where the nonlinear losses are important, i.e., close
to the biexciton resonance.

The other polariton energy where multistability could be
expected is far away from any loss channel, so that the effective
repulsive interaction through the reservoir is eliminated. In
our sample, the Rabi frequency is, however, too low to have
sufficient nonlinearity at detunings where the formation of the
reservoir is expected to be negligible.

VII. CONCLUSIONS

We have presented a detailed analysis of power-
dependent polarization switching and polarization multista-
bility in semiconductor microcavities. The comparison of the
power-dependent switching experiments with the SGPE give a
good qualitative agreement with the experimental observations
when nonlinear losses are taken into account. We have argued
that the most plausible mechanism for the nonlinear losses is
through the formation of biexcitons.

Discrepancies between the experimental data and the
predictions of the SGPE indicate the importance of the blue
shift of the exciton due to the reservoir that is filled by the
biexciton formation. Taking this blue shift into account gave a
good quantitative agreement between theory and experiment
and allowed us to fit the nonlinear loss parameter 8, which
indeed is seen to increase when the biexciton resonance is
approached.

In our experiments on polarization multistability, the
polariton polarization was followed on the Poincaré sphere.
These experiments showed that the polaritons have very good
coherence. The SGPE model reproduced the trajectory on
the Poincaré sphere qualitiatively well. A further analysis
of the conditions under which polarization multistability can
occur provided strong evidence of a twofold role of the
polariton reservoir. On the one hand, the exciton blue shift
due to the reservoir blue shift counteracts multistability,
but nonlinear losses favor multistability. This explains why,
experimentally, multistability was only observed close to the
biexciton resonance where the nonlinear losses are bigger.
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