Abstract

Density-functional-theory based calculations of two single-walled carbon nanotubes of different chirality settle open issues on the sidewall chemisorption of atomic oxygen at low concentrations. Ether groups are the thermodynamically favored configurations. If kinetically trapped in epoxide groups, oxygen introduces characteristic new levels in the gap of the nanotube that are detected with scanning tunneling spectroscopy experiments. Discrepancies with previous predictions are shown to originate from the inadequacy of previous models to describe low-concentration oxygen adsorbated on nanotubes.

Details