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Abstract—We consider a large distributed MIMO system research, which also provided a characterization of thergrht
where wireless users with single transmit and receive antenna spatial degrees of degrees of freedom in a MIMO system as
cooperate in clusters to form distributed transmit and receive an a function of the area and the geometry of the antenna arrays

tenna arrays. We characterize how the capacity of the distributd . .
MIMO transmission scales with the number of cooperating users, and the angular spread of the physical environment [12], [13

the area of the clusters and the separation between them, in [14], [15].
a line-of-sight propagation environment. We use this result to Recently, distributed MIMO communication arised as a

answer the following question: can distributed MIMO provide  promising tool to achieve large performance gains in wigle
significant capacity gain over traditional multi-hop in large adhoc networks, similar to those provided by conventional MIMO in

networks with n source-destination pairs randomly distributed h . . irel h | irel itis
over an areaA? Two diametrically opposite answers [24] and [26] € POInt-to-point wireless channel. Here, wireless use

have emerged in the current literature. We show that neither of @ single transmit and receive antenna cooperate in clusters
these two results are universal and their validity depends on to form distributed transmit and receive antenna arrays. A

the relation between the number of usersa and v/A/X, which  common assumption in the performance analysis of disebut
we identify as the spatial degrees of freedom in the network. MIMO systems is that channels between different pairs of

X is the carrier wavelength. When v/A/\ > n, there are n ) ) }
degrees of freedom in the network and distributed MIMO with nodes are subject to independent fading [16], [24]. Analsgo

hierarchical cooperation can achieve a capacity scaling linearly t0 the point-to-point case, this leads to capacity gainealin
in n as in [24], while capacity of multihop scales only as/n. in the number of nodes\/ contained in the transmit and

On the other hand, when vA/X < \/n as in [26], there are receive clusters. In a distributed setting, nodes (or avatehn
only /n degrees of freedom in the network and they can be gre typically much farther apart from each other as compared

readily achieved by multihop. Our results also reveal a third to classical MIMO. so an iid. fading model may seem
regime where /n < v/A/X < n. Here, the number of degrees of , 1.d. g y

freedom are smaller thann but larger than what can be achieved appropriate. However, the number of nodes participating
by multi-hop. We construct scaling optimal architectures for this to the transmission can be also much larger in this case
intermediate regime. since there are no physical packing constraints like in MIMO
Capacity can not scale indefinitely with/ and correlations
between pairwise channels are expected to limit performanc
Multiple-input multiple-output (MIMO) is one of the key when M is large. In this paper, we provide a rigorous lower
technologies to achieve high-data rates in current wisedgs- bound on the scaling of the capacity of a large distributed
tems. Both the transmitter and the receiver are equipped WMIMO system with the areal. of the transmit and receive
multiple antennas, which allows to spatially multiplex st clusters, the separation between the clusfemad the number
streams of data and transmit them simultaneously. When tfenodes)M contained in each cluster assuming a line-of-sight
scattering environment is rich enough to allow receive rntepropagation model and a random distribution of nodes ower th
nas to separate out signals from different transmit an®nneluster areas. We show that the capacity of distributed MIMO
MIMO channels offer large capacity gains: the capacity afystems scales at least as
such a MIMO channel with\/ transmit and receive antennas
is proportional toM. This was established in the ground- min { M, £ } when A, <d < Ac/X
breaking papers of Fochini-Gans [1] and Telatar [2] which | min {M,A./A}  when 1<d< A,
assumed an i.i.d. fading model for channels between differe
antenna pairs. However, when there is insufficient scatien where \ is the carrier wavelength. This result identifi%
the environment or when antennas are densely packed togetivel /A./\ as the spatial degrees of freedom in the dis-
in small hand-held devices, the channels between differdributed MIMO channel in the two corresponding regimes.
antenna pairs become correlated. Such physical constraifihe capacity of the channel scales linearly ih when the
prevent MIMO capacity from increasing indefinitely wifti.  physical channel has more thanh spatial degrees of freedom.
The impact of correlated fading [3], [4], [5], [6], [7], the Fortunately, this can be often the case for actual networks.
scattering environment [8], [9] and antenna coupling [{D]] Consider for example two clusters of ark#) m? separated by
on MIMO capacity was studied by a large body of follow-u distance ol 00 m. When communication takes place around

I. INTRODUCTION

)



a carrier frequency o8 GHz, \/A./\A = 1’000. As long as assumes that the phases of the channel gains can be modeled
there are less thaH000 users in each cluster, the line-of-sightis uniformly distributed random variables, independemss
channel has sufficient spatial degrees of freedom for alisusedifferent pairs of nodes in the network. [26], on the other
When the distance between the two clusterg ism, % is hand, starts from physical principles and regards the ghase
still 100. The spatial degrees of freedom are expected to be functions of the locations of the nodes. While the physical
even larger in scattering environments. channel model used in [26] is more fundamental, the i.i.d.
The distributed MIMO channel, and therefore its analysiphase model is also widely accepted in wireless communica-
differs from the classical MIMO channel in a couple of waydion engineering, particularly for nodes in far field fromcha
First, the distances between different pairs of users can @i@er. What is the way to reconcile these two sets of results?
significantly different in the distributed case, which ésu  We answer this question in the second part of the paper
in heterogeneous channel gains dictated by the geometrybaflding on the result in (1). We show that under the physical
the network. Second, while in classical MIMO, the separaticchannel model of [26], the distributed MIMO based hierarchi
between the antenna arraysis typically much larger than cal cooperation architecture in [24] achieves a capacyirsg
the length (or the diameter) of the arraysi., for distributed as
systems these two dimensions can be comparable. Our analysi max {\/ﬁ min {n \/Z}} )
takes into account these new aspects brought by the disttibu ’ A '
nature of the problem. Mathematically, our approach differ N . . .
significantly from existing results studying the spatiajcees In-a network of n source-destlnathn pairs uniformly d',s'
of freedom of classical MIMO channels. While such resullré'bUted over an areal _and communlca_tlng around a carrier
(for example, see [12], [14], [15]) are based on studying t%avelenghtk. The scall_ng of the ca_pamty depends on hmw_
singular values of the continuous propagation operatoeund®MPares tov'/A/, which can be interpreted as the spatial

approximationgor the regime where > /4. , our analysis degrees of freedom available in the network. The two earlier

is mathematically rigorousand is based on random matriXresults can be recovered as two special cases of this nelt resu

analysis. 1) When+/A/\ > n, the capacity scales linearly in.

In this regime, there are sufficient spatial degrees of
freedom for all then users in the network and they
can be exploited by distributed MIMO communication.
The i.i.d. fading assumption across different node pairs
in [24] leads ton degrees of freedom and therefore [24]

The characterization of the scaling of the capacity of dis-
tributed MIMO systems allows us to identify the number of
spatial degrees of freedom in large wireless ad hoc networks
and to reconcile some seemingly contradicting results & th

current literature on s.callng_ laws for wireless networkee T _inhererently assumes that the network operates in this
study of the asymptotic regime where the number of users in regime

a wireless network is large was initiated by the seminal PapPey \when VA/\ < \/n, the capacity scales agn. In
[17] of Gupta and Kumar and received significant attention this regime, the spat,ial degrees of freedom available in

in the literature [18], [19], [20], [21], [22], [23]. Guptand the network are as few agn, and therefore they can
Kumar showed that the capacity of multihop cooperation be readily achieved by multihop. By assuming that the
scales as/n with increasing number of userin the network. density of nodes is fixed as the number of nodes

In this traditional communication architecture, packets a grows, [26] assumes that the number of spatial degrees
routed from each source to its destination along a path where of freédom VA/\ is proportional to/n. Therefore
intermediate users act as relays. Each relay decodes tketpac : ' S
sent from the previous relay a)llnd forwards%hem to the n:xt A [26] inherently assumes that the network operates in this
. o ) regime.

\/n scaling for the total capacity implies that the rate per us . . :
decreases ab/\/n with increasing system size. Can more %erefore, ne|th_er_ of the two COUCIUS'OnS n [.24] a_nd_[_26]
sophisticated cooperation between users significantiease that more ;oph|s'qcated cooperatpn can provide signffican
the capacity of large wireless networks? Two diametrical paglty gains or s uselegs are umversa!. They corresfmnd

o different operating regimes of large wireless netwo(R¥

opposite ar?swers have_ emgrged "_q the recent literature: clarifies the conditions for a network to be in either of these
1) Capacity can be significantly improved when users forgyq regimes. Indeed, (2) also uncovers a third regime where
distributed MIMO arrays via a hierarchical cooperatioghe network is partially limited in spatial degrees of freed
architecture [24]. In regimes where power is not a limitingynen Jn < \/Z/A < n, the number of spatial degrees of
factor [25], the capacity can scale almost linearly with freedom is smaller than, so the spatial limitation is felt, but
implying a constant rate per user. larger than what can be achieved by simple multi-hopping.
2) The scaling of the capacity is upper bounded\y due  (\yiti-hop achieves,/n scaling independent of/ A/)\.) We
to the spatial constraints imposed by the physical channgjo,y that either a modification of the hierarchical cooperat
[26]. Nearest-neighbor multi-hop already achieves thigheme in [24] or a version of the MIMO-multihop scheme in
scaling and more sophisticated cooperation is useless[25] can achieve the/A /) available degrees of freedom and
The key difference between these two results is their assuntiperefore the optimal scaling of the capacity in this regime
tions for the channel model between pairwise nodes. [2&he main idea behind the first modification is to allow only



a subsetV of the source-destination pairs to communicate at e o o ® .DR o
a time using the hierarchical cooperation scheme, and then |D; ° ®
take turns among different subsef$.= v/A/)\, the number ° o ® - d | o ©

of spatial degrees of freedom in the network, so each subset ® ]
corresponds to a diluted network which is not limited in ggdat o ©® e o
degrees of freedom. The idea behind the second scheme is to o d

form clusters of an intermediate size and hop across several VA VA

clusters to reach destinations where each hop is perforiaed v

distributed MIMO transmissions. The cluster size is chosen

critically to ensure linear scaling for the distributed MIM Fig. 1. Two square clusters of are. separated by distanae
transmissions.

Traditionally, the literature on scaling laws for wireles§lént concurrent work [30], however both the formulation of
networks seeks the scaling of the capacity with the numbertg Problem and the proposed architectures differ from the
nodesn when all systems parameters are coupled with a  Current paper: in [30], the network arglis taken either fixed
specific way. One common approach is to assume that the afgdProportional ton, while the carrier wavelengthh scales
scales linearly im, while all other parameters remain fixeddown to zero with increasing. The proposed architecture is
as in [26]. As we have already seen, this immediately imp“@ptained by diluting the distributed MIMO transmissions at
that the spatial degrees of freedom in the netwgf/\ are each level of the hierarchy, as opposed to diluting .the whole
proportional to\/n. But the number of nodes and the arefetwork as we do here. We also develop an alternative MIMO-
are two independent parameters of a network, each of whighltihop strategy to achieve the same performances.
can take on a Wid_e range of values. For actual networks, there Il. SPATIAL DEGREES OFFREEDOM
can be a huge difference _betwee@//\ and \/n. Take an OF DISTRIBUTED MIMO SYSTEMS
example of a network serving = 10’000 users on a campus
of 1 km?, operating aB GHz: v/A/\ = 10’000, while \/n is A. Model
only 100, two orders of magnitude smaller. So while multi-hop We consider a distributed MIMO transmission between
can achieve a total throughput of the order16f bits/s/Hz, two square clusters of ared. separated by distanaé (see
there is still a lot of potential for cooperation gain, sirtbe Figure 1), with each cluster containing nodes distributed
spatial degrees of freedom are inde@000 and not100 as uniformly at random over the are&.. Each node is equipped
given by (2). with one antenna, oriented in the direction perpendicubar t

For the classical MIMO channel, it is now well understoo&1® plane, with a given power budgél. We assume that
that there are a number of qualitatively different regime§ommunication tqkes place_ over a flat channel with bandwidth
When the antennas are separated sufficiently apart, the-cagicand that the signal received by nodat the RX cluster at
ity increases linearly im. However for dense antenna arrayéime-slotm is given by
the capacity is limited by physical constraints and cannot M
increase linearly im. To obtain an analogous understanding yilm] = Zhik‘ xk[m] + z;[m]
of the operating regimes of large wireless networks, we k=1
advocate in this paper a shift of the “large networks” researyhere z, [m] is the signal sent by node at the TX cluster at
agenda from seeking a single “universal” scaling law, whetgne 1, 2, [m] is additive white circularly symmetric Gaussian
parameters of the network are coupled soin a specific noise (AWGN) of power spectral density,/2 Watts/Hz. In
way, to seeking amulti-parameter familyof scaling laws, 4 jine-of-sight environment, the complex baseband-edgriva

where the key parameters are decoupled and many differgphnne| gairti,;;, between transmit node and receive node
limits with respect to these parameters are taken. A sing{time m is given by

scaling law with a particular coupling between parametsrs i )

often arbitrary and too restrictive to cover the wide ranges hi, = \/éw (3)

that the multiple parameters of the network can take on. We Tik

have introduced this approach in [25] where we decouplethere) is the carrier wavelengthy,;. is the distance between

the number of nodes and the amount of power available. Thedei and nodek and G is Friis’ constant given by

current paper follows the spirit of [25], both mathematigal 9

and philosophically, but focuses on the number of nodes and G =G G, ()‘>

the area of the network, while assuming there is a sufficient dm

amount of power available that it is not limiting performanc with G, andG,. being the transmit and receive antenna gains,

A future goal of this research program is to investigate thespectively. Finally, we assume full channel state infation

dependence of the capacity on the number of nodes, the ageall the nodes, which is a reasonable assumption heregas th

of the network and the amount of power all together. channel coefficients only depend on the node positions and
A version of this problem has been studied in an indepetirese do not vary over time.



B. Main Result with high probability asM gets large.

Our goal in this section is to provide a lower bound on the Finally, we show that the study of the second regirhe(
spatial degrees of freedom of the system described aboved I€ /A.) can be brought back to the cade= /A, by
can be inferred from [26] that the spatial degrees of freedogimply reducing the set of transmitting and receiving nodes
of such a distributed MIMO system are upperbounded (up ly a factor 2, so that the intercluster distance becomeseof th
logarithmic factors) by/A./\ as A. gets large, irrespective same order as their radius. Again, the proof is relegateteo t
of the distanced. Actually, the spatial degrees of freedonend of the present section.
decrease asl increases, because of the reduction of the Lemma 2.3:If 1 < d < /A, then the spatial degrees of
aperture of the MIMO system. We prove below that the spatitifedom of the system are of the same order as when

degrees of freedom of the system are at least VA
. e Combining these three lemmas yields the result given in
min {M, Ac/Ad} !f Ac<d < Ac/X Theorem 2.1: Assume first/A. < d < A./)\. Then by
min {M,VAc/A} if 1<d< VA, Lemma 2.1,

(again, up to logarithmic factors). Notice that in the sa&ton
regime, the obtained lower bound matches the upper bound
found in [26]. Finally, notice that il > A./), then the system Au/Ad

"log(Ac/Ad)
has clearly at least one degree of freedom. It M < logﬁAc/Ad)’ then Lemma 2.2 allows 1o conclude that
Let us now state our main result.

Cavo itself is with high probability at least of ordéy!. If on
the other hand > —</29_ then it should be noticed that

A,
E(CMIMO) Z K min {M /)\d}

: i C L 0g(Ac/Ad)’ S
Theqrem 21letl<d S Ac/A, and Ie_t the_ nodgs in the in this case, it is useléss to have all the nodes participating
transmit clustetD perform independent signaling with POWENL o MIMO transmission oniif’ — A/ oo
P each, such that the long-distance SNR between these tyo ' — log(A:/Ad) '

pplying then the concentration result replacing by M’
allows to conclude. Finally, Lemma 2.3 shows that for all
4) 1< d < VA, the degrees of freedom of the system are

lowerbounded by
is greater than or equal @dB. Then there exists a constant VA

K > 0 independent of\/, A., A andd such that the capacity Cavvio > K’ min {M, }
Cwvmvo of the distributed MIMO channel from the transmit log(v/Ac/A)
cluster D to the receive clusteDy, is lowerbounded by ~ with high probability for some other constait’ > 0. This

clusters defined as

SNR(d) — M —F

NoWd?

Ao/ concludes the proof. O

K min{M’IZ)\d} if VA.<d< A/\ In the sequel, we provide the proof of Lemma 2.1. The

og(Ac/Ad) proofs of Lemmas 2.2 and 2.3 are relegated to the end of the
Cu 2 present section.
. VAN . . .

K min { M, ﬁ if 1<d<+A. Proof of Lemma 2.1For notational convenience, we start

0g(VAc/A) by defining
with high probability asM gets large. d d
The rest of this section is devoted to the proof of this result fir = Ve hi, = v exp(2mjrin/A)

which is made of three ingredients.
The first key ingredient provides a lower bound on the

MIMO channel capacity averaged over the random node i
positions in the first regime wherg4, < d < A./\. wherer;; denotes the distance between the nddesD+ and

Lemma 2.1:1f VA, < d < A./\ then the expectedi € Dpg located at positiong;, and w;, respectively. Notice

C

capacityE(Cymio ), averaged over the random node position#fatd < rix < d (14 2y2A./d), so

= ——— exp(27] ||@®r — w;|| /A (6)
Tor — wi] (2mj |l /)

satisfies co < (1+2y/24./d)7Y < |fi] <1, (7)
E(Cyivo) > K min {M, AC/)‘d} (5) wherecy = (1+2+/2)~! and the first inequality follows from
log(Ac/Ad) the fact thaty/4, < d.

Next, we show that the capacity of the distributed MIMO Remembering the definition of SNR) given (4), we obtain

channel with given random node positions is close 10 iffe following expression for the average capacity of the

expected value with high probability. The proof relies OoRisiriputed MIMO channel (where we recall here tHat F
classical concentration arguments and is relegated tortle ;¢ the matrices with entrigsy,, fir, respectively):

of the present section.

Lemma 2.2:In general, if M nodes participate to the E(Cymvo) = E <1Og det ([+ P HHT)>
MIMO transmission, then for alt > 0, there existsK > 0 NoW
such that =E (logdet (I + SNR(d) FF'/M))

|Chvivo — E(Cumvo)| < K ML/2te = ME (log (1 + SNR(d) \))




. . w shows thatS is of orderl, so that the capacity is also of order
" 1" 1 in this casé.
o o The problem we are looking at lies between these two
extreme cases. Our aim in the following is to show the
<\¥ _ following lemma, which allows to conclude the proof of
ok fik v Lemma 2.1.

Lemma 2.4:If /A, < d < A./), then there exists a

Dp Dpr
constantK > 0 independent ofd., A andd, such that
Fig- 2. S = [E(fir i, fim fin)l i # Lk #m S<K @d) log <;1d> ®)

We now give a proof idea for Lemma 2.4. Let us first
where \ is an eigenvalue of'F'T/M picked uniformly at explicitly write the expression fof. We have
random. By applying now the Paley-Zygmund inequality,

stating that for a non-negative random variaBie = |E(fik fix fim fim)]
1 2 jA /N
(]E(X) — t)2 = ‘144/ dmk/ dxm/ dw; dw;pe
]P) X > > L E X c JDrp D D D
(20> St o<t <EX) . . o
we obtain that fol0 < ¢ < E(A): where
= [ler —wil| = lor —wi |+ [|[2m —wil = [ 2m —w;] (10)

]E(OMIMO) > M log (1 + SNR(d) t) P()\ > t)
(EQ) — 1)? and

4
E(A?) o= d (12)
s — willllzr — will[|[Tm — wil|[|2m — w|

> M log (1 + SNR(d)t)

From (7), we further obtain We first derive the result (8) by approximating the inter-@od

M distances in the regim¢’A. < d < A.. This approximation,
E\) = - E (tr(FFT Z (Ifir]?) > 2. made already by various authors [12], [9], [14], [15] in
k=1 different contexts, allows us to derive an upper boundSon

and correspondingly, a lower bound on the spatial degrees of

1
E(\?) = WE("(FFTFFT)) freedom. In addition, we provide in the Appendix a rigorous

1 M derivation of the lower bound, which does not make use of
=— Z E(fixfii fim fim) the approximation. As far as we know, this derivation is new.
M3 vm . .
iyk,l,m=1 Consider two nodes at positions= (—v/A.z,v/Ay) €
1 M Dy andw = (d + VA.w,/A.z) € Dgr, Wwherez,y,w, z €
<2445 Z E(fir fix fim fim) <2+ M S [0, 1] (see Figure 3). Using the assumption thas> /A., we
ik,lm=1 obtain
i#l k#m
. . - = (d+ VA (r+w))2+ Ac (y — 2)?
whereS = [E(fix f7% fim [in)], With i # [ andk # m (notice e = wl \/ @+ w) (y—=)
that S does not depend on the specific choiceigt | and ~ d+ A (z+w) Sy — 2)?
k # m). See Figure 2. o o Qd
Choosing thert = c2/2, we obtain which in turn implies
1 A= ley — wil| = 2k — will + [[@m —wil] = |zm — wl

E(Cyivo) > (M c¢g/4) log (1 + SNR(d) 5 /2) Ac

) 2+MS ~ 5 (k=20 = (e = 2% + (ym — 2)* = (ym — 20)%)

> K min M, — Ac

- { S} =~ (g — ) (1 — )
for a constanti{ > 0 independent of\/ and S, provided that Next, let us also make the approximation that 1 in (11):
SNR(d) > 0 dB, which was our initial assumption (4). this is actually assuming that the spatial degrees of fr@edo

The quantityS, which takes values betweérand1, dictates Dbetween the two clusters are mainly determined by the phases

therefore the capacity scaling. In the case where the chanfithe channel coefficients and not so much by the amplitudes.
matrix entriesf;;, are i.i.d. and circularly-symmetri&, = 0, so In the Appendix, we show that this intuition is correct.
the capacity is of ordet/. On the other hand, if we consider 1strictly speaking, this only shows that the lower bound an ¢hpacity is
the line-of-sight Channel mo_del (6) in the Sce'_’]ar'o whereso of order1, but in this case, the matrik’ can be shown to be essentially rank
are placed on a single straight line, then a simple compmuntatione, so the actual capacity is indeed of ortler



e, which yields the following upper bound of}
. Ad ! 1
w SO§25+2K—/ dyk/ dym ——————
Vi Ac Jo yrte [Ym — |
iy Iﬂz A 1
<2+ 2K — log ()
—VAz 0 d VAW A, €

So choosing: = \d/A., we finally obtain

Ad A,
< a——
S~ S <K (Ac) log()\d>

These two successive approximations lead to the 1‘0II0W|q;(gr a constants’ > 0 independent off., \ andd. 0
approximation fors: “

Fig. 3. Coordinate system.

Proof of Lemma 2.2First observe that the capacity of the
S~ S, distributed MIMO channel

‘/ dyk/ dym/ dzz/ dz e” 27§ 26 (Y —yi) (21— 23)
_2’/ dyk/ dym/ dZ,/ dz e 27 28 (Yo —yn) (21— 23)
Yr

where the second equation follows from the symmetry of the

integrand. Note that this expression does not depend on the
horizontal positions of the nodes. This can be interpreted As we will see in the following, the capacity does not vary
follows. Provided the above approximation is valid, thetigppa significantly with the node positions, which allows us to
degrees of freedom between two clusterdbhodes separatedapply the following (simplified version of the) theorem by
by a distancel > /A, are the same, be the nodes uniformijcDiarmid [28].

Cuivo = log det(I + SNR(d) FF' /M)

(where we reuse here the notation adopted in the proof of
Lemma 2.1) can be seen as a function of the node positions
x;, andw;:

Cyvvio = gm (T, .., Tar; W, .., Whr)

distributed on two squares of ared. or on two parallel  Theorem 2.2:Let zy,...,x), be a family of i.i.d. random
(vertical) lineg of length /A... variables distributed in a bounded regioh ¢ R?, and let
We show below that the above integral is of ordel/A.. fu : R** — R be a measurable function such that there is a
Let us compute the first integral, which yields constantc; with
1 AL |far(e, .z xn) = fu(@n, .z, )] < em
/ dz 275G (Ym—yx) (21— 2i)
0 ) forall 1 <k < M andxzy,...,zp x),...,xy € A. Then
_ _2 = Ad e—2ﬂj%(ym—yk)(m—z¢-) ! fOF a” t> 0,
U c m 7 2=
j (y yk) 1=0 IP’(|fM(w1,...,acM)—E(fM(a:l,...,wM)H >t)
is impli 22
This implies that < 2exp (_ ! )
" M c3,
27§55 (Ym—yr) (z1—21) Ad 1 ;
dz e A WmTIRSAS TR < K T In order to apply the above theorem (replacifig by gas),
0 m k

we need to upperbound the differences
for a constantK” > 0 independent ofd., A andd. We can

/
divide the integration ovey;, andy,, into two parts, so ’91”("’31’ s By EMG W W)
1 1 1 1 3 ng(a:l,...,wk,...:cM;'wl,...,wM)‘
0 Yk 0 0 and
1 (yr+e)Vvl 1—¢ 1
:</ dyk/ dym+/ dyk/ dym> ‘gM(w177$M7w177w;g77w]\/1)
0 Yk 0 Yrt+e
1 1 A _gJV[(a’lw~~a$M;'w1>~~~»’wkw"vwh[)‘
% / dzi/ dz 275G (Ym—yr) (21— 2i)
As the problem is symmetric, we only consider the first case

ere. Fixl < k < M. Notice first that modifying the vector
x;, only modifies a single column of the matrik. Let us
S ) ) define F' as being the matri¥’ with column’ removed (scF
This result can be proved rigorously; actually, the rigaraargument Mx(M—1 t B f what t ob d
following for the two squares applies equally likely to trese of two parallel is anly .X( ) ma ”X)' - ecause_o wha .was Ju$ observed,
lines F — F is a rank one matrix, so using the interlacing property

for any 0 < € < 1. The first term can be simply bounded b);1



of the singular values of” and F' [29, Theorem 7.3.9], we VA/2 VA2

obtain that for alll < j < M, °
o
- - e o o ° o
/\j < )\j and /\j > /\j+1 [ ] PY d °
where); > ... > Xy are the eigenvalues of F''/M and ® o ® °
A1 > ... > A are the eigenvalues dTFT/M. Remember o © [
now that ® P o o
g (T1, . T W, ., W) VA, VA,
M
— T — )
= logdet(! + SNR(d) FF'/M) = Z log(1 + SNR(d)A;) Fig. 4. The distance between the two highlighted subclssierequal to
J=1 d+ VA
Defining
Gy = FEt
gu = logdet(I + SNR(d) FF'/M) [Il. ADHOC WIRELESS NETWORKS
M
= > log(1+ SNR(d));) An ad hoc network is a collection of wireless users which
j=1 can self-organize and communicate among themselves withou
and applying the above inequalities on the eigenvaluesgee &€ Nelp of any fixed infrastructure. Optimal cooperation
that architectures for such networks have received much focus in
the asymptotic regime where the number of users is large.
lgpm (1, A wi, ..., war) — gur| < log(14+SNR(d) A1) Consider an ad hoc network whenesource-destination pairs

re independently and uniformly distributed over an adea

It can be easily seen, < M. Besides, we are interes’tquach source node wants to communicate to its corresponding
in the regime where the growth of SN&® is no more than Y . .
9 g destination at the same rafe bits/s/Hz. For this network,

polynomial inM (it is actually constant in the case of interest);, . ) . o
so for alle > 0. there exists a constaff > 0 such that we have developed a hierarchical cooperation architedture

[24] that maintains a constant per-pair communication rate
lgnr (1, ..y xar;wr, .., war) — gur| < Klog M even when the network serves a growing number of users,
provided that the channels between pairwise users are subje
to i.i.d. fading.More precisely, when the phases of the channel
coefficients can be modeled as i.i.d. random variables ieep
dent of the node locations, hierarchical cooperation aelsie
—gm (X1, .., Tk, .. AW, - .,wM)’ < 2K log M an aggregate throughpdt = nR that scales linearly im.
Current communication architectures for ad hoc networks ca
not provide scalable performance. The traditional apgrasc

so by the triangle inequality,

/
’gM((El,...,wk7...,w1\4;W1,...7’lD]\/[)

This finally shows, via McDiarmid’s theorem, that

) to forward information from the source node to the destorati
P gM(wla"'awﬂfvwlw"awM) . . . .
by following a path, with intermediate nodes on the path
—E(gp (1, ..., xa w1, ... ,wM))’ > t) acting as relays. The aggregate throughput of this mufti-ho
.2 architecture scales agn with increasing network size [17].
< 2exp (—22> Distributed MIMO is key to the linear scaling of the
2M K> (log M) architecture in [24]. Hierarchical cooperation allows esdo
which gives the result, by setting= M1/2+<, O efficiently organize in clusters and establish theommuni-

cations in the network via distributed MIMO transmissions
the following simple observation. Wheth < /4., the two between Igrge clusters. Under ||d fading,_the c_apacfty o}
clusters are close to each other, as illustrated on Figure 4.t€s€ distributed MIMO transmissions are linear in the the
Consider now the two square subclusters ofé@x VA, nhumber of nodesM contained in the transmit and receive

2 ctUs clusters. In the earlier section, however, we have seerttibat

that are the most separated horizontally. These two sufy area of the clusters and the separation between them poses a
are now separated by a distante+/A., which is of the same .~ . . S S
P y BV Lo limit on the linear scaling of distributed MIMO. In this sém,

order asy/ A.. On the other hand, both the area and the numb&F

of nodes in these subclusters remain of the same order a&vﬁme"a'“?te the perf(_)rmance of hlerarchlca_ll cooper_atmnham_;n
the original clusters. More precisely, the new areadis'4 the physical model in (3) and show that it can still achieve

: ; - i VA
and correspondingly, the number of nodes in each subclus{Bfar scaling but provided thati® > n. When %2 < n,

A
is around)M /4 with high probability. By letting only the nodes

we present two modifications of the hierarchical cooperatio
in these two subclusters participate to the MIMO transnissi architecture that achieve the optimal scaling. Our resalt i
we therefore see that the same order of spatial degree

Sfcgfnally summarized in the following theorem.
freedom can be achieved as whéa- \/A... | Theorem 3.1:Consider a wireless network ofi nodes

Proof of Lemma 2.3The proof of this lemma is based on




distributed uniformly at random over a square aréasuch 2) V/A/X > n: The number of spatial degrees of freedom

that v/A/\ > /n. Assume that each node is subject to an is n, the optimal performance can be achieved by

average power constrainf? and the network is allocated a the same hierarchical cooperation scheme introduced in
total bandwidth ofi’’. The channels between pairwise users [24]. Spatial degree of freedom limitation does not come

are governed by the LOS model in (3). Let us define the SNR  into play and the performance & thoughphases were

of the network as i.i.d. uniform across node pairs.
GP 3) /n < VA/\ < n: The number of degrees of freedom is
SNR=mn NoW A (12) smaller tham, so the spatial limitation is felt, but larger

than what can be achieved by simple multi-hopping.
A maodification of the hierarchical cooperation scheme
achieves the optimal scaling in this regime.

and assume that SNR 0 dB. For anye > 0, there exists
a constantK’ > 0 independent of:, A and A such that an
aggregate throughput

T > K min {n, \/Z//\}l_e The SNR in (12) can be identified as the typical SNR
between nearest neighbor nodes in the network under the
is achievable with high probability as gets large. channel model (3). Note that in a random network:afodes
We present the architectures that achieve this performarstistributed over an areal, the typical separation between
in the next section. nearest neighbor pairs is given WA/n. The condition (12)

An upper bound on the best achievable capacity Sca”ﬁasures that these channgls are in the high-SNR _regime. Note
under the model in (3) is developed in [26] for the case wheldat channels between pairs further away can be in low-SNR.
the density of the nodes remains fixed as the number of nod@&ntifying optimal cooperation architectures for netisr

n grows. In this case, [26] shows that the capacity of tH@ith SNR < 0 dB under the physical channel model remains
wireless network is upperbounded by an open problem. Optimal architectures for such networks

have been identified in [25] under the i.i.d. fading model.
T < Ky v/n(logn)?,

with high probability, where<; > 0 is a constant independent

of n. The above result can at first lead to the conclusidh Optimal cooperation in networks with limited spatial de-
that the best scaling achievable in wireless networks/is drees of freedom

and therefore multi-hop is scaling optimal. However, a éeep

look reveals that the conclusion that the capacity scales li Capitalizing on the result of Theorem 2.1, in this section
V/n comes from the assumption that the density of nod#& prove Theorem 3.1 in three steps:

is fixed, so thaty/A/\ is proportional to,/n. A relatively (A) When VA/\ > n, we verify that the performance of

straightforward generalization of the analysis in [26]egithe the hierarchical cooperation architecture in [24] scales

following refined upper bound on capacity: linearly in » under the LOS model of (3).

K1 n (logn)? it YA >p (B) \k/1\./hen \h/ﬁ I< \/Z/)\t'< n, ;/1vte sthow thhgt a dilr?ted |
2 ierarchical cooperation architecture achieves the scal-
Ts= Kl@ <log @) if n> @ >/n (13) ing in Theorem 3.1. Here, only a randomly chosen

Ky v/n(logn)? if @ <yn subset of the source-destination pairs operate at a time
while remaining nodes stay silent. This creates a diluted
network for which case (1) holds so the network does not
experience any limitation in spatial degrees of freedom.
Different subsets take turns to operate.

&C) When/n < A/ < n, an alternative way to achieve
the scaling in Theorem 3.1 is to use a hybrid archi-
tecture combining distributed MIMO with multi-hop,
introduced in [25]. Here, nodes form MIMO clusters
of an intermediate size and information is routed from
one cluster to the next via successive distributed MIMO

\/Z}} transmissions between adjacent clusters. The cluster

max {\/ﬁ, min {n, -

with high probability, wherg<; > 0 is a constant independent
of n, A and A. For VA/\ < /n, this result says that
the maximum achievable capacity is of ordgh, which is
achievable by a simple multihop. FofA/\ > /n, the
achievability of the upper bound was an open problem an
is now established in Theorem 3.1 when SNR) dB.

This leads to the conclusion that in the regime wheand
VA/X are both large and SNR 0 dB, the capacity of the
network is approximately

\ size is critically chosen at the largest possible scale

that allows for linear scaling of the distributed MIMO

Accordingly, the optimal operation of the network fallsant transmissions. Whexyn = v/A/ ), this cluster size is a
three different operating regimes: single node and the hybrid architecture reduces to pure

1) VA/X < \/n: The number of spatial degrees of freedom  multi-hop. Wheny/A/\ = n, the cluster size is as large
is too small, more sophisticated cooperation is useless asn, and the architecture reduces to pure hierarchical
and multihop is optimal. cooperation.



The difference between the two strategies in (B) and (@hear in n. Potentially hierarchical cooperation can achieve
arises when we modify the channel model to arbitrarily close to linear scaling. One needs to check hewe
a/2

that the MIMO transmissions taking place at all levels of the
hix = VG (14) scheme are fully efficient, i.e. have capacity scaling liyea

Tk in the number of nodes in the clusters. This is easy to verify:

where o is the power path loss exponent determining hogPnsider a MIMO transmission betweep two clusters of area
fast signal power decays with distance in the environmerite and S'ZeM = Acn/A. The separat_lorai between these

Although not physical, this channel model provides a simpﬂg’o clusters is upperbounded by the diameter of the network

ej27rrik//\

way to capture the impact of larger path loss attenuation’ Therefore
due to multiple propagation paths, and at the same time it A, A, VA
preserves the spatial correlation between channels byirigeep \d z MWA ~

the dependence of the phases to the geometric structure of A
the network. It has been shown in [26] that multiple pathBherefore whenyvA/\ > n, )\—C > M, so by Eq. (5),

do not change the scaling of the number of spatial degreesgtributed MIMO transmissions operate with full degreés o
freedom in a large network. Therefore it suffices to cone@etr freedom (up to a logarithmic factor), just like in the case of

on a LOS model for the phases. However, multiple paths cgfy. phases. To compensate for the logarithmic factor, we
have significant impact on the power. For example, with afygue that

additional reflected path from the ground plane the powsdr pat A/ l—e

loss over distance increases from? to ~*. Under this new log(Ac/Ad) =M
model, the power condition for achieving linear capacity fof

distributed MIMO becomes or any e > 0 and sufficiently largelM. This in turn implies

that the capacity of the distributed MIMO transmissiondesca
GP > 0dB as M'~¢. The decrease by —¢ is captured in then—¢
NoWd~ — degradation in the overall throughput in Theorem 2.1.
in Theorem 2.1. Accordingly, the diluted hierarchical co- We also need to verify that the distributed MIMO transmis-
operation architecture in (B) achieves the performance $ipns have sufficient power as required in condition (4)hia t

SNR(d) = M

Theorem 3.1 when hierarchical cooperation architecture, the MIMO transiois
GP between clusters of ared. and sizeM take place inside
SNR = nm >0dB a larger cluster of areal’, and sizeM’ = A.n/A in the
o :

next level of the hierarchy. Therefore the separation betwe
SNR is defined as the long-range SNR of a network in [25the TX and RX clusters is upper bounded ly{pﬁT’c During
This quantity can be identified as times the received SNR the MIMO transmissions each node transmits with elevated
in a point-to-point transmission over the largest scalehim tpower P,, = LA;P. This is because of the time-division
network, the diameted. The extran comes from the network between MIMO transmissions from different clusters. Each
effect, it reflects the potential power gain due to cooperati node transmits only a fractioh//M’ of the time, therefore it

over the global scale. For the multi-hop MIMO architecture ican transmit with elevated powe@% and still satisfy the

(3), the power requirement is given by average transmit power constraift. See [27] for details.
QP Therefore, the SNR for the MIMO transmissions is given by
SNRiA.) = M No W (Ac)* =08 SNR(d) = M GPn_ gy CGP  _ GP 4B
T NGWAL T NgWAL T TUNgWA T

where SNRA,) is the analog of SNRbut for a cluster of
areaA. containingM = A.n/A nodes. In particular, we will where the last inequality is the power condition in Theo-
chooseM in the sequel such that/ = ATAn- When/n < rem 3.1. Therefore, MIMO transmissions at each level of the
VA/X < n,we havel < M < n. Itis easy to verify that when hierarchy have full degrees of freedom and sufficient power.
a > 2, SNR(A.) > SNR, (see (3.12) in [25]), therefore theHierarchical cooperation achieves an aggregate throughpu

second condition is less stringent than the first. When 2, scaling arbitrarily close to linear in in this case. O
SNR(4.) = SNR = SNR in (12). Therefore, for the LOS 2. Hierarchical cooperation whey/n < vA/X < n
model, the two architectures are equivalent. In this regime, equation (13) shows that a linear through-

A detailed discussion on the relevance of the SNR paraput scaling is not achievable by any means. Nevertheless,
eters above in networks with i.i.d. fading is provided in][27 the question remains whether one could outperform multi-
The below discussion assumes that the reader is familiwr witopping strategies, whose asymptotic performarge is
the hierarchical cooperation and the MIMO multihop arahite strictly suboptimal compared to the upper bougdi/\. A
tures and their performance analysis. A detailed desoriggf  direct application of the hierarchical cooperation schéails
these strategies can be also found in [27]. to improve on multi-hop in this case, but it turns out that

1. Hierarchical cooperation when/A/\ > n In this a simple adaptation of the scheme to this spatially limited
regime, the upper bound in (13) allows for throughput scalirsituation achieves the optimal scaling.



The idea is the following: organize the communication IV. ACKNOWLEDGMENT
of the n source-destination pairs inta/N sessions, each . . )
involving N source-destination pairs, whed¥ = +/A/\. _We would Ilke_to thank Marc Desgroseilliers for helping
It is possible to choose here the nodes in a way such tH4fh the preparation of the present paper.
each group ofN nodes statistically occupies the total area
of the network. This way, no group d¥V nodes considered APPENDIX
alone feels the spatial limitation, as for this diluted netkv
N = +/A/X and we are in the cas¢’A/\ > N above. The
sessions operate successively and the traffic in each ses
is handled using hierarchical cooperation where only Ahe
chosen nodes are involved. The rest of the nodes rem

Rigorous proof of Lemma 2.4Ve now prove equation (8)
g\llithout making use of approximations.
c{Ne start again with expression (9) f6t Notice that due to
%@? symmetry ofA andp in w; andw;, we can upper bound
as

2

X

P,, = nP/N and still satisfy their individual power constraint
27 (lze—wl|—|lzm —wl)
. o =TT =
Dr Ly — m

silent. Since nodes are active only a fraction/éfn of the
total time, when active they can transmit with elevated powe d T
S < 1 / dcck./ dzx,,
P. Therefore, for the diluted network oV nodes in each Dr D
session, the SNR s
NoW A " NoW A Expressing this upper bound more explicitly in the coorténa
gystem shown on Figure 3, we obtain:

N

2

X (15)

Therefore, the diluted network is neither power nor spac
limited and hierarchical cooperation achieves aggregate 1 1 1 1
throughput of ordetV'—¢ = (v/A/\)'~ for any fixede > 0. S < / dxk/ dyk/ dxm/ AYom,
With time-division across different groups of nodes, thmea 0 0 0 0
throughput is achievable in the whole network. O /1 dw/l " e2migkm(w,2)
3. MIMO multi-hop wheny/n < v/A/A < n Consider 0 0 Gy (w, 2)
the MIMO multi-hop strategy described in Section 3.3 %here
[27]. On the global scale, this hybrid architecture is samil
to multi-hop. The packets of each source-destination pair a _
transferred by hopping from one cluster to the next. At each Gem (W, 2) = <\/(d VA (@ +w))? + Ae (g = 2)°
hop, the packets are decoded and then re-encoded for the next
hop. The architecture differs from multi-hop by the factttha - \/(d+ VA (@ +w))2 + Ac (ym — Z)2>/>‘
each hop is performed via distributed MIMO transmissions
assisted by hierarchical cooperation. Let us choose theteclu and
size M such thaty/A./\ = M where A, = AM/n is the
area of the cluster. This leads t/ = s%-. This choice Gy (w,z) = d‘Q\/(dJr VA (x4 w))2 + Ae (yp — 2)2
of the cluster size ensures that the clusters are not limited
in spatial degrees of freedom. Therefore, the capacity of X \/(d+ VA (@ + )2+ A (ym — 2)?
distributed MIMO transmissions at each hop scales linearly ) ) o )
M provided that there is sufficient power. Since the distedut L€t us first focus on the integral inside the square in (15 Th
MIMO transmissions at each hop take place over a distarf@y idea behind the next steps of the proof is contained in the

V4., the power condition in (4) yields following two lemmas. _
Lemma 1.1:Let g : [0,1] — R be aC? function such that
SNR(d) = M Gp > 0dB lg'(2)| > ¢; > 0forall z € [0,1] andg” changes sign at most
NoWA: — twice on[0,1] (say e.g.9”(z) > 0in [z_,z;] andg”(z) <0

outside). Let alsa : [0,1] — R be aC' function such that
|G(2)] > c2 > 0 and G'(z) changes sign at most twice on
[0,1]. Then

This is equivalent to SNR> 0 dB in Theorem 3.4, as
M/A. = n/A. When the capacity of the distributed MIMO
transmissions at each hop scale linearlyMh the aggregate

throughput of the MIMO multi-hop architecture is given by /‘1 " e2m39(2) 14
o 0 G(z) | meco
—&
vnM Proof: By the integration by parts formula, we obtain

. 2mjg'(2) 2739(2)
2mjg' (2)G(2)
[ 4 S LIEC
0 (9'(2)G(2))?

in Eq. (3.13) of [27]. Plugging our choickl = ﬁ, we obtain 1 2mig(z) 1
an aggregate throughput scaling @A /))' ~*. = / R /
0 0

e2mig(z)) |1

3With the model in (14), this condition becomes SNR 0 dB. _
4With the model in (14), this condition becomes SNR) > 0 dB. 21jg' (2)G(z)

0



which in turn yields the upper bound formula, which yields.

: /
L emis(a) | 1 . / P QWg/(Z) o 279(2)
/0 dz W < % + [0,z0—¢€]U[z0+€,1] J2mg (2)

g MIGD] g (OG0)]

ej 27"9(2) Z0—€ Z0—¢€ g”(z) .
= dy — 2 =) 52mg(2)
+/1dz Ig”gz)l +/1dz G’ ()] 279 () |, +/0 “omilg ()2 €
o (@RPIGE)] o '(2)(G(2))? jomg(z) |1 1 "y
il B / dz 91 iangco
. y /
By the assumptions made in the lemma, we have 2159 () Lgye Jaore  273(9(2))
Using the assumptions op’ and ¢” in the lemma and
1 7 1 1 " . .. .
9"() 1 lg" (2)] following similar steps to the proof of Lemma 1.1, we obtain
dz —————2— dz
o WERPIGE)] T 2ty (9(2))? 1
- " Z+ " dz exp(2mjg(z
_ L 7/ az - (Z)2 +/ a9 (Z)2 /0 p(2mjg( ))’
C2 0 (9'(2)) z_ (9'(2)) 1 2 ) 2 )
, <2 + ( + + + )
/1 5 9 l9'(O)  [g'(z0 =) [9'(20 +€)|  |g'(1)]
. ) oy Ty
2T Cc1€
11 1 2 2
T \g@) g0 T J(=)  ¢(z4) Choosinge = ,/%Cl yields the desired result
So i s exp(%jg(z))‘ <2
J TR 0 vra
0 (d'(2))?|G(2)] ~— crea’ which completes the proof. [
We obtain in a similar manner that
1 ! Uy
I .
o 9RNG(E)? T ac .
Combining all the bounds, we finally get ~ e Us Us R
Tk T
L p2mjg(=) 14 Uz
/ dz <
0 G(Z) T C1 C2 Uy
[ ]

Lemma 1.2:Let g : [0,1] — R be aC? function such that

H H !/
there existsz € [0’ Hﬁand ¢ >0 \_Nlth \g (z)| =z C,l |Z _ ZO' Fig. 5. Domains of integration: the relative positions of gh@nts «;, and
for all z € [0,1] andg” changes sign at most twice i, 1]. ., determine in which domain one i&/( on the figure).
Let alsoG : [0,1] — R be aC! function such thatG(z)| >

cz > 0 andG’(z) changes sign at most twice ¢, 1]. Then Let now e > 0 and let us divide the integration domain
(Th, Tny Yk, Ym) € [0,1]* in (15) into three subdomains (see

/1 & ezzg;z) 14 Figure 5):
0 z T C1 Co
Proof. The proof follows the steps of the previous U! = {Iym — el = (VAe/d) |am — ax| = 5}
lemma. In order to highlight the differences and for the U, = {O< lym — v| — (VAo /d) |2 — T3] <6}
sake of readability, we focus here on the simple case where
G(w, z) = 1. For anye > 0, we have Us = {|ym —ykl < (VASA) |xm — xk|}

1 ) Zo+e ) Consider first the integral ovdr,. One canz check that

/ dz el 279(2) | — / dz el 279(2)
0 Z0—€E gk7m(w z)

/ dz j2mg'(2) o 279(2) \/ Fm (d/VA.+z+w)dx
[0,z0—¢€]U[z0+¢,1] J 2”9/(2) \/ d/,/ + x4+ w) + (yk: _ 2)2

Ym —
Note that the first term can be simply upperbounded2by + ‘/7“ y—2)dy
The second term can be bounded by the integration by parts Ay V(A/VAA T+ w)2 + (y — 2)2

+




So the first order partial derivative @f, ,,,(w, z) with respect

to z is given by
(w, )
/ (d/VA + 2+ w)? + (= — yp)2)
L VA /y (d/ A+ 2 +w)? dy
Ay ((d)VAg + 2+ w)2 + (2

agk m
0z

(2 —yx) (d/ VA + 2 +w) dz

For the remainder of the proof, let us therefore assume that
VA, < d < AY*/\/X. As before, we focus on the integral
inside the square in the following expression

e2mi Gk, m (,2) |2

dxdx,, dyedym, / dw/ dzi
/Ug e Grom(w,2)

Let us start by considering the simplest case where the goint
xy, andx,, are located on the same horizontal line, yg.=

7

B )2)3/2 ym- IN this case, the second term in the expression (16) for
4 a%" ™ (w, z) becomes zero, so we deduce the following lower
(16) bound:
From this expression, we deduce thatif;, x,,, Yk, Ym) € Ui, Ok m 3/2
then 12,2 2 K S o — | =
Gkm (w, )‘ K‘i <|ym — | — VA |y — xkl) This, together with the above mentioned properties of the
0z Ad d functions gi., and Gy, ,,,, allows us to apply Lemma 1.2 so

for a constantX > 0 independent of4,, A and d. Notice @as to obtain
next that|Gy...(y,z)| > 1. It can further be checked that / / J - VI 1
2 z
- A§/4 | T — $k|

both agz’gm (w, 2) and%(w, z) change sign at most twice
for a constantKX’ > 0 independent ofd., A andd. A slight

277]571@ m(w,2)

Grm(w, 2)
on the intervalz € [0,1] (for w fixed). Therefore, applying

Lemma 1.1, we conclude that

€2 gk,m(w,2)
d d
v T Cem(2) Gk m
p d 277]919 m(w,2)
w Z—
/ ka Z/» )
<K AT

Since we know that this integral is also less thiarthis in
turn implies

o2k, m (w,2) |2
dr,Ldx,, dyLdy,m, dw dzi
/ driddyidy oo
Ad 1
<K-— [ dxpdr,dypdym
Uy ‘ym_yk|_(\/AC/d) |xm_xk‘
/\d 1

Second, it is easy to check that
27Tjgk 'm(wvz) 2
Gim(w, z)

The integral over the third domain of integratiéi is more
delicate. Notice first that the obvious bound

dw dz < 2¢

Uz

2Tk, m (w,2) |2

2\/E
Grm(w, 2)

y <
v =7y

dz

Us

allows to obtain
S< K — VA

Ad lo 1
Ac & £ d

which can be made smaller thd ( ) log (42)
e <

Ad

Ad

Ac

when

/4
ing e = 3¢ \cﬁ <

case).

in this

A
< 35 (as

by choos- Choosing finallye = n =
s <K (4
AY )V O

generalization of this argument (see below for details)&ho
that not only wheny, = y,,, but for any (zx, Tm, Yk, ym) €

Us, we have

/dw/dz

<K

€271 gn,m (w,2)

ka (w, 2)
1

Af/‘* ((@m — 21)? + (Y — yx)?) /4

Vd 1

A§/4 |Zm,

<K (18)

*xk|

Since we also know that the above integral is less thame
further obtain

2™ Ik m (w 2) |2

d d
v  Cem(w.z) Grm(w, 2)
Ad? 1
QPSS T
A(. ‘me—xk|

For any0 < n < 1, we can now upper bound (17) as follows:

2T gk, m (w,2) |2

dw Gim(w, 2)

/ dxdx,, dyrdym, dz
Us

< |Us N {lam —ax| < 77}|

A\d? 1

AY? | — i

1 Ad 1
log <> =2n+K T log ()
U] c Ui

d 1 Ad 1
<K —1 — 2 2 K—1 -
S < A og<€>+ €+ 2n+ A Og(n)

+ K dxrdx, dyrdym,
Usn{|zm —zk|>n}

VA, AP
d A3?

implying that

Ad/A. allows to conclude that
log (4) also in the case wher¢/A, < d <
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omi (w,2") [20] O. Léveque and E. Telatamformation Theoretic Upper Bounds on the
/ dw'ds eI gk, m W Capacity of Large, Extended Ad-Hoc Wireless NetwolEEE Trans.
oy len(w/7 Z/) on Information Theory 51 (3), 2005, 858- 865.

[21] L. -L. Xie, P. R. Kumar,On the Path-Loss Attenuation Regime for
;L ;. Positive Cost and Linear Scaling of Transport Capacity inréféiss
where gim(w', 2'), Gim(w',z") have the same form as  Neworks IEEE Trans. on Information Theory, 52 (6), 2006, 2313-2328.
Gr,m(w, 2), Gi.m(w,z), but now, the domain of integration[22] A. Ozgir, O. Leveque, E. Preissmancaling laws for one and two-
i ; indi ; i dimensional random wireless networks in the low attenuatiegime
Dp is atilted square, as indicated on the Figure 6. Using then [EEE Trans, on Information Theory 53 (10), 2007, 3573_3;8“3
the same argument as in the cage= y.,, we conclude that 23] s. aeron, V. SaligramaWireless Ad hoc Networks: Strategies and
) , Scaling Laws for the Fixed SNR RegimiEEE Trans. on Information
/ e2migk.m(w',z") VI 1 Theory 53 (6), 2007, 2044 - 2059.

. dw'dz’ G ) > 3/4 7 7 [24] A. Ozdir, O. Leveque, D. TseHierarchical Cooperation Achieves Opti-
Dr kom (W5 2') Ac |2 — @] mal Capacity Scaling in Ad-Hoc NetworKEEE Trans. on Information
o ] Theory 53 (10), pp.3549-3572, 2007.

Noticing finally that|z!,, — 2| = \/(zm — k)2 + (Ym — y&)?  [25] A. Ozdir, R. Johari, O. Eveque, D. Tselnformation Theoretic Oper-
allows to conclude that (18) holds. 0 ating Regimes of Large Wireless NetworksEE Trans. on Information

Theory 56 (1), pp.427-437, 2010.
[26] M. Franceschetti, M. D. Migliore, P. Minerd;he Capacity of Wireless
Networks: Information-theoretic and Physical Limit&EE Trans. on
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