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Abstract— We consider a large distributed MIMO system
where wireless users with single transmit and receive antenna
cooperate in clusters to form distributed transmit and receive an-
tenna arrays. We characterize how the capacity of the distributed
MIMO transmission scales with the number of cooperating users,
the area of the clusters and the separation between them, in
a line-of-sight propagation environment. We use this result to
answer the following question: can distributed MIMO provide
significant capacity gain over traditional multi-hop in large adhoc
networks with n source-destination pairs randomly distributed
over an areaA? Two diametrically opposite answers [24] and [26]
have emerged in the current literature. We show that neither of
these two results are universal and their validity depends on
the relation between the number of usersn and

√
A/λ, which

we identify as the spatial degrees of freedom in the network.
λ is the carrier wavelength. When

√
A/λ ≥ n, there are n

degrees of freedom in the network and distributed MIMO with
hierarchical cooperation can achieve a capacity scaling linearly
in n as in [24], while capacity of multihop scales only as

√
n.

On the other hand, when
√

A/λ ≤
√

n as in [26], there are
only

√
n degrees of freedom in the network and they can be

readily achieved by multihop. Our results also reveal a third
regime where

√
n ≤

√
A/λ ≤ n. Here, the number of degrees of

freedom are smaller thann but larger than what can be achieved
by multi-hop. We construct scaling optimal architectures for this
intermediate regime.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) is one of the key
technologies to achieve high-data rates in current wireless sys-
tems. Both the transmitter and the receiver are equipped with
multiple antennas, which allows to spatially multiplex several
streams of data and transmit them simultaneously. When the
scattering environment is rich enough to allow receive anten-
nas to separate out signals from different transmit antennas,
MIMO channels offer large capacity gains: the capacity of
such a MIMO channel withM transmit and receive antennas
is proportional toM . This was established in the ground-
breaking papers of Fochini-Gans [1] and Telatar [2] which
assumed an i.i.d. fading model for channels between different
antenna pairs. However, when there is insufficient scattering in
the environment or when antennas are densely packed together
in small hand-held devices, the channels between different
antenna pairs become correlated. Such physical constraints
prevent MIMO capacity from increasing indefinitely withM .
The impact of correlated fading [3], [4], [5], [6], [7], the
scattering environment [8], [9] and antenna coupling [10],[11]
on MIMO capacity was studied by a large body of follow-up

research, which also provided a characterization of the inherent
spatial degrees of degrees of freedom in a MIMO system as
a function of the area and the geometry of the antenna arrays
and the angular spread of the physical environment [12], [13],
[14], [15].

Recently, distributed MIMO communication arised as a
promising tool to achieve large performance gains in wireless
networks, similar to those provided by conventional MIMO in
the point-to-point wireless channel. Here, wireless userswith
a single transmit and receive antenna cooperate in clusters
to form distributed transmit and receive antenna arrays. A
common assumption in the performance analysis of distributed
MIMO systems is that channels between different pairs of
nodes are subject to independent fading [16], [24]. Analogous
to the point-to-point case, this leads to capacity gains linear
in the number of nodesM contained in the transmit and
receive clusters. In a distributed setting, nodes (or antennas)
are typically much farther apart from each other as compared
to classical MIMO, so an i.i.d. fading model may seem
appropriate. However, the number of nodesM participating
to the transmission can be also much larger in this case
since there are no physical packing constraints like in MIMO.
Capacity can not scale indefinitely withM and correlations
between pairwise channels are expected to limit performance
whenM is large. In this paper, we provide a rigorous lower
bound on the scaling of the capacity of a large distributed
MIMO system with the areaAc of the transmit and receive
clusters, the separation between the clustersd and the number
of nodesM contained in each cluster assuming a line-of-sight
propagation model and a random distribution of nodes over the
cluster areas. We show that the capacity of distributed MIMO
systems scales at least as
{

min
{
M, Ac

λd

}
when

√
Ac ≤ d ≤ Ac/λ

min
{
M,

√
Ac/λ

}
when 1 ≤ d ≤

√
Ac

(1)

where λ is the carrier wavelength. This result identifiesAc

λd
and

√
Ac/λ as the spatial degrees of freedom in the dis-

tributed MIMO channel in the two corresponding regimes.
The capacity of the channel scales linearly inM when the
physical channel has more thanM spatial degrees of freedom.
Fortunately, this can be often the case for actual networks.
Consider for example two clusters of area100 m2 separated by
a distance of100 m. When communication takes place around



a carrier frequency of3 GHz,
√

Ac/λ = 1′000. As long as
there are less than1′000 users in each cluster, the line-of-sight
channel has sufficient spatial degrees of freedom for all users.
When the distance between the two clusters is1 km, Ac

λd is
still 100. The spatial degrees of freedom are expected to be
even larger in scattering environments.

The distributed MIMO channel, and therefore its analysis,
differs from the classical MIMO channel in a couple of ways.
First, the distances between different pairs of users can be
significantly different in the distributed case, which results
in heterogeneous channel gains dictated by the geometry of
the network. Second, while in classical MIMO, the separation
between the antenna arraysd is typically much larger than
the length (or the diameter) of the arrays

√
Ac, for distributed

systems these two dimensions can be comparable. Our analysis
takes into account these new aspects brought by the distributed
nature of the problem. Mathematically, our approach differs
significantly from existing results studying the spatial degrees
of freedom of classical MIMO channels. While such results
(for example, see [12], [14], [15]) are based on studying the
singular values of the continuous propagation operator under
approximationsfor the regime whered ≫

√
Ac , our analysis

is mathematically rigorousand is based on random matrix
analysis.

The characterization of the scaling of the capacity of dis-
tributed MIMO systems allows us to identify the number of
spatial degrees of freedom in large wireless ad hoc networks,
and to reconcile some seemingly contradicting results in the
current literature on scaling laws for wireless networks. The
study of the asymptotic regime where the number of users in
a wireless network is large was initiated by the seminal paper
[17] of Gupta and Kumar and received significant attention
in the literature [18], [19], [20], [21], [22], [23]. Gupta and
Kumar showed that the capacity of multihop cooperation
scales as

√
n with increasing number of usern in the network.

In this traditional communication architecture, packets are
routed from each source to its destination along a path where
intermediate users act as relays. Each relay decodes the packets
sent from the previous relay and forwards them to the next. A√

n scaling for the total capacity implies that the rate per user
decreases as1/

√
n with increasing system sizen. Can more

sophisticated cooperation between users significantly increase
the capacity of large wireless networks? Two diametrically
opposite answers have emerged in the recent literature:

1) Capacity can be significantly improved when users form
distributed MIMO arrays via a hierarchical cooperation
architecture [24]. In regimes where power is not a limiting
factor [25], the capacity can scale almost linearly withn
implying a constant rate per user.

2) The scaling of the capacity is upper bounded by
√

n due
to the spatial constraints imposed by the physical channel
[26]. Nearest-neighbor multi-hop already achieves this
scaling and more sophisticated cooperation is useless.

The key difference between these two results is their assump-
tions for the channel model between pairwise nodes. [24]

assumes that the phases of the channel gains can be modeled
as uniformly distributed random variables, independent across
different pairs of nodes in the network. [26], on the other
hand, starts from physical principles and regards the phases
as functions of the locations of the nodes. While the physical
channel model used in [26] is more fundamental, the i.i.d.
phase model is also widely accepted in wireless communica-
tion engineering, particularly for nodes in far field from each
other. What is the way to reconcile these two sets of results?

We answer this question in the second part of the paper
building on the result in (1). We show that under the physical
channel model of [26], the distributed MIMO based hierarchi-
cal cooperation architecture in [24] achieves a capacity scaling
as

max

{
√

n,min

{
n,

√
A

λ

}}
. (2)

in a network of n source-destination pairs uniformly dis-
tributed over an areaA and communicating around a carrier
wavelenghtλ. The scaling of the capacity depends on hown
compares to

√
A/λ, which can be interpreted as the spatial

degrees of freedom available in the network. The two earlier
results can be recovered as two special cases of this new result:

1) When
√

A/λ ≥ n, the capacity scales linearly inn.
In this regime, there are sufficient spatial degrees of
freedom for all then users in the network and they
can be exploited by distributed MIMO communication.
The i.i.d. fading assumption across different node pairs
in [24] leads ton degrees of freedom and therefore [24]
inhererently assumes that the network operates in this
regime.

2) When
√

A/λ ≤ √
n, the capacity scales as

√
n. In

this regime, the spatial degrees of freedom available in
the network are as few as

√
n, and therefore they can

be readily achieved by multihop. By assuming that the
density of nodes is fixed as the number of nodesn
grows, [26] assumes that the number of spatial degrees
of freedom

√
A/λ is proportional to

√
n. Therefore,

[26] inherently assumes that the network operates in this
regime.

Therefore, neither of the two conclusions in [24] and [26]
that more sophisticated cooperation can provide significant
capacity gains or is useless are universal. They correspondto
two different operating regimes of large wireless networks. (2)
clarifies the conditions for a network to be in either of these
two regimes. Indeed, (2) also uncovers a third regime where
the network is partially limited in spatial degrees of freedom.
When

√
n ≤

√
A/λ ≤ n, the number of spatial degrees of

freedom is smaller thann, so the spatial limitation is felt, but
larger than what can be achieved by simple multi-hopping.
(Multi-hop achieves

√
n scaling independent of

√
A/λ.) We

show that either a modification of the hierarchical cooperation
scheme in [24] or a version of the MIMO-multihop scheme in
[25] can achieve the

√
A/λ available degrees of freedom and

therefore the optimal scaling of the capacity in this regime.
The main idea behind the first modification is to allow only



a subsetN of the source-destination pairs to communicate at
a time using the hierarchical cooperation scheme, and then
take turns among different subsets.N =

√
A/λ, the number

of spatial degrees of freedom in the network, so each subset
corresponds to a diluted network which is not limited in spatial
degrees of freedom. The idea behind the second scheme is to
form clusters of an intermediate size and hop across several
clusters to reach destinations where each hop is performed via
distributed MIMO transmissions. The cluster size is chosen
critically to ensure linear scaling for the distributed MIMO
transmissions.

Traditionally, the literature on scaling laws for wireless
networks seeks the scaling of the capacity with the number of
nodesn when all systems parameters are coupled withn in a
specific way. One common approach is to assume that the area
scales linearly inn, while all other parameters remain fixed,
as in [26]. As we have already seen, this immediately implies
that the spatial degrees of freedom in the network

√
A/λ are

proportional to
√

n. But the number of nodes and the area
are two independent parameters of a network, each of which
can take on a wide range of values. For actual networks, there
can be a huge difference between

√
A/λ and

√
n. Take an

example of a network servingn = 10′000 users on a campus
of 1 km2, operating at3 GHz:

√
A/λ = 10′000, while

√
n is

only 100, two orders of magnitude smaller. So while multi-hop
can achieve a total throughput of the order of100 bits/s/Hz,
there is still a lot of potential for cooperation gain, sincethe
spatial degrees of freedom are indeed10′000 and not100 as
given by (2).

For the classical MIMO channel, it is now well understood
that there are a number of qualitatively different regimes.
When the antennas are separated sufficiently apart, the capac-
ity increases linearly inn. However for dense antenna arrays
the capacity is limited by physical constraints and cannot
increase linearly inn. To obtain an analogous understanding
of the operating regimes of large wireless networks, we
advocate in this paper a shift of the “large networks” research
agenda from seeking a single “universal” scaling law, where
parameters of the network are coupled ton in a specific
way, to seeking amulti-parameter familyof scaling laws,
where the key parameters are decoupled and many different
limits with respect to these parameters are taken. A single
scaling law with a particular coupling between parameters is
often arbitrary and too restrictive to cover the wide ranges
that the multiple parameters of the network can take on. We
have introduced this approach in [25] where we decoupled
the number of nodes and the amount of power available. The
current paper follows the spirit of [25], both mathematically
and philosophically, but focuses on the number of nodes and
the area of the network, while assuming there is a sufficient
amount of power available that it is not limiting performance.
A future goal of this research program is to investigate the
dependence of the capacity on the number of nodes, the area
of the network and the amount of power all together.

A version of this problem has been studied in an indepen-

√
Ac

DR

d
DT

√
Ac

Fig. 1. Two square clusters of areaAc separated by distanced.

dent concurrent work [30], however both the formulation of
the problem and the proposed architectures differ from the
current paper: in [30], the network areaA is taken either fixed
or proportional ton, while the carrier wavelengthλ scales
down to zero with increasingn. The proposed architecture is
obtained by diluting the distributed MIMO transmissions at
each level of the hierarchy, as opposed to diluting the whole
network as we do here. We also develop an alternative MIMO-
multihop strategy to achieve the same performances.

II. SPATIAL DEGREES OFFREEDOM

OF DISTRIBUTED MIMO SYSTEMS

A. Model

We consider a distributed MIMO transmission between
two square clusters of areaAc separated by distanced (see
Figure 1), with each cluster containingM nodes distributed
uniformly at random over the areaAc. Each node is equipped
with one antenna, oriented in the direction perpendicular to
the plane, with a given power budgetP . We assume that
communication takes place over a flat channel with bandwidth
W and that the signal received by nodei at the RX cluster at
time-slotm is given by

yi[m] =
M∑

k=1

hik xk[m] + zi[m]

wherexk[m] is the signal sent by nodek at the TX cluster at
time m, zi[m] is additive white circularly symmetric Gaussian
noise (AWGN) of power spectral densityN0/2 Watts/Hz. In
a line-of-sight environment, the complex baseband-equivalent
channel gainhik between transmit nodek and receive nodei
at timem is given by

hik =
√

G
exp(2πjrik/λ)

rik
(3)

whereλ is the carrier wavelength,rik is the distance between
nodei and nodek andG is Friis’ constant given by

G = Gt Gr

(
λ

4π

)2

with Gt andGr being the transmit and receive antenna gains,
respectively. Finally, we assume full channel state information
at all the nodes, which is a reasonable assumption here, as the
channel coefficients only depend on the node positions and
these do not vary over time.



B. Main Result

Our goal in this section is to provide a lower bound on the
spatial degrees of freedom of the system described above. It
can be inferred from [26] that the spatial degrees of freedom
of such a distributed MIMO system are upperbounded (up to
logarithmic factors) by

√
Ac/λ as Ac gets large, irrespective

of the distanced. Actually, the spatial degrees of freedom
decrease asd increases, because of the reduction of the
aperture of the MIMO system. We prove below that the spatial
degrees of freedom of the system are at least

{
min {M,Ac/λd} if

√
Ac ≤ d ≤ Ac/λ

min
{
M,

√
Ac/λ

}
if 1 ≤ d ≤

√
Ac

(again, up to logarithmic factors). Notice that in the second
regime, the obtained lower bound matches the upper bound
found in [26]. Finally, notice that ifd ≥ Ac/λ, then the system
has clearly at least one degree of freedom.

Let us now state our main result.

Theorem 2.1:Let 1 ≤ d ≤ Ac/λ, and let the nodes in the
transmit clusterDT perform independent signaling with power
P each, such that the long-distance SNR between these two
clusters defined as

SNR(d) = M
GP

N0Wd2
(4)

is greater than or equal to0 dB. Then there exists a constant
K > 0 independent ofM , Ac, λ andd such that the capacity
CMIMO of the distributed MIMO channel from the transmit
clusterDT to the receive clusterDR is lowerbounded by

CM ≥





K min

{
M,

Ac/λd

log(Ac/λd)

}
if
√

Ac ≤ d ≤ A/λ

K min

{
M,

√
Ac/λ

log(
√

Ac/λ)

}
if 1 ≤ d ≤

√
Ac

with high probability asM gets large.

The rest of this section is devoted to the proof of this result,
which is made of three ingredients.

The first key ingredient provides a lower bound on the
MIMO channel capacity averaged over the random node
positions in the first regime where

√
Ac ≤ d ≤ Ac/λ.

Lemma 2.1:If
√

Ac ≤ d ≤ Ac/λ, then the expected
capacityE(CMIMO), averaged over the random node positions,
satisfies

E(CMIMO) ≥ K min

{
M,

Ac/λd

log(Ac/λd)

}
(5)

Next, we show that the capacity of the distributed MIMO
channel with given random node positions is close to its
expected value with high probability. The proof relies on
classical concentration arguments and is relegated to the end
of the present section.

Lemma 2.2:In general, if M nodes participate to the
MIMO transmission, then for allε > 0, there existsK > 0
such that

|CMIMO − E(CMIMO)| ≤ K M1/2+ε

with high probability asM gets large.
Finally, we show that the study of the second regime (1 ≤

d ≤
√

Ac) can be brought back to the cased =
√

Ac by
simply reducing the set of transmitting and receiving nodes
by a factor 2, so that the intercluster distance becomes of the
same order as their radius. Again, the proof is relegated to the
end of the present section.

Lemma 2.3:If 1 ≤ d ≤
√

Ac, then the spatial degrees of
freedom of the system are of the same order as whend =√

Ac.
Combining these three lemmas yields the result given in

Theorem 2.1: Assume first
√

Ac ≤ d ≤ Ac/λ. Then by
Lemma 2.1,

E(CMIMO) ≥ K min

{
M,

Ac/λd

log(Ac/λd)

}

If M ≤ Ac/λd
log(Ac/λd) , then Lemma 2.2 allows to conclude that

CMIMO itself is with high probability at least of orderM . If on
the other handM > Ac/λd

log(Ac/λd) , then it should be noticed that
in this case, it is useless to have all theM nodes participating
to the MIMO transmission. OnlyM ′ = Ac/λd

log(Ac/λd) suffice.
Applying then the concentration result replacingM by M ′

allows to conclude. Finally, Lemma 2.3 shows that for all
1 ≤ d ≤

√
Ac, the degrees of freedom of the system are

lowerbounded by

CMIMO ≥ K ′ min

{
M,

√
Ac/λ

log(
√

Ac/λ)

}

with high probability for some other constantK ′ > 0. This
concludes the proof. �

In the sequel, we provide the proof of Lemma 2.1. The
proofs of Lemmas 2.2 and 2.3 are relegated to the end of the
present section.

Proof of Lemma 2.1.For notational convenience, we start
by defining

fik =
d√
G

hik =
d

rik
exp(2πjrik/λ)

=
d

‖xk − wi‖
exp(2πj ‖xk − wi‖/λ) (6)

whererik denotes the distance between the nodesk ∈ DT and
i ∈ DR located at positionsxk and wi, respectively. Notice
that d ≤ rik ≤ d (1 + 2

√
2Ac/d), so

c0 ≤ (1 + 2
√

2Ac/d)−1 ≤ |fik| ≤ 1, (7)

wherec0 = (1+2
√

2)−1 and the first inequality follows from
the fact that

√
Ac ≤ d.

Remembering the definition of SNR(d) given (4), we obtain
the following expression for the average capacity of the
distributed MIMO channel (where we recall here thatH, F
are the matrices with entrieshik, fik, respectively):

E(CMIMO) = E

(
log det

(
I +

P

N0W
HH†

))

= E
(
log det

(
I + SNR(d)FF †/M

))

= M E (log (1 + SNR(d)λ))



fik

flk

flm

fim

wi

DT
DR

wlxm

xk

Fig. 2. S = |E(fik f∗
lk

flm f∗
im)|, i 6= l, k 6= m

where λ is an eigenvalue ofFF †/M picked uniformly at
random. By applying now the Paley-Zygmund inequality,
stating that for a non-negative random variableX,

P(X ≥ t) ≥ (E(X) − t)2

E(X2)
, ∀0 < t < E(X)

we obtain that for0 < t < E(λ):

E(CMIMO) ≥ M log (1 + SNR(d) t) P(λ > t )

≥ M log (1 + SNR(d) t)
(E(λ) − t)2

E(λ2)

From (7), we further obtain

E(λ) =
1

M2
E
(
tr(FF †)

)
=

1

M2

M∑

i,k=1

E(|fik|2) ≥ c2
0.

E(λ2) =
1

M3
E(tr(FF †FF †))

=
1

M3

M∑

i,k,l,m=1

E(fikf∗
lkflmf∗

im)

≤ 2 +
1

M3

M∑

i,k,l,m=1
i6=l,k 6=m

E(fikf∗
lkflmf∗

im) ≤ 2 + M S

whereS = |E(fik f∗
lk flm f∗

im)|, with i 6= l andk 6= m (notice
that S does not depend on the specific choice ofi 6= l and
k 6= m). See Figure 2.

Choosing thent = c2
0/2, we obtain

E(CMIMO) ≥ (M c4
0/4) log

(
1 + SNR(d) c2

0/2
) 1

2 + M S

≥ K min

{
M,

1

S

}

for a constantK > 0 independent ofM andS, provided that
SNR(d) ≥ 0 dB, which was our initial assumption (4).

The quantityS, which takes values between0 and1, dictates
therefore the capacity scaling. In the case where the channel
matrix entriesfik are i.i.d. and circularly-symmetric,S = 0, so
the capacity is of orderM . On the other hand, if we consider
the line-of-sight channel model (6) in the scenario where nodes
are placed on a single straight line, then a simple computation

shows thatS is of order1, so that the capacity is also of order
1 in this case1.

The problem we are looking at lies between these two
extreme cases. Our aim in the following is to show the
following lemma, which allows to conclude the proof of
Lemma 2.1.

Lemma 2.4:If
√

Ac ≤ d ≤ Ac/λ, then there exists a
constantK > 0 independent ofAc, λ andd, such that

S ≤ K

(
λd

Ac

)
log

(
Ac

λd

)
. (8)

We now give a proof idea for Lemma 2.4. Let us first
explicitly write the expression forS. We have

S = |E(fik f∗
lk flm f∗

im)|

=

∣∣∣∣
1

A4
c

∫

DT

dxk

∫

DT

dxm

∫

DR

dwi

∫

DR

dwl ρ e2πj∆/λ

∣∣∣∣
(9)

where

∆ = ‖xk−wi‖−‖xk−wl‖+‖xm−wl‖−‖xm−wi‖ (10)

and

ρ =
d4

‖xk − wi‖‖xk − wl‖‖xm − wl‖‖xm − wi‖
(11)

We first derive the result (8) by approximating the inter-node
distances in the regime

√
Ac ≪ d ≪ Ac. This approximation,

made already by various authors [12], [9], [14], [15] in
different contexts, allows us to derive an upper bound onS,
and correspondingly, a lower bound on the spatial degrees of
freedom. In addition, we provide in the Appendix a rigorous
derivation of the lower bound, which does not make use of
the approximation. As far as we know, this derivation is new.

Consider two nodes at positionsx = (−
√

Ac x,
√

Acy) ∈
DT and w = (d +

√
Acw,

√
Acz) ∈ DR, wherex, y, w, z ∈

[0, 1] (see Figure 3). Using the assumption thatd ≫
√

Ac, we
obtain

‖x − w‖ =

√
(d +

√
Ac (x + w))2 + Ac (y − z)2

≈ d +
√

Ac (x + w) +
Ac

2d
(y − z)2

which in turn implies

∆ = ‖xk − wi‖ − ‖xk − wl‖ + ‖xm − wl‖ − ‖xm − wi‖

≈ Ac

2d
((yk − zi)

2 − (yk − zl)
2 + (ym − zl)

2 − (ym − zi)
2)

= −Ac

d
(ym − yk)(zl − zi)

Next, let us also make the approximation thatρ ≈ 1 in (11):
this is actually assuming that the spatial degrees of freedom
between the two clusters are mainly determined by the phases
of the channel coefficients and not so much by the amplitudes.
In the Appendix, we show that this intuition is correct.

1Strictly speaking, this only shows that the lower bound on the capacity is
of order1, but in this case, the matrixF can be shown to be essentially rank
one, so the actual capacity is indeed of order1.
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Fig. 3. Coordinate system.

These two successive approximations lead to the following
approximation forS:

S ≈ S0

=

∣∣∣∣
∫ 1

0

dyk

∫ 1

0

dym

∫ 1

0

dzi

∫ 1

0

dzl e
−2πj Ac

λd (ym−yk)(zl−zi)

∣∣∣∣

= 2

∣∣∣∣
∫ 1

0

dyk

∫ 1

yk

dym

∫ 1

0

dzi

∫ 1

0

dzl e
−2πj Ac

λd (ym−yk)(zl−zi)

∣∣∣∣

where the second equation follows from the symmetry of the
integrand. Note that this expression does not depend on the
horizontal positions of the nodes. This can be interpreted as
follows. Provided the above approximation is valid, the spatial
degrees of freedom between two clusters ofM nodes separated
by a distanced ≫

√
Ac are the same, be the nodes uniformly

distributed on two squares of areaAc or on two parallel
(vertical) lines2 of length

√
Ac.

We show below that the above integral is of orderλd/Ac.
Let us compute the first integral, which yields

∫ 1

0

dzl e
−2πj Ac

λd (ym−yk)(zl−zi)

= − λd

2πjAc (ym − yk)
e−2πj Ac

λd (ym−yk)(zl−zi)

∣∣∣∣
zl=1

zl=0

This implies that

∣∣∣∣
∫ 1

0

dzl e
−2πj Ac

λd (ym−yk) (zl−zi)

∣∣∣∣ ≤ K
λd

Ac

1

|ym − yk|

for a constantK > 0 independent ofAc, λ and d. We can
divide the integration overyk andym into two parts, so

∫ 1

0

dyk

∫ 1

yk

dym

∫ 1

0

dzi

∫ 1

0

dzl e
−2πj Ac

λd (ym−yk)(zl−zi)

=

(∫ 1

0

dyk

∫ (yk+ε)∨1

yk

dym +

∫ 1−ε

0

dyk

∫ 1

yk+ε

dym

)

×
∫ 1

0

dzi

∫ 1

0

dzl e
−2πj Ac

λd (ym−yk)(zl−zi)

for any 0 < ε < 1. The first term can be simply bounded by

2This result can be proved rigorously; actually, the rigorous argument
following for the two squares applies equally likely to the case of two parallel
lines

ε, which yields the following upper bound onS0

S0 ≤ 2ε + 2K
λd

Ac

∫ 1−ε

0

dyk

∫ 1

yk+ε

dym
1

|ym − yk|

≤ 2ε + 2K
λd

Ac
log

(
1

ε

)

So choosingε = λd/Ac, we finally obtain

S ≈ S0 ≤ K

(
λd

Ac

)
log

(
Ac

λd

)

for a constantK > 0 independent ofAc, λ andd. �

Proof of Lemma 2.2.First observe that the capacity of the
distributed MIMO channel

CMIMO = log det(I + SNR(d)FF †/M)

(where we reuse here the notation adopted in the proof of
Lemma 2.1) can be seen as a function of the node positions
xk andwi:

CMIMO = gM (x1, . . . ,xM ;w1, . . . ,wM )

As we will see in the following, the capacity does not vary
significantly with the node positions, which allows us to
apply the following (simplified version of the) theorem by
McDiarmid [28].

Theorem 2.2:Let x1, . . . ,xM be a family of i.i.d. random
variables distributed in a bounded regionA ⊂ R

2, and let
fM : R

2M → R be a measurable function such that there is a
constantcM with

|fM (x1, . . . ,x
′
k, . . . ,xM ) − fM (x1, . . . ,xk, . . . xM )| ≤ cM

for all 1 ≤ k ≤ M and x1, . . . ,xk,x′
k, . . . ,xM ∈ A. Then

for all t > 0,

P (|fM (x1, . . . ,xM ) − E(fM (x1, . . . ,xM ))| > t)

≤ 2 exp

(
− 2t2

M c2
M

)

In order to apply the above theorem (replacingfM by gM ),
we need to upperbound the differences

∣∣∣gM (x1, . . . ,x
′
k, . . . ,xM ;w1, . . . ,wM )

− gM (x1, . . . ,xk, . . . xM ;w1, . . . ,wM )
∣∣∣

and
∣∣∣gM (x1, . . . ,xM ;w1, . . . ,w

′
k, . . . ,wM )

− gM (x1, . . . ,xM ;w1, . . . ,wk, . . . ,wM )
∣∣∣

As the problem is symmetric, we only consider the first case
here. Fix1 ≤ k ≤ M . Notice first that modifying the vector
xk only modifies a single column of the matrixF . Let us
defineF̃ as being the matrixF with columnk removed (soF̃
is anM×(M−1) matrix). Because of what was just observed,
F − F̃ is a rank one matrix, so using the interlacing property



of the singular values ofF and F̃ [29, Theorem 7.3.9], we
obtain that for all1 ≤ j ≤ M ,

λ̃j ≤ λj and λ̃j ≥ λj+1

whereλ1 ≥ . . . ≥ λM are the eigenvalues ofFF †/M and
λ̃1 ≥ . . . ≥ λ̃M are the eigenvalues of̃FF̃ †/M . Remember
now that

gM (x1, . . . ,xM ;w1, . . . ,wM )

= log det(I + SNR(d)FF †/M) =
M∑

j=1

log(1 + SNR(d)λj)

Defining

g̃M = log det(I + SNR(d) F̃ F̃ †/M)

=

M∑

j=1

log(1 + SNR(d)λ̃j)

and applying the above inequalities on the eigenvalues, we see
that

|gM (x1, . . . ,xM ;w1, . . . ,wM ) − g̃M | ≤ log(1+SNR(d)λ1)

It can be easily seenλ1 ≤ M . Besides, we are interested
in the regime where the growth of SNR(d) is no more than
polynomial inM (it is actually constant in the case of interest),
so for all ε > 0, there exists a constantK > 0 such that

|gM (x1, . . . ,xM ;w1, . . . ,wM ) − g̃M | ≤ K log M

so by the triangle inequality,
∣∣∣gM (x1, . . . ,x

′
k, . . . ,xM ;w1, . . . ,wM )

− gM (x1, . . . ,xk, . . . xM ;w1, . . . ,wM )
∣∣∣ ≤ 2K log M

This finally shows, via McDiarmid’s theorem, that

P

(∣∣∣gM (x1, . . . ,xM ;w1, . . . ,wM )

− E(gM (x1, . . . ,xM ;w1, . . . ,wM ))
∣∣∣ > t

)

≤ 2 exp

(
− t2

2MK2(log M)2

)

which gives the result, by settingt = M1/2+ε. �

Proof of Lemma 2.3.The proof of this lemma is based on
the following simple observation. Whend ≤

√
Ac, the two

clusters are close to each other, as illustrated on Figure 4.
Consider now the two square subclusters of size

√
Ac

2 ×
√

Ac

2
that are the most separated horizontally. These two subclusters
are now separated by a distanced+

√
Ac, which is of the same

order as
√

Ac. On the other hand, both the area and the number
of nodes in these subclusters remain of the same order as in
the original clusters. More precisely, the new area isAc/4
and correspondingly, the number of nodes in each subcluster
is aroundM/4 with high probability. By letting only the nodes
in these two subclusters participate to the MIMO transmission,
we therefore see that the same order of spatial degrees of
freedom can be achieved as whend =

√
Ac. �

√
Ac

√
Ac

√
Ac/2

√
Ac/2

d

Fig. 4. The distance between the two highlighted subclusters is equal to
d +

√
Ac.

III. A D HOC WIRELESS NETWORKS

An ad hoc network is a collection of wireless users which
can self-organize and communicate among themselves without
the help of any fixed infrastructure. Optimal cooperation
architectures for such networks have received much focus in
the asymptotic regime where the number of users is large.
Consider an ad hoc network wheren source-destination pairs
are independently and uniformly distributed over an areaA.
Each source node wants to communicate to its corresponding
destination at the same rateR bits/s/Hz. For this network,
we have developed a hierarchical cooperation architecturein
[24] that maintains a constant per-pair communication rateR
even when the network serves a growing number of users,
provided that the channels between pairwise users are subject
to i.i.d. fading.More precisely, when the phases of the channel
coefficients can be modeled as i.i.d. random variables indepen-
dent of the node locations, hierarchical cooperation achieves
an aggregate throughputT = nR that scales linearly inn.
Current communication architectures for ad hoc networks can
not provide scalable performance. The traditional approach is
to forward information from the source node to the destination
by following a path, with intermediate nodes on the path
acting as relays. The aggregate throughput of this multi-hop
architecture scales as

√
n with increasing network sizen [17].

Distributed MIMO is key to the linear scaling of the
architecture in [24]. Hierarchical cooperation allows nodes to
efficiently organize in clusters and establish then communi-
cations in the network via distributed MIMO transmissions
between large clusters. Under i.i.d. fading, the capacity of
these distributed MIMO transmissions are linear in the the
number of nodesM contained in the transmit and receive
clusters. In the earlier section, however, we have seen thatthe
area of the clusters and the separation between them poses a
limit on the linear scaling of distributed MIMO. In this section,
we evaluate the performance of hierarchical cooperation under
the physical model in (3) and show that it can still achieve
linear scaling but provided that

√
A

λ ≥ n. When
√

A
λ < n,

we present two modifications of the hierarchical cooperation
architecture that achieve the optimal scaling. Our result is
formally summarized in the following theorem.

Theorem 3.1:Consider a wireless network ofn nodes



distributed uniformly at random over a square areaA such
that

√
A/λ ≥ √

n. Assume that each node is subject to an
average power constraintP and the network is allocated a
total bandwidth ofW . The channels between pairwise users
are governed by the LOS model in (3). Let us define the SNR
of the network as

SNR= n
GP

N0 W A
(12)

and assume that SNR≥ 0 dB. For anyε > 0, there exists
a constantK > 0 independent ofn, λ and A such that an
aggregate throughput

T ≥ K min
{

n,
√

A/λ
}1−ε

is achievable with high probability asn gets large.

We present the architectures that achieve this performance
in the next section.

An upper bound on the best achievable capacity scaling
under the model in (3) is developed in [26] for the case where
the density of the nodes remains fixed as the number of nodes
n grows. In this case, [26] shows that the capacity of the
wireless network is upperbounded by

T ≤ K1

√
n (log n)2,

with high probability, whereK1 > 0 is a constant independent
of n. The above result can at first lead to the conclusion
that the best scaling achievable in wireless networks is

√
n

and therefore multi-hop is scaling optimal. However, a deeper
look reveals that the conclusion that the capacity scales like√

n comes from the assumption that the density of nodes
is fixed, so that

√
A/λ is proportional to

√
n. A relatively

straightforward generalization of the analysis in [26] gives the
following refined upper bound on capacity:

T ≤





K1 n (log n)2 if
√

A
λ ≥ n

K1

√
A

λ

(
log

√
A

λ

)2

if n >
√

A
λ >

√
n

K1
√

n (log n)2 if
√

A
λ ≤ √

n

(13)

with high probability, whereK1 > 0 is a constant independent
of n, λ and A. For

√
A/λ ≤ √

n, this result says that
the maximum achievable capacity is of order

√
n, which is

achievable by a simple multihop. For
√

A/λ >
√

n, the
achievability of the upper bound was an open problem and
is now established in Theorem 3.1 when SNR≥ 0 dB.

This leads to the conclusion that in the regime whenn and√
A/λ are both large and SNR≥ 0 dB, the capacity of the

network is approximately

max

{
√

n,min

{
n,

√
A

λ

}}

Accordingly, the optimal operation of the network falls into
three different operating regimes:

1)
√

A/λ ≤ √
n: The number of spatial degrees of freedom

is too small, more sophisticated cooperation is useless
and multihop is optimal.

2)
√

A/λ ≥ n: The number of spatial degrees of freedom
is n, the optimal performance can be achieved by
the same hierarchical cooperation scheme introduced in
[24]. Spatial degree of freedom limitation does not come
into play and the performance isas thoughphases were
i.i.d. uniform across node pairs.

3)
√

n <
√

A/λ < n: The number of degrees of freedom is
smaller thann, so the spatial limitation is felt, but larger
than what can be achieved by simple multi-hopping.
A modification of the hierarchical cooperation scheme
achieves the optimal scaling in this regime.

The SNR in (12) can be identified as the typical SNR
between nearest neighbor nodes in the network under the
channel model (3). Note that in a random network ofn nodes
distributed over an areaA, the typical separation between
nearest neighbor pairs is given by

√
A/n. The condition (12)

ensures that these channels are in the high-SNR regime. Note
that channels between pairs further away can be in low-SNR.
Identifying optimal cooperation architectures for networks
with SNR≤ 0 dB under the physical channel model remains
an open problem. Optimal architectures for such networks
have been identified in [25] under the i.i.d. fading model.

A. Optimal cooperation in networks with limited spatial de-
grees of freedom

Capitalizing on the result of Theorem 2.1, in this section
we prove Theorem 3.1 in three steps:

(A) When
√

A/λ ≥ n, we verify that the performance of
the hierarchical cooperation architecture in [24] scales
linearly in n under the LOS model of (3).

(B) When
√

n <
√

A/λ < n, we show that a diluted
hierarchical cooperation architecture achieves the scal-
ing in Theorem 3.1. Here, only a randomly chosen
subset of the source-destination pairs operate at a time
while remaining nodes stay silent. This creates a diluted
network for which case (1) holds so the network does not
experience any limitation in spatial degrees of freedom.
Different subsets take turns to operate.

(C) When
√

n <
√

A/λ < n, an alternative way to achieve
the scaling in Theorem 3.1 is to use a hybrid archi-
tecture combining distributed MIMO with multi-hop,
introduced in [25]. Here, nodes form MIMO clusters
of an intermediate size and information is routed from
one cluster to the next via successive distributed MIMO
transmissions between adjacent clusters. The cluster
size is critically chosen at the largest possible scale
that allows for linear scaling of the distributed MIMO
transmissions. When

√
n =

√
A/λ, this cluster size is a

single node and the hybrid architecture reduces to pure
multi-hop. When

√
A/λ = n, the cluster size is as large

as n, and the architecture reduces to pure hierarchical
cooperation.



The difference between the two strategies in (B) and (C)
arises when we modify the channel model to

hik =
√

G
ej2πrik/λ

r
α/2
ik

(14)

where α is the power path loss exponent determining how
fast signal power decays with distance in the environment.
Although not physical, this channel model provides a simple
way to capture the impact of larger path loss attenuation
due to multiple propagation paths, and at the same time it
preserves the spatial correlation between channels by keeping
the dependence of the phases to the geometric structure of
the network. It has been shown in [26] that multiple paths
do not change the scaling of the number of spatial degrees of
freedom in a large network. Therefore it suffices to concentrate
on a LOS model for the phases. However, multiple paths can
have significant impact on the power. For example, with an
additional reflected path from the ground plane the power path
loss over distancer increases fromr2 to r4. Under this new
model, the power condition for achieving linear capacity for
distributed MIMO becomes

SNR(d) = M
GP

N0Wdα
≥ 0 dB

in Theorem 2.1. Accordingly, the diluted hierarchical co-
operation architecture in (B) achieves the performance in
Theorem 3.1 when

SNRl = n
GP

N0 W (
√

A)α
≥ 0 dB

SNRl is defined as the long-range SNR of a network in [25].
This quantity can be identified asn times the received SNR
in a point-to-point transmission over the largest scale in the
network, the diameterA. The extran comes from the network
effect, it reflects the potential power gain due to cooperation
over the global scale. For the multi-hop MIMO architecture in
(3), the power requirement is given by

SNR(Ac) = M
GP

N0 W (Ac)α
≥ 0 dB

where SNR(Ac) is the analog of SNRl but for a cluster of
areaAc containingM = Ac n/A nodes. In particular, we will
chooseM in the sequel such thatM = A

λ2 n . When
√

n <√
A/λ < n, we have1 ≤ M ≤ n. It is easy to verify that when

α > 2, SNR(Ac) ≥ SNRl (see (3.12) in [25]), therefore the
second condition is less stringent than the first. Whenα = 2,
SNR(Ac) = SNRl = SNR in (12). Therefore, for the LOS
model, the two architectures are equivalent.

A detailed discussion on the relevance of the SNR param-
eters above in networks with i.i.d. fading is provided in [27].
The below discussion assumes that the reader is familiar with
the hierarchical cooperation and the MIMO multihop architec-
tures and their performance analysis. A detailed description of
these strategies can be also found in [27].

1. Hierarchical cooperation when
√

A/λ ≥ n In this
regime, the upper bound in (13) allows for throughput scaling

linear in n. Potentially hierarchical cooperation can achieve
arbitrarily close to linear scaling. One needs to check however
that the MIMO transmissions taking place at all levels of the
scheme are fully efficient, i.e. have capacity scaling linearly
in the number of nodes in the clusters. This is easy to verify:
consider a MIMO transmission between two clusters of area
Ac and sizeM = Ac n/A. The separationd between these
two clusters is upperbounded by the diameter of the network√

A. Therefore

Ac

λd
≥ Ac

λ
√

A
=

√
A

λn
M

Therefore when
√

A/λ ≥ n,
Ac

λd
≥ M , so by Eq. (5),

distributed MIMO transmissions operate with full degrees of
freedom (up to a logarithmic factor), just like in the case of
i.i.d. phases. To compensate for the logarithmic factor, we
argue that

Ac/λd

log(Ac/λd)
≥ M1−ε

for any ε > 0 and sufficiently largeM . This in turn implies
that the capacity of the distributed MIMO transmissions scale
as M1−ε. The decrease byM−ε is captured in then−ε

degradation in the overall throughput in Theorem 2.1.
We also need to verify that the distributed MIMO transmis-

sions have sufficient power as required in condition (4). In the
hierarchical cooperation architecture, the MIMO transmission
between clusters of areaAc and sizeM take place inside
a larger cluster of areaA′

c and sizeM ′ = A′
c n/A in the

next level of the hierarchy. Therefore the separation between
the TX and RX clusters is upper bounded by

√
A′

c. During
the MIMO transmissions each node transmits with elevated
power Pm = M ′P

M . This is because of the time-division
between MIMO transmissions from different clusters. Each
node transmits only a fractionM/M ′ of the time, therefore it
can transmit with elevated powerM

′P
M and still satisfy the

average transmit power constraintP . See [27] for details.
Therefore, the SNR for the MIMO transmissions is given by

SNR(d) = M
GPm

N0WA′
c

= M ′ GP

N0WA′
c

= n
GP

N0WA
≥ 0 dB

where the last inequality is the power condition in Theo-
rem 3.1. Therefore, MIMO transmissions at each level of the
hierarchy have full degrees of freedom and sufficient power.
Hierarchical cooperation achieves an aggregate throughput
scaling arbitrarily close to linear inn in this case. �

2. Hierarchical cooperation when
√

n ≤
√

A/λ < n
In this regime, equation (13) shows that a linear through-

put scaling is not achievable by any means. Nevertheless,
the question remains whether one could outperform multi-
hopping strategies, whose asymptotic performance

√
n is

strictly suboptimal compared to the upper bound
√

A/λ. A
direct application of the hierarchical cooperation schemefails
to improve on multi-hop in this case, but it turns out that
a simple adaptation of the scheme to this spatially limited
situation achieves the optimal scaling.



The idea is the following: organize the communication
of the n source-destination pairs inton/N sessions, each
involving N source-destination pairs, whereN =

√
A/λ.

It is possible to choose here the nodes in a way such that
each group ofN nodes statistically occupies the total area
of the network. This way, no group ofN nodes considered
alone feels the spatial limitation, as for this diluted network
N =

√
A/λ and we are in the case

√
A/λ ≥ N above. The

sessions operate successively and the traffic in each session
is handled using hierarchical cooperation where only theN
chosen nodes are involved. The rest of the nodes remain
silent. Since nodes are active only a fraction ofN/n of the
total time, when active they can transmit with elevated power
Pm = nP/N and still satisfy their individual power constraint
P . Therefore, for the diluted network ofN nodes in each
session, the SNR is3

N
GPm

N0WA
= n

GP

N0WA
≥ 0 dB

Therefore, the diluted network is neither power nor space-
limited and hierarchical cooperation achieves aggregate
throughput of orderN1−ε = (

√
A/λ)1−ε for any fixedε > 0.

With time-division across different groups of nodes, the same
throughput is achievable in the whole network. �

3. MIMO multi-hop when
√

n ≤
√

A/λ < n Consider
the MIMO multi-hop strategy described in Section 3.3 of
[27]. On the global scale, this hybrid architecture is similar
to multi-hop. The packets of each source-destination pair are
transferred by hopping from one cluster to the next. At each
hop, the packets are decoded and then re-encoded for the next
hop. The architecture differs from multi-hop by the fact that
each hop is performed via distributed MIMO transmissions
assisted by hierarchical cooperation. Let us choose the cluster
size M such that

√
Ac/λ = M whereAc = AM/n is the

area of the cluster. This leads toM = A
λ2n . This choice

of the cluster size ensures that the clusters are not limited
in spatial degrees of freedom. Therefore, the capacity of
distributed MIMO transmissions at each hop scales linearlyin
M provided that there is sufficient power. Since the distributed
MIMO transmissions at each hop take place over a distance√

Ac, the power condition in (4) yields

SNR(d) = M
GP

N0WAc
≥ 0 dB

This is equivalent to SNR≥ 0 dB in Theorem 3.14, as
M/Ac = n/A. When the capacity of the distributed MIMO
transmissions at each hop scale linearly inM , the aggregate
throughput of the MIMO multi-hop architecture is given by

√
nM1/2−ε

in Eq. (3.13) of [27]. Plugging our choiceM = A
λ2n , we obtain

an aggregate throughput scaling as(
√

A/λ)1−ε. �

3With the model in (14), this condition becomes SNRl ≥ 0 dB.
4With the model in (14), this condition becomes SNR(Ac) ≥ 0 dB.
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APPENDIX

Rigorous proof of Lemma 2.4. We now prove equation (8)
without making use of approximations.

We start again with expression (9) forS. Notice that due to
the symmetry of∆ andρ in wi andwl, we can upper bound
(9) as

S ≤ d4

A4
c

∫

DT

dxk

∫

DT

dxm

×
∣∣∣∣
∫

DR

dw

e2πj (‖xk−w‖−‖xm−w‖)

‖xk − w‖ ‖xm − w‖

∣∣∣∣
2

Expressing this upper bound more explicitly in the coordinate
system shown on Figure 3, we obtain:

S ≤
∫ 1

0

dxk

∫ 1

0

dyk

∫ 1

0

dxm

∫ 1

0

dym

×
∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣
2

(15)

where

gk,m(w, z) =

(√
(d +

√
Ac (xk + w))2 + Ac (yk − z)2

−
√

(d +
√

Ac (xm + w))2 + Ac (ym − z)2
)

/λ

and

Gk,m(w, z) = d−2

√
(d +

√
Ac (xk + w))2 + Ac (yk − z)2

×
√

(d +
√

Ac (xm + w))2 + Ac (ym − z)2

Let us first focus on the integral inside the square in (15). The
key idea behind the next steps of the proof is contained in the
following two lemmas.

Lemma 1.1:Let g : [0, 1] → R be aC2 function such that
|g′(z)| ≥ c1 > 0 for all z ∈ [0, 1] andg′′ changes sign at most
twice on [0, 1] (say e.g.g′′(z) ≥ 0 in [z−, z+] andg′′(z) ≤ 0
outside). Let alsoG : [0, 1] → R be aC1 function such that
|G(z)| ≥ c2 > 0 and G′(z) changes sign at most twice on
[0, 1]. Then ∣∣∣∣

∫ 1

0

dz
e2πjg(z)

G(z)

∣∣∣∣ ≤
14

π c1 c2
.

Proof: By the integration by parts formula, we obtain

∫ 1

0

dz
e2πjg(z)

G(z)
=

∫ 1

0

dz
2πjg′(z)

2πjg′(z)G(z)
e2πjg(z)

=
e2πjg(z))

2πjg′(z)G(z)

∣∣∣∣
1

0

−
∫ 1

0

dz
g′′(z)G(z) + g′(z)G′(z)

2πj(g′(z)G(z))2
e2πjg(z)



which in turn yields the upper bound

∣∣∣∣
∫ 1

0

dz
e2πjg(z)

G(z)

∣∣∣∣ ≤
1

2π

(
1

|g′(1)||G(1)| +
1

|g′(0)||G(0)|

+

∫ 1

0

dz
|g′′(z)|

(g′(z))2|G(z)| +

∫ 1

0

dz
|G′(z)|

g′(z)(G(z))2

)

By the assumptions made in the lemma, we have

∫ 1

0

dz
|g′′(z)|

(g′(z))2|G(z)| ≤
1

c2

∫ 1

0

dz
|g′′(z)|
(g′(z))2

=
1

c2

(
−
∫ z−

0

dz
g′′(z)

(g′(z))2
+

∫ z+

z−

dz
g′′(z)

(g′(z))2

−
∫ 1

z+

dz
g′′(z)

(g′(z))2

)

=
1

c2

(
1

g′(1)
− 1

g′(0)
+

2

g′(z−)
− 2

g′(z+)

)

So ∫ 1

0

dz
|g′′(z)|

(g′(z))2|G(z)| ≤
6

c1 c2
.

We obtain in a similar manner that
∫ 1

0

dz
|G′(z)|

g′(z)(G(z))2
≤ 6

c1 c2

Combining all the bounds, we finally get

∣∣∣∣
∫ 1

0

dz
e2πjg(z)

G(z)

∣∣∣∣ ≤
14

π c1 c2

Lemma 1.2:Let g : [0, 1] → R be aC2 function such that
there existsz0 ∈ [0, 1] and c1 > 0 with |g′(z)| ≥ c1 |z − z0|
for all z ∈ [0, 1] andg′′ changes sign at most twice on[0, 1].
Let alsoG : [0, 1] → R be aC1 function such that|G(z)| ≥
c2 > 0 andG′(z) changes sign at most twice on[0, 1]. Then

∣∣∣∣
∫ 1

0

dz
e2πjg(z)

G(z)

∣∣∣∣ ≤
√

14

π c1 c2
.

Proof: The proof follows the steps of the previous
lemma. In order to highlight the differences and for the
sake of readability, we focus here on the simple case where
G(w, z) ≡ 1. For anyε > 0, we have

∣∣∣∣
∫ 1

0

dz ej 2πg(z)

∣∣∣∣ =
∣∣∣∣
∫ z0+ε

z0−ε

dz ej 2πg(z)

∣∣∣∣

+

∣∣∣∣∣

∫

[0,z0−ε]∪[z0+ε,1]

dz
j 2πg′(z)

j 2πg′(z)
ej 2πg(z)

∣∣∣∣∣

Note that the first term can be simply upperbounded by2ε.
The second term can be bounded by the integration by parts

formula, which yields.
∫

[0,z0−ε]∪[z0+ε,1]

dz
j 2πg′(z)

j 2πg′(z)
ej 2πg(z)

=
ej 2πg(z)

2πjg′(z)

∣∣∣∣
z0−ε

0

+

∫ z0−ε

0

dz
g′′(z)

2πj(g′(z))2
ej 2πg(z)

+
ej 2πg(z)

2πjg′(z)

∣∣∣∣
1

z0+ε

+

∫ 1

z0+ε

dz
g′′(z)

2πj(g′(z))2
ej 2πg(z)

Using the assumptions ong′ and g′′ in the lemma and
following similar steps to the proof of Lemma 1.1, we obtain
∣∣∣∣
∫ 1

0

dz exp(2πjg(z))

∣∣∣∣

≤ 2ε +
1

2π

(
2

|g′(0)| +
2

|g′(z0 − ε)| +
2

|g′(z0 + ε)| +
2

|g′(1)|

)

≤ 2ε +
1

2π

8

c1ε

Choosingε =
√

2
πc1

yields the desired result

∣∣∣∣
∫ 1

0

dz exp(2πjg(z))

∣∣∣∣ ≤
8√
π c1

which completes the proof.

xk

U2

U2

U3U3

U1

U1

ε
xm

DT

∼
√

Ac
d

Fig. 5. Domains of integration: the relative positions of thepointsxk and
xm determine in which domain one is (U1 on the figure).

Let now ε > 0 and let us divide the integration domain
(xk, xm, yk, ym) ∈ [0, 1]4 in (15) into three subdomains (see
Figure 5):

U1 =
{
|ym − yk| − (

√
Ac/d) |xm − xk| ≥ ε

}

U2 =
{

0 < |ym − yk| − (
√

Ac/d) |xm − xk| < ε
}

U3 =
{
|ym − yk| ≤ (

√
Ac/d) |xm − xk|

}

Consider first the integral overU1. One canz check that

gk,m(w, z)

= −
√

Ac

λ

∫ xm

xk

(d/
√

Ac + x + w) dx√
(d/

√
Ac + x + w)2 + (yk − z)2

+

√
Ac

λ

∫ ym

yk

(y − z) dy√
(d/

√
Ac + xm + w)2 + (y − z)2



So the first order partial derivative ofgk,m(w, z) with respect
to z is given by

∂gk,m

∂z
(w, z)

=

√
Ac

λ

∫ xm

xk

(z − yk) (d/
√

Ac + x + w) dx
(
(d/

√
Ac + x + w)2 + (z − yk)2

)3/2

+

√
Ac

λ

∫ ym

yk

(d/
√

Ac + xm + w)2 dy
(
(d/

√
Ac + xm + w)2 + (z − y)2

)3/2

(16)

From this expression, we deduce that if(xk, xm, yk, ym) ∈ U1,
then
∣∣∣∣
∂gk,m

∂z
(w, z)

∣∣∣∣ ≥ K
Ac

λd

(
|ym − yk| −

√
Ac

d
|xm − xk|

)

for a constantK > 0 independent ofAc, λ and d. Notice
next that |Gk,m(y, z)| ≥ 1. It can further be checked that

both ∂2gk,m

∂z2 (w, z) and ∂Gk,m

∂z (w, z) change sign at most twice
on the intervalz ∈ [0, 1] (for w fixed). Therefore, applying
Lemma 1.1, we conclude that

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(z)

∣∣∣∣

≤
∫ 1

0

dw

∣∣∣∣
∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(y, z)

∣∣∣∣

≤ K
λd

Ac

1

|ym − yk| − (
√

Ac/d) |xm − xk|
Since we know that this integral is also less than1, this in
turn implies
∫

U1

dxkdxmdykdym

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣
2

≤ K
λd

Ac

∫

U1

dxkdxmdykdym
1

|ym − yk| − (
√

Ac/d) |xm − xk|

= K
λd

Ac
log

(
1

ε

)

Second, it is easy to check that
∫

U2

dxkdxmdykdym

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣
2

≤ 2ε

The integral over the third domain of integrationU3 is more
delicate. Notice first that the obvious bound
∫

U3

dxkdxmdykdym

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣
2

≤ 2

√
Ac

d

allows to obtain

S ≤ K
λd

Ac
log

(
1

ε

)
+ 2ε + 2

√
Ac

d

which can be made smaller thanK
(

λd
Ac

)
log
(

Ac

λ

)
by choos-

ing ε = λd
Ac

when A3/4
c√
λ

≤ d ≤ Ac

λd (as
√

Ac

d ≤ λd
Ac

in this
case).

For the remainder of the proof, let us therefore assume that√
Ac ≤ d ≤ A

3/4
c /

√
λ. As before, we focus on the integral

inside the square in the following expression
∫

U3

dxkdxmdykdym

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣
2

(17)

Let us start by considering the simplest case where the points
xk andxm are located on the same horizontal line, i.e.yk =
ym. In this case, the second term in the expression (16) for
∂gk,m

∂z (w, z) becomes zero, so we deduce the following lower
bound:

∣∣∣∣
∂gk,m

∂z
(w, z)

∣∣∣∣ ≥ K
A

3/2
c

λd2
|xm − xk| |z − yk|

This, together with the above mentioned properties of the
functionsgk,m and Gk,m, allows us to apply Lemma 1.2 so
as to obtain∣∣∣∣

∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣ ≤ K

√
λd

A
3/4
c

1√
|xm − xk|

for a constantK > 0 independent ofAc, λ and d. A slight
generalization of this argument (see below for details) shows
that not only whenyk = ym but for any(xk, xm, yk, ym) ∈
U3, we have

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣

≤ K

√
λd

A
3/4
c

1

((xm − xk)2 + (ym − yk)2)1/4

≤ K

√
λd

A
3/4
c

1√
|xm − xk|

(18)

Since we also know that the above integral is less than1, we
further obtain

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣
2

≤ min

{
K

λd2

A
3/2
c

1

|xm − xk|
, 1

}

For any0 < η < 1, we can now upper bound (17) as follows:
∫

U3

dxkdxmdykdym

∣∣∣∣
∫ 1

0

dw

∫ 1

0

dz
e2πjgk,m(w,z)

Gk,m(w, z)

∣∣∣∣
2

≤ |U3 ∩ {|xm − xk| < η}|

+ K

∫

U3∩{|xm−xk|≥η}
dxkdxmdykdym

λd2

A
3/2
c

1

|xm − xk|

≤ 2η + K

√
Ac

d

λd2

A
3/2
c

log

(
1

η

)
= 2η + K

λd

Ac
log

(
1

η

)

implying that

S ≤ K
λd

Ac
log

(
1

ε

)
+ 2ε + 2η + K

λd

Ac
log

(
1

η

)

Choosing finallyε = η = λd/Ac allows to conclude that

S ≤ K
(

λd
Ac

)
log
(

Ac

λd

)
also in the case where

√
Ac ≤ d ≤

A
3/4
c /

√
λ. �
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Fig. 6. Tilted reference frame.

Proof of equation(18). In order to prove (18), we need
to make a change of coordinate system, replacing(w, z) by
(w′, z′), wherew′ is now in the direction of the vectorxk −
xm and z′ is perpendicular to it (see Figure 6). In this new
coordinate system, the integral reads

∣∣∣∣∣

∫gDR

dw′dz′
e2πjgk,m(w′,z′)

Gk,m(w′, z′)

∣∣∣∣∣

where gk,m(w′, z′), Gk,m(w′, z′) have the same form as
gk,m(w, z), Gk,m(w, z), but now, the domain of integration
D̃R is a tilted square, as indicated on the Figure 6. Using then
the same argument as in the caseyk = ym, we conclude that

∣∣∣∣∣

∫gDR

dw′dz′
e2πjgk,m(w′,z′)

Gk,m(w′, z′)

∣∣∣∣∣ ≤ K

√
λd

A
3/4
c

1√
|x′

m − x′
k|

Noticing finally that|x′
m−x′

k| =
√

(xm − xk)2 + (ym − yk)2

allows to conclude that (18) holds. �
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