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Quantum stabilization of classically unstable plateau structures
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Motivated by an intriguing report, in some frustrated quantum antiferromagnets, of magnetization plateaus
whose simple collinear structure is not stabilized by an external magnetic field in the classical limit, we develop
a semiclassical method to estimate the zero-point energy of collinear configurations even when they do not
correspond to a local minimum of the classical energy. For the spin-1/2 frustrated square-lattice antiferromagnet,
this approach leads to the stabilization of a large 1/2 plateau with “up-up-up-down” structure for J,/J; > 1/2,
in agreement with exact diagonalization results, while for the spin-1/2 anisotropic triangular antiferromagnet,
it predicts that the 1/3 plateau with “up-up-down” structure is stable far from the isotropic point, in agreement

with the properties of Cs,CuBry.
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Introduction. Frustration is responsible for the emergence
of several remarkable properties in quantum magnets, ranging
from rather exotic types of order such as quadrupolar or
nematic order to resonating valence bond or algebraic spin
liquids.! In the presence of an external field, frustration is
also known to be at the origin of several types of accidents
in the magnetization curve, including kinks, jumps, and
plateaus. Of all these remarkable features, magnetization
plateaus at a rational value of the magnetization are probably
the best documented ones experimentally, and their theory is
likewise quite advanced. Following the terminology of Hida
and Affleck,> two kinds of plateaus have been identified:?
“classical” plateaus,‘”’ whose structure has a simple classical
analog with spins up or down along the external field, and
“quantum” plateaus,’”!! which have no classical analog and
correspond to a Wigner crystal of triplets in a sea of singlets.
In the case of quantum plateaus, the mechanism is clear:
Frustration reduces the kinetic energy of triplets, resulting
in a crystallization at commensurate densities. The main open
problem is to be predictive for high commensurability plateaus
since it requires a precise knowledge of the long-range part of
the triplet-triplet interaction.

By contrast, and somehow surprisingly, the theory of
classical plateaus is not yet complete. The paradigmatic
example of a classical plateau is the 1/3 magnetization plateau
of the Heisenberg antiferromagnet on a triangular lattice,
studied by Chubukov and Golosov® in the context of a 1/S
expansion. In this system the three-sublattice up-up-down
(uud) structure appears classically at H = Hg, /3, and since,
according to order by disorder, collinear configurations tend to
have a softer spectrum, hence a smaller zero-point energy,'>!3
quantum fluctuations stabilize this uud state in a finite field
range around H, /3, leading to the 1/3 plateau. This prediction
has been confirmed by exact diagonalization of finite clusters
for S = 1/2 and 1,'* and the theory of Chubukov and Golosov
can be extended to all cases where a collinear state is classically
stabilized for a certain field.

There are cases, however, where a classical plateau has been
suggested to exist although the collinear structure stabilized
for quantum spins is not the ground state for classical spins, the
classical ground state in the appropriate field range being in
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general a noncoplanar structure. This is, for instance, the case
of the spin-1/2 J;-J, model on the square lattice, for which
exact diagonalizations have revealed the presence of a four-
sublattice up-up-up-down (uuud) 1/2 plateau in a parameter
range where the classical ground state has a canted stripe
structure (see below). Another example is the 1/3 plateau
of the Heisenberg model on the anisotropic triangular lattice,
a model relevant to the compound Cs,CuBry4. To develop a
general theory of classical plateaus in that situation remains
the main open issue in the field.

The goal of this Rapid Communication is to develop such
a theory. For that purpose, we start with a general Heisenberg
model in an external field defined by the spin Hamiltonian

H=Y J;Si-S;—HY S, (1)
(i, J) i

and show how to estimate the zero-point energy of collinear
states even if they do not minimize the classical energy. More
precisely, we derive an upper bound of this energy to order
1/S. If the energy of a collinear state estimated in this way
is lower than that of the classical ground state (including the
zero-point energy), then the collinear state must be the ground
state. Accordingly, the quantum antiferromagnet exhibits a
magnetization plateau in a certain field range, which may
generally exceed our conservative theoretical estimate based
on the upper energy bound. We apply this approach to the J;-J,
model on a square lattice and to the Heisenberg antiferomagnet
on the anisotropic triangular lattice, with results in remarkable
agreement with existing numerical data for § = 1/2.

General formalism. In the semiclassical approach,
deviations from the classical configuration are expressed as
Holstein Primakoff bosons.!> At the harmonic level, the
bosonic Hamiltonian can be split into three contributions
H=HO +HD +HP, where H® is the classical energy
of the system, while H» and H® respectively contain only
terms which are linear and quadratic in boson operators. Now,
H® = 0 if the configuration minimizes the classical energy,
but more generally this holds true if it is a saddle point of
the energy, a condition fulfilled by plateau structures since
they are collinear. In all these cases, the fluctuations are
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described by a purely quadratic Hamiltonian. However, since
plateau structures are classical minima of the energy only at
specific values of couplings and magnetic field (if any), the
resulting quadratic Hamiltonian is positive definite only at
these specific points. Away from such points the correction
to the classical energy cannot be computed at the harmonic
level, and if the plateau state is to become the true quantum
ground state, higher-order terms in the spin-wave expansion
must be included to produce an excitation spectrum with
positive frequencies, as done in Ref. 5 and in more recent
studies.'®!7 This is a rather involved calculation, and it would
be useful to have a simpler approach to determine if there
is a plateau, and to estimate its width to the lowest order
in 1/S. Besides, the calculation of the excitation spectrum
for the plateau region allows to identify only second-order
transitions,? while in many experimental and model examples
the transitions at the plateau boundaries are of the first order
and, therefore, require a full energetic comparison.

To obtain a well-defined spectrum around a state which is
not a classical ground state we propose to add a staggered-field
term,

V=58) (S—57). ©)

to the harmonic Hamiltonian. A similar approach has been
introduced in a different context in Refs. 18 and 19. On
each lattice site i, the staggered field § > O is oriented in the
direction Z; of the corresponding classical spin. The extra term
(2) does not change the classical energy and simply amounts
to a shift of the chemical potential of the Holstein-Primakoff
bosons V =8 > aj a;, which yields a positive contribution to
the spin-wave Hamiltonian. The magnitude of § is adjusted to
the minimal value that ensures that the harmonic Hamiltonian
is positive definite, so that the resulting spectrum obtained
with the help of the Bogolyubov transformation has real and
positive frequencies. Since the expectation value of V is strictly
positive, the energy calculated adding V provides an upper
bound for the energy of the plateau state.

J1-J> model. For the frustrated square-lattice antiferromag-
net the exchange interaction constants are J;; = J; and J,
for nearest and second-nearest neighbors, respectively. In zero
field the classical ground state of the model is a helix with the
ordering wave vector given by the minimum of the Fourier
transform of the coupling interaction Jq = 4J;yq + 4J21q,
with yq = (cosg, + cosgy)/2 and nq = cos g, cosg,. For
J2/Jy < 1/2, the minimum corresponds to qy = (7,7), i.e.,
to Néel order. In the opposite case J,/J; > 1/2, the order-
by-disorder mechanism selects collinear striped structures
with ordering wave vectors qs = (7r,0) or (0,7)."3 The point
J»/Ji = 1/2 is highly degenerate since Jq is minimal along
the lines ¢, = 7 and g, = 7. In the presence of a magnetic
field both the Néel and the stripe structure are canted with a
uniform spin component in the field direction. The canting
angle 6 measured with respect to the z axis is given by
cosOy = H/8J,S and cosbs = H/(4J, + 8J,)S for the two
states.

The analysis of classical spin configurations in a magnetic
field suggests the appearance of a 1/2-magnetization plateau
with a four-sublattice uuud structure for the strongly frustrated
point J>/J; = 1/2.° The conclusion has been supported by
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exact diagonalizations of finite clusters, though numerically
the plateau extends well into the classically unstable region
Jo/Jy > 1/2 with the largest width at J,/J; ~ 0.6. Moreover,
the linear spin-wave calculation for J,/J; = 1/2 and H =
4J, S shows that for this ratio of coupling constants the canted
Néel state wins over the collinear plateau state,?’ leaving an
apparent problem with reconciling numerical and analytical
results.

We now investigate the appearance of the 1/2-
magnetization plateau for the J;-J, model using the variational
harmonic theory outlined above to estimate the energy of the
uuud structure, as well as that of the canted Néel state for
J2/J1 > 1/2 and of the stripe structure for J,/J; < 1/2, where
these configurations are saddle points of the classical energy.
The general structure of the quadratic bosonic Hamiltonian is
given by

I
H=NEa+ ; [a] Midy — Ayl 3)

where E is the classical energy per site of the state around
which fluctuations are considered. For the canted Néel and the
canted stripe states ﬁlt = (a;i,a_k) and M is the 2 x 2 matrix,

Mi(q) = <2k(q) Bk(Q)) ’ @
k(@) Ax(q)
with
A(qy) = 471S(1 + yccos” Oy) — 415(1 — 1),
Bi(qn) = —4J; Sy sin® Oy
for the Néel state and
Ax(qs) = 41,81 +nk 005295) +2J1S(cos ky—}—coszés cosk,),
Bi(qs) = —28 sin® O5(J; cos k, + 2Jo1x) (©6)

for the stripe state, with qg = (;r,0). The additional constants
AY and A} in Eq. (3) are given by Ax(qy) and Ak(qs).

The uuud state has a four-site unit cell, and éL denotes
(@] s -+ 2@ o1 ks - 204 —x), With My being the 8 x 8
matrix obtained from (4) by substituting

A Ex 0 Gy 0 0 —F O
o |EBOA| [0 0 A o
k_ s b k_ _* r 7 — b
0 0 Ce 0 —Ff B 0 —E
Gv Ff 0 A, 0 0 —E; 0

(7N
with coefficients

Ak:_4JZS+H’ Bk:_4(Jl_JZ)S+H’
Ck =41 + L)S— H, Ex=JSu,, ®)

Fk = J] S‘L'kx, Gk = JQST_kX 'L’_ky, Hk = —JzS‘L’_kX Tk, »

where 7; = (1 + e~?%). The constant Aﬁ‘“‘d is given by 2Ay +
By + Cx. When the matrix My is not positive definite we add
to the Hamiltonian the term V defined in Eq. (2), whose effect
is to increase Ay and all diagonal elements of My by 6/2, with
a field 8 adjusted to the minimal value that makes My positive
definite over the entire Brillouin zone.
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FIG. 1. (Color online) Semiclassical phase diagram for the spin
1/2 J,-J, Heisenberg model in magnetic field. The uuud structure is
stabilized by fluctuations over a wide parameter range. Dashed lines
correspond to the phase diagram for S = 1 and dotted lines to the
classical phase boundaries. The shaded area represents schematically
the gapped singlet phase for the spin-1/2 model.

The phase diagram obtained by comparing the ground-state
energies for three relevant spin structures is presented in Fig. 1
for § = 1/2and 1. The 1/2-magnetization plateau is stabilized
by quantum fluctuations over a wide range of parameters deep
into the classically forbidden region J,/J; > 1/2, though it
remains energetically unfavorable at J,/J; = 1/2. The width
and position of the plateau are in good agreement with the
exact diagonalization results of finite clusters withup to N =
36 sites.® Figure 2 shows the magnetization curves for several
ratios J»/J;. The magnetization curve for J,/J; = 0.6 with
a large magnetization jump below the plateau and a much
smaller anomaly above the plateau is in good correspondence
with the numerical data for the same coupling ratio.® For J,/J;
close to 1/2, there is, in addition, a competition between the
canted Néel and the canted stripe states. The Néel state has a
softer spectrum than the stripe state and is stabilized beyond its
classical boundary. This leads to an additional transition from
the canted Néel state into the canted stripe structure which
shows up as a small jump either above (J,/J; = 0.525) or
below (J,/J; = 0.55) the 1/2 plateau.

It should be pointed out that states other than those
considered may be stabilized. One possible candidate, at the
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FIG. 2. (Color online) Magnetization curves of the spin 1/2 J;-J,
model for different ratios J,/J; obtained in the variational spin-wave
approach.
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FIG. 3. (Color online) (a) Anisotropic triangular lattice. (b)
Three-sublattice planar structure as a function of the magnetic field.
(c) Example of noncoplanar canted helix.

upper edge of the plateau, is the coplanar four sublattice state
having three classical spins parallel and the remaining spin
pointing in a different direction. This state can be naturally
connected to the uuud state and is the analog of the state
stabilized above the plateau in the isotropic triangular lattice.
However, such a structure could not be investigated in our
linear spin-wave approach since it is not a saddle point of the
classical energy.

Anisotropic triangular lattice. We now consider a second
example of a classically unstable magnetization plateau,
the nearest-neighbor Heisenberg antiferromagnet on an or-
thorhombically distorted (anisotropic) triangular lattice. In this
model spins are coupled by J;; = J along horizontal chains
and by J;; = J' on zigzag interchain bonds [see Fig. 3(a)].
The spin-1/2 model is relevant for Cs,CuBry,>'~>* which has
a 1/3 magnetization plateau, although, with J' ~ 0.75J, it is
quite far from the isotropic limit. The robustness of the uud
plateau in the J-J' model has been studied numerically?*?
and analytically.'® Nevertheless, the extent of the plateau state
around H/Hg ~ 1/3 and J'/J ~ 1 and the nature of the
states adjacent to the plateau region are still open questions.
Furthermore, the stability method employed by Alicea et al.'®
allows to identify only second-order transitions out of the
plateau state, while experiments typically find first-order
transitions,”® a fact naturally explained in our theoretical
approach (see below).

The Fourier transform of the coupling interaction in the
triangular lattice [see Fig. 3(a)] is given by Jq = 2[J cos qa +
J' cosqb + J' cos q(a — b)]. In zero field the classical ground
state is a helical spin structure whose ordering wave vector
Q minimizes Jg. In the isotropic case J = J’ this yields the
well-known 120° spin structure. In the presence of a magnetic
field the classical energy is minimized for canted helices or
umbrella configurations [see Fig. 3(c)], which have helical
order in the xy plane and a uniform spin component in the field
direction. The canting angle of the helical structure measured
with respect to the z axis is given by cos 0y = H/(Jy — Jg)S.
For the isotropic point J'/J =1 the canted helical state is
degenerate with the coplanar Y- and V-type structures [see
Fig. 3(b)]. Existing linear spin-wave calculations indicate that
the coplanar structures are selected over the noncoplanar one
in the isotropic lattice and that the uud structure, classically
stable at the field Hg,/3, is stabilized by fluctuations over a
finite field range.’

In the following we address the problem of the plateau
stability for the anisotropic triangular lattice model by com-
paring ground-state energies for the canted helical state,
the uud structure and the two three-sublattice planar states
as a function of J’/J and magnetic field. Away from J = J’,
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FIG. 4. (Color online) Phase diagram of the spin-1/2 anisotropic
triangular lattice in magnetic field. Y and V regions denote three-
sublattice planar states. The dashed line is the classical saturation
field. The gray shading denotes regions where phases other than the
canted helical states may be expected.

the three-sublattice planar structures turn out to be, as the
uud state away from Hg, /3 and J = J’, saddle points but not
local minima of the classical energy, and to compute their
zero-point energies, we again use the variational spin-wave
approach suggested above.?°

The resulting phase diagram is shown in Fig. 4. The uud
plateau state is stabilized well beyond the isotropic limit and
extends over the range 0.5 < J'/J < 1.5. Coplanar states are
stabilized above and below the magnetization plateau with the
exception of the plateau edges, where we find direct first-order
transitions from the uud state into the canted helical structure.
From the energetic comparison it appears that the uud state
does not extend into the Y-state region, so that the correspond-
ing portion of the lower boundary of the plateau is perfectly
linear (see Fig. 4). This is almost certainly an artefact of the
method, which only gives an upper bound to the energy of the
plateau, and the extent of the plateau is probably significantly
larger. In fact, at J = J', we obtain a plateau width which
is only half that predicted in Refs. 5 and 14. We also note
that the only coplanar states considered in our calculation are
Y- and V-type structures, while for a substantial mismatch
between J and J’, incommensurate coplanar structures may
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be also stabilized by quantum fluctuations. The variational
spin-wave approach is not well suited for treating them and
we only remark that they may appear on the phase diagram at
the expense of the canted helical structure. Finally, the gray
shading in Fig. 4 indicates regions where new quantum phases
are expected. In fact, in zero field, theoretical and numerical
approaches point to collinear spin correlations for weakly
coupled chains,”’~?° while in the limit of strong interchain
couplings the antiferromagnetic Néel state should be stable
downto J'/J ~ 1.5.%°

As compared to those of Alicea et al., who also predicted an
extended plateau region for small distortions [(1 — J'/J)* <
0.3] for the S =1/2 case,'® our results bring in a number of
additional insights. In the first place, the symmetry between
J'/J <1 and J'/J > 1 is lost. Second, a transition out of
the plateau into the canted helical states is clearly present.
Finally, for J'/J = 0.75 relevant for Cs,CuBr4,2' 2 we find
a magnetization plateau width AH/Hg ~ 0.106, signifi-
cantly larger than the experimental value AH/Hg ~ 0.052
in Cs;CuBry. Since by construction our approach tends to
underestimate the plateau width, the difference must be due
to additional effects not included in the anisotropic model,
for instance, the competition between quantum effects and
Dzyaloshinskii-Moriya interactions.*

Conclusion. We have developed a general method to
investigate the stabilization of classical magnetization plateaus
in cases where the corresponding configuration is not a
minimum of the classical energy. This method is extremely
simple since it only relies on the diagonalization of quadratic
bosonic Hamiltonians and does not require to go beyond linear
spin-wave theory, yet it appears to give remarkably accurate
results, even for spin 1/2. This has been demonstrated in
two cases of current interest, the J;-J, Heisenberg model
on the square lattice and the Heisenberg model on the
anisotropic triangular lattice, for which it predicts that plateaus
at magnetization 1/2 and 1/3, respectively, are stabilized over
a wide range of parameters.
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