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Abstract. We define quittable consensus, a natural variation of the consensus problem, where
processes have the option to agree on “quit” if failures occur, and we relate this problem to the
well-known problem of nonblocking atomic commit. We then determine the weakest failure detectors
for these two problems in all environments, regardless of the number of faulty processes.
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1. Introduction. Nonblocking atomic commit (NBAC) is a well-known problem
that arises in distributed transaction processing [24]. Informally, the set of processes
that participate in a transaction must agree on whether to commit or abort that
transaction. Initially each process votes Yes (“I am willing to commit”) or No (“we
must abort”), and eventually processes must reach a common decision, Commit or
Abort. The decision to Commit can be reached only if all processes voted Yes. Fur-
thermore, if all processes voted Yes and no failure occurs, then the decision must be
Commit. NBAC is similar to the classical problem of consensus, where each process
initially proposes a value, and eventually processes must reach a common decision on
one of the proposed values.

It is well known that NBAC and consensus are unsolvable in asynchronous systems
with process crashes (even if communication is reliable) [20]. One way to circumvent
such impossibility results is through the use of unreliable failure detectors [10]. Intu-
itively, a failure detector provides each process with some (possibly incomplete and
inaccurate) information about failures, e.g., a list of processes currently suspected to
have crashed.

Failure detectors can be compared by “reduction”: Intuitively, failure detector D
is weaker than failure detector D′ if there is an algorithm that transforms D′ into D.
Note that if D is weaker than D′, any problem that can be solved with D can also be
solved with D′. For any problem P , a natural question is to determine the weakest
failure detector to solve P , i.e., to determine the failure detector D∗ such that (a) there
is an algorithm that uses D∗ to solve P , and (b) D∗ is weaker than any failure detector
D that can be used to solve P . Finding the weakest failure detector to solve a prob-
lem P amounts to determining the minimum amount of information about failures
that is necessary to solve P . It also provides important intuition about systems in
which P is solvable: P is solvable in any system where the weakest failure detector
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1344 GUERRAOUI, HADZILACOS, KUZNETSOV, AND TOUEG

for P can be implemented. Such a system may be defined in terms of partial syn-
chrony assumptions, or in terms of other assumptions, e.g., the number and timing of
failures.

Chandra, Hadzilacos, and Toueg [9] determined the weakest failure detector to
solve consensus in systems with a majority of correct processes, while Delporte-Gallet,
Fauconnier, and Guerraoui [15] generalized this result to all systems, regardless of the
number of correct processes.

As with consensus, failure detectors can be used to solve NBAC [25, 22]. It
was an open problem, however, whether there is a weakest failure detector to solve
NBAC and, if so, what that failure detector is. In this paper we resolve this problem.
To do so,

(a) we define a natural variation of consensus, called quittable consensus (QC);
(b) we establish a close relationship between QC and NBAC;
(c) we determine the weakest failure detector to solve QC; and
(d) we use (b) and (c) to derive the weakest failure detector to solve NBAC.
Informally, QC is like consensus except that, if a failure occurs, processes have

the option (but not the obligation) to agree on a special value Q (for “quit”). This
weakening of consensus is appropriate for applications where, if a failure occurs, pro-
cesses are allowed to agree on that fact (rather than on an input value) and resort to
a default action.

Despite their apparent similarity, QC and NBAC are different in important ways.
In NBAC the two possible input values, Yes and No, are not symmetric: A single vote
of No is enough to force the decision to abort. In contrast, in QC (as in consensus)
no input value has a privileged role. Another way in which the two problems differ
is that the semantics of the decision to abort (in NBAC) and the decision to quit
(in QC) are different. In NBAC the decision to abort is sometimes inevitable (e.g.,
if a process crashes before voting); in contrast, in QC the decision to quit is never
inevitable, it is only an option. Moreover, in NBAC the decision to abort signifies
that either a failure occurred or someone voted No; in contrast, in QC the decision
to quit is allowed only if a failure occurred.

We now describe in more detail our results, which involve the following three
failure detectors:

• The leader failure detector Ω outputs the identity (id) of a process at each
process. If there is a correct process, then there is a time after which Ω
outputs the id of the same correct process at all correct processes [9].

• The quorum failure detector Σ outputs a set of processes at each process. Any
two sets (output at any times and by any processes) intersect, and eventually
every set output at any correct process consists of only correct processes [15].

• The failure signal failure detector FS outputs green or red at each process.
As long as there are no failures, FS must output green at every process;
once a failure occurs, and only if it does, FS must eventually output red
permanently at every correct process [12, 25].

We show that there is a weakest failure detector to solve QC. This failure detector,
which we denote Ψ, is closely related to the weakest failure detector to solve consensus,
namely (Ω,Σ) [15],1 and to FS. Intuitively, Ψ behaves as follows: For an initial period
of time the output of Ψ at each process is⊥. Eventually, however, Ψ behaves either like
the failure detector (Ω,Σ) at all correct processes or like the failure detector FS at all

1If D and D′ are failure detectors, (D,D′) is the failure detector that outputs a vector with two
components, the first being the output of D and the second being the output of D′.
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correct processes. The switch from ⊥ to (Ω,Σ) or FS need not occur simultaneously
at all processes, but the same choice is made by all processes. Furthermore, Ψ can
switch from ⊥ to FS only if a failure occurred. This result has an intuitively appealing
interpretation: To solve QC, a failure detector must eventually either truthfully inform
all the correct processes that a failure occurred, in which case they can decide Q, or
be powerful enough to allow processes to solve consensus on their proposed values.
This matches the behavior of Ψ.

We also prove that NBAC is in some sense equivalent to QC modulo the fail-
ure detector FS. Intuitively, (a) given FS, any QC algorithm can be converted to
an algorithm for NBAC, and (b) any algorithm for NBAC can be converted to an
algorithm for QC, and can also be used to implement FS.

Using this equivalence we prove that (Ψ,FS) is the weakest failure detector to
solve NBAC. This result applies to any system, regardless of the number of faulty
processes.

Related work. The model of asynchronous systems augmented with failure detec-
tors was introduced in [10] as one way to circumvent the impossibility result of [20].
Chandra, Hadzilacos, and Toueg [9] proved that Ω is the weakest failure detector
to solve consensus in systems with a majority of correct processes. Delporte-Gallet,
Fauconnier, and Guerraoui [15] generalized this result to prove that (Ω,Σ) is the
weakest failure detector to solve consensus in any system, regardless of the num-
ber of correct processes. Failure detectors have been used to capture the minimum
information about failures that is necessary to solve other basic problems in dis-
tributed computing, such as set agreement [18, 38, 23], mutual exclusion [17], boosting
obstruction-freedom to wait-freedom [26], implementing an atomic register in message-
passing systems [15], and implementing uniform reliable broadcast [5, 30] in systems
with lossy communication links. It is worth noting that the result that Ω is the
weakest failure detector for solving consensus led to the discovery of several consen-
sus algorithms for other important models, in particular, for several weak models of
partial synchrony (e.g., see [2, 1, 34, 31, 6]). This was done by implementing Ω in
such systems, and then combining this implementation with any algorithm that solves
consensus using Ω, thus exploiting the modularity of the failure detector approach.

The NBAC problem has been studied extensively in the context of transaction
processing [24, 37]. Its relation to consensus was first explored in [28]. Charron-Bost
and Toueg [12] and Guerraoui [25] showed that despite some apparent similarities,
in asynchronous systems NBAC and consensus are in general incomparable—i.e.,
a solution for one problem cannot be used to solve the other.2 The problem of
determining the weakest failure detector to solve NBAC was explored and settled in
special settings. Fromentin, Raynal, and Tronel [22] determine that to solve NBAC
between every pair of processes in the system, one needs a perfect failure detector [10].
Guerraoui and Kouznetsov [27] determine the weakest failure detector for NBAC for
a restricted class of failure detectors. From results of [12] and [25] it follows that
in the special case where at most one process may crash, FS is the weakest failure
detector to solve NBAC. The general question, however, remained open until our
results appeared, in preliminary form, in [16].3

Quittable consensus is closely related to the detectable broadcast problem intro-
duced and studied by Fitzi et al. [21] in a different setting, namely, synchronous

2An exception is the case where at most one process may fail. In this case, any algorithm that
solves NBAC can be converted into one that solves consensus, but the reverse does not hold.

3That paper contained additional results by Delporte, Fauconnier, and Guerraoui, which have
since appeared in full form in [15].
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systems with arbitrary process failures. Roughly speaking, in the detectable broad-
cast problem, correct processes either agree on the broadcast value or, if failures
occur, may agree to “reject” the broadcast; furthermore, if any correct process rejects
the broadcast, then the “adversary gets no information about the sender’s input”—a
privacy requirement that is relevant in the case of arbitrary failures.

Quittable consensus is also related to the abortable consensus problem that Chen
[13] defined in the context of message-passing systems with probabilistic message de-
lays and losses. Roughly speaking, in abortable consensus some processes are allowed
to abort when the behavior of the system degenerates (e.g., there are many process
failures or message delays or losses). In contrast to quittable consensus, however,
abortable consensus does not require agreement: some processes may decide the same
value while others abort.

Other weakenings of the consensus problem were studied in the context of
obstruction-free object implementations in shared-memory systems. For example,
Attiya et al. [7] defined objects that may reply with a special value “pause” or “fail”
to some processes if there is step contention. Similarly, Aguilera et al. [3] defined
abortable objects that may return “abort” in the event of interval contention. In both
works, when the object is consensus, agreement in not required: Some processes may
“pause” or “abort” while others agree on the same value. Furthermore, pausing,
failing, or aborting is allowed when there is contention, not failures. In contrast, in
quittable consensus the decision to quit must be agreed on by all processes and is
allowed only in the case of failures.

Roadmap. The rest of the paper is organized as follows: In section 2 we review the
model of computation. Sections 3 and 4 contain the precise specifications of the failure
detectors used in this paper, and of QC and NBAC, the two problems we consider.
In section 5 we show that QC and NBAC are closely related. In that section we also
identify the weakest failure detector Ψ to solve QC and prove that (Ψ,FS) is the
weakest failure detector to solve NBAC. In section 6 we show that Ψ is sufficient to
solve QC. Sections 7 and 8 contain the proof that Ψ is necessary to solve QC. We
conclude with some final remarks in section 9.

2. The model. Our model of asynchronous computation is the one described
in [9], which augments the model of Fischer, Lynch, and Paterson [20] with failure
detectors. Henceforth, we assume a discrete global clock to which the processes do
not have access. The range of this clock’s ticks is N.

2.1. Systems. We consider distributed message-passing systems with a set of
n ≥ 2 processes Π = {1, 2, . . . , n}. Processes execute steps of computation asyn-
chronously; i.e., there is no bound on the delay between steps. (Section 2.4 describes
what a process does in each step.) Each pair of processes is connected by a reliable
link. The links transmit messages with finite but unbounded delay. They are mod-
eled as a set M , called the message buffer, that contains triples of the form (p, data, q)
indicating that p has sent the message data to q, and q has not yet received it. We
assume that each message sent by a process p to a process q is unique; this can be
guaranteed by having the sender include a counter with each message.

2.2. Failures, failure patterns, and environments. We consider crash fail-
ures only: Processes fail only by halting prematurely. A failure pattern is a function
F : N → 2Π, where F (t) is the set of processes that have crashed through time t. Since
processes never recover from crashes, F (t) ⊆ F (t+ 1). Let faulty(F ) =

⋃
t∈N

F (t) be
the set of faulty processes in a failure pattern F , and let correct(F ) = Π−faulty(F ) be
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the set of correct processes in F . When the failure pattern F is clear from the context,
we say that process p is correct if p ∈ correct(F ), and p is faulty if p ∈ faulty(F ).

An environment, denoted E , is a set of failure patterns. Intuitively, an environ-
ment E describes the number and timing of failures that can occur in the system.
Thus, a result that applies to all environments is one that holds regardless of the
number and timing of failures. We denote by E∗ the set of all failure patterns. Intu-
itively, in a system with environment E∗ each process may crash, and it may do so at
any time.

2.3. Failure detectors. A failure detector history H with range R describes
the behavior of a failure detector during an execution. Formally, it is a function
H : Π× N → R, where H(p, t) is the value output by the failure detector module of
process p at time t.

A failure detector D with range R is a function that maps every failure pattern
F to a nonempty set of failure detector histories with range R. D(F ) is the set of
all possible failure detector histories that may be output by D in a failure pattern F .
Typically we specify a failure detector by stating the properties that its histories
satisfy.

Given two failure detectors D and D′, we denote by (D,D′) the failure detector
whose output is an ordered pair in which the first element corresponds to an output
of D, and the second element corresponds to an output of D′. More precisely, if R
and R′ are the ranges of D and D′, respectively, then the range of (D,D′) is R×R′.
For all failure patterns F ,

(D,D′)(F ) =
{
H ′′| ∃H ∈ D(F ), ∃H ′ ∈ D′(F ), ∀p ∈ Π, ∀t ∈ N :

H ′′(p, t) =
(
H(p, t), H ′(p, t)

)}
.

2.4. Algorithms. An algorithm A is modeled as a collection of n deterministic
automata. There is an automaton A(p) for each process p. Computation proceeds in
steps of these automata. In each step, a process p atomically

• receives a single message m from the message buffer M , or the empty mes-
sage λ;

• queries its local failure detector module and receives a value d;
• changes its state; and
• sends a message to every process.

The state transition and the messages that p sends are all uniquely determined by
the automaton A(p), the state of p at the beginning of the step, the received message
m, and the failure detector value d. Formally, a step is a tuple e = (p,m, d,A), where
p is the process taking step e, m is the message received by p during e, d is the failure
detector value seen by p in e, and A is the algorithm being executed.

The message received in a step is nondeterministically selected from M ∪ {λ}.
This reflects the asynchrony of the communication channels: a process p may receive
the empty message despite the existence of unreceived messages addressed to p.

We assume that each process p has a read-only input variable, denoted IN p, and
a write-once output variable, denoted OUT p. Technically, these variables are compo-
nents of the states of the automaton A(p). In each initial state of A(p), the input
variable IN p has some value in {0, 1}∗, and the output variable OUT p is initialized
to the special value ⊥ 
∈ {0, 1}∗ (to denote that it was not yet written by p).

2.5. Configurations. A configuration of an algorithm A is a pair (s,M), where
s is a function that maps each process p to a state of A(p), and M is the message
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buffer. Recall that M is a set of triples (p, data, q), where p sent message data to q,
which has not yet received it. An initial configuration of algorithm A is a pair (s,M),
where M = ∅ and s(p) is an initial state of the automaton A(p).

A step (p,m, d,A) is applicable to a configuration C = (s,M) if and only if m ∈
M ∪ {λ}. If e is a step applicable to configuration C, e(C) denotes the configuration
that results when we apply e to C. This is uniquely determined by the automaton
A(p) of the process p that takes step e.

2.6. Schedules. A schedule S of an algorithm A is a finite or infinite sequence
of steps of A. We denote by participants(S) the set of processes that take at least
one step in schedule S. The ith step in schedule S is denoted by S[i]. A schedule S is
applicable to a configuration C if S is the empty schedule, or S[1] is applicable to C,
S[2] is applicable to S[1](C), etc. If S is finite and is applicable to C, S(C) denotes
the configuration that results when we apply schedule S to configuration C.

Let S be a schedule applicable to an initial configuration I of an algorithm A, and
let i, j be positive integers such that i, j ≤ |S|. We say that step i causally precedes
step j in S with respect to I if and only if one of the following holds [33]:

• S[i] and S[j] are steps of the same process and i < j;
• S[i] is a step in which a message m is sent and S[j] is a step in which m is
received, i.e., step S[i] applied to configuration S[1] · · ·S[i − 1](I) results in
the sending of m and S[j] = (−,m,−,A);4 or

• there is a positive integer k ≤ |S| such that step i causally precedes step k,
and step k causally precedes step j in S with respect to I.

Note that if S[i] and S[j] are steps involving the sending and receipt of the same
message m, then i < j (because if j < i, then S[j] would be receiving m before m
is sent in S[i], contradicting the fact that S is applicable to I). This implies the
following observation.

Observation 1. If step i causally precedes step j in S with respect to I, then
i < j.

2.7. Runs. A run of algorithm A using failure detector D in environment E is
a tuple R = (F,H, I, S, T ) where F is a failure pattern in E , H is a failure detector
history in D(F ), I is an initial configuration of A, S is a schedule of A, and T is a
list of times in N (informally, T [i] is the time when step S[i] is taken) such that the
following hold:

(1) S is applicable to I.
(2) S and T are both finite sequences of the same length, or are both infinite

sequences.
(3) For all positive integers i ≤ |S|, if S[i] = (p,−, d,A), then p /∈ F (T [i]) and

d = H(p, T [i]).
(4) For all positive integers i < j ≤ |S|, T [i] ≤ T [j].
(5) For all positive integers i, j ≤ |S|, if step i causally precedes step j in S with

respect to I, then T [i] < T [j].
Property (3) states that a process does not take steps after crashing, and that the
failure detector value seen in a step is the one dictated by the failure detector his-
tory H . Property (4) states that the sequence of times when processes take steps in
a schedule is nondecreasing, and property (5) states that these times respect causal
precedence.

4The symbol “−” in a field of a tuple indicates an arbitrary permissible value for that field of
the tuple. We use this convention throughout the paper.
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A run whose schedule is finite (respectively, infinite) is called a finite (respectively,
infinite) run. An admissible run of algorithm A using failure detector D in environ-
ment E is an infinite run R = (F,H, I, S, T ) of A using D in E with two additional
properties:

(6) Every correct process takes an infinite number of steps in S.
(7) Each message sent to a correct process is eventually received. More precisely,

for every finite prefix S′ of S, and every q ∈ correct(F ), if the message buffer
in configuration S′(I) contains a message m = (−,−, q), then for some i ∈ N,
S[i] = (q,m,−,A).

The input and output of a run R = (F,H, I, S, T ) of an algorithm A are defined
as follows. The input of R, denoted I(R), is the vector (I1, . . . , In) where Ip is the
value of the input variable IN p in the initial configuration I of R. The output of R,
denoted O(R), is the vector (O1, . . . ,On) where Op is the pair (v, t) such that p writes
v in its output variable OUT p at time t in run R (Op = ⊥ if p never writes OUT p in
run R).

2.8. Problems. We consider input/output problems, i.e., problems where each
process has an input value and produces an output value. We can specify such a
problem P as a set of triples of the form (F, I,O): Intuitively, (F, I,O) ∈ P if and
only if, when the failure pattern is F and the processes’ input is I, the processes’
output O is acceptable, i.e., it “satisfies” problem P . More precisely, a problem P
is a set of triples (F, I,O) where F is a failure pattern, I is a vector (I1, . . . , In) of
input values (each one in {0, 1}∗), and O is a vector (O1, . . . ,On) where each Op is
either ⊥ or a pair (v, t) such that v is an output value in {0, 1}∗ and t is a time in N.
We say that I is an input vector of P if (F, I,O) ∈ P for some F and O.

2.9. Solving a problem. Let P be a problem, A an algorithm, D a failure
detector, and E an environment. We say the following:

• A run R = (F,H, I, S, T ) of A using D in E satisfies P if and only if
(F, I(R),O(R)) ∈ P , or there is no O such that (F, I(R),O) ∈ P .5

• A solves P using D in E if and only if
(a) every admissible run R of A using D in E satisfies P , and
(b) for every input vector I = (I1, . . . , In) of P , there is an initial configu-

ration I of A with this input (i.e., in configuration I we have IN p = Ip
for every process p).

• D can be used to solve P in E (or simply P can be solved with D in E) if and
only if there is an algorithm that solves P using D in E .

2.10. Comparing failure detectors. Intuitively, a failure detectorD′ is weaker
than a failure detector D if processes can use D to emulate D′; so if they can solve
a problem with D′, they can also solve it with D. We say that processes can use D
to emulate D′ in an environment E if there is an algorithm that transforms D to D′

in E as follows. The transformation algorithm, denoted TD→D′ , uses D to maintain
a variable D′-outputp at every process p; D′-outputp functions as the output of the
emulated failure detector D′ at p. For each admissible run R of TD→D′ , let OR be the
history of all the D′-output variables in R; i.e., OR(p, t) is the value of D′-outputp at
time t in R. Algorithm TD→D′ transforms D to D′ in environment E if and only if
for every admissible run R = (F,H, I, S, T ) of TD→D′ using D in E , OR ∈ D′(F ).

5Intuitively, this means that when the failure pattern is F and the input is I(R) the problem P
does not care what the output is.
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We say that D′ is weaker than D in E if there is an algorithm TD→D′ that trans-
forms D to D′ in E . It is easy to see that if D′ is weaker than D in E , then every
problem that can be solved with D′ in E can also be solved with D in E . We say that
two failure detectors are equivalent in E if each is weaker than the other in E .

2.11. Weakest failure detector. A failure detector D∗ is the weakest failure
detector to solve problem P in environment E if and only if the following hold:

Sufficiency. D∗ can be used to solve P in E .
Necessity. For any failure detector D, if D can be used to solve P in E , then D∗

is weaker than D in E .
Note that there may be several distinct failure detectors that are the weakest to

solve a problem P . It is easy to see, however, that they are all equivalent: If D and
D′ are two failures detectors that are weakest to solve the same problem P , D′ can
be used to solve P (by sufficiency of D′), and so D is weaker than D′ (by necessity
of D). Symmetrically, D′ is weaker than D, and so D and D′ are equivalent. For this
reason, we speak of the weakest, rather than a weakest, failure detector to solve P .

3. The failure detectors used in this paper. We now define the failure
detectors Ω, Σ, FS, and Ψ that we informally described in section 1:

• At each process, the leader failure detector Ω outputs the id of a process;
furthermore, if a correct process exists, then there is a time after which Ω
outputs the id of the same correct process at every correct process. Formally,
the range of Ω is Π, and for every failure pattern F ,

Ω(F ) =
{
H | correct(F ) 
= ∅ ⇒(
∃q ∈ correct(F ) ∀p ∈ correct(F ), ∃t ∈ N, ∀t′ ≥ t : H(p, t′) = q

)}
.

• The quorum failure detector Σ outputs a set of processes at each process. Any
two sets output at any times and by any processes intersect, and eventually
every set output at any correct process consists of only correct processes.
Formally, the range of Σ is 2Π, and for every failure pattern F ,

Σ(F ) =
{
H |

(
∀p, p′ ∈ Π, ∀t, t′ ∈ N : H(p, t) ∩H(p′, t′) 
= ∅

)
∧(

∀p ∈ correct(F ), ∃t ∈ N, ∀t′ ≥ t : H(p, t′) ⊆ correct(F )
)}

.

• The failure signal failure detector FS outputs green or red at each process.
As long as there are no failures, FS outputs green at every process; once a
failure occurs, and only if it does, FS eventually outputs red permanently
at every correct process. Formally, the range of FS is {green, red}, and for
every failure pattern F ,

FS(F )

=
{
H | ∀p ∈ Π, ∀t ∈ N :

(
H(p, t) = red ⇒ F (t) 
= ∅

)
∧(

faulty(F ) 
= ∅ ⇒ ∀p ∈ correct(F ), ∃t ∈ N, ∀t′ ≥ t : H(p, t′) = red
)}

.

• The failure detector Ψ initially outputs ⊥ and may eventually switch to be-
having permanently like (Ω,Σ) or like FS. This switch has the following
properties: (a) It must occur at all correct processes; (b) it must be consis-
tent (it is not possible for Ψ to behave like (Ω,Σ) at a process p at time t
and like FS at process p′ at time t′); and (c) Ψ may start behaving like
FS at a process only if a failure occurred. Formally, the range of Ψ is
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{⊥}∪{green, red}∪{(p, P ) | p ∈ Π∧P ∈ 2Π}, and for every failure pattern
F ,

Ψ(F ) =
{
H

∣∣∣ ∃H ′ ∈ (Ω,Σ)(F ) ∪ FS(F ) ∀p ∈ Π :
(
p ∈ faulty(F ) ∧ ∀t ∈ N : H(p, t) = ⊥) ∨
∃t ∈ N :

(
∀t′ < t : H(p, t′) = ⊥ ∧ ∀t′ ≥ t :

H(p, t′) = H ′(p, t′) ∧ H ′ ∈ FS(F ) ⇒ F (t) 
= ∅
)}

.

4. Specification of consensus, QC, and NBAC. In this section we define
the three problems considered in this paper, namely, consensus, QC, and NBAC.
Each of these problems is an input/output problem that can be formally specified as
explained in section 2.8; our definitions are more informal here.

4.1. Consensus and quittable consensus. In the consensus problem, each
process p has some input value v ∈ V = {0, 1}∗ (we say that p proposes v) and must
write some output value v ∈ V (we say that p decides v) such that the following
properties hold.

Termination: Every correct process eventually decides some value.
Uniform agreement: No two processes (whether correct or faulty) decide dif-

ferent values.
Validity: If a process decides v, then some process proposes v.
Quittable consensus is similar to consensus, except that processes are allowed

to decide a special value Q 
∈ V (which means “quit”) if a failure occurred. More
precisely, QC has the same requirements as consensus, except that the above validity
property is replaced by the following one.

Validity: Each process may only decide some value in V ∪ {Q}, where Q 
∈ V .
Moreover:

(i) If a process decides v 
= Q, then some process proposes v.
(ii) If a process decides Q, then a failure occurred.6

A straightforward proof by indistinguishable scenarios leads to the following.
Observation 2. Let A be an algorithm that solves consensus, or QC, using a

failure detector D in an environment E. In every run R of A using D in E, if a process
decides some value v ∈ V at some time t, then there is a process that proposes v and
takes at least one step in R by time t.

4.2. Nonblocking atomic commit. In the NBAC problem, each process p
has some input value v ∈ {Yes,No} (we say that p votes v) and must write some
output value v ∈ {Commit,Abort} (we say that p decides v) such that the following
properties hold.

Termination: Every correct process eventually decides some value.
Uniform agreement: No two processes (whether correct or faulty) decide dif-

ferent values.
Validity: Each process may only decide Commit or Abort. Moreover:
(i) If a process decides Commit, then all processes vote Yes.
(ii) If a process decides Abort, then either some process votes No or a failure

occurred.

6Throughout this paper, when we say “if event x occurs, then event y occurred” we mean, more
precisely, “if event x occurs at time t, then event y occurred by time t′ ≤ t.”
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Code that process p executes to vote v, where v is Yes or No, for NBAC:

1 send v to all /* send vote v to all processes */
2 wait until [(∀q ∈ Π, received q’s vote) or FSp = red]
3 if the votes of all processes are received and are Yes then
4 myproposal := 1
5 else /* some vote was No or there was a failure */
6 myproposal := 0
7 mydecision :=propose(myproposal) /*execute Aqc using D to solve an instance of QC */
8 if mydecision = 1 then
9 decide Commit
10 else /* mydecision = 0 or Q */
11 decide Abort

Fig. 1. Algorithm Anbac uses (D,FS) to solve NBAC.

As with Observation 2, an obvious proof by indistinguishable scenarios leads to the
following observation.

Observation 3. Let A be an algorithm that solves NBAC using a failure detector
D in an environment E. In every run R of A using D in E, if a process decides Commit
at some time t, then all processes vote Yes and take at least one step in R by time t.

4.3. Using a consensus, QC, or NBAC algorithm inside another algo-
rithm. An algorithm A can use an algorithm Ac that solves consensus by emulating
Ac as follows. In the pseudocode of A, a process p can execute a statement of the
form “d := propose(v)” to start an emulated execution of Ac with input (i.e., pro-
posal) value v. This statement first sets up the initial state of Ac(p) to correspond
to the input value v, and then starts to execute the steps of Ac(p) with this initial
state. If and when p decides in this emulated execution of Ac(p), the decision value
is assigned to the variable d, and p resumes executing the steps of A. Concurrently,
p continues to execute the steps of Ac(p) until Ac(p) halts. Similar comments apply
for an algorithm A that uses a QC or NBAC algorithm.

5. Relating NBAC and QC and their weakest failure detectors. NBAC
is in some sense equivalent to the combination of QC and failure detector FS. More
precisely, we have the following.

Theorem 4. In every environment E:
(1) If a failure detector D can be used to solve QC in E, then (D,FS) can be used

to solve NBAC in E.
(2) If a failure detector D′ can be used to solve NBAC in E, then

• D′ can be used to solve QC in E, and
• D′ can be transformed to FS in E.

Proof. Let E be an arbitrary environment.
(1) Suppose that failure detector D can be used to solve QC in E , i.e., there is

an algorithm Aqc that uses D to solve QC in E . Figure 1 shows an algorithm
Anbac that uses (D,FS) to solve NBAC in E . Anbac works as follows. Each
process p sends its vote to every process, and waits until it receives a vote
from every process or the FS component of (D,FS) indicates that a failure
occurred. If p receives a vote from every process and all the votes are Yes, it
sets myproposal to 1; otherwise some vote was No or a failure occurred, and
p sets myproposal to 0. Then, in line 7, p participates in an execution of the
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QC algorithm Aqc (which uses the D component of (D,FS)) where p’s initial
value is set to myproposal (as explained in section 4.3). If p decides 1 in this
execution of Aqc, then p decides Commit for NBAC; if p decides 0 or Q in
this execution of Aqc, then p decides Abort for NBAC.
We now prove that, in every admissible run, algorithm Anbac satisfies all the
properties of NBAC.
Termination. This property holds trivially if all processes are faulty, so as-
sume that some process is correct. Let p be any correct process. Since every
correct process executes the algorithm in Figure 1, if p never receives the vote
of some process q, then q must have crashed. In that case, by the specification
of the failure detector FS, eventually FSp = red forever. Thus, p eventually
completes the wait statement on line 2. Therefore, eventually every correct
process starts the execution of Aqc in line 7 (as explained in section 4.3). By
the termination property of QC, every correct process completes its execution
of line 7, and eventually decides.
Uniform agreement. This follows from the uniform agreement property of QC.
Validity. Let p be any process.
(a) Suppose p decides Commit (line 9). Then p decided 1 in its execution

of Aqc on line 7. By part (i) of validity of QC, some process q proposes
1 on line 7 (i.e., q starts its emulation of Aqc with initial value 1 on that
line). Before doing so, q must have received Yes votes from all processes
(see lines 3–4). So, if a process decides Commit, all processes vote Yes.

(b) Suppose p decides Abort (line 11). Then p decided 0 or Q in its execution
of Aqc on line 7. If p decided Q, then by part (ii) of validity of QC,
a failure occurred. If p decided 0, then, by Observation 2, there is a
process q that proposed 0 and took a step in the emulation of Aqc on
line 7. Before doing so, q must have received a vote No from some process
or found that FSq = red (see lines 3, 5, 6). The latter can happen only
if a failure occurred. We conclude that if a process decides Abort, some
process votes No or a failure occurred.

(2) Suppose that failure detector D′ can be used to solve NBAC in E ; i.e., there
is an algorithm Bnbac that uses D′ to solve NBAC in E .
(a) D′ can be used to solve QC in E. An algorithm Bqc that uses D′ to solve

QC in E is shown in Figure 2. Informally, it works as follows. Each
process p first sends its QC proposal, some value v ∈ V , to all processes.
Then, in line 2, p participates in an execution of the NBAC algorithm
Bnbac (which uses D′) with initial value Yes, i.e., an execution of NBAC
where p votes Yes. If this execution returns Abort, p decides Q; if it
returns Commit, p waits to receive a proposal from every process and
decides the smallest of these proposals.
We now prove that, in every admissible run, algorithm Bqc satisfies all
the properties of QC.
Termination. This property holds trivially if all processes are faulty, so
assume that some process is correct. Every correct process executes the
statement d := vote(Yes) on line 2 to participate in an execution of
NBAC (as explained in section 4.3). By the termination property of
NBAC, all correct processes eventually decide, i.e., they complete the
execution of this statement. If line 2 sets d to Abort, then p decides Q
on line 4. Otherwise, it must set d to Commit. By Observation 3, every
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Code that process p executes to propose v for QC:

1 send v to all /* send QC proposal v to all processes */
2 d := vote(Yes) /* execute Bnbac using D′ to solve an instance of NBAC */
3 if d = Abort then
4 decide Q
5 else
6 wait until [∀q ∈ Π, received q’s proposal]
7 decide smallest proposal received

Fig. 2. Algorithm Bqc uses D′ to solve QC.

Code for each process p:

1 FS-outputp ← green
2 repeat
3 d := vote(Yes) /* execute Bnbac using D′ to solve an instance of NBAC */
4 until d = Abort
5 FS-outputp ← red

Fig. 3. Transforming any D′ that can be used to solve NBAC into FS.

process q voted Yes and took a step in the emulation of Bnbac on line 2.
Before doing so, q sent its QC proposal to all processes (on line 1). So,
p eventually receives a proposal from every process, completes the wait
statement on line 6, and decides some value for QC on line 7.
Uniform agreement. By the uniform agreement property of NBAC, all
the processes that set their variable d in line 2 set it to the same value.
Thus, all the processes that decide some value (for QC) do so on line 4
or they all decide on line 7. In the first case they all decide Q, and in
the second case they all decide the smallest proposal of all processes in
Π. So no two processes decide differently.
Validity. Let p be any process. If p decides v 
= Q (on line 7), then v is
the smallest proposal that p received, and thus some process proposes v.
Now suppose p decides Q (on line 4). Thus, p’s execution of the state-
ment d := vote(Yes) on line 2 sets d to Abort. By part (ii) of validity
of NBAC, either some process votes No or a failure occurred. But no
process votes No. Thus, a failure occurred.

(b) D′ can be transformed to FS in E (this result can be found in [12, 25]).
The transformation algorithm is shown in Figure 3. At each process
p, the variable FS-outputp (which emulates the output of FS at p) is
initially green. Processes emulate consecutive and independent execu-
tions of Bnbac using D′ to solve consecutive instances of NBAC while
voting Yes in every instance. If and when a process p decides Abort in
an instance of NBAC, then p sets FS-outputp to red, and never changes
FS-outputp thereafter.
From the agreement and termination properties of NBAC, it is easy to
show by induction that the following holds (the proof is omitted here).
Claim 4.1. Either all correct processes execute the repeat-until loop
of lines 2–4 infinitely many times, or they all exit this loop and execute
line 5.
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Suppose no failures occur. Since (a) all the processes are correct, and (b)
they all vote Yes in every instance of NBAC executed in line 2, then by
part (ii) of the validity property of NBAC no process ever decides Abort
on line 2, and so FS-output remains green at all processes forever.
Suppose a failure occurs. Then there is a process p that crashes and
a k such that p does not participate (i.e., does not take any step) in
the kth instance of NBAC. We claim that every correct process even-
tually sets FS-output to red on line 5. Suppose, for contradiction,
that some correct process never sets FS-output to red on line 5. By
Claim 4.1, it must be that all correct processes execute the repeat-until
loop of lines 2–4 infinitely many times, and so they participate in the
kth instance of NBAC. Since p takes no steps in this instance, then, by
Observation 3, correct processes cannot decide Commit in that instance.
So, by Claim 4.1, they all decide Abort in the kth instance of NBAC,
and then they exit the repeat-until loop—a contradiction. Thus, every
correct process eventually sets FS-output to red on line 5.
Finally, suppose some process p sets FS-output to red on line 5 at some
time t. Then p must have decided Abort in an instance of NBAC on
line 2 by time t. By part (ii) of validity of NBAC, some process votes
No in that instance of NBAC, or a failure occurred by time t. Since no
process ever votes No, a failure occurred by time t.

The close relationship between NBAC and QC established in Theorem 4 allows
us to relate the weakest failure detectors to solve these problems.

Theorem 5. For every environment E, if D is the weakest failure detector to
solve QC in E, then (D,FS) is the weakest failure detector to solve NBAC in E.

Proof. Let E be an arbitrary environment, and let D be the weakest failure
detector to solve QC in E . This means that (i) D can be used to solve QC in E , and
(ii) if a failure detector D′ can be used to solve QC in E , then D′ can be transformed
to D in E .

To prove that (D,FS) is the weakest failure detector to solve NBAC in E , we
now show two facts:

(1) (D,FS) can be used to solve NBAC in E. This follows directly from (i) and
Theorem 4(1).

(2) If a failure detector D′ can be used to solve NBAC in E, then D′ can be
transformed to (D,FS).
To see this, let D′ be a failure detector that can be used to solve NBAC in E .
By Theorem 4(2),

• D′ can be used to solve QC in E . So by (ii) above, D′ can be transformed
to D in E .

• D′ can be transformed to FS in E .
Thus, D′ can be transformed to (D,FS) in E .

The weakest failure detectors to solve QC and NBAC. In section 6 we
show that Ψ can be used to solve QC in every environment (Theorem 8). In section 8
we show that, in every environment E , any failure detector that can be used to solve
QC in E can be transformed to Ψ in E (Theorem 30). From these two facts, we have
the following corollary.

Corollary 6. For every environment E, Ψ is the weakest failure detector to
solve QC in E.

Theorem 5 relates the weakest failure detector to solve QC to the weakest failure
detector to solve NBAC. So by Corollary 6 and Theorem 5, we have the next corollary.
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Code that process p executes to propose v for QC:

1 wait until [Ψp �= ⊥]
2 if Ψp ∈ {green, red} then /* Ψ behaves like FS and, thus, a failure occurred */
3 decide Q
4 else /* henceforth Ψ behaves like (Ω,Σ) */
5 d := propose(v) /* execute Ac using Ψ to solve an instance of consensus */
6 decide d

Fig. 4. Using Ψ to solve QC.

Corollary 7. For every environment E, (Ψ,FS) is the weakest failure detector
to solve NBAC in E.

6. Ψ is sufficient to solve quittable consensus. Recall that, intuitively,
Ψ behaves as follows (see section 3 for a precise definition). For an initial period of
time the output of Ψ at each process is ⊥. Eventually, however, Ψ behaves either like
the failure detector (Ω,Σ) at all correct processes or like the failure detector FS at all
correct processes. The switch from ⊥ to (Ω,Σ) or FS is consistent at all processes,
and a switch from ⊥ to FS can happen only if a failure occurred.

In Figure 4 we show an algorithm that uses Ψ to solve QC in any environment.
This algorithm uses an algorithm Ac that solves consensus using (Ω,Σ) in any envi-
ronment. Delporte-Gallet, Fauconnier, and Guerraoui [15] have shown that such an
algorithm exists.

Informally, the algorithm in Figure 4 works as follows. To propose some value
v ∈ V for QC, a process p waits until Ψp (p’s module of failure detector Ψ) outputs
a value different from ⊥. At that time, either Ψp starts behaving like FS or it starts
behaving like (Ω,Σ). If Ψp behaves like FS (which happens only if a failure occurred),
then p decides Q. If, on the other hand, Ψp behaves like (Ω,Σ), then p participates
in an execution of the consensus algorithm Ac where it proposes v (it does so by
executing the d := propose(v) statement on line 5, as explained in section 4.3).
Process p adopts the decision value of this execution of Ac, as its decision for QC.

Theorem 8. For every environment E, the algorithm in Figure 4 uses Ψ to solve
QC in E.

Proof. Consider any admissible run of the algorithm in Figure 4. We will prove
that this run satisfies the properties of QC.

Termination. This property holds trivially if all processes are faulty, so assume
that some process is correct. Let p be any correct process. By the specification of Ψ,
there is a time after which Ψp has values in the range of either FS or (Ω,Σ); thus,
p completes the wait statement on line 1. If eventually Ψp has values in the range
of FS, then p decides Q (see lines 2–3). Otherwise, Ψ never outputs values in the
range of FS at any process, and there is a time after which Ψ outputs only values
in the range of (Ω,Σ) at all correct processes. Thus, eventually every correct process
executes the statement d := propose(v) for some v on line 5; i.e., every correct
process participates in an execution of Ac. By the termination property of consensus,
this execution terminates, and so p decides d on line 6.

Uniform agreement. By the specification of Ψ, it is not possible that Ψ outputs a
value in the range of FS at one process and a value in the range of (Ω,Σ) at another.
From this observation and the fact thatAc satisfies uniform agreement (for consensus),
it follows that the algorithm in Figure 4 satisfies uniform agreement (for QC).
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Validity. Let p be any process.
(i) Suppose p decides some value v 
= Q for QC (on line 6). Thus, p also decides v

in its execution of the consensus algorithm Ac on line 5. From Observation 2, at least
one process q starts to execute the statement d := propose(v) on line 5. Therefore,
process q executes the algorithm in Figure 4 with QC proposal v. So, if a process
decides v 
= Q (for QC), some process proposes v (for QC).

(ii) Suppose that p decides Q for QC at some time t (on line 3). Thus,
Ψp ∈ {green, red} by time t. By the specification of Ψ, a failure occurred by
time t.

7. Some auxiliary results. In this section we present some technical lemmas
used in our proof that in every environment Ψ is necessary to solve QC, presented in
section 8. The lemmas in section 7.2 appeared in [9], sometimes in different form.

7.1. Mergeable runs. Several proofs in distributed computing employ a tech-
nique known as the “partition argument.” At the heart of this technique is the ability
to combine two different runs R0 and R1 of an algorithm A that involve disjoint sets
of processes P0 and P1, respectively, into a single run of A in which the processes in
P0 behave as in R0 and the processes in P1 behave as in R1. We now formalize this
and prove that in our model it is possible to combine such “mergeable” runs in this
manner.

Let R0 = (F,H, I, Ŝ · S0, T̂0 · T0) and R1 = (F,H, I, Ŝ · S1, T̂1 · T1) be two finite
runs of an algorithm A using failure detector D in some environment E , such that
|T̂0| = |T̂1| = |Ŝ| and participants(S0)∩participants(S1) = ∅. Note that the schedules
of these two runs start with the same prefix Ŝ, while their continuations S0 and
S1 involve disjoint sets of processes. A merging of two such runs is a tuple R =
(F,H, I, Ŝ ·S, T̂ ·T ), where (a) T̂ is whichever of T̂0 or T̂1 has the smaller last element
(either one, if both have the same last element); (b) T is the sequence consisting of
the times in T0 and T1 in nondecreasing order; and (c) S is the sequence consisting
of the steps in S0 and S1 merged in the same order as the elements of T0 and T1 were
merged into T . For example, suppose that S0 = a1, a2, a3, T0 = 3, 5, 7; and S1 =
b1, b2, b3, b4, T1 = 2, 4, 5, 6. Then T = 2, 3, 4, 5, 5, 6, 7, and the two possibilities for S
are b1, a1, b2, b3, a2, b4, a3 or b1, a1, b2, a2, b3, b4, a3. More formally, the requirements
for R = (F,H, I, Ŝ · S, T̂ · T ) to be a merging of R0 and R1 are as follows:

• |S| = |S0|+ |S1| and |T | = |T0|+ |T1|;
• T̂ = T̂b for some b ∈ {0, 1} such that the last element of Tb is less than or
equal to the last element of Tb̄;

• T is nondecreasing;
• for each b ∈ {0, 1} and each i ∈ {1, 2, . . . , |Sb|} there is a j ∈ {1, 2, . . . , |S|}
such that Sb[i] = S[j] and Tb[i] = T [j]; and

• for each j ∈ {1, 2, . . . , |S|} there is a b ∈ {0, 1} and an i ∈ {1, 2, . . . , |Sb|} such
that S[j] = Sb[i] and T [j] = Tb[j].

Lemma 9. Let R0 = (F,H, I, Ŝ · S0, T̂0 · T0) and R1 = (F,H, I, Ŝ · S1, T̂1 · T1)
be two finite runs of an algorithm A using failure detector D in some environment
E such that |T̂0| = |T̂1| = |Ŝ| and participants(S0) ∩ participants(S1) = ∅. Let R =
(F,H, I, Ŝ · S, T̂ · T ) be a merging of R0 and R1. Then:

(a) R is also a run of A using D in E.
(b) For each b ∈ {0, 1} and each process p ∈ participants(Ŝ ·Sb), the state of p is

the same in Ŝ · S(I) as in Ŝ · Sb(I).
The proof of Lemma 9 is straightforward though somewhat tedious; it is given in

the appendix.
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7.2. Directed acyclic graphs and simulations. To complete the proof that,
for any environment E , Ψ is the weakest failure detector to solve QC in E , it remains
to show that any failure detector that can be used to solve QC in E can be transformed
to Ψ in E . In this section we review a technique for proving statements of this type.
The technique was introduced by Chandra, Hadzilacos, and Toueg [9], who used it to
prove that any failure detector that can be used to solve consensus can be transformed
to Ω. We will use it in this paper to prove that any failure detector that can be used
to solve QC can be transformed to Ψ (see section 8).

Suppose we want to prove that D∗ is the weakest failure detector to solve some
problem P in some environment E . Let D be any failure detector that can be used to
solve P in E , i.e., there is an algorithmA that uses D to solve P in E . We need to show
that D can be transformed to D∗. The proof technique of [9] shows how to use D and
A to emulate D∗ in E . This emulation consists of two interacting components: the
communication component and the computation component. In the communication
component, each process continuously “samples” its local module of D and exchanges
messages with other processes to construct an ever-growing directed acyclic graph
(DAG) of failure detector samples of D. In the computation component, p uses this
DAG to simulate schedules of the algorithm A (which uses D to solve P ). Based on
these simulated schedules, p simulates the output of the failure detector D∗ that we
want to emulate.

We now explain in more detail how each process builds its DAG of failure detector
samples and how it uses this DAG to simulate schedules of A.

7.2.1. Building directed acyclic graphs of failure detector samples. The
DAG-building algorithm, denoted ADAG, is shown in Figure 5. In our algorithm
descriptions, which we give in pseudocode, we use the following conventions. Variables
of process p are subscripted with p. If D is a failure detector, then Dp denotes
the function call by which p can access its local module of D; this call returns the
current value of p’s local module of D. The pseudocode of each process begins with
an initialize clause, which defines the process’s state in the initial configuration.
(Variables whose values are not explicitly set in this clause can be assigned arbitrary
values in the initial configuration.)

In ADAG, each process p maintains a DAG of failure detector samples of D in the
variable Gp. Each node of this DAG is of the form (q, d, k); such a triple indicates
that process q obtained value d when it queried its failure detector module Dq for
the kth time. (The third component is included to ensure that distinct samplings of
the failure detector result in distinct nodes.) We call such triples samples ; a sample
(q,−,−) is said to be of or taken by process q. We use the terms “node (of the DAG)”
and “sample” interchangeably.

Process p periodically performs the following actions:
(a) it receives a message, which is either a DAG previously sent to p by another

process, or the empty message (line 5);
(b) it queries its local failure detector module Dp, receiving a value that it stores

in variable dp (line 6);
(c) it updates its DAG Gp by first adding to it the DAG that it received in (a),

and then adding to it a new node with the failure detector value it got in (b),
as well as edges from all other nodes to the new node (lines 7–10); and

(d) it sends the updated Gp to all processes (line 11).
Note that this sequence of actions (receiving a message, querying the local failure
detector module, changing local state, and sending messages to other processes)
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Code for each process p:

1 initialize
2 kp ← 0
3 Gp ← empty graph

4 loop
5 receive a message m
6 dp ← Dp

7 if m �= λ then Gp ← Gp ∪m
8 kp ← kp + 1
9 vp ← (p, dp, kp)
10 add node vp to Gp and an edge from every other node in Gp to vp
11 send Gp to every process

Fig. 5. Algorithm ADAG builds DAGs of failure detector samples of D.

corresponds exactly to the sequence of actions taken in a single step in our model.
Thus, each iteration of the loop in Figure 5 is executed as a single step.

We now present some properties of the DAGs of samples computed by algorithm
ADAG. In the following, we consider an arbitrary admissible run R = (F,H, I, S, T ) of
ADAG using failure detector D in some arbitrary environment E . We use the following
notation throughout this section: In the context of a given run of an algorithm, the
value of variable xp at time t is denoted xt

p; if p takes a step at time t, then xt
p is the

value of xp after that step.
We start with some simple observations, in each of which p is an arbitrary process.

Since p never removes any nodes or edges from Gp, the DAG contained in this variable
is monotonically nondecreasing. That is, we have the following observation.

Observation 10. For all t, t′ ∈ N, if t ≤ t′ then Gt
p is a subgraph of Gt′

p .
We define the limit DAG of a process p to be G∞

p = ∪t∈NG
t
p.

In the same step that a process updates its DAG (line 10), it also sends the new
DAG to all processes (line 11); thus each correct process will eventually receive that
DAG and will incorporate it into its own. Thus, we have the next observation.

Observation 11. For every correct process p, every process q, and every time
t ∈ N, Gt

q is a subgraph of G∞
p .

From this, the next observation follows immediately.
Observation 12. If p and q are correct processes, then G∞

p = G∞
q .

Since kp is incremented in each iteration of p’s loop, when p takes sample (p,−, k),
it has already taken samples (p,−, k′) for all k′ < k; and, at that time, it adds edges
from all such nodes to (p,−, k). Thus, we have the following observation.

Observation 13. If v = (p,−, k) and v′ = (p,−, k′) are nodes of G∞
p and k ≥ k′,

then v is a descendant of v′ in G∞
p .

Let v = (q, d, k) be any node of G∞
p . It is obvious from the code of ADAG that

process q received d from its failure detector module in its kth step. Let τ(v) be the
time when q takes this step. More precisely, if S[i] is the kth step of q in S, then
τ(v) = T [i]. (Recall that S is the schedule and T is the sequence of times of the run R
of ADAG that we are considering.) From property (3) of runs, we have the following
observation.

Observation 14. If v = (q, d, k) is a node of G∞
p , then q /∈ F (τ(v)) and

d = H(q, τ(v)).
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From the algorithm ADAG, it is clear that if (u, v) is an edge of the limit DAG
G∞

p , then the step in which sample u was taken causally precedes the step in which
sample v was taken in schedule S with respect to I (the initial configuration of run R).
From property (5) of the runs of ADAG (see section 2.7), it follows that τ(u) < τ(v).
By induction we can generalize this observation from single edges to finite or infinite
paths of G∞

p .
Observation 15. If g = v0, v1, . . . is a finite or infinite path in G∞

p , then the
sequence of times τ(v0), τ(v1), . . . is strictly increasing.

Let G be any DAG; if v is a node of G, then G|v is the subgraph of G induced
by the descendants of v in G; otherwise, G|v is the empty graph. Informally, the
next lemma states that any finite path in process p’s limit DAG eventually appears
permanently in p’s DAG.

Lemma 16. Let p be a process and v be a node of G∞
p . For each finite path g in

G∞
p |v, there is a time t such that, for all t′ ≥ t, g ∈ Gt′

p |v.
Proof. In G∞

p |v, let g be any finite path, g′ be a finite path from v to the first
node of g, and h be the path consisting of g′ followed by g. Since G∞

p = ∪t∈NG
t
p,

it is clear that for each edge e of h there is a time t(e) such that e is in G
t(e)
p . Let

t = max{t(e) : e is an edge of h}. By Observation 10, every edge e of h (and hence

v and the entire path g) is in Gt′
p for all t′ ≥ t. Since g is in G∞

p |v, every node in g is

a descendant of v. Thus, g is in Gt′
p |v, for all t′ ≥ t.

Since faulty processes eventually crash and cease to take steps, from a certain
point on, only correct processes take samples. This is the basic intuition underlying
the next lemma.

Lemma 17. For every correct process p, there is a sample v∗ of p in G∞
p such

that G∞
p |v∗ contains only samples of correct processes. Furthermore:

(a) There is a time after which any node v in variable vp (line 9) is a descendant
of v∗ in G∞

p .
(b) For any descendant v of v∗ in G∞

p and any t ∈ N, Gt
p|v contains only samples

of correct processes.
Proof. Since p is correct, it takes infinitely many steps. Let t∗ be the first time

that p takes a step after all faulty processes have crashed, and let v∗ be the sample
that p takes in that step. Consider any node v of G∞

p |v∗. Since v is a descendant of v∗

in G∞
p , by Observation 15, τ(v) ≥ τ(v∗) = t∗. Since all faulty processes have crashed

by time t∗, the process that takes sample v (at time τ(v) ≥ t∗) must be correct. So,
G∞

p |v∗ contains only samples of correct processes.
(a) Let v∗ = (p,−, k∗). Since kp increases in each iteration of p’s loop, eventually

kp has values that are more than k∗. Therefore, eventually only nodes whose third
entry is more than k∗ are assigned to vp. By Observation 13 all these nodes are
descendants of v∗ in G∞

p .
(b) Consider any descendant v of v∗ in G∞

p and any time t ∈ N. Clearly, Gt
p|v is

a subgraph of G∞
p |v, and G∞

p |v is a subgraph of G∞
p |v∗. Since G∞

p |v∗ contains only
samples of correct processes, so does its subgraph Gt

p|v.
Since correct processes keep taking samples and exchanging their DAGs forever,

every correct process’s limit DAG has an infinite path with infinitely many samples
of each correct process. This observation is formalized by Lemma 19. To prove it, it
is convenient to prove the following lemma first.

Lemma 18. Suppose p is a correct process, and let G be a subgraph of Gt
p for

some time t. For every correct process q, there is a time t′ such that Gt′
p contains a

sample w of q and an edge from every node of G to w.
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Proof. Let s be the first step that p takes after time t. By Observation 10, G is
still in p’s DAG just before this step. There are two cases:

p = q. In step s, p adds to its DAG a new sample w = (p,−,−), and adds edges
from every other node in its DAG (in particular, from every node in G) to w. Thus,
when this step is completed, say at time t′, Gt′

p has the desired properties.
p 
= q. In step s, p sends to all processes a DAG that contains G. Now consider

the step in which q receives that DAG. In that step, q first incorporates the DAG it
receives, which contains G, into its own DAG. Then q adds to its DAG a new sample
w = (q,−,−), and adds edges from every other node in its DAG (in particular, from
every node in G) to w. Finally, q sends the resulting DAG to all processes. Consider
the step in which p receives that DAG. When it does so, p incorporates the DAG it
receives into its own DAG. Thus, when this step is completed, say at time t′, Gt′

p has
the desired properties.

Lemma 19. If p is a correct process and v is a node of G∞
p , then G∞

p has an
infinite path that starts with v and contains infinitely many samples of each correct
process.

Proof. Since v is a node of G∞
p , there is a time t0 such that v is in Gt0

p . By
repeated application of Lemma 18, there is an infinite sequence of times t0, t1, . . . and
an infinite sequence of paths g0, g1, . . . such that for all i ∈ N, (a) gi is in Gti

p and

starts with v, (b) gi is a prefix of gi+1, and (c) each correct process has at least i
samples in gi.

Let g∞ be the “limit” of sequence g0, g1, . . . ; that is, g∞ is the infinite path which,
up to length |gi|, is identical to gi. (This is well defined because of (b).) It is now
easy to see that g∞ is a path in G∞

p that starts with v and contains infinitely many
samples of each correct process.

7.2.2. Simulating schedules of an algorithm A. In the previous section, we
saw how each process p can execute algorithm ADAG using a failure detector D to
build an ever-increasing DAG of samples of D (under the “current” failure pattern F
and failure detector history H ∈ D(F )). We now explain how each process p can use
its DAG of samples of D to simulate schedules of runs of any algorithm A using D
(with failure pattern F and failure detector history H ∈ D(F )). These are called
simulated schedules of A. Another way of thinking about these simulated schedules
is that they are schedules of runs that could have occurred if processes were running
algorithm A using D, instead of running ADAG using D.

Fix an initial configuration I of algorithm A, and fix a path g = (p1, d1, k1),
(p2, d2, k2), . . . of the DAG contained in Gp at some time t, or of the limit DAG G∞

p .
Our goal is to define the set of simulated schedules determined by path g and initial
configuration I. Path g tells us that the following could have happened in an execution
of algorithm A under the current failure pattern F and failure detector history H ∈
D(F ): Process p1 takes the first step and sees value d1 from its failure detector module,
then process p2 takes the second step and sees value d2 from its failure detector
module, and so on. This sequence of process ids and failure detector values, along
with the initial configuration I, defines a set of schedules of A, with each schedule in
this set corresponding to different delays that the messages sent might experience.

More precisely, we say that a schedule S is compatible with the path g = (p1, d1, k1),
(p2, d2, k2), . . . if and only if it has the same length as g, and S = (p1,m1, d1,A),
(p2,m2, d2,A), . . . for some (possibly null) messages m1,m2, . . . . The set of simu-
lated schedules determined by g and initial configuration I is the set of all schedules
that are compatible with g and applicable to I.
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Let G be any DAG of samples and I be any initial configuration of A. Sch(G, I)
denotes the set of schedules of A that are compatible with some path in G and are
applicable to I. Note that if G is finite, then Sch(G, I) contains a finite number of
finite schedules.

We now present some properties of simulated schedules. In the following, we
consider an arbitrary admissible run R of ADAG using failure detector D in some
arbitrary environment E . Let F ∈ E be the failure pattern of this run, and let
H ∈ D(F ) be its failure detector history.

The first lemma justifies the name “simulated schedules”; it states that these
schedules really are schedules of runs of algorithm A using D, with failure pattern F
and failure detector history H .

Lemma 20. Let p be a process, t ∈ N∪ {∞}, G be a subgraph of Gt
p, and I be an

initial configuration of algorithm A. For each schedule S ∈ Sch(G, I), there is a list
of times T , all at most t, such that RA = (F,H, I, S, T ) is a run of A using D in E.

Proof. Let S be any schedule in Sch(G, I). Thus, S is a schedule of A that
is applicable to I and compatible with some path g = v1, v2, . . . in G. Let T =
τ(v1), τ(v2), . . . . Recall that for each positive integer i ≤ |S|, τ(vi) is the time when
sample vi was taken. A sample cannot appear in any DAG until the time it is taken.
Since vi is a node in a subgraph of Gt

p, τ(vi) ≤ t.
We claim that RA = (F,H, I, S, T ) is a run of A using D in E . Since F ∈ E ,

H ∈ D(F ), and I is an initial configuration of A, it suffices to verify that RA sat-
isfies properties (1)–(5) of runs. S is applicable to I (property (1)) by definition of
Sch(G, I). S and T have the same length (property (2)) because each of them has
the same length as g. The fact that in R no process takes a step after it has crashed,
and that the failure detector value in each step is consistent with the history H (prop-
erty (3)) follows from Observation 14, since S is compatible with path g = v1, v2, . . .
and T = τ(v1), τ(v2), . . . . Observation 15 implies that T is strictly increasing, and
so property (4) is also satisfied. To show property (5), we must prove that if step i
causally precedes step j in S with respect to I, then T [i] < T [j]. This follows from
Observation 1 and the fact that T is strictly increasing.

By Lemma 20, every infinite schedule S∞ ∈ Sch(G∞
p , I) is a schedule of an infinite

run of A using D in E . However, S∞ is not necessarily a schedule of an admissible run,
i.e., a run where each correct process takes an infinite number of steps (property (6))
and eventually receives every message sent to it (property (7)). The next lemma,
however, states that every finite schedule S ∈ Sch(G∞

p , I) can be extended to some
infinite schedule S∞ ∈ Sch(G∞

p , I) of an admissible run of A.
Lemma 21. Suppose p is a correct process, and let I be an initial configuration of

A. For any finite schedule S ∈ Sch(G∞
p , I) there is a schedule S∞ ∈ Sch(G∞

p , I) that
extends S and a list of times T∞ such that RA = (F,H, I, S∞, T∞) is an admissible
run of A using D in E. Furthermore, for any node u in G∞

p , S∞ can be chosen so
that S∞ = S · σ∞ for a schedule σ∞ that is compatible with a path in G∞

p |u.
Proof. Let S be any finite schedule in Sch(G∞

p , I), and let u be any node in
G∞

p . Thus S is applicable to I and compatible with a finite path g of G∞
p . By

Lemma 18 (applied with q = p and G consisting of the path g and the node u) and
the monotonicity of the DAGs (Observation 10), G∞

p contains a sample v of p and an
edge from every node of g and from u to v. By Lemma 19, G∞

p has an infinite path γ
that starts with v and contains infinitely many samples of each correct process. Note
that g · γ is a path in G∞

p (because there are edges from every node in g to the first
node of γ), and γ is a path in G∞

p |u (because there is an edge from u to the first node
of γ).

D
ow

nl
oa

de
d 

05
/2

9/
15

 to
 1

28
.1

78
.1

54
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUITTABLE CONSENSUS AND NONBLOCKING ATOMIC COMMIT 1363

We define an infinite sequence of schedules σ0, σ1, . . . such that for each i ∈ N,
(a) σi has length i, (b) σi is compatible with the path consisting of the first i nodes
of γ, (c) σi is applicable to S(I), and (d) if i > 0, σi−1 is a prefix of σi. The definition
is by induction.

Basis. σ0 is the empty schedule. It is obvious that this has the required proper-
ties.

Induction step. Let i be an arbitrary positive integer, and assume that σi−1

with the required properties has been defined. Let the ith node of γ be (p, d,−).
Then σi = σi−1 · (p,m, d,A), where m is the message defined as follows: If the
message buffer of configuration S · σi−1(I) has no message for p (i.e., no message of
the form (−,−, p)), then m = λ; otherwise, m is the oldest message sent to p in the
message buffer of S · σi−1(I) (i.e., there is no message m′ for p in the message buffer
of S · σi−1(I) and prefix S′ of S · σi−1 such that the message buffer of S′(I) contains
m′ but not m). It is straightforward to verify that σi has the required properties:
It has length i, it is compatible with the first i nodes of γ, it is applicable to S(I),
and it is an extension of σi−1.

Now define σ∞ to be the “limit” of the sequence σ0, σ1, . . . , i.e., the infinite
schedule whose prefix of length i is σi. (This is well defined because, for all i ∈ N, σi

has length i and is a prefix of σi+1.) Clearly σ∞ is compatible with γ and applicable
to S(I). Let S∞ = S · σ∞. We have:

• S∞ ∈ Sch(G∞
p , I). This follows from the fact that S∞ is compatible with

path g ·γ in G∞
p , and S∞ is applicable to I (because S is applicable to I, and

σ∞ is applicable to S(I)).
• σ∞ is compatible with path γ in G∞

p |u.
By Lemma 20, there is a time list T∞ such that RA = (F,H, I, S∞, T∞) is a run

of A using D in E . It remains to prove that RA is admissible. We first note that each
correct process takes infinitely many steps in RA; this is because S∞ is compatible
with g ·γ and γ contains infinitely many samples of each correct process. Furthermore,
from the way we choose the message received in each step of σ∞, every message sent to
a correct process is eventually received in RA. So, RA has the required properties (6)
and (7) of admissible runs.

The following lemma is an immediate consequence of Observation 11 and the
definition of Sch(−,−).

Lemma 22. For every correct process p, every process q, every time t ∈ N, and
every initial configuration I of A, Sch(Gt

q, I) ⊆ Sch(G∞
p , I).

The following lemma is an immediate consequence of Lemma 16 and the definition
of Sch(−,−).

Lemma 23. Let p be a process and I be an initial configuration of A. For
each finite schedule S ∈ Sch(G∞

p , I), there is a time t such that, for all t′ ≥ t,

S ∈ Sch(Gt′
p , I).

8. Ψ is necessary to solve quittable consensus. In this section, we show
that Ψ is necessary to solve QC. Let D be any failure detector that can be used to
solve QC in some environment E ; i.e., there is an algorithm A that uses D to solve
QC in E . We must show that there is an algorithm that transforms D into Ψ in E . We
do so by giving a transformation algorithm that uses A and D to emulate the output
of Ψ—a failure detector that initially outputs ⊥ and later behaves either like (Ω,Σ)
or like FS. This transformation algorithm, denoted TD→Ψ, is shown in Figures 6–7,
and is explained below.
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1364 GUERRAOUI, HADZILACOS, KUZNETSOV, AND TOUEG

Code for each process p:

1 initialize
2 Ω-outputp ← p
3 Σ-outputp ← Π
4 Ψ-outputp ← ⊥
5 kp ← 0
6 Gp ← empty graph
7 decisionp ← ⊥

8 cobegin
9 /* Thread 1 — Build DAG of D-samples */
10 loop
11 receive a message m
12 dp ← Dp

13 if m �= λ then Gp ← Gp ∪m
14 kp ← kp + 1
15 vp ← (p, dp, kp)
16 add node vp to Gp and an edge from every other node in Gp to vp
17 send Gp to every process

18 ‖ /* Thread 2 — Choose behavior of Ψ */
19 ∀j∈ [0..n], Ij← initial configuration of A where the initial state of each q∈ [1..j] corresponds to

proposal 1 and the initial state of each q ∈ [j + 1..n] corresponds to proposal 0
20 repeat
21 ∀j ∈ [0..n], Sch(Gp, I

j)← set of schedules of A compatible with Gp and applicable to Ij

22 until ∀j ∈ [0..n], ∃Sj
p ∈Sch(, Gp)I

j : p decides in Sj
p(I

j)
23 ∀j ∈ [0..n − 1], let Sj

p ∈ Sch(Gp, I
j) and xj

p be such that p decides xj
p in Sj

p(I
j)

24 /* execute A using D to solve an instance of QC */
25 if ∃j ∈ [0..n] such that xj

p = Q then
26 decisionp := propose(0) /* propose 0 in this instance of QC */
27 else
28 let i ∈ [0..n − 1] be such that xi

p = 0 and xi+1
p = 1

29 decisionp :=propose(Ii, Ii+1, Si
p, S

i+1
p ) /* propose (Ii, Ii+1, Si

p, S
i+1
p ) in this instance of QC */

30 ‖ /* Thread 3 — Output value of Ψ */
31 wait until decisionp �= ⊥
32 if decisionp = 0 or decisionp = Q then /* a failure occurred */
33 Ψ-outputp ← red
34 else /* p’s decision is a tuple with two initial configurations and two schedules */
35 (I0, I1, S0, S1) := decisionp

36 up ← vp
37 loop
38 Ω-outputp ← extract-leader() /* see Figure 7 */
39 Σ-outputp ← extract-quorum() /* see Figure 7 */
40 Ψ-outputp ← (Ω-outputp,Σ-outputp)
41 coend

Fig. 6. Algorithm TD→Ψ.
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Code for each process p:

42 function extract-leader():
43 determine the current leader �p of p using Gp as in [9]
44 return �p

45 function extract-quorum():
46 ∀b ∈ {0, 1}, ∀S prefix of Sb, Sch(, Gp|up)S(Ib)← set of schedules of A compatible with

Gp|up and applicable to S(Ib)
47 if ∀b ∈ {0, 1}, ∀S prefix of Sb, ∃σS ∈Sch(, Gp|up)S(Ib) : p decides in S · σS(Ib) then
48 /* return new quorum */
49 new-quorump←

⋃{
participants(σ)|∃b ∈ {0, 1}, ∃S prefix of Sb :

(
σ∈Sch(Gp|up, S(Ib))∧

p decides in S · σ(Ib)
)}

50 up ← vp
51 return new-quorump

52 else
/* return old quorum */

53 return Σ-outputp

Fig. 7. Functions used by algorithm TD→Ψ.

8.1. Overview of the transformation. To make the presentation clearer, the
code of each process p in algorithm TD→Ψ is given by three concurrent threads.7

In Thread 1, p builds a DAG of samples of failure detector D using the algorithm
discussed in section 7.2.1. In Thread 2, p uses its current DAG to determine whether
(a) it is legitimate for Ψ to behave like FS and output red permanently (because a
failure occurred in the current run), or (b) it is possible to “extract” (Ω,Σ) in the
current run. Then p participates in an instance of QC to reach agreement with the
other processes on (a) or (b). In Thread 3, p produces the output of failure detector Ψ
according to the agreement reached in Thread 2. We now explain TD→Ψ in more detail.

First recall that in the algorithm A that solves QC, the value that a process
p proposes (i.e., its input value) is encoded in the initial state of A(p). For each
j ∈ [0..n], let Ij be the initial configuration of A in which every process q ∈ [1..j]
proposes 1 and every process q ∈ [j + 1..n] proposes 0. Thus in any run starting
from I0, all processes propose 0, and starting from In they all propose 1.

In TD→Ψ, each process p starts by outputting ⊥ (line 4), and then it executes
three concurrent threads:

• In Thread 1, p builds Gp, a DAG of failure detector values seen by processes
in the current run.

• In Thread 2, p repeatedly examines n + 1 sets of simulated schedules of
algorithm A, namely Sch(Gp, I

0), . . . ,Sch(Gp, I
n) (line 21), until it finds

that for every j ∈ [0..n], Sch(Gp, I
j) contains a schedule Sj

p such that p

decides some value xj
p in Sj

p(I
j) (line 22). If for some j ∈ [0..n], xj

p = Q, then
a failure occurred (in the failure pattern of the current run), and so p knows
that it is legitimate to extract FS and output red in this run. Otherwise for
every j ∈ [0..n], xj

p is either 0 or 1, and in this case p determines that it is

7It is straightforward to write the code of p as the code of a sequential process that can be directly
expressed in our model (e.g., p can execute the three concurrent threads in round-robin fashion).
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1366 GUERRAOUI, HADZILACOS, KUZNETSOV, AND TOUEG

possible to extract (Ω,Σ) in the current run.
At this point p participates in an instance of QC (by using the algorithm A
and failure detectorD) to agree with the other processes on whether to extract
FS and output red, or to extract (Ω,Σ). Specifically, if p has determined
that it is legitimate to output red, then it proposes 0 in this execution of
QC (lines 25–26). Otherwise, p proposes a tuple (Ii, Ii+1, Si

p, S
i+1
p ), where

i ∈ [0..n− 1] is such that xi
p = 0 and xi+1

p = 1 (lines 27–29). Note that such
an index i must exist: Since p reaches line 27, by the condition on line 25
every xj

p is either 0 or 1; by the validity property of QC, x0
p = 0 and xn

p = 1;

thus, for some i ∈ [0..n− 1], xi
p = 0 and xi+1

p = 1.
• In Thread 3, p computes the output values of Ψ according to the decision of
the QC executed in Thread 2. If this decision is 0 or Q, then p stops outputting
⊥ and outputs red from that time on (lines 32–33). If the decision is some
tuple (I0, I1, S0, S1) (line 35), then p stops outputting ⊥ and starts extracting
Ω (line 38) and Σ (line 39), combining these two outputs into the output of
Ψ (line 40). Ω is extracted as in [9] (see section 8.2) and Σ is extracted using
novel techniques (see section 8.3).

Note that in TD→Ψ, processes use the algorithm A for QC in two different ways
and for different purposes. First, each process uses its DAG of failure detector samples
to simulate many schedules ofA to determine whether it is legitimate to output red or
it is possible to extract (Ω,Σ) in the current run. Then processes actually participate
in a real execution of A to reach a common decision on whether to output red or to
extract (Ω,Σ). Finally, if processes decide to extract (Ω,Σ), they resume simulating
schedules of A to effect this extraction.

For the remainder of section 8 we consider an arbitrary admissible run of algorithm
TD→Ψ using D in some arbitrary environment E . Let F ∈ E be the failure pattern of
this run and H ∈ D(F ) be its failure detector history.

8.2. Extracting Ω. The specification of Ω requires the following: At each pro-
cess, Ω outputs the id of a process; furthermore, if a correct process exists, then there
is a time after which Ω outputs the id of the same correct process p∗ at every correct
process. Note that this specification is trivially satisfied in runs where all processes
are faulty. So in the rest of section 8.2, we assume that there is at least one correct
process in the run under consideration, i.e, correct(F ) 
= ∅.

If in TD→Ψ processes decide to extract Ω, they do so by executing the algorithm
that extracts Ω described in [9], as we now explain. As in [9], processes build a DAG of
samples of failure detector D (Thread 1 in Figure 6). More precisely, processes build
a DAG of the failure detector values that they see in H ∈ D(F ). By Observation 12,
the limit DAG of all correct processes is the same. Let G∞ denote that DAG. (G∞

is well defined since a correct process exists.)
Recall that Ij is the initial configuration of A in which the initial state of each

process q ∈ [1..j] corresponds to proposal 1 and the initial state of each process
q ∈ [j + 1..n] corresponds to proposal 0. Furthermore Sch(G∞, Ii) is the set of
schedules of A that is compatible with G∞ and applicable to Ii. For each i ∈ [0..n],
we organize the set of schedules in Sch(G∞, Ii) into a tree Υi, called the limit tree
(for initial configuration Ii). The nodes of this tree are the schedules in Sch(G∞, Ii),
and there is an edge from node S to node S′ if and only if there is a step e such that
S′ = S·e. We also define the limit forest Υ to be the set of limit trees {Υ0,Υ1, . . . ,Υn}.

In [9], algorithm A solves the binary version of consensus where processes propose
only 0 or 1. So, by the validity property of consensus, the only possible decisions

D
ow

nl
oa

de
d 

05
/2

9/
15

 to
 1

28
.1

78
.1

54
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUITTABLE CONSENSUS AND NONBLOCKING ATOMIC COMMIT 1367

are 0 or 1. In [9], it is shown that the root of each tree Υi of the limit forest Υ
has a descendant S such that some correct process decides in S(Ii). The root of Υi

is v-valent for v ∈ {0, 1} if it has no descendant S such that some correct process
decides u 
= v in S(Ii); the root of Υi is multivalent if it is not v-valent for any
v ∈ {0, 1}. It is clear that the root of Υi either is v-valent for exactly one value v or
is multivalent. The limit forest Υ has a critical index i ∈ [1..n] if and only if the root
of Υi−1 is v-valent and the root of Υi is u-valent for u 
= v (in which case index i is
univalent critical) or the root of Υi is multivalent (in which case index i is multivalent
critical).

At a high level, the extraction of Ω in [9] works as follows:
(a) First, it is shown that the limit forest Υ has a critical index i. This part of

the proof uses the validity property of consensus.
(b) Then it is shown that for each critical index i of Υ, one can identify a cor-

responding process j that is necessarily correct in the failure pattern F of
the current run.8 This part of the proof uses only the termination and uni-
form agreement properties of consensus; in particular, it does not rely on the
validity property.

(c) Finally, it is shown how all correct processes can eventually converge on
the smallest critical index i of Υ, and on the correct process j that corre-
sponds to i. This part of the proof also does not use the validity property of
consensus.

The above three steps outline the extraction of Ω when the given algorithm A
solves binary consensus. Here we want to extract Ω when A solves QC, and therefore
A also solves binary QC where proposals are only 0 or 1. Note that binary consensus
and binary QC share the same uniform agreement and termination properties, and
they differ only in their validity property.

By the validity property of binary QC, there are now three possible decisions,
0, 1, or Q (instead of only 0 or 1). The definitions of v-valent or multivalent nodes
remain the same, except that now v ∈ {0, 1,Q}. The definitions of univalent and
multivalent critical index i also remain the same.

To extract Ω here, one may try to apply steps (a), (b), and (c) exactly as in [9].
Unfortunately, this does not quite work: with binary QC it is not always the case
that the limit forest Υ has a critical index. This is because, in contrast to consensus,
the validity property of QC allows processes to decide Q if failures occur. To see why
Υ may not have a critical index, suppose some process crashes (in the failure pattern
F of the current run). With QC, all the processes that decide “in the limit forest Υ”
may decide Q. In this case, the roots of all the trees in Υ are Q-valent, Υ has no
critical index, and we cannot apply steps (b) and (c) above to extract the id of a
correct process.

This is why, in our transformation algorithm of Figure 6, processes do not always
attempt to extract Ω. As Lemma 24 below shows, however, if processes actually
attempt to extract Ω (on line 38), then a critical index does exist in the limit forest Υ.
It is important to note that if Υ has a critical index, then processes can converge on
the identity of a correct process by applying steps (b) and (c) above, exactly as in [9]:
This is because the correctness of steps (b) and (c) does not rely on the validity
property of consensus (which is the only difference between consensus and QC).

Lemma 24. If any process reaches line 34 of algorithm TD→Ψ, then the limit

8If i is univalent critical, process i is necessarily correct; if i is bivalent critical, the limit tree Υi

contains a subgraph that reveals the identity of a process j that is necessarily correct.
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forest Υ has a critical index.
Proof. If a process reaches line 34, then it decided some value v 
∈ {0,Q} in

the instance of QC that it executed in Thread 2 (line 29). In this instance of QC,
each process p can only propose 0 (line 26) or a tuple of the form (Ij , Ij+1, Sj

p, S
j+1
p )

(line 29). Thus, by part (i) of the validity property of QC, it must be that some
process q proposed (Ii, Ii+1, Si

q, S
i+1
q ) for some index i ∈ [0..n] (line 29).

Claim 24.1. There are finite schedules S0 ∈ Sch(G∞, Ii) and S1 ∈ Sch(G∞, Ii+1)
such that some correct process decides 0 in S0(I

i) and some correct process decides 1
in S1(I

i+1).
Proof of Claim 24.1. We prove the existence of S0; the proof for S1 is symmetric.
Since q proposed (Ii, Ii+1, Si

q, S
i+1
q ) on line 29, it must be that when q executed

line 23, say at time t, there is a schedule Si
q ∈ Sch(Gt

q, I
i) such that q decides 0

in Si
q(I

i). Let p be any correct process. By Lemma 22, Si
q ∈ Sch(G∞

p , Ii). By

Lemma 21, there is a schedule S∞ ∈ Sch(G∞
p , Ii) that extends Si

q such that RA =

(F,H, Ii, S∞,−) is an admissible run of A (which solves QC) using D in E . By the
termination property of QC, there is a finite prefix S0 of S∞ such that p decides
in S0(I

i). Since S∞ ∈ Sch(G∞
p , Ii), it follows that S0 ∈ Sch(G∞

p , Ii) and, since

G∞
p = G∞, S0 ∈ Sch(G∞, Ii). Since both S0 and Sj

q are prefixes of S∞, one of them

is a prefix of the other. Since q decides 0 in Si
q(I

i), by the uniform agreement property

of QC, p also decides 0 in S0(I
i). 24.1

By Claim 24.1, the root of Υi is either 0-valent or multivalent, and the root of Υi+1

is either 1-valent or multivalent. Thus, the root of either Υi or Υi+1 is multivalent,
or the root of Υi is 0-valent and the root of Υi+1 is 1-valent. So, in all cases, there is
a critical index in the limit forest Υ.

8.3. Extracting Σ. To extract Σ, p must continuously output a set of processes
(quorum) such that the quorums of all processes always intersect, and eventually the
quorums of correct processes contain only correct processes. This is done by the
function extract-quorum() (lines 45–53) as follows.

Function extract-quorum() is called only on line 39, at which point p has agreed
with other processes on a tuple (I0, I1, S0, S1) (line 35). Process pmaintains in variable
up a “recent” failure detector sample of its own. This is initialized to p’s most recent
sample when p executes line 36, and is updated to p’s most recent sample each time
p outputs a new quorum (lines 49–50).

To determine the quorum to output, p examines every prefix S of S0 and S1,
looking for a schedule σS that (a) uses only failure detector samples that are “fresher”
than up, (b) can be appended to S so that S · σS is a simulated schedule of A, and
(c) p decides at the end of that schedule. More precisely, if S is a prefix of Sb, where
b ∈ {0, 1}, σS is required to be a schedule in Sch(Gp|up, S(Ib)) (i.e., compatible with
a path of samples at least as recent as up and applicable to S(Ib)), and p must decide
in S · σS(Ib) (see the condition on line 47). If such a schedule σS can be found for
every prefix S of S0 and S1, p computes a new quorum consisting of all processes
that take steps in these σS ’s (line 49). Otherwise, p’s quorum remains unchanged
(lines 52–53).

Note how the sample in up acts as a “freshness barrier”: p’s new quorum contains
only processes that have taken samples at least as recent as up. As we will see in
the proof of Lemma 26 below, this (together with the fact that up contains ever more
recent samples) ensures the completeness property of Σ: The quorum output by a
correct process p eventually contains only correct processes.

We will also see in the proof of Lemma 28 that this way of choosing quorums
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ensures the intersection property of Σ: Every two quorums output by any two pro-
cesses at any times intersect. Intuitively, this follows from the uniform agreement
property of QC: If two quorums do not intersect, we would be able to construct
an admissible run of the algorithm A in which two different values in {0, 1,Q} are
decided, establishing a contradiction.

To prove that the completeness property holds, we first prove that the “freshness
barrier” up is updated infinitely often (line 50), and consequently a new quorum is
also computed infinitely often (line 49).

Lemma 25. Every correct process p that reaches line 34 of algorithm TD→Ψ

assigns a quorum to new-quorump (line 49) and a node to up (line 50) infinitely
often.

Proof. Suppose some correct process p reaches line 34. It is clear from the
algorithm that p either assigns both new-quorump and up infinitely often, or assigns
both of them only a finite number of times (see lines 50 and 51). Suppose, for
contradiction, that p assigns up only a finite number of times. Since p reaches line 34,
it also reaches line 36, and so it assigns up at least once. Let u be the last node of Gp

that p assigns to up.
In the next two paragraphs we show that there is a time after which the condition

of the if statement on line 47 is true forever. That is, for each prefix S of Sb, where
b ∈ {0, 1}, there is a finite schedule σS , compatible with a path in Gp|u, such that
S · σS ∈ Sch(Gp, Ib) and p decides in S · σS(Ib).

Since p reaches line 34, it decided a value different from 0 or Q in the instance
of QC that it executed in Thread 2 (line 26 or line 29). By part (i) of the validity
property of QC, this decision value must be some tuple (I0, I1, S0, S1) that some
process q proposed in Thread 2 (line 29). Thus, at some time t, for each b ∈ {0, 1},
Sb ∈ Sch(Gt

q, Ib) (see line 23). By Lemma 22, for each b ∈ {0, 1}, Sb ∈ Sch(G∞
p , Ib).

Consider any prefix S of Sb, where b ∈ {0, 1}. Since Sb ∈ Sch(G∞
p , Ib), it follows

that S ∈ Sch(G∞
p , Ib). By Lemma 21 there is a schedule S∞ ∈ Sch(G∞

p , Ib) that
extends S such that RA = (F,H, Ib, S

∞,−) is an admissible run of A (which solves
QC) using D in E . Furthermore, S∞ can be chosen so that S∞ = S · σ∞

S , for a
schedule σ∞

S that is compatible with a path in G∞
p |u. By the termination property

of QC, there is a finite prefix σS of σ∞
S such that p decides in S · σS(Ib). Since S · σS

is a finite prefix of S∞ = S · σ∞
S , and S∞ ∈ Sch(G∞

p , Ib), by Lemma 23 it follows
that there is some time tS such that, for all t ≥ tS , S · σS ∈ Sch(Gt

p, Ib). Also, since
σ∞
S is compatible with a path in G∞

p |u, and σS is a finite prefix of σ∞
S , by Lemma 16,

there is a time t̂S such that, for all t ≥ t̂S , σS is compatible with a path in Gt
p|u. Let

t1 = max{tS , t̂S : S is a prefix of S0 or S1}. Let t2 be the time of the last assignment
to up, and let t∗ = max(t1, t2). Thus, for all t ≥ t∗, it is true that ut

p = u and, for
every prefix S of Sb, where b ∈ {0, 1}, there is a finite schedule σS , compatible with
a path in Gt

p|ut
p, such that S · σS ∈ Sch(Gt

p, Ib) and p decides in S · σS(Ib). In other
words, after t∗, the condition of the if statement on line 47 is always satisfied.

Since p is correct and reaches line 37, it executes line 47 infinitely often. The first
time after t∗ that p executes that line, it finds that the condition of the if statement is
satisfied, and assigns a node to up on line 50. This occurs after time t2, contradicting
the definition of t2.

Lemma 26. For every correct process p that reaches line 34 of algorithm TD→Ψ,
there is a time after which Σ-outputp contains only correct processes.

Proof. Suppose some correct process p reaches line 34. By Lemma 17, there is
a sample v∗ of p in G∞

p such that G∞
p |v∗ contains only samples of correct processes.
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By Lemma 17(a), there is a time after which any node v contained in variable vp is a
descendant of v∗ in G∞

p . By Lemma 25, there are infinitely many assignments to up;
in all of these, up is assigned the node in vp (see lines 36 and 50). Thus, there is a
time t∗ such that for all t ≥ t∗, ut

p is a descendant of v∗ in G∞
p . By Lemma 17(b), for

all t ≥ t∗, Gt
p|ut

p contains only samples of correct processes.
By Lemma 25, p computes a new quorum on line 49 infinitely often after time t∗.

Every quorum assigned to Σ-outputp (other than the initialization) is computed on
line 49. Thus, it suffices to prove that any quorum assigned to new-quorump on line 49
after time t∗ contains only correct processes.

Consider any such assignment, say at time t ≥ t∗ (see lines 47–49). The quo-
rum assigned to new-quorump at time t is the union of certain sets of the form
participants(σ), where σ is a schedule compatible with Gt

p|ut
p. Since t ≥ t∗, Gt

p|ut
p

contains only samples of correct processes. This implies that all processes in each
such set participants(σ) are correct. Therefore, the quorum assigned to new-quorump

at time t contains only correct processes.
We now prove that the quorums output by TD→Ψ satisfy the intersection property

of Σ. Intuitively, we do so by showing that if two quorums do not intersect, then there
are two runs of algorithm A such that (a) processes decide differently in these two
runs, and (b) these two runs can be merged into a single run of A—a contradiction to
the uniform agreement property of QC. To carry out this proof, we need the lemma
that allows us to merge certain runs (Lemma 9 of section 7.1). More precisely, we use
the following corollary of this lemma.

Corollary 27. Let R0 = (F,H, I, Ŝ ·S0,−) and R1 = (F,H, I, Ŝ ·S1,−) be two
finite runs of A using D in E such that participants(S0) ∩ participants(S1) = ∅. If
some process decides v0 in R0 and some process decides v1 in R1, then v0 = v1.

Proof. The proof is immediate from Lemma 9, the fact that A uses D to solve
QC in E , and the uniform agreement property of QC.

Lemma 28. For all processes p and q, any two quorums assigned to Σ-outputp
and Σ-outputq in algorithm TD→Ψ intersect.

Proof. Suppose, for contradiction, that for some processes p and q, there is a time
when Σ-outputp = P and a time when Σ-outputq = Q, but P ∩Q = ∅.

First, observe that any set that p assigns to new-quorump on line 49 cannot be
empty. This is because this set must include the participants of a schedule σ that is
applicable to some initial configuration I0 such that p decides in σ(I0). It is easy to
see that no process decides in any initial configuration, and so participants(σ) 
= ∅.
Thus, any set that p assigns to new-quorump on line 49 is nonempty. Similarly, any
set that q assigns to new-quorumq on line 49 is also nonempty.

Note that at any time, Σ-outputp=Π (at initialization) or Σ-outputp=new-quorump.
Similarly, Σ-outputq = Π or Σ-outputq = new-quorumq. Since new-quorump and
new-quorumq are not empty, it must be that the nonintersecting quorums P and Q
are assigned to new-quorump and new-quorumq, respectively, on line 49.

Since p and q reach line 49, they also reach line 34, and so they decide a value
different from 0 or Q in the instance of QC they execute in Thread 2 (line 26 or line 29).
By the validity and uniform agreement properties of QC, it must be that decisionp =
decisionq = (I0, I1, S0, S1) such that some process proposed (I0, I1, S0, S1) in Thread 2
(line 29). Note that I0 and I1 are initial configurations of algorithm A that differ only
in the initial state of a single process, and S0 and S1 are schedules of A such that
some process decides 0 in S0(I0) and 1 in S1(I1) (see lines 28–29).

For the notation defined in this and the next paragraph, see Figure 8. Let S0 =
e1 . . . e� and S1 = f1 . . . fm, where the ei’s and fj ’s are steps. Let C0 = I0 and
Ci = ei(Ci−1) for i ∈ [1..�]; similarly, D0 = I1 and Dj = fj(Dj−1) for j ∈ [1..m].
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Let t be the time when p first assigns P to new-quorump on line 49. By the
condition on line 47, for each i ∈ [0..�], there is a schedule σp

i such that e1 . . . ei · σp
i ∈

Sch(Gt
p, I0) and p decides some value xp

i in e1 . . . ei · σp
i (I0).

9 Similarly, for each
j ∈ [0..m], there is a schedule τpj such that f1 . . . fj · τpj ∈ Sch(Gt

p, I1) and p decides
some value ypi in f1 . . . fj · τpj (I1). The quorum P is the union of the participants in
the σp

i ’s and τpj ’s. Similarly, let t′ be the time when q first assigns Q to new-quorumq.
We define σq

i , x
q
i , τ

q
j , and yqj in an analogous manner. The quorum Q is the union of

the participants of the σq
i ’s and τqj ’s.

Claim 28.1. For all i ∈ [0..�], xp
i = xq

i , and for all j ∈ [0..m], ypj = yqj .

Proof of Claim 28.1. Since e1 . . . ei · σp
i ∈ Sch(Gt

p, I0), by Lemma 20, there is a
run R0 = (F,H, I0, e1 . . . ei · σp

i ,−) of A using D in E . Process p decides xp
i in R0.

Similarly, there is a run R1 = (F,H, I0, e1 . . . ei · σq
i ,−) of A using D in E , in which

q decides xq
i . Since P and Q are disjoint, so are their subsets participants(σp

i ) and

participants(σq
i ). Thus, by Corollary 27 (applied with I = I0, Ŝ = e1 . . . ei, S0 = σp

i ,
S1 = σq

i , v0 = xp
i , and v1 = xq

i ), we have that xp
i = xq

i . The proof that ypj = yqj is
analogous. 28.1

By Claim 28.1, we can now define xi = xp
i = xq

i and yj = ypj = yqj .
Claim 28.2. For all i ∈ [0..�−1], xi+1 = xi, and for all j ∈ [0..m−1], yj+1 = yj.
Proof of Claim 28.2. Consider any i ∈ [0..�−1], and let r be the process that takes

step ei+1. Since P and Q are disjoint, r /∈ P or r /∈ Q. Without loss of generality,
suppose that r /∈ P . In particular, r /∈ participants(σp

i ) ⊆ P . Also, again because
P and Q are disjoint, so are their subsets participants(σp

i ) and participants(σq
i+1).

Therefore, participants(σp
i ) and participants(ei+1 · σq

i+1) are disjoint.
Since e1 . . . ei ·σp

i ∈ Sch(Gt
p, I0), by Lemma 20, there is a run R0=(F,H, I0, e1 . . .

ei ·σp
i ,−) of A using D in E . Process p decides xi in R0. Also, since e1 . . . ei+1 ·σq

i+1 ∈
Sch(Gt′

q , I0) there is a run R1 = (F,H, I0, e1 . . . eiei+1 · σq
i+1,−) of A using D in E ,

in which q decides xi+1. Thus, by Corollary 27 (applied with I = I0, Ŝ = e1e2 . . . ei,
S0 = σp

i , S1 = ei+1 ·σq
i+1, v0 = xi, and v1 = xi+1), we have that xi = xi+1. The proof

that yj = yj+1 is analogous. 28.2

Claim 28.3. x0 = 0 and y0 = 1.
Proof of Claim 28.3. Recall that some process decides 0 in S0(I0), and p decides

x� in S0 ·σp
� (I0). Since S0 ·σq

� ∈ Sch(Gt
q , I0), by Lemma 20, there is a run (F,H, I0, S0 ·

σp
� ,−) of A using D in E . In this run, some process decides 0 and p decides x�. Since

A solves QC using D in E , by the uniform agreement property of QC, we have x� = 0.
By Claim 28.2 and a trivial induction, xi = 0 for all i ∈ [0..�]. In particular, x0 = 0.
The proof that y0 = 1 is analogous. 28.3

Since P andQ are disjoint, so are their subsets participants(σp
0) and participants(τq0 ).

Let r be the process such that I0 and I1 differ only in the initial state of r. Process r
does not take a step in at least one of σp

0 and τq0 . Without loss of generality, assume
that r does not take a step in σp

0 . Thus, σp
0 is also applicable to I1, and p decides

the same value, x0, in σp
0(I1) as in σp

0(I0). Since σp
0 ∈ Sch(Gt

p, I0), we also have that
σp
0 ∈ Sch(Gt

p, I1). By Lemma 20, there is a run R0 = (F,H, I1, σ
p
0 ,−) of A using D

in E . Process p decides x0 in R0. Since τq0 ∈ Sch(Gt′
q , I1), again by Lemma 20, there

is a run R1 = (F,H, I1, τ
q
0 ,−) of A using D in E . Process q decides y0 in R1.

By Corollary 27 (applied with I = I1, Ŝ being the empty schedule, S0 = σp
0 ,

S1 = τq0 , v0 = x0, and v1 = y0), we have that x0 = y0. This contradicts Claim 28.3
and completes the proof of Lemma 28.

9We adopt the convention that, for i = 0, e1 . . . ei is the empty schedule.
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8.4. Correctness of the transformation. We are now ready to show the
following theorem.

Theorem 29. Algorithm TD→Ψ transforms D to Ψ.
Proof. Recall that algorithm A uses D to solve QC in E . As before, we consider

an arbitrary admissible run of TD→Ψ in E , where F ∈ E is the failure pattern and
H ∈ D(F ) is the failure history of this run.

To show that TD→Ψ transforms D to Ψ, we must prove that the values of the
variables Ψ-outputp conform to the specification of Ψ. By inspection of TD→Ψ, it is
clear that Ψ-outputp is either ⊥, or red (in which case we say that it is of type FS), or
a pair (q,Q) where q ∈ Π and Q ⊆ Π (in which case we say that it is of type (Ω,Σ)).

(1) For each process p, Ψ-outputp is initially ⊥ (line 4). If Ψ-outputp ever
changes value, it becomes of type FS forever (line 33) or of type (Ω,Σ) forever
(line 40).
This follows by inspection of TD→Ψ.

(2) For all distinct processes p and q, it is impossible for Ψ-outputp to be of type
FS and Ψ-outputq to be of type (Ω,Σ).
This is because, by the uniform agreement property of QC, p and q cannot de-
cide different values on lines 26 and 29; thus, they cannot execute in different
branches of the if-then-else statement of lines 32–34.

(3) For each correct process p, eventually Ψ-outputp 
= ⊥.
To prove this we first show that every correct process p eventually completes
the loop on lines 20–22. By Lemma 21 (taking S to be the empty sched-
ule), for each j ∈ [0..n] there is a schedule S∞ ∈ Sch(G∞

p , Ij) such that

(F,H, Ij , S∞,−) is an admissible run of algorithm A (which solves QC) us-
ing D in E . By the termination property of QC, there is a finite prefix Sj of
S∞ such that p decides in Sj(Ij). By Lemma 23, there is a time tj such that
for all t ≥ tj , Sj ∈ Sch(Gt

p, I
j). Thus, after time max{tj : j ∈ [0..n]}, the exit

condition on line 22 is true forever, and so eventually p completes the loop.
We claim that, after completing the loop on lines 20–22, every correct process
p executes line 26 or line 29.
To show this claim, first note that since p completes this loop, for every
j ∈ [0..n], there is a time tj and a schedule Sj

p ∈ Sch(G
tj
p , Ij) such that

p decides some value xj
p in Sj

p(I
j). By Lemma 20, for all j ∈ [0..n], there is

a run Rj
p = (F,H, Ij , Sj

p,−) of A using D in E . Since (a) A solves QC using

D in E , (b) processes can propose only 0 or 1 in Rj
p, and (c) p decides xj

p in

Rj
p, then by the validity property of QC, xj

p ∈ {0, 1,Q}. Furthermore, since
no process proposes 1 in the run R0

p whose initial configuration is I0, we have
x0
p ∈ {0,Q}. Similarly, xn

p ∈ {1,Q}.
There are two possible cases:

• There is a j ∈ [0..n] such that xj
p = Q. In this case, p executes line 26.

• For all j ∈ [0..n], xj
p 
= Q. In this case, for all j ∈ [0..n], xj

p ∈ {0, 1};
moreover, x0

p = 0 and xn
p = 1. So there must be some i ∈ [0..n− 1] such

that xi
p = 0 and xi+1

p = 1. Thus, p executes line 29.
Thus, p executes line 26 or line 29, which shows the claim.
From this claim, all correct processes propose some value (on line 26 or 29)
in an instance of QC executed in Thread 2. By the termination property of
QC, all correct processes eventually decide in that instance, and so they all
complete line 31. Thus, eventually every correct process p sets Ψ-outputp to
a non-⊥ value on line 33 or 40.
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(4) For each process p and time t, if Ψ-outputtp = red, then a failure occurred by
time t.
To see this, let p be a process and t be a time such that Ψ-outputtp = red
(line 33). By lines 31–32, p decided 0 or Q on line 26 or 29 at some time
t′ ≤ t. There are two possible cases:
(a) p decided Q at time t′ ≤ t. Then, by part (ii) of the validity property of

QC, a failure occurred by time t′ ≤ t.
(b) p decided 0 at time t′ ≤ t. Then, by Observation 2, there must be

at least one process q that proposes 0 and executes a step of the QC
algorithm on line 26 by time t′ ≤ t. This implies that there is a time
t′′ ≤ t′, an index j ∈ [0..n], and a schedule Sj

q ∈ Sch(Gt′′
q , Ij), such that

q decides Q in Sj
q(I

j) (see lines 23–25). By Lemma 20, there is a list of

times T , all at most t′′, such that (F,H, Ij , Sj
q , T ) is a run of A using

D in E . By part (ii) of the validity property of QC, this implies that a
failure occurred by time t′′ ≤ t′ ≤ t.

(5) If the Ψ-output variable of some process p becomes of type FS at time t, then
we have the following:

• A failure occurred by time t.
If Ψ-outputtp is of type FS, then, by inspection of TD→Ψ, Ψ-outputtp =
red. By (4), a failure occurred by time t.

• For every correct process q, there is a time after which Ψ-outputq = red.
By (2) and (3), for every correct process q, there is a time after which
Ψ-outputq is of type FS. In TD→Ψ, the variable Ψ-outputq can become
of type FS only by being set to red.

(6) If the Ψ-output variable of some process becomes of type (Ω,Σ), then we have
the following:

• (i) For every process p and every time t ∈ N, Ω-outputtp ∈ Π; further-
more, (ii) if a correct process exists, then there is a correct process p∗ and
a time t∗ such that, for every correct process p and every time t ≥ t∗,
Ω-outputtp = p∗.
Part (i) is immediate by inspection of TD→Ψ. Part (ii) is trivial if all
processes are faulty, so suppose that some correct process exists. By as-
sumption, the Ψ-output variable of some process becomes of type (Ω,Σ).
Then, by (2) and (3) above, eventually the Ψ-output variable of every
correct process also becomes of type (Ω,Σ). So every correct process sets
its Ω-output variable repeatedly on line 38 using the extraction proce-
dure described in [9]. Since some process reaches line 34, by Lemma 24,
the limit forest Υ has a critical index. Thus, as we explained in sec-
tion 8.2, we can now apply steps (b) and (c) of the proof of [9] to show
that there is some correct process p∗ and a time t∗ such that, for every
correct process p and time t ≥ t∗, Ω-outputtp = p∗. The only difference
is that whenever the proof in [9] refers to a bivalent node, we now refer
to a multivalent one, and whenever [9] refers to u-valent versus v-valent
nodes for some distinct u and v in {0, 1}, here u and v are in {0, 1,Q}.

• (i) For every correct process p, there is a time after which Σ-outputp
contains only correct processes, and (ii) for all processes p and q, any
two quorums assigned to Σ-outputp and Σ-outputq intersect.
Part (i) was shown in Lemma 26 and part (ii) in Lemma 28.

From (1)–(6) above, it follows that the values of the variables Ψ-output con-
form to the specification of Ψ, as defined in section 3: Initially, Ψ-output = ⊥
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at each process; eventually, however, Ψ-output behaves either like the fail-
ure detector (Ω,Σ) at all correct processes or like the failure detector FS
at all correct processes. The switch from ⊥ to (Ω,Σ) or FS is consistent
at all processes, and a switch from ⊥ to FS can happen only if a failure
occurred.

Since Theorem 29 holds for any environment E and any failure detector D that
can be used to solve QC in E , we conclude the following theorem.

Theorem 30. For every environment E, if failure detector D can be used to solve
QC in E, then D can be transformed to Ψ in E.

8.5. Binary versus multivalued quittable consensus. Our proof that Ψ is
the weakest failure detector to solve QC uses the fact that, in QC, each process can
propose any value in the infinite set {0, 1}∗; i.e., the proof used the fact that QC is
multivalued.10 So one may ask whether Ψ is also the weakest failure detector to solve
the binary version of QC where processes can propose only 0 or 1. The answer is
affirmative.

To prove this, we use an algorithm by Mostéfaoui, Raynal, and Tronel [35] that
converts any algorithm that solves binary consensus into an algorithm that solvesmul-
tivalued consensus. With a straightforward modification, this conversion algorithm
also works with quittable consensus: It converts any algorithm that solves binary QC
(using some failure detector D) into one that solves multivalued QC (using the same
failure detector D). This gives us the following theorem.

Theorem 31. For every environment E, if failure detector D can be used to solve
binary QC in E, then D can be used to solve QC in E.

Therefore, we have the following corollary.
Corollary 32. For every environment E, Ψ is the weakest failure detector to

solve binary QC in E.
Proof. Let E be any environment.
(a) Ψ can be used to solve binary QC in E . This is obvious since, by Theorem 8,

Ψ can be used to solve QC in E .
(b) Suppose D can be used to solve binary QC in E . By Theorem 31, D can be

used to solve QC in E . So, by Theorem 30, D can be transformed to Ψ in
E .

9. Final remarks. Failure detector emulations. Intuitively, a failure detec-
tor D is weaker than a failure detector D′ if processes can use D′ to emulate D. Two
technical definitions of failure detector emulation have been proposed in the literature
[9, 32]. In this paper we adopted the original definition of emulation given in [9] since
we used parts of the proof given in that paper. As we explain below, however, our
results also hold with the definition of emulation given in [32].

With the original definition of emulation [9], an implementation of D must main-
tain local variables that mirror the output of D at all times. The definition of emula-
tion given in [32] is weaker: With this definition, an implementation of D is required
to behave like D only when it is actually queried.11 The failure detectors Ψ and

10Specifically, in Thread 2 of TD→Ψ, processes may propose tuples of the form (I, I′, S, S′) for
some initial configurations and finite schedules of algorithm A.

11More precisely, if the implementation of D is queried at time t1 and it replies with a value d at
time t2, then d must be a valid value of D at some time t ∈ [t1, t2]; so, it is as if the query/reply
occurred atomically at some time t within the interval of time during which the query/reply actually
occurred. In other words, the behavior of the implementation of D is linearizable with respect to the
specification of D.
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(Ψ,FS), which we proved here to be the weakest for QC and NBAC under the origi-
nal definition of failure detector emulation, are also weakest for these problems under
the definition of emulation given in [32]. In a nutshell, this is because (a) all the
algorithms that we give here also work under the model of [32], and (b) if processes
can emulate a failure detector D according to the strong definition of emulation of [9]
(i.e., p is able to maintain a variable D-outputp that always mirrors the output of D),
then processes can also emulate D according to the weaker definition of emulation
of [32]: Whenever it is queried, p can just return the value of D-outputp. For the
same reasons, all the failure detectors that we are aware of to be weakest for a prob-
lem under the definition of emulation of [9] are also weakest for these problems under
the definition of emulation of [32]; this includes the weakest failure detectors for con-
sensus [9] and nonuniform consensus [19], set agreement [18, 38, 23], implementing an
atomic register [15], and boosting obstruction-freedom to wait-freedom [26].

The newer definition of emulation given in [32] has two advantages over the orig-
inal one of [9]. First, the original definition of emulation is more stringent than
necessary: When using an emulated failure detector D, it is sufficient that the emu-
lated D behaves correctly only when it is queried—which is exactly what the newer
definition stipulates. Second, the definition of emulation given in [32] is reflexive;
i.e., for every failure detector D, processes can use D to emulate D. In contrast, as
remarked by [32] and later in [11], the original definition of emulation is not reflexive:
If the output of a failure detector D is sensitive to time, the processes, because they
are asynchronous, may not be able to maintain variables that mirror the output of D
at all times as the original definition of emulation requires. The nonreflexivity of the
failure detector emulation under the original definition of emulation of [9] has no bear-
ing on the results of this paper or on the other weakest failure detector results cited
above: As we explained above, the same results also hold with the newer definition
of emulation given in [32] which does satisfy reflexivity.

Granularity of steps. As in the models of Fischer, Lynch, and Paterson [20]
and Chandra, Hadzilacos, and Toueg [9], in our model a process can send a message
m to every process in an atomic step. Since a sender cannot fail in “the middle”
of a step that sends m to all, our model has the following property: If any process
receivesm, then every correct process eventually receivesm (*). One may ask whether
our results also hold in another model, let’s call it model B, where a process can send
a message m to only one process in an atomic step. To answer this question, note
that in model B (where processes may crash but links are reliable) one can implement
Uniform Reliable Broadcast (URB) [29], a communication primitive that provides the
property (*) of our model. Since model B can emulate the atomic “send m to all” of
our model, it is easy to see that our results also hold in model B.

Systems that are not asynchronous. It is worth noting that since our model
is that of an asynchronous system augmented with failure detectors, the algorithms
that emulate failure detectors are also asynchronous [11]. So the weakest failure de-
tectors that result from such emulations are also asynchronous in the sense that their
output values could be delayed for any finite time. Some previous works explored
failure detectors in systems that are not purely asynchronous. For example Aguilera
et al. investigated the use of “fast” failure detectors to speed up agreement algorithms
in some synchronous systems [4]. In another body of work, researchers considered the
definition and implementation of failure detectors for systems where message delays
and losses follow some probability distribution [14, 8, 36]. It may be interesting to
investigate QC and NBAC in systems that are not asynchronous, and to determine
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whether these problems have weakest failure detectors in these systems. This, how-
ever, is beyond the scope of this paper.

Systems with a majority of correct processes. In environments where a ma-
jority of processes are correct it is easy to implement the quorum failure detector Σ:
Each process periodically sends “join-quorum” messages and takes as its present quo-
rum any majority of processes that respond to that message. Therefore, in such
environments Ψ is equivalent to a simpler failure detector, one which outputs just Ω
instead of (Ω,Σ).

Future failures. Our definitions of QC and NBAC do not allow a process to
quit or abort because of a future failure. We could have defined these problems in a
way that allows such behavior, as in fact is the case in some specifications of NBAC
in the literature. Our results also hold with these definitions, provided we make a
corresponding change to the definitions of the failure detectors FS and Ψ: They are
now allowed to output red in executions with failures even before a failure occurs.

Appendix A. Proof of Lemma 9. We prove Lemma 9 from section 7.1.
Lemma 9. Let R0 = (F,H, I, Ŝ · S0, T̂0 · T0) and R1 = (F,H, I, Ŝ · S1, T̂1 · T1)

be two finite runs of an algorithm A using failure detector D in some environment
E such that |T̂0| = |T̂1| = |Ŝ| and participants(S0) ∩ participants(S1) = ∅. Let R =
(F,H, I, Ŝ · S, T̂ · T ) be a merging of R0 and R1. Then:

(a) R is also a run of A using D in E.
(b) For each b ∈ {0, 1} and each process p ∈ participants(Ŝ ·Sb), the state of p is

the same in Ŝ · S(I) as in Ŝ · Sb(I).
Proof. To show that R is a run of A using D in E , we first note that F ∈ E ,

H ∈ D(F ), and I is indeed an initial configuration of A. It now suffices to show that
R satisfies properties (1)–(5) of runs (see section 2.7). The fact that Ŝ · S and T̂ · T
have the same length (property (2)) is obvious from the definition of R. The fact that
in R no process takes a step after it has crashed, and that the failure detector value
in each step is consistent with the history H (property (3)), follows from the way R
is constructed from R0 and R1, and the fact that R0 and R1 have this property. T̂ ·T
is nondecreasing (property (4)) because each of T̂0 · T0 and T̂1 · T1 is nondecreasing,
T̂ is chosen to be whichever of T̂0 and T̂1 has the smallest maximum element, and T
is obtained by merging T0 and T1 in nondecreasing order. The times of the steps in
R respect the causal precedence relation (property (5)) because R0 and R1 have this
property, and no process takes a step in both S0 and S1. It remains to prove that
Ŝ · S is applicable to I (property (1)).

For the purposes of this proof, if σ is a schedule and i ∈ {0, 1, . . . , |σ|}, we denote
by σi the prefix of σ that has length i (σ0 is the empty schedule). Also, for the suffix
S of the schedule of the merged run R (i.e., the portion of the schedule of R produced
by merging S0 and S1) and b ∈ {0, 1}, let fb(i) be the number of steps of Si that
come from Sb. Using a straightforward induction, we can show the following for all
i ∈ {0, 1, . . . , |S|}:

(i) For all b ∈ {0, 1}, the set of messages between processes in participants(Ŝ ·
Sb) (i.e., messages of the form (p,−, q) where p, q ∈ participants(Ŝ · Sb)) in
the message buffer of configuration Ŝ · Si(I) is equal to the set of messages
between processes in participants(Ŝ ·Sb) in the message buffer of configuration

Ŝ · Sfb(i)
b (I).

(ii) For all b ∈ {0, 1}, the state of any process p ∈ participants(Ŝ ·Sb) is the same

in Ŝ · Si(I) as in Ŝ · Sfb(i)
b (I).
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Below we use (i) to show that, for each i ∈ {1, 2, . . . , |S|}, S[i] is applicable to Ŝ ·
Si−1(I). This proves that Ŝ · S is applicable to I.

Let S[i] = (p,m, d,A). Let b ∈ {0, 1} be such that p ∈ participants(Sb) (such a
b exists because every step of S is in either S0 or S1). Thus, (p,m, d,A) is step fb(i)
of Sb. Since Rb is a run, Ŝ ·Sb is applicable to I. In particular, step (p,m, d,A) of Sb is

applicable to Ŝ·Sfb(i)−1
b (I). Note that fb(i−1) = fb(i)−1. So, (p,m, d,A) is applicable

to Ŝ · Sfb(i−1)
b (I). Thus, m is in the message buffer of Ŝ ·Sfb(i−1)

b (I). Furthermore, it

is a message between processes in participants(Ŝ ·Sb). This is because (1) being in the

message buffer of Ŝ ·Sfb(i−1)
b (I), m was sent by a process in participants(Ŝ ·Sfb(i−1)

b ),
and (2) p, the recipient of m, is the process that takes the fb(i)th step of Sb. By (i),
m is in the message buffer of Ŝ · Si−1(I). So, (p,m, d,A) is applicable to Ŝ · Si−1(I),
as wanted.

Part (b) of the lemma follows directly from (ii), taking i = |S|.
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technique, Paris, France; Department of Computer Science, University of Toronto, Toronto,
ON, Canada, 2001.

[13] W. Chen, Abortable Consensus and Its Application to Probabilistic Atomic Broadcast, Tech.
Report MSR-TR-2006-135, Microsoft Research, Beijing, 2006.

[14] W. Chen, S. Toueg, and M. K. Aguilera, On the quality of service of failure detectors, IEEE
Trans. Comput., 51 (2002), pp. 561–580.

[15] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, Tight failure detection bounds on
atomic object implementations, J. Assoc. Comput. Mach., 57 (2010), pp. 22:1–22:32.

D
ow

nl
oa

de
d 

05
/2

9/
15

 to
 1

28
.1

78
.1

54
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUITTABLE CONSENSUS AND NONBLOCKING ATOMIC COMMIT 1379

[16] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov,

and S. Toueg, The weakest failure detectors to solve certain fundamental problems in
distributed computing, in PODC ’04: Proceedings of the Twenty-third ACM Symposium
on Principles of Distributed Computing, ACM, New York, 2004, pp. 338–346.

[17] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and P. Kouznetsov, Mutual exclusion
in asynchronous systems with failure detectors, J. Parallel Distrib. Comput., 65 (2005),
pp. 492–505.

[18] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann, The weakest failure
detector for message passing set-agreement, in DISC ’08: Proceedings of the Twenty-
second International Symposium on Distributed Computing, Springer-Verlag, Berlin, 2008,
pp. 109–120.

[19] J. Eisler, V. Hadzilacos, and S. Toueg, The weakest failure detector to solve nonuniform
consensus, Distrib. Comput., 19 (2007), pp. 335–359.

[20] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus with
one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[21] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith, Detectable byzantine
agreement secure against faulty majorities, in PODC ’02: Proceedings of the Twenty-
first ACM Symposium on Principles of Distributed Computing, ACM, New York, 2002,
pp. 118–126.

[22] E. Fromentin, M. Raynal, and F. Tronel, On classes of problems in asynchronous dis-
tributed systems with process crashes, in ICDCS ’99: Proceedings of the Nineteenth IEEE
International Conference on Distributed Computing Systems, IEEE Press, Piscataway, NJ,
Distrib. Comput. 1999, pp. 470–477.

[23] E. Gafni and P. Kuznetsov, On set consensus numbers, Distrib. Comput., 24 (2011), pp. 149–
163.

[24] J. Gray, Notes on database operating systems, in Operating Systems: An Advanced Course,
R. Bayer, R. M. Graham, and G. Seegmuller, eds., Lecture Notes in Comput. Sci. 60,
Springer-Verlag, Berlin, 1978, pp. 393–481.

[25] R. Guerraoui, Non-blocking atomic commit in asynchronous distributed systems with failure
detectors, Distrib. Comput., 15 (2002), pp. 17–25.

[26] R. Guerraoui, M. Kapalka, and P. Kouznetsov, The weakest failure detectors to boost
obstruction-freedom, Distrib. Comput., 20 (2008), pp. 415–433.

[27] R. Guerraoui and P. Kouznetsov, On the weakest failure detector for non-blocking atomic
commit, in TCS ’02: Proceedings of the Second International Conference on Theoretical
Computer Science, Kluwer B. V., Deventer, The Netherlands, 2002, pp. 461–473.

[28] V. Hadzilacos, On the relationship between the atomic commitment and consensus problems,
in Fault-Tolerant Distributed Computing, B. B. Simons and A. Z. Spector, eds., Lecture
Notes in Comput. Sci. 448, Springer-Verlag, Berlin, 1986, pp. 201–208.

[29] V. Hadzilacos and S. Toueg, A modular approach to fault-tolerant broadcasts and related
problems, Tech. Report TR 94-1425, Department of Computer Science, Cornell University,
Ithaca, NY, 1994.

[30] J. Y. Halpern and A. Ricciardi, A knowledge-theoretic analysis of uniform distributed co-
ordination and failure detectors, Distrib. Comput., 17 (2005), pp. 223–236.

[31] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou, Chasing the weakest system model for
implementing Ω and consensus, IEEE Trans. Dependable Sec. Comput., 6 (2009), pp. 269–
281.

[32] P. Jayanti and S. Toueg, Every problem has a weakest failure detector, in PODC ’08: Pro-
ceedings of the Twenty-seventh ACM Symposium on Principles of Distributed Computing,
ACM, New York, 2008, pp. 75–84.

[33] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Comm. ACM,
21 (1978), pp. 558–565.

[34] D. Malkhi, F. Oprea, and L. Zhou, Ω meets Paxos: Leader election and stability without
eventual timely links, in DISC ’05: Nineteenth International Symposium on Distributed
Computing, 2005, Springer-Verlag, Berlin, pp. 199–213.
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