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Abstract

The internal structure of neutral 180-degree domain walls in Perovskite-type ferroelectrics with

tetragonal symmetry of ferroelectric phase is analytically studied taking into account electro-

mechanical coupling. It is shown that the widely used approximation neglecting the elastic effects

may lead to qualitatively wrong results. Specifically, we address structural transitions from Ising

(achiral) to Bloch (chiral) state in 180o domain walls. In the approximation neglecting strain ef-

fects, stability of Ising walls is determined by the competition of correlation and Landau energies;

domain walls are expected to be chiral near the boundaries between two different ordered phases,

where polarization rotation is not costly. We demonstrate that such reasoning does not hold when

elastic effects are taken into account. The stability condition is severely affected by the elastic

effects. Sufficient condition for the stability of Ising walls may be formulated only in terms of elas-

tic and electrostrictive properties, regardless the correlation energy. We demonstrate the results

by considering tetragonal PZT. It is shown that elasticity stabilizes Ising walls and makes chiral

walls unfavorable for any composition of the material, while nonelastic model predicts chirality of

180-degree walls near the morphotropic boundary.
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FIG. 1. The polarization vector distribution in space

I. INTRODUCTION

With advances of nanotechnology, domain walls start being considered as individual ob-

jects rather than just boundaries separating two domains. Despite small thicknesses typically

of several nanometers, domain walls can not only be detected, but also manipulated with

the use of modern scanning probe microscopes.1. Perovskites present a large class of fer-

roelectric materials widely used in modern applications. The cubic symmetry of Landau

potential allows perovskite domain walls to have variable internal structures. In our work

we consider two types of 180-degree walls, or two phases of a wall, as we consider also

transitions between these types. The first type is Ising-walls in which only one polarisation

component P1 is present (P1 in Fig. 1). In the other type, additional polarization compo-

nent P2 arises, such walls are refered to as Bloch-walls2. The polarization profile in a Bloch

wall may be obtained by summation of P2 and P1 in Fig. 1, the resulting vector draws a

helix on passing from one domain to the other. Bloch walls may represent left spirals as

well as right spirals. The ground state of a Bloch wall is two-times energy-degenerate, that

makes it bistable. This bistability could be of interest for nano-electronic applications. For

example dense memory can be created on a ferroelectric sample with bistable 180-degree

domain walls by writing sub-domains as illustrated in Fig. 2. It is essential to be able to

switch the wall from one state to another, hence, the regions on the phase-diagram of the

wall near transition from Ising type to Bloch-bistable type are attractive for study, due to

the small energy barrier for switching there. Question of stability of Ising walls was stud-

ied theoreticaly in the frame of simple model neglecting electromechanical coupling3. On
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the basis of this theory a conclusion may be drawn that at the vicinity of the boundary of

two different ordered phases (morphotropic boundary) any 180-degree domain wall becomes

chiral. This can be understood as following. The tendency of a wall to be in one phase

or the other may be explained through interaction between the two order parameter com-

ponents. The competition of P1 and P2 makes the rise of P2 in the bulk of the domains

unfavorable. In the domain wall, where P1 passes through zero, there is a prerequisite for

P2 to rise, although the gradient term acts against its appearance. Thus depending on the

relative ratio of the gradient and Landau energies, a wall may be of Bloch- or of Ising-type.

Because in the vicinity of a morphotropic boundary Landau energy weakly increases from

polarisation rotation, domain walls are expected to become thick and chiral. Never the less,

the chiral walls were not yet observed in Tetragonal phase. Numerical calculations based

on Ginsburg-Landau-Devonshire theory with account of electromechanical coupling4, does

not reveal Bloch walls in the tetragonal phase. In this work we develop analytical model

to reconsider the question of stability of Ising walls taking into account electro-mechanical

coupling. In the model we include electrostrictive interaction and neglect flexoelectric effect.

We demonstrate the results on the parameters of Pb(Zr1−cTic)O3 (PZT). The influence of

the flexoelectricity on the domain wall structure in tetragonal ferroelectrics is studied in5,

from where it follows that the effect is expected to be small in PZT with high Ti-fraction.

We show that elastic effects introduce additional limitations for the appearance of chirality.

This limitations are severe and a situation is possible in which for certain combination of

elastic and electrostrictive properties of material, chiral walls are impossible for any values

of the correlation energy terms.

II. GIBBS POTENTIAL AND GOVERNING EQUATIONS

We base our calculations on the Gibbs free energy density. In this section we start from

potential expanded up to fourth power in terms of polarization. This model is valid for

ferroelectrics with 2-nd order phase transition not too far from the transition temperature.

Otherwise taking into account 6th power of polarization in the Landau expression is essential.

We consider the changes introduced by addition of 6th power in section V

G =
1

2
AijPiPj +

1

4
BijklPiPjPkPl +

1

2
Dijkl

∂Pi

∂xj

∂Pk

∂xl

−QijklσijPkPl −
1

2
sijklσijσkl (1)
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FIG. 2. Sub-domains in ferroelectric sample

where Aij = αδij and Bijkl =
β2

3
(δijδkl + δikδjl + δilδjk) + (β1 − β2)gijkl , are the coefficients

of Landau expansion, α being temperature dependent α = α0(T − T0), and β1, β2 > 0;

Dijkl = D12δijδkl +D44(δikδjl + δilδjk) + (D11 −D12 − 2D44)gijkl (2)

is the gradient term. σij are the components of mechanical stress. Hereafter the summation

over repeating indices is implied, δij is invariant Kronecker tensor and gijkl is the cubic tensor

of 4th rank, having the following structure in crystallographic axes: gijkl = 1 if i = j = k = l

and gijkl = 0 otherwise.

Electrostriction and compliance tensors Qijkl and sijkl has same structures as Dijkl as a

consequence of cubic symmetry.

Qijkl = Q12δijδkl +Q44(δikδjl + δilδjk) + (Q11 −Q12 − 2Q44)gijkl (3)

sijkl = s12δijδkl + s44(δikδjl + δilδjk) + (s11 − s12 − 2s44)gijkl (4)

From the Gibbs potential one obtains equations of state

∂G

∂Pi

− d

dx
(
∂G

∂P
′
i

) = 0 (5)
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Besides we imply condition of mechanical equilibrium

∂σij

∂xj

= 0 (i, j = 1, 2, 3), (6)

and Poisson’s equation

d(εbEi + Pi)

dxi

= 0 (7)

Where εb is the background dielectric permittivity, Ei is the vector of electric field, and

Pi is the ferroelectric part of the polarization vector (hereafter we use the term polarization

as shorthand).

Tetragonal phase with spontaneous polarization P0T =
√

−α
β1

and six equivalent domain

states {P0T , 0, 0}, {−P0T , 0, 0}, {0, P0T , 0},etc. is given by homogeneous solution of the sys-

tem of equations (5),(6) at zero stress within α < 0 and β2 > β1. Transition to paraelectric

phase corresponds to α < 0; transition to the rhombohedral phase occurs at the mor-

photropic boundary, determined by β2 = β1.

The planar 180-degree domain walls we are interested in are simplest connections between

two oppositely poled domains. We consider one-dimensional problem with polarization

vector P and mechanical stresses σij being dependent only on the coordinate z normal to

the plane of the wall. Correspondingly, the boundary conditions are the following:

P = P0T, σij = 0 for x = −∞ and P = P0T, σij = 0 for x = ∞ i, j = 1, 2, 3 (8)

Here P0T is the vector of spontaneous polarization in the domain x→ ∞.

III. APPROXIMATION IN THE ABSENCE OF ELECTROMECHANICAL COU-

PLING

As a benchmark, it is instructive to consider the problem without taking into account

elastic effects, i. e. with Qijkl and sijkl tensors set to zero in (1). As we will show in

the next section, where we consider the impact of electro-mechanical coupling, the addition

of non-zero Qijkl and sijkl lead to a result with same mathematical structure, but with

renormalized coefficients in the Landau expansion. For ferroelectrics with a large value of

the dielectric permittivity with respect to background permittivity (7) may be rewritten
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FIG. 3. Wall orientations and related coordinate set. φ is the dihedral angle between the wall

plane and the (001) plane.

as divP = 0 or Pz = 0 in the one-dimensional case. The orientations of the domain walls

compatible with this condition with respect to crystallographic axes xC1xC2xC3 are shown in

Fig. 3. We introduce the right-handed coordinate set related to the wall with x-axis directed

along the vector of spontaneous polarization and y orthogonal to x and z as shown in the

figure. In what follows we use notations P1 and P2 for x- and y- polarization components

correspondingly.

With the aforementioned simplifications, The Gibbs potential (1) in the reference frame

related to a domain wall, takes the form:

GT =
1

2
α(P 2

1 + P 2
2 ) +

1

4
β1P

4
1 +

1

2
β2P

2
1P

2
2 +

1

4
βT (P

4
2 ) +

1

2
δ1(

dP1

dx
)2 +

1

2
δ2(

dP2

dx
)2 (9)

where βT = (3β1 + β2 + (β1 − β2) cos 4φ)/4,δ1 = D44 and δ2 = δ1(
1+cos 4φ

2
+ 1−cos 4φ

2∆
), ∆ =

2D44

D11−D12
is the gradient term anisotropy parameter.

From (9) one obtains equations of state
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αP1 + β1P
3
1 + β2P1P

2
2 − δ1

∂2P1

∂z2
= 0 (10a)

αP2 + βTP
3
2 + β2P2P

2
1 − δ2

∂2P2

∂z2
= 0 (10b)

The Ising wall is the solution of equations (10) with only one non-zero polarization com-

ponent P1. Its profile is given by the well-known formula6, same for all compatible wall

orientations.

P1 = P0T tanh(z/t) (11)

where t =
√

−2δ1/α has a meaning of the domain wall half-width.

However, this solution does not always describe a stable 180-degree wall. If it is not

stable with respect to appearance of the additional polarization component, it means that

Bloch wall solution becomes energetically favorable. One can note that if the polarization

component profiles P1(z), P2(z) satisfy the system (10), then P1(z),−P2(z) will also be a

solution, and this two states are energetically equivalent as (9) does not contain odd powers

of P2. It signifies bistability of the Bloch walls. There is no analytical solution available

for the developed Bloch-walls. We limit our analysis to indicating conditions when Ising

wall looses stability, that can be obtained analytically. The limit of stability of the Ising

solution can be found using the technique developed for this kind of problems7. We look for

the minimum eigenvalue of the functional acting on P2, obtained from Eq. (10b) where for

P1(x) we put the solution (11) and linearize it with respect to P2. If it is negative then the

Ising solution is unstable. One readily finds this functional in the form

(− ∂2

∂x2
+B + U tanh2(

z

t
))P2 (12)

where B = α/δ2;U = β2P
2
0T/δ2. Its smallest eigenvalue can be found in the form.

(
√
4Ut2 + 1− 1 + 2Bt2)/2t2 (13)

The stability condition may be written as:

β2

β1

> 1 + 2
δ1
δ2

or
β2

β1

> 1 +
4∆

1 +∆+ (∆− 1) cos(4φ)
(14)
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FIG. 4. Stability Chart for the Ising wall profile in the approximation in the absence of electrome-

chanical coupling. Parameter β2/β1 increases from the left to the right

The equality in (14) corresponds to a phase transition, when a new component arises in

the wall. According to the relationship (14) near the morphotropic boundary the domain

walls are chiral for any orientations. The stability chart interpreting (14) as a function

of parameter β2/β1 is illustrated in Fig. 4. Since the parameter δ1
δ2

depends on the wall

orientation, a region on the chart may exist where some walls are of Ising type, others - of

Bloch type.

IV. ACCOUNT OF ELASTIC EFFECTS

In this section we describe the mechanical state of the sample, and indicate the way the

problem is mathematically reduced to one considered in the previous section.

The strains that raise in the sample can be found from the constitutive equations of

elasticity:

εij = − ∂G

∂σij

(15)

Far from the domain wall we apply the conditions of a stress-free sample:

σij(x3 → ±∞) = 0; i, j = 1, 2, 3 (16)

From (15) (at P = P0T, σij = 0) one obtains boundary conditions for the strain components:

ε11 = ε011; ε22 = ε022; ε12 = 0. (17)
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where

ε011 = Q11P
2
0T ; ε022 = Q12P

2
0T ; (18)

Mechanical equilibrium conditions (6) could be written as ∂σ3/∂x3 = 0, ∂σ4/∂x3 = 0,

∂σ5/∂x3 = 0. Taking into account (16) one obtains σ3 = σ4 = σ5 = 0 everywhere. In the

case of z-dependent solution, the Saint-Venant compatibility relations

eiklejmn

(
∂2εln

/
∂xk∂xm

)
= 0, (19)

where eijk is the Levi-Civita symbol, transform to

d2ε11
/
dx2

3 = d2ε12
/
dx2

3 = d2ε22
/
dx2

3 = 0 (20)

The solution to Eq. (20) with boundary conditions (16) is:

ε1(z) = ε01; ε2(z) = ε02; ε6(z) = 0 (21)

Note that it is the only possible one-dimensional solution for the elastic problem. The

applicability of this solution to a stress free sample with finite sizes is equivalent to the

applicability of a one-dimensional model to a parallel plate capacitor. By applying this we

neglect the fringe elastic fields at the contact of the domain wall with the surface, which is

permissible when the dimensions of the sample are much larger than the thickness of the

domain wall.

Eqs. (21) , (15) yield:

s11σ11 + s12σ22 +Q11P
2
1 +Q12P

2
2 = Q11P

2
0T (22a)

1

4
(4s12σ11 + 3s11σ22 + s12σ22 + 2s44σ22 + (s11 − s12 − 2s44)σ22 cos 4φ+ (22b)

+4Q12P
2
1 + (3Q11 +Q12 + 2Q44 + (Q11 −Q12 − 2Q44) cos 4φ)P

2
2 ) = Q12P

2
0T

4(s44σ6 +Q44P1P2) = 0 (22c)

From (22) we obtain expressions for the nonzero elastic stress components in the form:
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σ11 ≡ σ1 =
(P 2

0T − P 2
1 ) (Q11s22 (φ)−Q12s12) + P 2

2 (Q22 (φ) s12 −Q12s22 (φ))

s22 (φ) s11 − s212
(23a)

σ22 ≡ σ2 =
(Q12s11 −Q11s12) (P

2
0T − P 2

1 ) + P 2
2 (−s11Q22 (φ) +Q12s12)

s22 (φ) s11 − s212
(23b)

σ12 ≡ σ6 = −Q44

s44
P1P2 (23c)

s22 (φ) = s11 + sin2 (2φ)

(
s44
4

− s11 − s12
2

)
(23d)

Q22 (φ) = Q11 + sin2 (2φ)

(
Q44

4
− Q11 −Q12

2

)
(23e)

Euler Eqs. (5) with elastic effects taken into account read as:

αP1 + β1P
3
1 + β2P1P

2
2 − 2(Q11σ11P1 +Q12σ22P1 + 2Q44σ12P2)− δ1

∂2P1

∂z2
= 0 (24a)

αP2 + βTP
3
2 + β2P2P

2
1 +

1

4
(−16Q44σ12P1 − 8Q12σ11P2 − (24b)

−2σ22(3Q11 +Q12 + 2Q44 + (Q11 −Q12 − 2Q44) cos 4φ)P2)− δ2
∂2P2

∂z2
= 0

Substitution of (23) into (24) yields:

α′P1 + β′
1P

3
1 + β′

2P1P
2
2 − δ1

∂2P1

∂z2
= 0 (25a)

α′′P2 + β′′
1P

3
2 + β′

2P2P
2
1 − δ2

∂2P2

∂z2
= 0 (25b)

where following renormalization is done:

α′ = α− P 2
0TΘ;α′′ = α + ΩP 2

0T ; β
′
1 = β1 +Θ; β′

2 = β2 + Ξ (26)

which is equivalent to the following using relation P0T = −α
β1
:

α′ = α(1 +
Θ

β1

);α′′ = α(1− Ω

β1

); β′
1 = β1(1 +

Θ

β1

); β′
2 = β2 + Ξ (27)

where
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Θ =
Q2

11

(
s11 − s12 − s44

2

)
cos(4α) +Q2

11

(
3s11 + s12 +

s44
2

)
− 8Q12Q11s12 + 4Q2

12s11(
s11 − s12 − s44

2

)
s11 cos(4α) + 3s211 +

(
s12 +

s44
2

)
s11 − 4s212

(28a)

Ω = (2Q2
11s12(cos(4α) + 3) +(28b)

+Q12 (Q44s11(cos(4α)− 1) + 2Q12 (s11(cos(4α)− 1) + 4s12))−

−Q11

(
Q44s12(cos(4α)− 1) + 2Q12

(
s44 sin

2(2α) + 2s11(cos(4α) + 3)
))
) ·

·(s11 (2s12 + s44) sin
2(2α) + s211(cos(4α) + 3)− 4s212)

−1

Ξ =
Q2

44

s44
− Ω(28c)

Thus the equations has the same structure as in the approximation neglecting elastic

effects, but now α depend on the wall orientation and is different for the two Euler equations.

This enriches the variety of possible cases for the stability condition. In particular, if α′′

becomes positive, we have ”paraelectric phase” for the second component of polarization.

It means that the appearance of the second polarization component is not favorable even

in the middle of the domain wall, where P1 = 0, regardless the value of correlation terms.

In this case we say that Ising solution is ”safely” stable. The complementary case can be

formulated as requirement (necessary condition) for the bistablity in the wall:

β1 − Ω > 0 (29)

If condition (29) is met it means that appearance of P2 in the middle of the domain

wall decreases the polarization-related energy density. Although the gradient term may still

suppress this new component. To determine whether the single-component solution is stable

we use the same method as in section III. Taking into account elastic effects, by analogy to

(12), (13),(14) we obtain stability condition for Ising walls:

β′
2

β′
1

>
α′′

α′ (1 + 2
δ1α

′′

δ2α′ ) (30)

which transforms to the following with account of renormalizations (27)

β2 + Ξ

β1 − Ω
> 1 + 2

β1 − Ω

β1 +Θ

δ1
δ2

(31)
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V. GENERALIZATION OF THE THEORY FOR FERROELECTRICS WITH 1st-

ORDER PHASE TRANSITION

The Gibbs potential G1 for ferroelectrics with 1-st order phase transition may be obtained

from G (1) as following:

G1 = G+ CijklmnPiPjPkPlPmPn (32)

where Cijklmn = γ3
6

< δijδklδmn > +(γ2 − γ3
2
) < δijgklmn > +(γ1 − γ2 +

γ3
3
)g

(6)
ijklmn is the

6th order dielectric stiffness tensor. With <> we denote symmetrization with respect to

interchange of indices: e.g. < δijδkl >= 1
3
(δijδkl + δikδjl + δilδjk), g

(6)
ijklmn is invariant tensor

of 6th rang for the cubic symmetry. In the cubic crystallographic axes the tensor g
(6)
ijklmn = 1

if i = j = k = l = m = n and g
(6)
ijklmn = 0 otherwise.

Minimisation of G1 yields the following expression for the spontaneous polarization in

the domains6:

Ps =

√√
β2
1 − 24γ1α− β1

12γ1
(33)

One can check that the elastic renormalizations due to electrostriction derived in section

IV do not involve the 6th order dielectric stiffness tensor Cijklmn. Thus the condition (29)

may be reformulated for 1-st order ferroelectrics just by change POT to Ps in expression (26).

Thus we can formulate requirement (necessary condition) for the appearence of bistablity

in the wall in first order ferroelectrics as follows:

12γ1α√
β2
1 − 24γ1α− β1

+ Ω < 0 (34)

Note that this expression should be applied also for the materials with 2-nd order phase

transition in the temperature range far from the transition point where the influence of

6th polarisation power becomes essential. There is no possibility to derive exact analytical

expression analogous to (30), which would take into account the correlation energy. However,

from the structure of Eqs. (25) it follows that the stability of Ising walls is governed by

the same factor δ1/δ2. In the next section we explore stability of Ising domain walls for the
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TABLE I. Values of the thermodynamical parameters of PZT at 25oC

(* -values obtained by extrapolation)

Parameter \ c 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Refs.

α(108m/F ) -1.58 -0.98 -1.67 -2.49 -2.97 -3.24 -3.42 8

β1(10
8m5/C2F ) 6.65 1.91 1.45 0.26 -1.22 -2.32 -2.91 8

β2(10
8m5/C2F ) 4.78 3.47 6.47 10.2 12.6 14.1 15 8

γ1(10
8m9/C4F ) 2.71 1.33 1.86 2.35 2.47 2.52 2.60 8

γ2(10
8m9/C4F ) 12.1 6.13 8.50 10.25 9.68 8.01 6.10 8

γ3(10
8m9/C4F ) -5.69 -2.89 -4.06 -5.00 -4.90 -4.36 -3.66 8

Q11(10
−2m4/C2) 7.26 9.66 8.12 7.89 8.14 8.50 8.90 8

Q12(10
−2m4/C2) -2.71 -4.60 -2.95 -2.48 -2.45 -2.5 -2.6 8

Q44(10
−2m4/C2) 6.29 8.19 6.71 6.36 6.42 6.57 6.75 8

s11(10
−12Pa−1) 8.8 10.5 8.6 8.4 8.2 8.1 8.0∗ 9

s11(10
−12Pa−1) -2.9 -3.7 -2.8 -2.7 -2.6 -2.5 -2.4∗ 9

s11(10
−12Pa−1) 24.6 28.7 21.2 17.5 14.4 12 10∗ 9

parameters of Pb(ZrO1−cTic)O3 (PZT). Depending on the Ti-fraction c the phase transition

may be of 2nd or 1st order. In case of 2nd order we use analitical expressions, for the 1st

order we solve the problem numerically.

VI. ANALYSIS OF STABILITY OF ISING DOMAIN WALLS IN PZT

The solid solution Pb(ZrO1−cTic)O3 has tetragonal structure if c is larger than 0.43

(morphotropic boundary). The cubic-tetragonal phase transition is of the 2-nd order if

c ≤ 0.7 and 1-st order for c > 0.7. The thermodynamic coefficients for PZT for c values

0.4;0.5;0.6;0.7;0.8;0.9;1 are listed in Table 1. For other c in the interval we interpolate the

parameters by polynomials.

To adress the question of stability of Ising walls we first check inequality (34). The left-

hand part of the condition (34) is illustrated in Fig. 5 as a function of Ti-concentration.

It is seen that for c < 0.62 Ising walls are ”safely” stable for any wall orientation. Thus
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FIG. 5. Dependance of the factor α′′ = 12γ1α√
β2
1−24γ1α−β1

+Ω on the Ti-fraction c in PZT

the statement that all the domain walls near the morphotrophic boundry become chiral,

that was obtained in the ”not elastic” model, does not hold for the case when the elastic

effects are taken into account. In the region where α′′ < 0 the stability of Ising walls is

determined by the factor δ1/δ2. In material with tetragonal symmetry δ1/δ2 varies in the

interval (1,∆), where ∆ = 2D44

D11−D12
is the gradient term anisotropy parameter; this follows

from expression (14). Wall orientation φ = 0 corresponds to δ1/δ2 = 1; δ1/δ2 = ∆ at

φ = π/4. We consider the extreme case φ = π/4, and we vary ∆-parameter since it is

unknown for PZT. Domain wall structure is calculated numerically for different ∆-values for

c = 0.7, see Fig. 6. The case ∆ → ∞ demonstrates the value of P2-component conditioned

by elastic effects only. Note that in ”not elastic” approximation the maximal value of P2

would be equal to unity. Thus we observe the suppression of the P2-component by elastic

effects only. Switching on gradually the correlation term by decreasing ∆ we observe further

suppression and smoothing of the hump and it completely vanishes at ∆ ≈ 40. From the

numerical calculations we see that chiral walls are favourable only under extremely high

δ1/δ2 - values, that are not realistic for PZT (for pure PbTiO3 δ1/δ2 ≈ 1.710).

VII. CONCLUSION

Taking into account the electromechanical coupling leads to qualitatively new results for

the stability of Ising walls in perovskite ferroelectrics. Elastic renormalisations may lead

to ”paraelectric phase” for the 2-nd polarization component, implying ”safe” stability of

Ising walls, regardless the correlation energy anisotropy. This ”paraelectric phase” occurs in
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FIG. 6. Dependence of domain wall profile on the parameter ∆.

tetragonal PZT close to the morphotropic boundary, which makes chiral walls impossible.

Thus the conclusion of the ”not elastic” theory that all the domain walls near the mor-

photrophic boundry become chiral does not hold for the case when the elastic effects are

taken into account.
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