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Abstract—We consider a wireless network with a large number
of nodes distributed over a line. Under line-of-sight propagation,
this network has only one degree of freedom for communication.
At high SNR, this one degree of freedom can be readily achieved
by multi-hop. At low SNR, however, the performance is domi-
nated by the power transfer in the network. We show that none
of the existing architectures, neither hierarchical cooperation nor
multi-hop, can achieve optimal scaling of the capacity. We develop
a digital hierarchical beamforming architecture and show that
it is scaling optimal. This result reveals a new regime for large
wireless networks, where beamforming techniques are needed to
achieve capacity.

I. INTRODUCTION

What are good architectures for communicating in wireless
ad hoc networks? To infer architectural insights that can guide
communication system design for future wireless networks, we
follow the scaling law approach initiated in [1]. Motivated by
the massive proliferation of wireless devices, this approach
focuses on the scaling of the capacity of a random network as
the number of users gets large, and seeks to identify architec-
tures that exhibit the optimal scaling. The intensive research
effort in this line [2]-[7] has lead to the characterization of
scaling optimal architectures for large wireless networks in
many regimes (see [8] for an overview).

The operating regime of a large network is determined by
three parameters:

o the average SNR between neighboring nodes in the
network, which depends both on the power available at
the nodes and the distances between them;

« the spatial degrees of freedom of the network, determined
by the area and the carrier wavelength;

« and the power path loss exponent « of the environment,
capturing how fast signal power decays with distance.

Roughly speaking, when SNR is high and there are suffi-
cient spatial degrees of freedom in the network (this is for
example the case when the pairwise channels are subject
to i.i.d. fading), cooperative MIMO based architectures can
provide significant capacity gains over multi-hop [5]. Multi-
hop is the traditional communication architecture for wireless
networks, where information is routed from source nodes to
destinations via multiple intermediate nodes, just like in wired
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networks. The situation is more tricky for networks at low
SNR. When the SNR is low but there are still sufficient spatial
degrees of freedom in the network (as with i.i.d. fading), the
optimal architecture depends on o. When « is small, a hier-
archical cooperation architecture based on bursty distributed
MIMO transmissions is optimal. At large «, multi-hopping is
the right strategy. Interestingly, none of these two strategies
makes use of beamforming, which is known to be the right
strategy for point-to-point MIMO channels at low SNR [9].
Under i.i.d. fading, the distributed MIMO channels available
in the network are well-conditioned and beamforming (or
waterfilling over the eigenvalues of the channel) provides little
gain. Transmitting independent streams for each node during
the distributed MIMO transmissions is optimal.

The recent work [6], however, reveals that degrees of
freedom in a wireless network can be limited by physical
constraints in the spatial channel. This can be thought of as
the spatial channel introducing correlation between pairwise
gains. When the available degrees of freedom in the network
are very few, they can be readily achieved by multi-hop. This
makes multi-hop scaling optimal for such networks in the high
SNR regime [6]. However, at low SNR, the performance is
dominated by the power transfer in the network and it is not
clear whether any of the existing architectures achieves the
optimal scaling of the capacity.

In this paper, we explore a new regime where the network
is both limited in power (operating at low SNR) and in
spatial degrees of freedom (operating under strongly correlated
pairwise channels). We show that a new class of cooperative
beamforming architectures outperform classical multi-hopping
when « is small. To capture this regime in a simple setup,
we focus on a one-dimensional wireless network in a line-
of-sight propagation environment. This leads to the extremal
case when there is only a single degree of freedom for
communicating in the network. We develop a hierarchical
beamforming architecture for this network, where nodes first
broadcast their information to a small cluster around them.
This allows nodes to beamform and distribute this information
over a larger scale. Continuing in a hierarchical fashion, the
information of each source node is broadcasted to the whole
network, including the destination node. This architecture is
digital, as opposed to amplify-and-forward based beamforming
techniques considered in the literature [10].
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Fig. 1: One-dimensional network

II. MODEL

There are n nodes uniformly and independently distributed
along a line of length L, as illustrated on Figure 1. Every node
is both a source and a destination, and the sources and desti-
nations are randomly paired up one-to-one. All source nodes
wish to send a constant number of bits to their corresponding
destination node at a common rate R(n). The maximum
achievable rate R(n) is called the per-node throughput of
the network. Correspondingly, the aggregate throughput of the
network is defined as T'(n) = nR(n).!

We assume that communication takes place over a flat
channel with bandwidth W and that the received signal Y}, [m]
by node k at time m is given by

Yilm] = hiy X;[m] + Zx[m]
jeJ
where J is the set of transmitting nodes, X;[m] is the signal
sent at time m by node j and Zj[m] is additive white circularly
symmetric Gaussian noise (AWGN) of power spectral density
No/2 Watts/Hz. In a line-of-sight environment, the complex
baseband-equivalent channel gain hj; between transmit node
j and receive node k is given by

hij = VG w (1)
Tk

where G is Friis’ constant, A is the carrier wavelength, ry;

is the distance between node £ and node j and o > 1 is the

power path loss exponent. Notice that the assumption o > 1 in

one-dimensional networks replaces the traditional assumption

« > 2 made in two-dimensional wireless networks. We assume

a common average power budget per node P.

III. MAIN RESULT

Let us denote by SNR; the signal-to-noise ratio over the
typical nearest neighbor distance in the network®. In a one-
dimensional network, the typical nearest neighbor distance is
%, therefore,

SNR, =

GP (n)a
NoW \L

A relatively straightforward analysis reveals that in one-
dimensional networks, the multi-hop scheme described in [1]

achieves with high probability® an aggregate throughput of
order

T(H)Q<SNRS>

logn

'Due to space constraints and for the sake of clarity, we will restrict
ourselves in the proofs of the statements made below to regular networks,
where nodes are equally spaced.

2where “s” stands for “short range SNR”

3meaning with probability > 1 — exp(—cn) for some constant ¢ > 0

when SNR, < 0 dB and o > 1.

On the other hand, the best known information theoretic
upper bound on the throughput scaling of such networks is
given in [4]*:

T(n) = O (log®n)

where again, SNR; < 0 dB and a > 1.

This shows that for constant SNR,, multi-hop cooperation
is order optimal and the aggregate throughput is constant, up
to logarithmic factors. In the low SNR regime however (that
is, when SNR; < 0 dB), the question remains whether a
more sophisticated strategy would not allow to achieve higher
throughput scaling than multi-hop. We answer this question
by the affirmative in the following theorem, in the case where
the path loss exponent « lies between 1 and 2.

Theorem 1: Let us assume that 1 < o < 2 and SNR, <
0 dB (i.e. SNRy = n™" for some v > 0). Then for any
€ > 0, there exists a communication scheme (referred to as
“hierarchical beamforming” in the sequel) that achieves the
following aggregate throughput with high probability as n gets
large:

T(n)=Q (min {SNRS o= ¢ ) 2)

The above aggregate throughput scaling is strictly higher
than that achieved by multi-hop. In particular, when o = 1
and SNR < 1/n, T(n) = Q(SNRsn!'~¢), which is an order
n improvement over multi-hop. The hierarchical beamforming
architecture achieving this performance is described in detail
in the next section.

Is this strategy optimal or can we do better? Before answer-
ing this question, let us introduce the notion of a broadcasting
scheme below.

Definition 1: A communication scheme achieving a per-
node throughput R(n) for n S-D pairs is said to be a
broadcasting scheme if at this same rate R(n), all destinations
are able to decode the information sent not only by their
corresponding source, but also by all the other sources.

As we will see, hierarchical beamforming enters into this
category, and so does classical multi-hop in one-dimensional
networks (at the price of a small adaptation of the original
scheme). An interesting open question, that we do not address
in the present paper, is whether any scaling optimal scheme is
a broadcasting scheme in a one-dimensional network or not.

The theorem below, together with Theorem 2 above, shows
that: a) hierarchical beamforming is scaling optimal when
a = 1; b) among all broadcasting schemes, hierarchical
beamforming is scaling optimal when 1 < o < 2, and multi-
hopping is when a > 2.

Theorem 2: Consider a one-dimensional network with o >
1 and SNRg < 0 dB. Then:

a) The aggregate throughput scaling of any communication
scheme is upper bounded with high probability by

T(n) = O (min {SNR, nlog®n,log’ n})

4Notice that the fading model considered in [4] is a simpler one with no
phase shifts. It turns out however that in one-dimensional networks, adding
phase shifts into the picture does not change the throughput scaling.



b) The aggregate throughput scaling of any broadcasting
scheme is upper bounded with high probability by

T(n) {O (min {SNR, n?~® log®n,log’n}) if 1 <a <2

O (SNR; log” n) if a>2
We prove this theorem in Section V.

IV. HIERARCHICAL BEAMFORMING

Let us start by considering the situation where the SNR in
the network is very low. More precisely, let us assume that

3)

In this regime, many transmissions can take place concurrently
in the network (spatial reuse) without creating interference
above the noise level. Under this assumption, the lower bound
in Eq. (2) reads

T(n) = Q (SNR,n®~*7¢)

SNR, <n® 2 (with 1 < < 2)

“4)

We first sketch the hierarchical beamforming srategy we
propose and then proceed to its performance analysis which
also provides a more detailed description. Consider one par-
ticular source-destination pair s — d in the network. For
simplicity, assume that s has one bit to communicate to d.
s can communicate this one bit in two steps:

e it can first broadcast this bit to a small cluster of M
neighboring nodes around itself.

e the M nodes can then simultaneously transmit this bit
to the destination node d by coherently combining their
signals.

The beamforming gain due to the coherent combining of
the M signal leads to a better performance then simply
transmitting the bit from s to d.

From the network point of view, all source-destination pairs
have to eventually accomplish these two steps. Step 2 is long-
range communication and only one source-destination pair can
operate at a time. Steps 1 involves local communication and
can be parallelized across source-destination pairs. This leads
to following two phases in the operation of the network:

1. The network is divided into clusters of M nodes. Each
source node distributes one bit to the M nodes in its cluster.
There are M source nodes in a cluster, which can simply take
turns to distribute their one bit. When the total interference
interference from the other clusters is below the noise level,
this operation can be conducted in parallel among all clusters.
At the end of this phase, each node has therefore received (and
decoded) one bit from every other node in its cluster.

2. In the second phase, the bits are beamformed to their
actual destinations one at a time. Every cluster performs M
successive transmissions, in each transmission the bit of one
particular source node in the cluster is beamformed to its
destination. There are a total of n succesive beamforming
transmissions in this phase, one for each source-destination
pair in the network.

A key observation is that this two phase scheme distributes
the bits of every source node to all other nodes in the network,

even if this is not what we set for. In the second phase, the
beamforming transmissions done one at a time can be decoded
not only by the actual destination node but simultaneoulsy
by all the nodes in the network. This a consequence of
the fact that the network has only one degree of freedom.
The trasmitted signals from each cluster can be arranged to
coherently combine simultaneously at all the remaining nodes
in the network. Therefore according to Definition 1, this two
phase scheme is a broadcasting scheme.

This brings the idea of recursion. The broadcasting require-
ment in the first phase can be handled by further dividing each
cluster into smaller clusters and use the two-phase broadcast
scheme we just described. The two phase scheme is illustrated
in Figure 2. The recursion is summarrized in the following
lemma.

Note that contrary to the classical amplify-and-forward
strategy that has been shown in [10] to be optimal at low power
for a single S-D pair in a relay network, the scheme presented
here is based on a digital architecture: at each step, all the
nodes decode the broadcasted information before forwarding
it further. This allows in particular to avoid the burden of noise
amplification experienced by amplify-and-forward schemes.

M nodes M nodes
1 1
[ @ & & e o & o o |
S~~~ S~~~
M nodes

Fig. 2: Two-phase beamforming

Lemma 1: Consider 1 < a < 2 and a one-dimensional
network with n nodes and SNR; < 0 dB, subject to an
additive external interfering source with bounded average
power. If in this network, there exists a broadcasting scheme
achieving with high probability an aggregate throughput

T(n) = Q (SNR, n”)

for some 8 < 2 — q, then there exists another broadcasting
scheme achieving with high probability an aggregate through-
put

T(n) = Q (SNRS nf<6>)

where (1-8)
1B =1-=—5 )

Notice that f(3) > S forall 1 <a<2and <2 —aq, so
the performance of the new scheme is always strictly better
than that of the original one. Figure 3 below illustrates the
behavior of f(8), for a =1 and a = 1.5.

Proof of Lemma 1: Consider a regular network of n nodes

and let us divide it into clusters of M nodes’, where 1 <
M < n. Based on the assumption made in the lemma, the

SIn the random setting, these are clusters of length LM /n, containing each
with high probability order M nodes.
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Fig. 3: Growth of the aggregate throughput exponent

following communication scheme will be shown to achieve
the desired throughput scaling.

Phase 1. Source nodes broadcast information to every other
node inside their cluster, using the original scheme with
aggregate throughput 7'(M) = Q (SNR, M#)°. This step is
parallelized across clusters.

Phase 2. For each source node inside a cluster of M nodes,
all the nodes inside the cluster simultaneously beamform the
received bits to the rest of the network. During this second
phase, only one cluster operates at a time.

Performance Analysis: In the first phase, clusters work in
parallel. In order to avoid collisions between neighboring
clusters, a simple time-division scheme with two rounds is
used, where half of the clusters are active at a time: this
only affects the throughput by a factor two and allows clear
reception of the signals inside each cluster. One can indeed
check that because of the assumption (3), the average power
of the interference caused in one cluster by simultaneous
transmissions in the other clusters is bounded.

The broadcasting rate achieved by the scheme inside each
cluster is R(M) = Q (SNR,; MP~1), so the total time taken
by this first phase is upper bounded by

1
h=0 (SNRS Mﬂ—l)

In the second phase, M broadcast transmissions are performed
sequentially from each cluster towards the rest of the network.
As there are n/M clusters, the total number of transmissions
is therefore equal to n (that is, one transmission takes place
for each source node). The SNR of each transmission is lower
bounded by

SNR, % M27n~% = SNR, M n'~®

where the above factors are explained as follows:

- the factor n/M is due to the fact that each cluster only
transmits a fraction M /n of the time, so power can be spared
during the rest of the time;

- the factor M? is the beamforming gain (notice that because
of the line-of-sight channel model (1) and the assumption of
a one-dimensional network, it is indeed possible to beamform
the signal towards all destinations simultaneously);

- the factor n~ is a lower bound on the power attenuation
over distance.

SNotice that SNRs, that only depends on the distance between neighboring
nodes, remains unchanged for a cluster of size M or for the whole network.

The total time taken by this second phase is therefore upper
bounded by

n 1
fa=0 (SNRSMnl—a) =0 <SNRSMn—a>

Optimal cluster size. In order to optimize the throughput of
the new scheme, the optimal cluster size M ™* should be chosen
such that the durations of the two phases are equal, i.e. t; = to,
which leads to

(M"Y = M*n=® ie. M*=n"2H (6)
(Notice that a/(2 — §) < 1, as § < 2 — « by assumption).
Resulting aggregate throughput: With this cluster size, it
is worthwhile noticing that the broadcasting rate of the new
scheme is the same as the one achieved in each cluster with
the original scheme. However, as more nodes participate to the

transmission, the aggregate throughput increases as follows:
T(n) = nR(M*)=Q(nSNR, (M*)*1)
= Q(SNR,n/®)

where f(f) is given in (5). This completes the proof. ]

Let us now explain how applying recursively Lemma 1 al-
lows to obtain the lower bound (4) on the aggregate throughput
scaling.

Let us first use multi-hop for broadcasting information at the
lowest level of the hierarchy, that is, inside small clusters of
M7 nodes. Note that multi-hop can be easily transformed into
a broadcasting scheme in the one-dimensional case without
changing its aggregate throughput scaling; since information
is routed over a line, each destination already observes the
information sent by order n nodes on average. The aggregate
throughput achieved inside each cluster is therefore

SNR,
T(M,) = -
(M) =© (log M,

Using then the two-phase scheme described in the proof of
Lemma 1, we reach for larger clusters of size My (to be
specifed below) an aggregate throughput

) =Q (SNRSMf) VB <0

T(Ms) = Q (SNRS M <ﬁ>) VB <0

Iterating this procedure h — 1 times, until the large cluster
size M, reaches the network size n, we obtain the following
aggregate throughput

T(n) = Q (SNRS nf“’“Uf)) VB <0

As illustrated on Figure 3, the sequence f (h’l)(ﬁ) converges
to the minimal solution of the equation

B = f(8%)
which is given by * = 2 —a for 1 < a < 2. For a
fixed number of hierarchical levels h, the achieved aggregate
throughput scaling is therefore T'(n) = Q (SNRyn?~*7¢),

and ¢ > 0 can be made arbirtraily small by increasing the
number h. |



In addition, let us describe how to compute the optimal
cluster sizes M, ..., M}, in this process. From Eq. (6) in the
proof of Lemma 1, we deduce that at level 1 < k < h,

My = (Miy1)®/ 2B

where (k) is the aggregate throughput exponent achieved at
level k. This allows to compute recursively the cluster sizes,
starting from M}, = n. From this analysis, it turns out that as
h gets large, the optimal cluster size M; at the lowest level
of the hierarchy converges to

Ml = Tlail

So when a = 1, the hierarchical beamforming scheme starts
directly from tiny clusters, whereas when 1 < a < 2, the
optimal communication strategy is first to perform multi-hop
inside clusters of size n®~!, and then to use hierarchical
beamforming. We therefore see that in the latter case, because
of the higher value of the path loss exponent o, beamforming
only helps when sufficiently many nodes participate to the
transmission.

Finally, let us mention what happens at moderately low
SNR, ie. when n® 2 < SNR, < 1. In this case, the
interference felt from the simultaneously transmitting clusters
might hurt the tranmissions inside a cluster. A simple solution
to this problem is to reduce the power used by each node,
so as to meet the equality SNRy = n®~2. In this case, the
aggregate throughput of the scheme is arbitrarily close to a
constant, which proves the claim made in Theorem 1.

V. UPPER BOUNDS ON THE THROUGHPUT SCALING

In this section, we prove Theorem 2. Notice that in both
parts a) and b), the stated O (log®n) bound comes form [4].

Proof of Theorem 2.a): For a regular network, the proof
follows from the following simple observation: the per-node
throughput R(n) is upper bounded by the maximum mutual
information from a given source node and the rest of the
network, as illustrated on Figure 4.

o o o o o o o6 o o
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|

Fig. 4: Cut around a source node
In particular, using the fact that log(1 + z) < x, we obtain

P n
log [ 14+ —— hia|?
og( +N0Wk=2| k1|)

- 1
k=2

IN

R(n)

for any o > 1, which implies the above upper bound on
the aggregate throughput. An extra logn factor appears when
considering random node positions. |

Proof of Theorem 2.b): Considering again a regular network,
let us examine the cut illustrated on Figure 5.

s1 S22 83 Sn—1 : dx

Fig. 5: Cut around a destination node

As we are assuming that each destination node must decode
the information from all other nodes in the network (with
each node sending a different message), the maximum mutual
information between all the nodes on the left and the desti-
nation node on the right is an upper bound on the sum rate
of communications going from left to right, i.e. (n —1) R(n).
This upper bound therefore reads

(n—1)R(n) <  sup
Q>0:Q;;<P

hTQh)

log (1
og( + NoW

where h is the (n—1) x 1 vector of fading coefficients and () is
the (n— 1) x (n—1) input covariance matrix. This expression
is in turn upper bounded by

n—1 2
P
— < .
(n=1)R(n) < log|1+ 3=p (;mm)
S SNR5< W)
= (n=j5)"?

O (SNRS n2-o logn) ifl<a<?2
O (SNR; logn) ifa>2

As T'(n) is clearly of the same order as (n — 1) R(n), this
settles the proof in the case of a regular network. The extra
logn factor appears again when considering random node
positions. |
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