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Abstract—We consider the diamond network where a source
communicates with the destination through N non-interfering
half-duplex relays. Using simple outer bounds on the capacity
of the network, we show that simple relaying strategies having
exactly two states and avoiding broadcast and multiple access
communication can still achieve a significant constant fraction of
the capacity of the 2 relay network, independent of the SNR
values. The results are extended to the case of 3 relays for
the special class of antisymmetric networks. We also study the
structure of (approximately) optimal relaying strategies for such
networks. Simulations show that optimal schedules have at most
N+1 states, which we conjecture to be true in general. We prove
the conjecture for N = 2 and in special cases for N = 3.

I. INTRODUCTION

Calculating the capacity of wireless relay networks is a hard
problem; calculating the capacity when the relays are half-
duplex is even harder. Indeed, in half duplex relay networks,
an additional dimension of optimization comes into play:
scheduling the relay states, i.e., whether each relay transmits
(T ) or listens (L) at any given time instance [6]. For example,
for the N -relay diamond network in Fig. 1, there exist 2N pos-
sible combinations of L, T states, and any capacity achieving
strategy would need to optimize for how long each of these
occurs.

Our position in this paper is that, at least for small diamond
networks, there might be no need for such an exponential size
optimization. We base this claim on two observations.

First, following the network simplification approach of [5],
we show that even very simple strategies that use only two
states and employ point-to-point connections (no broadcast-
ing and no multiple access) can (approximately) achieve a
significant multiplicative fraction of the capacity of the whole
network. This factor is independent of the strength of the links
in the 2 and 3 relay diamond networks. The approximations
are derived using the simple bounds to the capacity of half-
duplex relaying schemes developed in [7].

Second, the approximately (in the sense of [7]) optimal
schedule has at most N+1 active states, instead of the possible
2N . That is, for 2 relays, although 4 states are possible, at
most 3 are employed (this directly follows from the work in
[2]) and for 3 relays, only 4 out of the 8 possible states are
employed. This observation is based on experimental results
and we prove it for a few special cases.

Our aim in this paper is to study the effect of schedule
complexity on capacity. We will work with approximate
bounds on capacities and not worry about how the schedules
are implemented. In the rest of the paper, Section II provides
the framework of our work, i.e., the network model, the bounds
in [7], and a Linear Programming (LP) problem formulation;
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Fig. 1. The Gaussian N -relay half-duplex diamond network.

Section III establishes bounds on the performance of simple
strategies; Section IV presents our conjecture regarding the
linear number of active states in the (approximately) optimal
schedule and Section V concludes the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model
We consider the Gaussian N -relay diamond network where

a source S transmits information to a destination D with the
help of half-duplex relays. At any given time t, each relay Ri

can either listen (L) or transmit (T ), but not both; we denote
with Mi[t] ∈ {L, T} its state. For consistency, we denote with
Ms[t] and Md[t] the states of the source and the destination,
respectively.

Let Xs[t] be the signal transmitted by S at time t, Xi[t] be
the signal transmitted by relay Ri, Yd[t] and Yi[t] the signals
received by D and Ri, respectively. Then

Yi[t] = hisXs[t] + Zi[t] when Mj [t] = L

= 0 when Mj [t] = T

Yd[t] =
N∑

i=1

hidXi[t] + Z[t] when Md[t] = L

= 0 when Md[t] = T

where his, hid are the complex channel coefficients between
S and Ri and Ri and D, respectively. Zi[t] and Z[t] are
independent and identically distributed white Gaussian random
processes of power spectral density N0/2 Watts/Hz.

The power constraints for the source and all the relays are
fixed to P . We can then calculate the individual link capacities
from S to Ri as Ris = log(1 + |his|2P ) and from Ri to D
as Rid = log(1+ |hid|2P ). [N ] represents the set {1, · · · , N}
and the relays are ordered such that Ris ≥ Rjs for i < j.

B. Simple Bounds on Capacity
For half-duplex relay networks, the capacity depends not

only on the strength of the channel coefficients, but crucially
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also on the L-T scheduling. Let m ∈ M = {L, T}N denote a
particular state of the relays and let L(m) and T (m) be the set
of relays in listening and transmitting state in m, respectively.
In a particular schedule, let p(m) denote the fraction of time
the relays are in state m. From [7], the cut-set upper bound
to the N -relay half-duplex diamond network, denoted by CN

cs ,
can be bounded as follows.

Theorem 2.1: [7]

CN
LP ≤ CN

cs ≤ CN
LP +G(N) where (1)

CN
LP = max

p(m)

m∈M

min
Λ⊆[N ]

∑

m∈M

p(m)

(
max

i∈Λ̄∩L(m)
Ris + max

i∈Λ∩T (m)
Rid

)

(2)
and G(N) = N + 3 logN − 2.75.
Unless otherwise stated, the term “constant” will mean a
quantity that depends only on the number of relays and is
independent of the channel SNRs. Let CN

hd be the capacity of
the N -relay half-duplex diamond network. From [1] we get

CN
cs −G′(N) ≤ CN

hd ≤ CN
cs (3)

for some constant G′(N). Combining (2) and (3) we get:
Lemma 2.2: For a N relay half-duplex diamond network,

there exist constants G(N) and G′(N) such that

CN
LP −G′(N) ≤ CN

hd ≤ CN
LP +G(N) (4)

C. Simple Strategies
We define simple strategies to be relaying strategies that

use exactly two states and avoid broadcast at the source and
multiple access at the destination. We can have:

1-relay simple strategy: A single relay Ri is used to
convey information by operating in the L and T states. The
capacity of the 1-relay simple strategy (Cs1) is obtained by
using the best relay, i.e., maximizing (Cs1,i), the capacity of
the one hop network S-Ri-D:

Cs1 = max
i∈[N ]

Cs1,i (5)

2-relay simple strategy: We select a pair of relays and
operate them in a complementary fashion, alternating between
the two states {L, T} and {T, L}. If we select Ri and Rj ,
essentially we use the two one hop networks - S-Ri-D and
S-Rj-D that have together capacity Cs2,ij (also see MDF in
[2]). Thus the capacity of the 2-relay simple strategy Cs2 is

Cs2 = max
i,j∈[N ],i<j

Cs2,ij (6)

Cs1,i and Cs2,ij can also be characterized by a simpler
quantity by extending Lemma 2.2. For example,

Cs2,ij,LP −G′(2) ≤ Cs2,ij ≤ Cs2,ij,LP +G(2) (7)

where Cs2,ij,LP is the optimal value obtained by solving (2)
for the 2-relay network consisting of Ri,Rj and only the
{L, T} and {T, L} states having non-zero time fractions.

Now, suppose we have a relaying strategy on a subnetwork
with k relays that has capacity C ′ for which the corresponding
value of (2) is C ′

LP . Then the following lemma holds.
Lemma 2.3: If C ′

LP ≥ αCN
LP , then C ′ ≥ αCN

hd −
(αG(N) +G′(k)), where α ∈ R+.

Proof: Applying Theorem 2.2 to the subnetwork, we have
C ′ ≥ C ′

LP − G′(k) ≥ αCN
LP − G′(k). Using Theorem 2.2

again, we get the desired result.
Using the fact that CN

LP characterizes the capacity of a relaying
strategy within constant factors, we will derive universal
bounds on the ratio of the capacity of the strategy to the
capacity of the network.

D. Linear Programming Formulation

The calculation of CN
LP in (2) involves a linear program

which can be rewritten in the following form.

LP1 : Maximize C

2N∑

i=1

pi

(
max

j∈Λ∩L(mi)
Rjs + max

j∈Λ̄∩T (mi)
Rjd

)
≥ C; ∀Λ ⊆ [N ]

2N∑

i=1

pi = 1; ∀i, pi ≥ 0, C ≥ 0

The 2N variables of type p(m) have been numbered as pi with
mi being the corresponding state. Note that the set of allowed
p(m) values depends on the kind of relaying strategy we are
using. LP1 can be visualized in a matrix form as follows. (All
vectors are column vectors)

Maximize cT [pC] (LP1)
A[pC] ≥ b; [pC] ≥ 0

where the objective function vector cT is of size 1×(2N +1),
with all zero entries except the last one which is +1. A is a
(2N + 1)× (2N + 1) matrix with

Ak,i = max
j∈Λ(k)∩L(mi)

Rjs + max
j∈Λ(k)∩T (mi)

Rjd

for 1 ≤ k ≤ 2N ; 1 ≤ i ≤ 2N

= −1 for 1 ≤ k ≤ 2N ; i = 2N + 1

= −1 for k = 2N + 1; 1 ≤ i ≤ 2N

= 0 for k = 2N + 1; i = 2N + 1

where Λ(k) is the k-th subset of [N ]. b is a (2N + 1) × 1
vector with all zero entries except the last one which is -1. The
variable vector p consists of 2N variables pi and the capacity
variable C. It will also be useful for us to define the dual
program of LP1. Using the symmetry of the program, it is
not difficult to see that the dual of LP1, denoted by DLP1, is
a minimization problem defined as follows.

Minimize cT [pd Cd] (DLP1)
A[pd Cd] ≤ b; [pd Cd] ≥ 0

The definitions of A,b, c are the same as above and [pd Cd]
is the corresponding variable vector in the dual program.

III. PERFORMANCE OF SIMPLE STRATEGIES

A. Capacity of Simple Strategies

The capacity for a specific relaying strategy can also be
bounded using Lemma 2.2 once we solve the corresponding
form of LP1. In the case of the 1-relay simple strategy, let



p1, p2 be the fraction of time Ri is in the L and T state,
respectively. Then, the corresponding linear program is

Maximize C

Risp1 ≥ C; Ridp2 ≥ C

p1 + p2 = 1; p1, p2, C ≥ 0

Therefore, Cs1,i,LP = RisRid/(Ris + Rid). For the 2-relay
simple strategy, let us consider Ri and Rj , i < j. Let p1 be
the fraction of time Ri is in L and Rj is in T and p2 be the
fraction of time Ri is in T and Rj is in L, respectively. Then
Cs2,ij,LP can be calculated as

Maximize C

Risp1 +Rjsp2 ≥ C; (Rid +Rjs)p2 ≥ C

(Ris +Rjd)p1 ≥ C; Rjdp1 +Ridp2 ≥ C

p1 + p2 = 1; p1, p2, C ≥ 0

Since Ris ≥ Rjs, this can be solved to obtain

Cs2,ij,LP =
Ris(Rjs +Rid)

Ris +Rid
if RisRjs < RidRjd

=
Rid(Ris +Rjd)

Ris +Rid
if RisRjs ≥ RidRjd, Rjd < Rid

=
Rjd(Rjs +Rid)

Rjs +Rjd
if RisRjs ≥ RidRjd, Rjd ≥ Rid

In [5], it was shown that for full-duplex N -relay diamond
networks, we can always find a k-relay subnetwork that ap-
proximately achieves k

k+1 of the full-duplex network capacity
within an additive constant factor; for half-duplex, this implies
the following lemma.

Lemma 3.1: For a N -relay half-duplex diamond network,
there exist a k relay subnetwork that approximately achieves

k
2(k+1) of the capacity of the whole network within constant
additive factors.
Therefore, a 1-relay subnetwork can approximately achieve
1/4 and a 2 relay subnetwork 1/3 of the network’s capacity
for any N . Network simplification [5] for half-duplex relays
involves both using fewer relays and fewer number of states in
the schedule. Therefore, what we show below can be thought
of as improved simplification bounds for N = 2 and N = 3,
using a restricted set of simple strategies.

B. 2 Relay Networks

As shown in [2], the linear program for C2
LP can be solved

exactly to obtain closed form expressions. Using them, we can
prove the following result.

Lemma 3.2: For a 2-relay half-duplex diamond network,

Cs1 ≥ 1

2
C2

hd − c1, Cs2 ≥ 8

9
C2

hd − c2

for some constants c1, c2.
Proof: We show that Cs1,LP ≥ 1

2C
2
LP and Cs2,LP ≥

8
9C

2
LP , whence the result follows from Lemma 2.3. For the

detailed proof see [3].
The multiplicative factors are essentially the best we can obtain
for Cs1 and Cs2.

Lemma 3.3: There exist 2-relay half-duplex diamond net-

works where

Cs1 =
1

2
C2

LP , Cs2 ≈ 8

9
C2

LP

Proof: For the first claim, consider the network where
R1s = a,R2s = b, R1d = b, R2d = a for some a, b ∈ R+,
(a > b). In this case, Cs1/C2

LP = ab/(a+b)
2ab/(a+b) = 1/2. For the

second claim, consider the network with R1s = 2a,R2s =
a,R1d = a,R2d = ka for some k > 2. Then, plugging in the
expressions for capacities, we have

Cs2

C2
LP

=
4(2 + 2k)

3(2 + 3k)
→ 8

9
as k → ∞

To summarize, we have shown that for the 2-relay diamond
network, we can universally achieve approximately 50% of the
capacity using the 1-relay simple strategy and 88% by using
the 2-relay simple strategy, independent of the channel SNRs.

C. 3 Relay Antisymmetric Networks

For the case of N = 3 relays, it is difficult to obtain
closed form expressions for C3

LP involving the six capaci-
ties (R1s, R2s, R3s, R1d, R2d, R3d). We distinguish the relay
networks according to the order of the relative values of these
capacities. Assuming that R1s ≥ R2s ≥ R3s, the Rid values
can occur in six possible permutations. Although bounds can
be obtained for each of the cases separately, we present here
the results for the special case of antisymmetric networks
where R1s ≥ R2s ≥ R3s and R1d ≤ R2d ≤ R3d.

Lemma 3.4: For the anti-symmetric 3-relay half-duplex di-
amond network

Cs1 ≥ 1

3
C3

hd − c3, Cs2 ≥ 1

2
C3

hd − c4

for some constants c3, c4.
Proof: To prove the result we show that Cs1,LP ≥ 1

3C
3
LP

and Cs2,LP ≥ 1
2C

3
LP whence the result follows from Lemma

2.3. For brevity, we assume R1s = a,R2s = b, R3s =
c, R1d = d,R2d = e,R3d = f . Let

x = max{d, e}, y = max{e, f} z = max{d, f}
t = max{d, e, f}

Hence, the LP1 matrix for the 3-relay network is




a a a b a b c 0 −1
a a+ f a b a+ f b+ f 0 f −1
a a a+ e c a+ e 0 c+ e e −1
b b c b+ d 0 b+ d c+ d d −1
a a+ f a+ e 0 a+ y f e y −1
b b+ f 0 b+ d f b+ z d z −1
c 0 c+ e c+ d e d c+ x x −1
0 f e d y z x t −1
−1 −1 −1 −1 −1 −1 −1 −1 0





For the anti-symmetric network, a ≥ b ≥ c and d ≤ e ≤ f .
Hence x = e and y, z, t = f . We will construct three upper
bounds to the optimum value by picking three different dual
feasible solutions. They are (written as [p1, · · · , p8, C])

ᾱd = [
d

d+ a− b
, 0, 0,

a− b

d+ a− b
, 0, 0, 0, 0,

ad+ ab− b2

d+ a− b
]

γ̄d = [0, 0, 0, 0, 0, 0,
f − e

c+ f − e
,

c

c+ f − e
,
fc+ fe− e2

c+ f − e
]



The third one β̄d is defined as follows. When e += d or b += c,

β̄d = [0, 0, 0,
e− d

e− d+ b− c
, 0, 0,

b− c

e− d+ b− c
, 0,

(b+ d)(e− d) + (c+ d)(b− c)

e− d+ b− c
]

and when e = d, b = c, we define

β̄d = [0, 0, 0,
1

2
, 0, 0,

1

2
, 0, b+ d]

We define α0 = ad+ab−b2

d+a−b , γ0 = fc+fe−e2

c+f−e and β0 =
(b+d)(e−d)+(c+d)(b−c)

e−d+b−c or b + d depending on the parameter
values. It can be verified that these three solutions are dual
feasible and hence by weak duality [4] their objective values
are upper bounds to C3

LP . Hence, α0,β0, γ0 ≥ C3
LP , which

implies min{α0,β0, γ0} ≥ C3
LP .

We claim that the following holds,
ad
a+d

α0
+ 2

be
b+e

β0
+

cf
c+f

γ0
≥ 4

3
This can be shown by expanding the terms and using the fact
that a ≥ b ≥ c and d ≤ e ≤ f . Therefore

4Cs1,LP

min{α0,β0, γ0}
≥

ad
a+d

β0
+ 2

be
b+e

γ0
+

cf
c+f

α0
≥ 4

3

which implies that Cs1,LP ≥ 1
3C

3
LP . Now for the second

claim, let us consider the pairs of relays (R1,R2) and
(R2,R3). If C ′ = Cs2,12,LP + Cs2,23,LP , using the expres-
sions above for the 2-relay simply strategy, we have

C ′ =
a(b+ d)

a+ d
+

b(e+ c)

b+ e
if

e

b
≥ a

d
≥ c

f

=
e(b+ d)

b+ e
+

b(e+ c)

b+ e
if

a

d
≥ e

b
≥ c

f

=
e(b+ d)

b+ e
+

f(e+ c)

f + c
if

a

d
≥ c

f
≥ e

b

Since C3
LP ≤ min{α0,β0, γ0}, we have the following

If
(
e

b
≥ a

d
≥ c

f

)

C ′

C3
LP

≥ Cs2,12,LP + Cs2,23,LP

α0
=

n1(a, b, c, d, e, f)

d1(a, b, c, d, e, f)
≥ 1

If
(
a

d
≥ e

b
≥ c

f

)

C ′

C3
LP

≥ Cs2,12,LP

α0
+

Cs2,23,LP

γ0
=

n2(a, b, c, d, e, f)

d2(a, b, c, d, e, f)
≥ 1

If
(
a

d
≥ c

f
≥ e

b

)

C ′

C3
LP

≥ Cs2,12,LP + Cs2,23,LP

γ0
=

n3(a, b, c, d, e, f)

d3(a, b, c, d, e, f)
≥ 1

where n1, n2, n3, d1, d2, d3 are polynomials in (a, b, c, d, e, f)
and the last inequalities in each of the three cases can be
easily proved by substituting, expanding the terms and using
the fact that a ≥ b ≥ c and d ≤ e ≤ f . Therefore Cs2,12,LP +
Cs2,23,LP ≥ C3

LP . Picking the maximum of the two pairs, we
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Fig. 2. Average, minimum and maximum number of active states for CN
LP

get

Cs2,LP ≥ max{Cs2,12,LP , Cs2,23,LP } ≥ 1

2
C3

LP

The best lower bound multiplicative ratios we have been able
to establish are the following.

Lemma 3.5: There exist 3-relay half-duplex diamond net-
works where

Cs1,LP ≈ 0.4C3
LP , Cs2,LP ≈ 0.625C3

LP

Proof: Consider the network a = kr, b = 3r, c = 3r, d =
2r, e = 5r, f = 5r for some k > 30, r > 0. For this case,
C3

LP = (5k−9)r
k−1 , Cs1,LP = 2kr

k+2 , Cs2,LP = 25r
8 . Therefore, as

k → ∞,
Cs1,LP

C3
LP

→ 2

5
= 0.4,

Cs2,LP

C3
LP

→ 5

8
= 0.625

IV. THE COMPLEXITY OF OPTIMAL SCHEDULES

In general, the optimal schedule in LP1 corresponding to
CN

LP can have 2N active states; we here present our conjecture
that in fact, there always exists an optimal schedule with a
linear number of active states. If true, this offers a significant
reduction (from exponential to linear) to the number of states
needed for optimal operation, making it more feasible to
implement such schedules in practice.

Conjecture: For a N relay half-duplex diamond network,
there exists a schedule that optimizes the value of CN

LP and
has at most N + 1 active states.

We support this conjecture in two ways:
Experimental results: Fig. 2 shows numerical evaluation

results for LP1. We plot the average number of active states
in the optimal schedule as a function of the number of relays
N . The average is taken over several random instances of the
networks, where the SNRs of the source to relay and relay to
destination channels are chosen independently and uniformly
at random from the interval [1, 1000]. The maximum and the
minimum number of active states observed for each N is also
shown. In each of the cases, the maximum number of non-zero
states in the optimal schedule of a N relay network turned out
to be at most N + 1.



Proof for special cases: For the case of N = 2 relays,
the claim follows easily by directly evaluating the optimal
schedule [2] and checking that there are at most three states,
instead of four. We have not been able to come up with a
general proof for N > 2. In what follows, we prove the
conjecture for a special case of N = 3.

Again, for brevity, we will assume R1s = a, R2s = b,
R3s = c, R1d = d, R2d = e, R3d = f . The special case
we will consider is when the point to point capacities of all
the relay to destination links dominates those of the source to
relay links or vice-versa.

Lemma 4.1: Consider a 3-relay half-duplex diamond net-
work where min{d, e, f} ≥ max{a, b, c} or min{a, b, c} ≥
max{d, e, f}. Then the optimal solution for LP1 has exactly
4 non-zero states.

Proof: Consider the case when min{d, e, f} ≥
max{a, b, c}. The matrix corresponding to LP1 is the same as
the one mentioned in the proof of Lemma 3.4. Consider the
sub-matrix S formed using rows I1, I4, I7, I8, I9 and columns
J1, J2, J3, J4, J9 and the corresponding form of LP1 with
equality.

S[p1 p2 p3 p4 C] = [0 0 0 0 − 1]

This can be solved to get the following result.

{p1, p2, p3, p4} = {
∆1

(a− b+ d)(b− c+ e)(c+ f)
,

c

c+ f
,

bc+ (b− c)f

(b− c+ e)(c+ f)
,
e(a− b)(c+ f) + (b− c)(ac+ f(a− c))

(a− b+ d)(b− c+ e)(c+ f)
}

and
C =

(a((c+ d)(e− d) + b(c+ e)) + d(b(c+ e) + c(e− d)))fe

(a+ d)(b+ e− d)(c+ f − e)

−
e (ad(e− d) + be(a+ d))

(a+ d)(b+ e− d)(c+ f − e)
= a(p1 + p2 + p3) + bp4

where
∆1 = b2c− c2f + def + bc(e+ f − d) + a(c(c+ f − e)− b(2c+ f))

and I4 is the all one 4×1 column vector. Since a ≥ b ≥ c, it
is easy to see that p2, p3, p4 ≥ 0. For p1, we need to show that
∆1 ≥ 0 for our case. Since min{d, e, f} ≥ max{a, b, c} = a,
we have f = a+l1, e = a+l2, d = a+l3, for some l1, l2, l3 ≥
0. Therefore,

∆1 = (a2 − bc)(a− b) + l1(a(a− b) + c(b− c) + ac)+

l2(a(a− c) + bc) + l3(a
2 − bc) + a(l1l2 + l2l3 + l3l1) + l1l2l3

Since a ≥ b ≥ c, ∆1 ≥ 0 and C ≥ 0. If we define p =
{p1, p2, p3, p4, 0, 0, 0, 0} and C is the same as above, then

I1[pC] = I4[pC] = I7[pC] = I8[pC] = 0

It can be easily verified that this implies

I2[pC], I3[pC], I5[pC], I6[pC] ≥ 0

In other words [pC] is a feasible solution for LP1. We will
now consider the dual program and solve for the submatrix
of the dual consisting of columns J1, J2, J3, J4, J9 and rows
I1, I4, I7, I8, I9, which is the transpose of S considered above.
Note that the dual variables in the DP1 correspond to the rows
in LP1. The corresponding form of DLP1 with equality is as

follows.

S[pd1 pd4 pd7 pd8 C] = [0 0 0 0 − 1]

On solving, we get

{pd1, pd4,pd7, pd8} = {
d

a− b+ d
,

(a− b)e

(a− b+ d)(b− c+ e)
,

(a− b)(b− c)f

(a− b+ d)(b− c+ e)(c+ f)
,

(a− b)(b− c)c

(a− b+ d)(b− c+ e)(c+ f)
}

and where

Cd = apd1 + bpd4 + cpd7 = C

It follows from anti-symmetry that pd1, pd4, pd7, pd8 ≥ 0 . If we
define pd = {pd1, 0, 0, pd4, 0, 0, pd7, pd8}, then

JT
1 [pd Cd] = JT

2 [pd Cd] = JT
3 [pd Cd] = JT

4 [pd Cd] = 0

It can be easily verified that this implies

JT
5 [pd Cd], JT

6 [pd Cd], JT
7 [pd Cd], JT

8 [pd Cd] ≤ 0

In other words, [pd Cd] is feasible for DLP1. Thus, the objec-
tive value of C = Cd corresponds to both a dual feasible and
primal feasible solution, which means it is the optimum value
of LP1. Since the optimal schedule given by [pC] has just 4
non-zero states and there are 3 relays, the conjecture is valid
for this case. The case when min{a, b, c} ≥ max{d, e, f} can
be proved in a similar manner by reordering the relays so that
the relay to destination link capacities are in sorted order.

V. CONCLUSION

In this paper, we have considered simple relaying strategies
for half-duplex diamond networks that have exactly two states
and avoid broadcast and multiple access. We show that these
strategies approximately achieve a significant fraction of the
capacity of the whole network with N = 2, 3 relays. It
would be interesting to develop techniques for proving such
bounds for larger values of N and for other networks. The
definition of simple strategies can also be generalized to
include other practical and easily implementable modes of
operation. Finally, the linear complexity conjecture of optimal
schedules in half-duplex diamond networks poses an intriguing
open problem.
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