Convex computation of the region of attraction for polynomial control systems

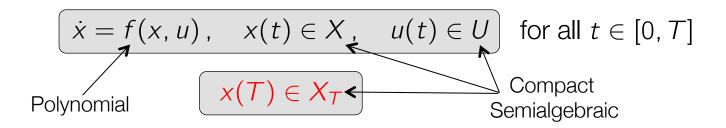
Didier Henrion

LAAS-CNRS Toulouse & CTU Prague

Milan Korda

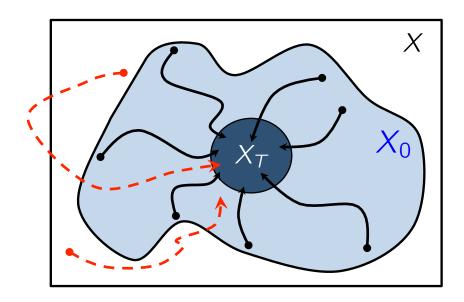
EPFL Lausanne

Region of Attraction (ROA)

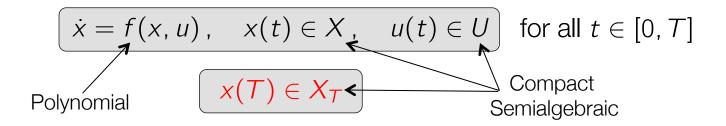


Region of attraction (ROA) a.k.a. Backward reachable set

The set of all initial states that can be admissibly steered to the target set at a given time



Region of Attraction (ROA)



Everything extends to rational or trigonometric setting

Region of Attraction (ROA)

Fundamentally difficult to determine

Long history - typically tackled using non-convex BMIs or gridding

Convex formulation

Infinite dimensional LP formulation for ROA computation

Converging hierarchy of SDP relaxations providing outer approximations

Readily modeled using freely available tools (Gloptipoly, Yalmip, etc.)

No initialization data required!

How is it done?

Approach

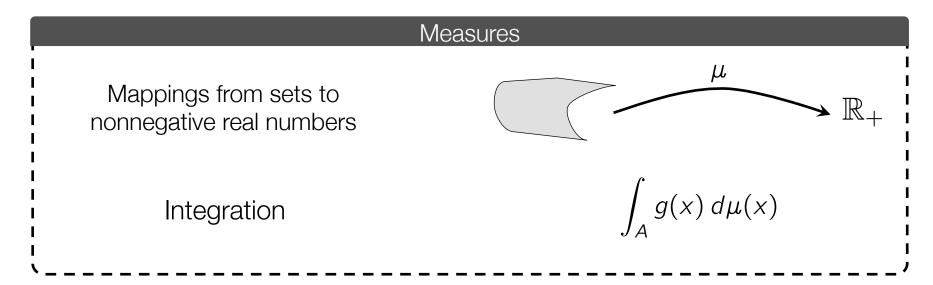
Approach

Study how ensembles of initial conditions evolve, not single trajectories

Common approach for stochastic or chaotic systems

How to model these ensembles? Using measures.

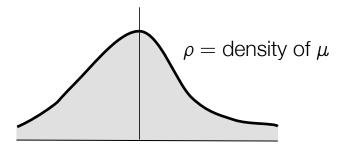
Measures



Intuition: integration w.r.t. to a weighting function or **density** $\rho(x)$

$$\int_{A} g(x) d\mu(x) = \int_{A} g(x) \rho(x) dx$$

density of Lebesgue
1

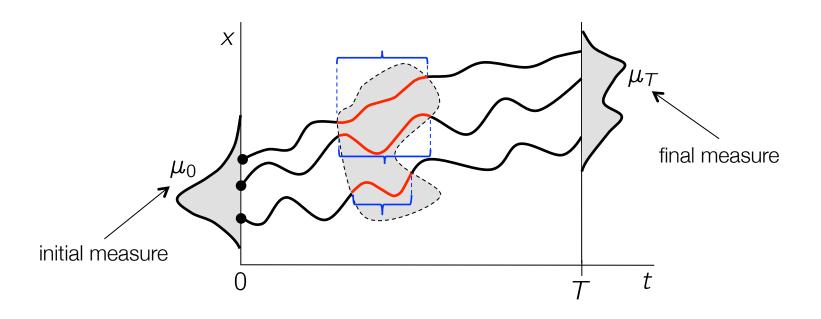


Measures in control

Initial measure μ_0 – distribution of the state at time 0

Final measure μ_T – distribution of the state at time T

Occupation measure μ – average time spent by (t, x(t), u(t)) in subsets of $[0, T] \times X \times U$



Liouville's equation

Linear equation linking the measures μ_0 , μ and μ_T

$$\frac{\partial v}{\partial t} + \nabla_x v \cdot f$$

$$\int_{X} v(T,x) d\mu_{T}(x) - \int_{X} v(0,x) d\mu_{0}(x) = \int_{[0,T]\times X\times U} \mathcal{L}v(t,x,u) d\mu(t,x,u)$$

for all **test functions** $v \in C^1([0, T] \times X)$

Key fact

Liouville's equation

System dynamics $\dot{x} = f(x, u)$

Optimization over system trajectories

Optimization over measures satisfying Liouville's equation

Characterization of ROA using measures

Dynamics

Dynamics

Liouville's equation

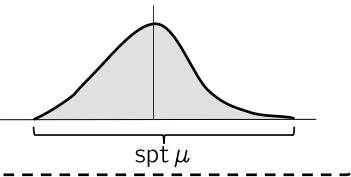
Constraints

Constraints

Support constraints

Support of a measure

Smallest closed set whose complement has zero measure



$$x(0) \in X \longleftrightarrow \operatorname{spt} \mu_0 \subset X$$

$$(t, x(t), u(t)) \in [0, T] \times X \times U \longleftrightarrow \operatorname{spt} \mu \subset [0, T] \times X \times U$$

$$x(T) \in X_T \longleftrightarrow \operatorname{spt} \mu_T \subset X_T$$

Characterization of ROA using measures

Need to

Maximize the support of μ_0 subject to the Liouvillel's equation and the support constraints

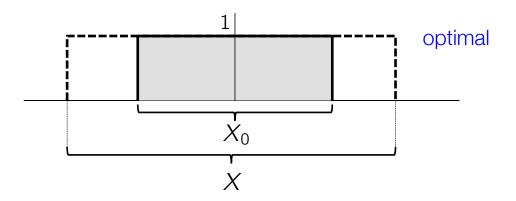
Non-convex

Key idea

Maximize the **mass** of μ_0 subject to the constraint $\mu_0 \leq \lambda$

Lebesgue measure

Optimal solution is the restriction of λ to the ROA X_0

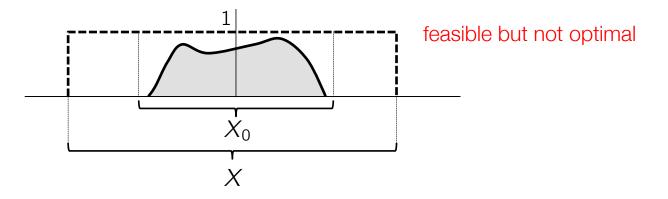


Key idea

Maximize the **mass** of μ_0 subject to the constraint $\mu_0 \leq \lambda$

Lebesgue measure

Optimal solution is the restriction of λ to the ROA X_0

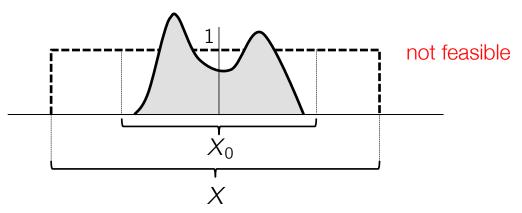


Key idea

Maximize the **mass** of μ_0 subject to the constraint $\mu_0 \leq \lambda$

Lebesgue measure

Optimal solution is the restriction of λ to the ROA X_0

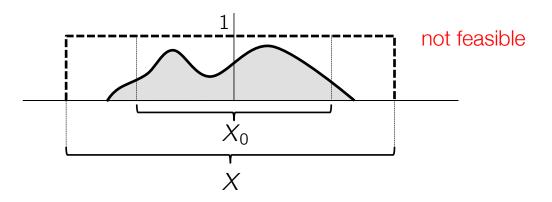


Key idea

Maximize the **mass** of μ_0 subject to the constraint $\mu_0 \leq \lambda$

Lebesgue measure

Optimal solution is the restriction of λ to the ROA X_0

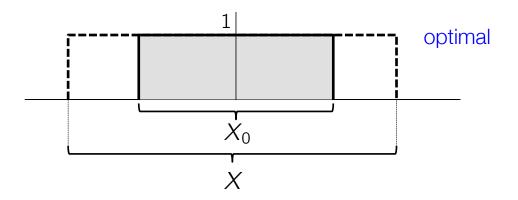


Key idea

Maximize the **mass** of μ_0 subject to the constraint $\mu_0 \leq \lambda$

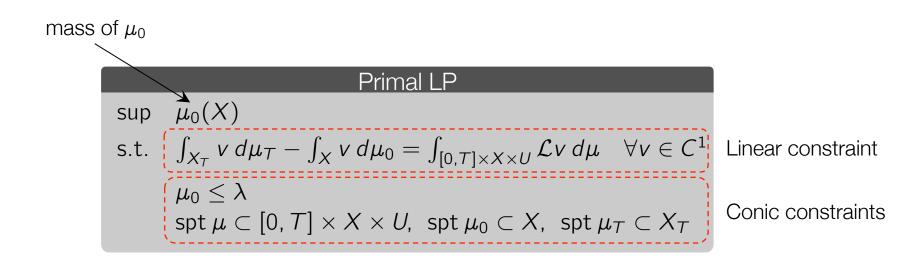
Lebesgue measure

Optimal solution is the restriction of λ to the ROA X_0



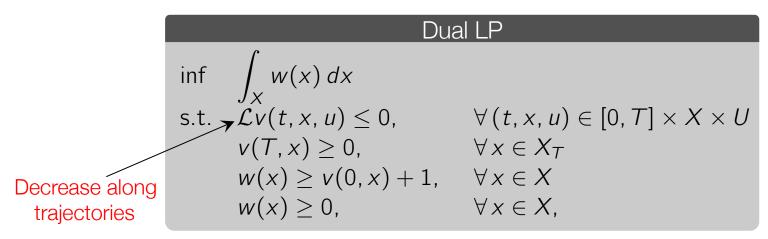
Primal LP

The ROA is characterized by the optimization problem



Infinite dimensional linear program in the cone of nonnegative measures

Dual LP on continuous functions



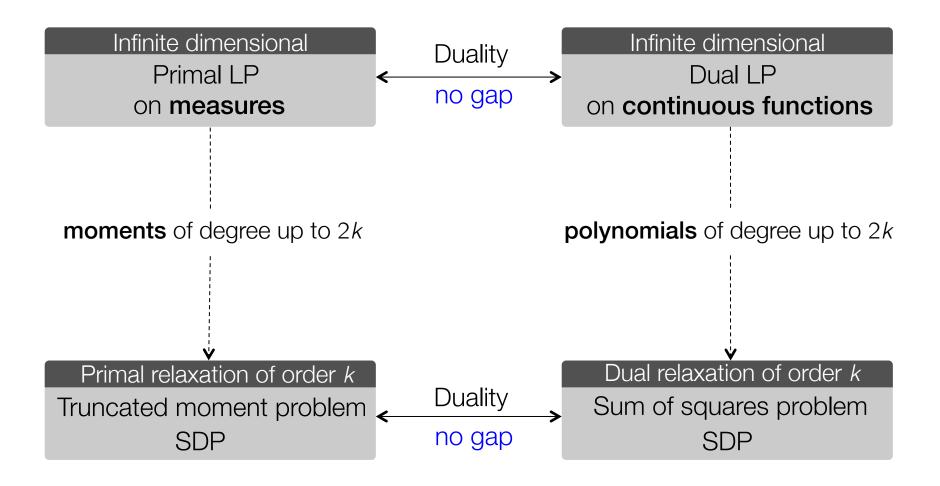
where the infimum is over $v \in C^1([0,T] \times X)$ and $w \in C(X)$

Key observation

 $w \ge I_{X_0}$ and $\{x \mid w(x) \ge 1\} \supset X_0$ for any feasible w

Finite-dimensional relaxations

Big picture



Convergence results

Convergence of primal and dual relaxations

Optimal values of the primal and dual SDPs converge to the optimal value of the two infinite dimensional LPs, which is equal to the **volume** of the ROA X_0

• Let $w_k(x)$ be the optimal solution to the dual SDP relaxation of order k

Functional convergence

 $w_k \searrow I_{X_0}$ in L_1 and $\min_{i \le k} w_i \searrow I_{X_0}$ almost uniformly as $k \to \infty$

• Define $X_{0k} := \{x \mid w_k(x) \ge 1\}$

Set-wise convergence

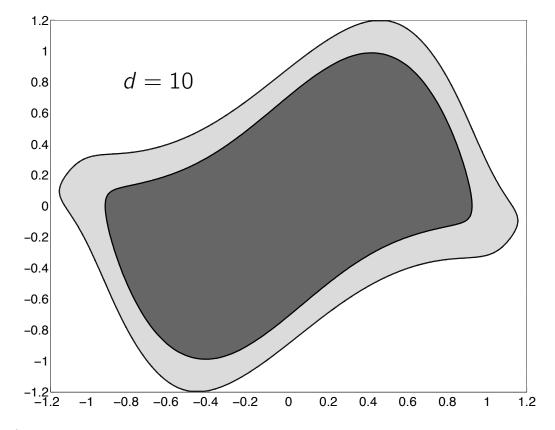
 $X_{0k} \supset X_0$ and volume $(X_{0k} \setminus X_0) \to 0$ as $k \to \infty$

Backward Van der Pol oscillator

$$\dot{x}_1 = -2x_2$$
 $\dot{x}_2 = 0.8x_1 + 10(x_1^2 - 0.21)x_2$
 $X = [-1.2, -1.2]^2$
 $X_T = \{x \mid ||x||_2 \le 0.01\}, T = 100$

Stable equilibrium at the origin with a bounded region of attraction

outer approximations of X_0

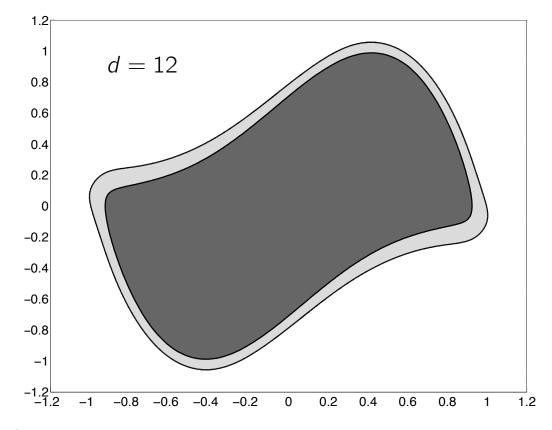


Backward Van der Pol oscillator

$$\dot{x}_1 = -2x_2$$
 $\dot{x}_2 = 0.8x_1 + 10(x_1^2 - 0.21)x_2$
 $X = [-1.2, -1.2]^2$
 $X_T = \{x \mid ||x||_2 \le 0.01\}, T = 100$

Stable equilibrium at the origin with a bounded region of attraction

outer approximations of X_0



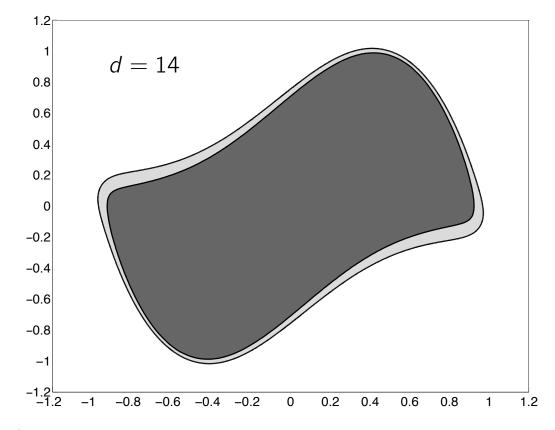
Backward Van der Pol oscillator

$$\dot{x}_1 = -2x_2$$

 $\dot{x}_2 = 0.8x_1 + 10(x_1^2 - 0.21)x_2$
 $X = [-1.2, -1.2]^2$
 $X_T = \{x \mid ||x||_2 \le 0.01\}, T = 100$

Stable equilibrium at the origin with a bounded region of attraction

outer approximations of X_0

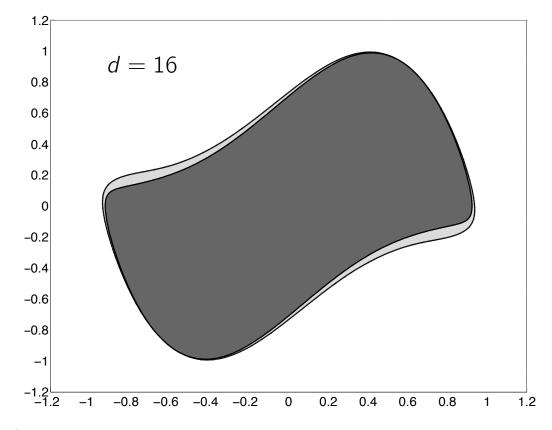


Backward Van der Pol oscillator

$$\dot{x}_1 = -2x_2$$
 $\dot{x}_2 = 0.8x_1 + 10(x_1^2 - 0.21)x_2$
 $X = [-1.2, -1.2]^2$
 $X_T = \{x \mid ||x||_2 \le 0.01\}, T = 100$

Stable equilibrium at the origin with a bounded region of attraction

outer approximations of X_0

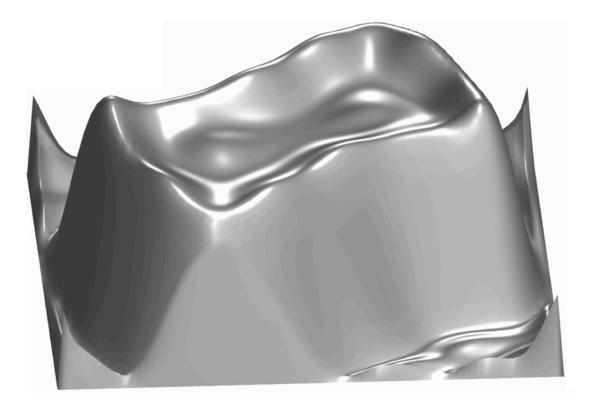


Backward Van der Pol oscillator

$$\dot{x}_1 = -2x_2$$
 $\dot{x}_2 = 0.8x_1 + 10(x_1^2 - 0.21)x_2$
 $X = [-1.2, -1.2]^2$
 $X_T = \{x \mid ||x||_2 \le 0.01\}, T = 100$

Stable equilibrium at the origin with a bounded region of attraction

degree 18 approximation to I_{X_0}



Brockett integrator

$$\dot{x}_1 = u_1$$
 $\dot{x}_2 = u_2$
 $\dot{x}_3 = u_1 x_2 - u_2 x_1$
 $X = \{x \mid ||x||_{\infty} \le 1\}$
 $U = \{u \mid ||u||_2 \le 1\}$
 $X_T = \{0\}, T = 1$

ROA known semi-analytically

d = 6

Brockett integrator

$$\dot{x}_1 = u_1$$
 $\dot{x}_2 = u_2$
 $\dot{x}_3 = u_1 x_2 - u_2 x_1$
 $X = \{x \mid ||x||_{\infty} \le 1\}$
 $U = \{u \mid ||u||_2 \le 1\}$
 $X_T = \{0\}, T = 1$

ROA known semi-analytically

$$d = 10$$

More examples

Extended version: http://homepages.laas.fr/henrion/Papers/roa.pdf

Examples from robotics + **control law extraction**:

[A. Majumdar, et al. Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures, 2013]

Computational issues

Need to solve large SDPs

- → Interior-point methods Mosek, Sedumi, SDPA
 Conditioning has secondary effect
 "Medium" scale only
- → First-order methods **DSA-BD**, SDPNAL
 Conditioning is very important
 Large scale

Monomial basis \rightarrow bad conditioning

Chebyshev basis → better conditioning

Conclusion

- Convex characterization of the ROA
- SDP relaxations → converging outer approximations
 - Additional properties (e.g. convexity) can be easily enforced
 - Covers a broad class of systems
- Easy modeling using Gloptipoly, Yalmip, SOSTOOLS, etc.

Extremely simple to use!

Extended version: http://homepages.laas.fr/henrion/Papers/roa.pdf

Question time

Thank you