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Region of Attraction (ROA)

Fundamentally difficult to determine

Long history - typically tackled using non-convex BMIs or gridding

Convex formulation

Infinite dimensional LP formulation for ROA computation
Converging hierarchy of SDP relaxations providing outer approximations

Readily modeled using freely available tools (Gloptipoly, Yalmip, etc.)

No initialization data required!

Didier Henrion, Milan Korda



How is it done?



Approach

Study how ensembles of initial conditions evolve, not single trajectories

Common approach for stochastic or chaotic systems

How to model these ensembles? Using measures.
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Measures

Mappings from sets to G/—\ R
_|_

nonnegative real numbers

Integration /A g(x) du(x)

Intuition: integration w.r.t. to a weighting function or density p(x)

[ / 9(x) dia(x) = / 9(x) p(x)dx}
A A

p = density of u

density of Lebesgue
1
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Measures in control

Initial measure g — distribution of the state at time O

Final measure ut+ — distribution of the state at time T

Occupation measure p. — average time spent by (t, x(t), u(t)) in subsets
of [0, T] x X x U

KT
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final measure

initial measure




Liouville’s equation

ov

Linear equation linking the measures ug, 1 and wr : L V,.v-f
/
/ v(T,x)dur(x) — / v(0, x) duo(x) = / Lv(t, x,u)du(t, x, u)
X X [0, T]xXxU

for all test functions v € C*([0, T] x X)

Liouville’s equation
O

System dynamics x = f(x, u)

(3

{ Optimization over system }

Optimization over measures
trajectories

satisfying Liouville’s equation
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Characterization of ROA using measures



Dynamics

*

{ Dynamics } = { Liouville’s equation }
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Constraints

{ Constraints } = { Support constraints }

Support of a measure

Smallest closed set whose
complement has zero measure

x(0) € X «<—> sptug C X
(t,x(t),u(t)) €0, T] x X x U <—> Sptu C [0, T] x X x U
x(T) e X1 «<—> sptur C Xt
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Characterization of ROA using measures

Maximize the support of ug subject to the Liouvillel's equation and the support constraints

[ Non-convex J
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Convex characterization of ROA

Maximize the mass of g subject to the constraint ug < A

ebesgue measure

Optimal solution is the restriction of A to the ROA X

----- optimal
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Convex characterization of ROA
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Primal LP

The ROA is characterized by the optimization problem

mass of g
e
s.t. | fXT vdur — [y vduo = f[O,T]xXxUEV du Vv € Cl Linear constraint

__________________________________________________________
__________________________________________________________

Conic constraints

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e Em e e e e e e e e e e e e e e e e e e =

Infinite dimensional linear program in the cone of nonnegative measures
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Dual LP on continuous functions

Dual LP

inf / w(x) dx
X
s.t. 5 Lv(t, x, u) <0, V(t,x,u)€[0, T] x X x U

/V(T, X) >0, Vx e Xr
Decrease along w(x) 2 v(0,x)+1, VxeX

trajectories w(x) >0, Vx e X,

where the infimum is over v € C([0, T] x X) and w € C(X)

w > Ix, and {x | w(x) > 1} D Xq for any feasible w
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Finite-dimensional relaxations



Big picture

Infinite dimensional
Primal LP <

Duality

Oon measures

moments of degree up to 2k

Primal relaxation of order k

Truncated moment problem .

no gap

Duality

>

SDP

Didier Henrion, Milan Korda

no gap

Infinite dimensional
Dual LP
on continuous functions

polynomials of degree up to 2k

Dual relaxation of order k

Sum of squares problem
SDP
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Convergence results

Convergence of primal and dual relaxations

Optimal values of the primal and dual SDPs converge to the optimal value of the
two infinite dimensional LPs, which is equal to the volume of the ROA X

« Let wi(x) be the optimal solution to the dual SDP relaxation of order k

Functional convergence

Wik \( Ix, IN L1 and min;j<x w; \( Ix, almost uniformly as k — oo

« Define Xox := {x | wx(x) > 1}

Set-wise convergence

Xok D Xo and volume(Xgx \ Xo) = 0as k — oo
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Numerical examples

ECO NIRRT RECIEEIEIM  Stable equilibrium at the origin with a

X1 = —2X2 : :
% = 0.8x + 10(x7 — 0.21)x bounded region of attraction

X =[-12-1.2]?
Xt ={x|lxll2 <001}, T =100 outer approximations of Xg

1.2

—_

-1.
—%2 -1 -08 -06 -04 -02 0 02 04 06 038 1 1.2

Didier Henrion, Milan Korda



Numerical examples

ECO NIRRT RECIEEIEIM  Stable equilibrium at the origin with a

X1 = —2X2 : :
% = 0.8x + 10(x7 — 0.21)x bounded region of attraction

X =[-12-1.2]?
Xt ={x|lxll2 <001}, T =100 outer approximations of Xg

1.2

1

0.8

0.6

0.4

0.2

-1.
—%2 -1 -08 -06 -04 -02 0 02 04 06 038 1 1.2

Didier Henrion, Milan Korda



Numerical examples

ECO NIRRT RECIEEIEIM  Stable equilibrium at the origin with a

X1 = —2X2 : :
% = 0.8x + 10(x7 — 0.21)x bounded region of attraction

X =[-12-1.2]?
Xt ={x|lxll2 <001}, T =100 outer approximations of Xg

1.2

1

0.8

0.6

0.4

0.2

-1.
—%2 -1 -08 -06 -04 -02 0 02 04 06 038 1 1.2

Didier Henrion, Milan Korda



Numerical examples

ECO NIRRT RECIEEIEIM  Stable equilibrium at the origin with a

X1 = —2X2 : :
% = 0.8x + 10(x7 — 0.21)x bounded region of attraction

X =[-12-1.2]?
Xt ={x|lxll2 <001}, T =100 outer approximations of Xg

1.2

1

0.8

0.6

0.4

0.2

-1.
—%2 -1 -08 -06 -04 -02 0 02 04 06 038 1 1.2

Didier Henrion, Milan Korda



Numerical examples

Backward Van der Pol oscillator

Xl = —2X2

Xo = 0.8x; + 10(x? — 0.21)x

X =[-1.2,-1.2]°

Xt = {x]|[x][2 <0.01}, T = 100

Stable equilibrium at the origin with a
bounded region of attraction

degree 18 approximation to /x,

Didier Henrion, Milan Korda
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Numerical examples

Brockett integrator

X, = U1

Xo = Up

X3 = U1Xp — UoXy

X ={x]|Ixllec <1}
U={ulllull <1}
Xr={0}, T=1

ROA known semi-analytically

Didier Henrion, Milan Korda
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Numerical examples

Brockett integrator

X1 = U

Xp = U2

X3 = U1 Xo — UxX1

X = {x|lxllc <1}
U=A{ulllull2 <1}
Xr={0}, T=1

ROA known semi-analytically
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More examples

Extended version: http://homepages.laas.fr/henrion/Papers/roa.pdf

Examples from robotics + control law extraction:

[A. Majumdar, et al. Convex Optimization of Nonlinear
Feedback Controllers via Occupation Measures, 2013]



Computational issues

Need to solve large SDPs

— Interior-point methods - Mosek, Sedumi, SDPA
Conditioning has secondary effect
“Medium” scale only

— First-order methods - DSA-BD, SDPNAL
Conditioning is very important
Large scale

Monomial basis — bad conditioning

Chebyshev basis — better conditioning

Didier Henrion, Milan Korda
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Conclusion

 Convex characterization of the ROA

« SDP relaxations — converging outer approximations

— Additional properties (e.g. convexity) can be easily enforced

— Covers a broad class of systems

« Easy modeling using Gloptipoly, Yalmip, SOSTOOLS, etc.

[ Extremely simple to use! }

Extended version: http://homepages.laas.fr/henrion/Papers/roa.pdf
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Question time

Thank you



