000185104 001__ 185104
000185104 005__ 20190316235616.0
000185104 037__ $$aARTICLE
000185104 245__ $$aParametrized K-theory
000185104 269__ $$a2013
000185104 260__ $$c2013
000185104 336__ $$aJournal Articles
000185104 520__ $$aIn nature, one observes that a K-theory of an object is defined in two steps. First a “structured” category is associated to the object. Second, a K-theory machine is applied to the latter category that produces an infinite loop space. We develop a general framework that deals with the first step of this process. The K-theory of an object is defined via a category of “locally trivial” objects with respect to a pretopology. We study conditions ensuring an exact structure on such categories. We also consider morphisms in K-theory that such contexts naturally provide. We end by defining various K-theories of schemes and morphisms between them.
000185104 6531_ $$aK-theory – Local triviality – Exact categories – Monoidal fibred categories – Fibred Grothendieck sites – Modules – Sheaves of modules.
000185104 700__ $$0243125$$aMichel, Nicolas$$g114710
000185104 773__ $$tJournal of K-theory
000185104 8564_ $$s543587$$uhttps://infoscience.epfl.ch/record/185104/files/Michel_KTheory.pdf$$yPreprint$$zPreprint
000185104 909C0 $$0252139$$pUPHESS$$xU10968
000185104 909CO $$ooai:infoscience.tind.io:185104$$pSV$$particle$$qGLOBAL_SET
000185104 917Z8 $$x105396
000185104 937__ $$aEPFL-ARTICLE-185104
000185104 973__ $$aOTHER$$rNON-REVIEWED$$sSUBMITTED
000185104 980__ $$aARTICLE