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We analyze the convergence properties of Algorithm 1. Recall that our goal is to find the parameter vector w* that
minimizes the empirical objective function:
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At each iteration, Algorithm 1 chooses a random training example (X, Y™) by picking an index n € {1... N} uniformly
at random. We then replace the objective given by Eq. | with an approximation based on the training example (X™,Y™),
yielding:
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We consider the case where [ : W — R is a convex loss function so that f(w) is a A-strongly convex function where
A= L.
C
Recall that the definition of an e-subgradient of f(w) is
vw' e W, gl (w - w') > f(w) - f(w') —e. 3)
In the following, we will assume that the magnitude of the e-subgradients we compute is bounded by a constant G,
. 2
ie. |lglf2 < G2
Let w* be the minimizer of £(w). The following relation then holds trivially for w*:

g’ (w—w") > f(w) - f(w") — e ©)
1. Convergence properties of the ¢! parameter vector

1.1. Proof of convergence

This proof for subgradients was derived in [ 1] and we extend it to approximate subgradients here. We first present some
inequalities that will be used in the following proof.
By the strong convexity of f(w), we have:
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(g, w —w) > f(w) = f(w") + S[w = w5 — e (5)

An equivalent condition is:

(g, W —w) 2 Aw — w5 —e. (©)
In the following, we first start by bounding ||w(") — w*|| and then derive a bound for E||w(+1) — w*|.

Lemma 1. The error of w'b) is:
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Proof. From Eq. 6, we have:
(g, wi) —w*) > AwD) — w*[[3 — ¢,

Using the Cauchy-Schwarz inequality (|(X,Y)| < || X||[|Y])), we get:
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and from the assumption that |[g(*)||? < G?, we have that:
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We then derive the following bound for [|w(!) — w*||3:
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Therefore, we see that:
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We get Eq. 7 by combining Eq. 10 and 12 .
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Theorem 1. The error of wt1) is:
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By applying the inequality recursively:
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Plugging in (" = L, we get:
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Rakhlin [1] showed that setting n(*) = + gives us a O(1/t) rate. Indeed, we have:
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and therefore

t .
B (i—1) 1
_Zi(tfl)t =9 (18)

t ot t ) .
2 2e 2(i — 1)ie (t—1)t €
1—-2) 2= = — = — 19
2 11 ( j)i)\ 2 in t—ltAZ t—1t>\( 2 X (19
1=2 j=1i+1
By combining Eq. 16 with Eq. 18 and Eq. 19, we then get:
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We can deduce that the conditions of convergence are the same as the ones for subgradient descent (i.e. for e = 0) :
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As long as the choice of the step size satisfies Eq. 21, we can see that the first term on the right side of Eq. 20 goes to 0 so
stochastic e-subgradient descent will convergence to a distance § away from the optimal value.
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