Incremental Model Identification of Reaction Systems

CPAC / ATOCHEMIS Workshop
25-27. March 2013, Rome - Italy

Julien Billeter

Ecole Polytechnique Fédérale de Lausanne
Laboratoire d'Automatique
Switzerland

Outline

- Motivation
- Concept of vessel extent
- Homogeneous reaction systems
- Incremental model identification
- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems

Model reduction Separate fast / slow dynamics

- Discard redundant (invariant) states
- What is the minimal number of states (variants) ?
- Batch reactors: $S \rightarrow R$ extents
- Open reactors: $S \rightarrow R+p+1$
vessel extents
- Open G-L reactors: $S \rightarrow R+p_{m}+p+1 \quad$ vessel extents
o Separate fast/slow dynamics
- Rates are fast/slow, not individual concentrations
\rightarrow work with extents, not concentrations...

Outline

\checkmark Motivation

- Concept of vessel extent
- Homogeneous reaction systems
- Incremental model identification
- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems

Definitions

Extent vs vessel extent of reaction

- Extent of the i-th reaction $\xi_{r, i}(t)$: number of moles produced by the i-th reaction

Differential extent of reaction

$$
\dot{\xi}_{r, i}(t)=\frac{1}{v_{s, i}} \dot{n}_{s}=r_{v, i}(t) \quad \xi_{r, i}(0)=0
$$

- Vessel extent of the i-th reaction $x_{r, i}(t)$: number of moles produced by the i-th reaction still in vessel

Differential vessel extent of reaction

$$
\dot{x}_{r, i}(t)=r_{r, i}(t)-\frac{u_{o u}(t)}{m(t)} x_{r, i}(t) \quad x_{r, i}(0)=0
$$

Definitions

Extent vs vessel extent of mass transfer

- Extent of the j-th mass transfer $\xi_{m, j}(t)$: mass transferred by the j-th mass transfer

Differential extent of mass transfer

$$
\dot{\xi}_{m, j}(t)=\zeta_{j}(t) \quad \xi_{m, j}(0)=0
$$

- Vessel extent of the j-th mass transfer $x_{m, j}(t)$: mass transferred by the j-th mass transfer still in vessel

Differential vessel extent of mass transfer

$$
\dot{x}_{m, j}(t)=\zeta_{j}(t)-\frac{u_{o w}(t)}{m(t)} x_{m, j}(t) \quad x_{m, j}(0)=0
$$

General concept of vessel extent

A vessel extent indicates the amount of material (number of moles, mass, volume), associated with one phenomenon, that is still in the vessel...

Differential vessel extent (i-th phenomenon f)

$$
\dot{x}_{f, i}(t)=\dot{\xi}_{f, i}(t)-\frac{u_{o w}(t)}{m(t)} x_{f, i}(t) \quad x_{f, i}(0)=0
$$

Outline

\checkmark Motivation
\checkmark Concept of vessel extent

- Homogeneous reaction systems
- Incremental model identification
- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems

Homogeneous reaction systems Mole balance equations

Homogeneous reaction system consisting of S species, R independent reactions, p independent inlets and one outlet

Mole balances for S species
$\dot{\mathbf{n}}(t)=\mathbf{N}^{\mathrm{T}} \mathbf{r}_{v}(t)+\mathbf{W}_{i n} \mathbf{u}_{i n}(t)-\frac{u_{\text {on }}(t)}{m(t)} \mathbf{n}(t), \mathbf{n}(0)=\mathbf{n}_{0}$
$(S \times 1) \quad(S \times R) \quad(R \times 1) \quad(S \times p)(p \times 1)$
$(S \times 1)$

Mass, volume and concentrations

$$
\mathbf{m}(t)=\mathbf{1}_{S}^{\mathrm{T}} \mathbf{M}_{w} \mathbf{n}(t), \quad V(t)=\frac{m(t)}{\rho(t)}, \quad \mathbf{c}(t)=\frac{\mathbf{n}(t)}{V(t)}
$$

Homogeneous reaction systems Decomposition in variants and invariants

- Condition: $\operatorname{rank}\left(\left[\mathbf{N}^{\mathrm{T}} \mathbf{W}_{i n} \mathbf{n}_{0}\right]\right)=R+p+1$

$$
\left[\begin{array}{l}
\mathbf{x}_{r}(t) \\
\mathbf{x}_{i n}(t) \\
x_{i c}(t) \\
\mathbf{x}_{i v}(t)
\end{array}\right] \stackrel{\mathscr{L}}{=}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{F} \\
\mathbf{q}^{\mathrm{T}} \\
\mathbf{Q}
\end{array}\right]\left(\mathbf{n}(t)-\mathbf{n}_{0}\right)
$$

- Vessel extents (variants) and $q=S-R-p-1$ redundant information (invariants)

$$
\begin{aligned}
& \dot{\mathbf{x}}_{r}(t)=\underbrace{\mathbf{R} \mathbf{N}^{\mathrm{T}} \mathbf{r}_{v}(t)+\underbrace{\mathbf{R} \mathbf{W}_{i n}}_{0_{R x p}} \mathbf{u}_{i n}(t)-\frac{u_{\text {on }}(t)}{m_{m}(t)} \mathbf{x}_{r}(t), ~}_{\mathrm{I}_{R}} \\
& \mathbf{x}_{r}(0)=\mathbf{0}_{R} \\
& \dot{\mathbf{x}}_{\text {in }}(t)=\underbrace{\mathbf{F} \mathbf{N}^{\mathrm{T}}}_{0_{p \times R}} \mathbf{r}_{v}(t)+\underbrace{\mathbf{F} \mathbf{W}_{\text {in }}}_{\mathbf{I}_{p}} \mathbf{u}_{\text {in }}(t)-\frac{u_{\text {out }}(t)}{m(t)} \mathbf{x}_{\text {in }}(t) \text {, } \\
& \mathbf{x}_{i n}(0)=\mathbf{0}_{p}
\end{aligned}
$$

$$
\begin{aligned}
& x_{i c}(0)=0 \\
& \dot{\mathbf{x}}_{i v}(t)=\underbrace{\mathbf{Q} \mathbf{N}^{\mathrm{T}}}_{0_{q \times R}} \mathbf{r}_{v}(t)+\underbrace{\mathbf{Q} \mathbf{W}_{i n}}_{0_{q \times p}} \mathbf{u}_{i n}(t)-\frac{u_{\text {out }}(t)}{m(t)} \dot{\mathbf{x}}_{i v}(t), \\
& \mathbf{x}_{i v}(0)=\mathbf{0}_{q}
\end{aligned}
$$

Homogeneous reaction systems Decomposition in variants and invariants

- Condition: $\operatorname{rank}\left(\left[\mathbf{N}^{\mathrm{T}} \mathbf{W}_{i n} \mathbf{n}_{0}\right]\right)=R+p+1$

$$
\left[\begin{array}{l}
\mathbf{x}_{r}(t) \\
\mathbf{x}_{i n}(t) \\
x_{i c}(t) \\
\mathbf{x}_{i v}(t)
\end{array}\right] \stackrel{\mathscr{Q}}{=}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{F} \\
\mathbf{q}^{\mathrm{T}} \\
\mathbf{Q}
\end{array}\right]\left(\mathbf{n}(t)-\mathbf{n}_{0}\right)
$$

- Vessel extents (variants) and $q=S-R-p-1$ redundant information (invariants)

$$
\begin{array}{ll}
\dot{\mathbf{x}}_{r}(t)=\mathbf{r}_{v}(t)-\frac{u_{o w}(t)}{m(t)} \mathbf{x}_{r}(t), & \mathbf{x}_{r}(0)=\mathbf{0}_{R} \\
\dot{\mathbf{x}}_{\text {in }}(t)=\mathbf{u}_{i n}(t)--\frac{u_{o w}(t)}{m(t)} \mathbf{x}_{i n}(t), & \mathbf{x}_{i n}(0)=\mathbf{0}_{p} \\
\dot{x}_{i c}(t)=--\frac{u_{o u s}(t)}{m(t)}-\frac{u_{\text {ouc }}(t)}{m(t)} x_{i c}(t), & x_{i c}(0)=0 \\
\mathbf{x}_{i v}(t)=\mathbf{0}_{q} &
\end{array}
$$

- Reconstruction: $\left(\mathbf{n}(t)-\mathbf{n}_{0}\right) \stackrel{\mathscr{S}^{-1}}{=} \mathbf{N}^{\mathrm{T}} \mathbf{x}_{r}(t)+\mathbf{W}_{i n} \mathbf{x}_{i n}(t)+\mathbf{n}_{0} x_{i c}(t)$

Homogeneous reaction systems Orthogonal spaces in 4-way decomposition

space of initial conditions
space of reaction extents

S-dim space of the number of moles

Homogeneous reaction systems Transformation to RV form

- When $\operatorname{rank}\left(\left[\mathbf{N}^{\mathrm{T}} \mathbf{W}_{\text {in }} \mathbf{n}_{0}\right]\right)<R+p+1\left(\mathbf{u}_{\text {in }}(t)\right.$ and $u_{\text {out }}(t)$ known $)$, the numbers of moles are rearranged in Reaction Variant (RV) form:

$$
\mathbf{n}^{\mathrm{RV}}(t)=\mathbf{N}^{\mathrm{T}} \mathbf{x}_{r}(t)=\mathbf{n}(t)-\mathbf{W}_{i n} \mathbf{x}_{i n}(t)-\mathbf{n}_{0}\left(1+x_{i c}(t)\right)
$$

- The R vessel extents of reaction are then computed as:

$$
\mathbf{x}_{r}(t)=\left(\mathbf{N}^{\mathrm{T}}\right)^{+} \mathbf{n}^{\mathrm{RV}}(t)
$$

Outline

\checkmark Motivation
\checkmark Concept of vessel extent
\checkmark Homogeneous reaction systems

- Incremental model identification
- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems

Kinetic investigation From measurements to rate expressions

Experiments, measurements

(1) Simultaneous approach

Incremental model identification Extent-based method

- The kinetic problem is decomposed into sub-problems of lower complexity that are solved individually.
- The model identification proceeds in two steps:
- Transformation to extents (v+iv) Computation of the contribution of each dynamic effect (reaction, inlets and outlets) as extents
- Model identification (Parameter estimation) Individual model identification of each effect from its corresponding extent with the integral method of parameter estimation.

Extent-based model identification Model identification and parameter estimation

A dynamic model is postulated for each extent of interest and a regression problem is solved individually using the integral method of parameter estimation.

Example: fitting of R extents of reaction

Extent-based model identification

Model identification and parameter estimation

A dynamic model is postulated for each extent of interest and a regression problem is solved individually using the integral method of parameter estimation.

Example: fitting of R extents of reaction

$$
\begin{array}{lll}
\min _{\boldsymbol{\theta}_{r, i}} & \left\|x_{r, i}(t)-\hat{x}_{r, i}\left(t, \boldsymbol{\theta}_{r, i}\right)\right\|^{2} & i=1, \ldots, R \\
\text { s.t. } & \dot{\hat{x}}_{r, i}\left(t, \boldsymbol{\theta}_{r, i}\right)=r_{v, i}\left(t, \boldsymbol{\theta}_{r, i}\right)-\frac{u_{\text {ou }}(t)}{m(t)} \hat{x}_{r, i}(t), & \hat{x}_{r, i}(0)=0 \\
& \boldsymbol{\theta}_{r, i}^{L} \leq \boldsymbol{\theta}_{r, i} \leq \boldsymbol{\theta}_{r, i}^{U} &
\end{array}
$$

Homogeneous reaction systems Ethanolysis of phthalyl chloride in a CSTR

Ethanolysis of phthalyl chloride (A) comprising seven species ($S=7$), three reactions $(R=3)$, two inlets $(p=2)$ and 1 outlet

$$
\begin{aligned}
& \mathbf{N}=\left[\begin{array}{rrrrrrr}
-1 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 & 1
\end{array}\right] \\
& \mathbf{W}_{i n}=\left[\begin{array}{ccccccc}
w_{i n, A} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & w_{i n, B} & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

Extents of reaction?

Homogeneous reaction systems Ethanolysis of phthalyl chloride in a CSTR

$R=3$ Extents of reaction

Number of moles

Each extent of reaction can then be modeled individually, that is, independently from all the other phenomena / extents...

$p=2$ Extents of inlet

1 Extents of outlet

Outline

\checkmark Motivation
\checkmark Concept of vessel extent
\checkmark Homogeneous reaction systems
\checkmark Incremental model identification

- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems

Fluid-Fluid reaction systems Mole balance equations

Fluid-Fluid reaction system consisting of:

- Phase $L: S_{\ell}$ species with R_{ℓ} reactions, p_{m} mass transfers, p_{ℓ} inlets and 1 outlet
- Phase G : S_{g} species with R_{g} reactions, p_{m} mass transfers, p_{g} inlets and 1 outlet Mass transfer described by various models...

Mole balances on phase B R_{b} reactions, p_{m} mass transfers, p_{b} inlets, 1 outlet

$$
B \in\{L, G\}, b \in\{\ell, g\}
$$

$$
\begin{aligned}
& \dot{\mathbf{n}}_{b}(t)=\mathbf{N}_{b}^{\mathrm{T}} \mathbf{r}_{v, b}(t) \pm \mathbf{W}_{m, b} \zeta_{b}(t)+\mathbf{W}_{i n, b} \mathbf{u}_{i n, b}(t)-\frac{u_{\text {out }, b}(t)}{m_{b}(t)} \mathbf{n}_{b}(t), \quad \mathbf{n}_{b}(0)=\mathbf{n}_{0, b} \\
& \left(S_{b} \times 1\right) \\
& \left(S_{b} \times R_{b}\right)\left(R_{b} \times 1\right) \\
& \left(S_{b} \times p_{m}\right)\left(p_{m} \times 1\right) \\
& \left(S_{b} \times p_{b}\right)\left(p_{b} \times 1\right) \\
& \left(S_{b} \times 1\right)
\end{aligned}
$$

Fluid-Fluid reaction systems

 Decomposition in variants and invariants○ Condition: $\operatorname{rank}\left(\left[\mathbf{N}_{b}^{\mathrm{T}} \mathbf{W}_{m, b} \mathbf{W}_{i n, b} \mathbf{n}_{0, b}\right]\right)=R_{b}+p_{m}+p_{b}+1$

$$
\left[\begin{array}{l}
\mathbf{x}_{r}(t) \\
\mathbf{x}_{m}(t) \\
\mathbf{x}_{i n}(t) \\
x_{i c}(t) \\
\mathbf{x}_{i v}(t)
\end{array}\right] \stackrel{\mathscr{R}_{b}}{=}\left[\begin{array}{c}
\mathbf{R}_{b} \\
\mathbf{M}_{b} \\
\mathbf{F}_{b} \\
\mathbf{q}_{b}^{T} \\
\mathbf{Q}_{b}
\end{array}\right]\left(\mathbf{n}_{b}(t)-\mathbf{n}_{0, b}\right) \quad b \in\{\ell, g\}
$$

○ Vessel extents (variants) and $q_{b}=S_{b}-R_{b}-p_{m}-p_{b}-1$ invariants

$$
\begin{aligned}
& \dot{\mathbf{x}}_{r, b}(t)=\underbrace{\mathbf{R}_{b} \mathbf{N}_{b}^{\mathrm{T}}}_{\mathbf{I}_{R_{b}}} \mathbf{r}_{v, b}(t) \pm \underbrace{\mathbf{R}_{b} \mathbf{W}_{m, b}}_{\mathbf{0}_{R_{b} \times p_{p}}} \zeta_{b}(t)+\underbrace{\mathbf{R}_{b} \mathbf{W}_{i n, b}}_{\mathbf{0}_{R_{b} \times p_{b}}} \mathbf{u}_{i n, b}(t)-\frac{u_{o u t b}(t)}{m_{b}(t)} \mathbf{x}_{r, b}(t), \\
& \mathbf{x}_{r, b}(0)=\mathbf{0}_{R_{b}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{x}}_{i n, b}(t)=\underbrace{\mathbf{F}_{b} \mathbf{N}_{b}^{\mathrm{T}}}_{0_{p b} \times R} \mathbf{r}_{v, b}(t) \pm \underbrace{\mathbf{F}_{b} \mathbf{W}_{m, b}^{p_{m}}}_{0_{0_{b b} \times p_{m}}} \boldsymbol{\zeta}_{b}(t)+\underbrace{\mathbf{F}_{b} \mathbf{W}_{i n}^{p_{m} \times p_{b}}}_{\mathbf{I}_{p_{b}}} \mathbf{u}_{i n, b}(t) \quad-\frac{u_{o u t}(t)}{m_{b}(t)} \mathbf{x}_{i n, b}(t), \quad \quad \mathbf{x}_{i n, b}(0)=\mathbf{0}_{p_{b}}
\end{aligned}
$$

Fluid-Fluid reaction systems

 Decomposition in variants and invariants○ Condition: $\operatorname{rank}\left(\left[\mathbf{N}_{b}^{\mathrm{T}} \mathbf{W}_{m, b} \mathbf{W}_{i n, b} \mathbf{n}_{0, b}\right]\right)=R_{b}+p_{m}+p_{b}+1$

$$
\left[\begin{array}{l}
\mathbf{x}_{r}(t) \\
\mathbf{x}_{m}(t) \\
\mathbf{x}_{i n}(t) \\
x_{i c}(t) \\
\mathbf{x}_{i v}(t)
\end{array}\right] \stackrel{\mathscr{f}_{b}}{=}\left[\begin{array}{c}
\mathbf{R}_{b} \\
\mathbf{M}_{b} \\
\mathbf{F}_{b} \\
\mathbf{q}_{b} \\
\mathbf{Q}_{b}
\end{array}\right]\left(\mathbf{n}_{b}(t)-\mathbf{n}_{0, b}\right) \quad b \in\{\ell, g\}
$$

○ Vessel extents (variants) and $q_{b}=S_{b}-R_{b}-p_{m}-p_{b}-1$ invariants

$$
\left(\mathbf{n}_{b}(t)-\mathbf{n}_{0, b}\right) \stackrel{\mathscr{L}_{b}^{-1}}{=} \mathbf{N}_{b}^{\mathrm{T}} \mathbf{x}_{r, b}(t) \pm \mathbf{W}_{m, b} \mathbf{x}_{m, b}(t)+\mathbf{W}_{i n, b} \mathbf{x}_{i n, b}(t)+\mathbf{n}_{0, b} x_{i c, b}(t)
$$

$$
\begin{aligned}
& \dot{\mathbf{x}}_{r, b}(t)=\mathbf{r}_{v, b}(t)-\frac{u_{\text {atat }}(t)}{m_{b}(t)} \mathbf{x}_{r, b}(t), \\
& \mathbf{x}_{r, b}(0)=\mathbf{0}_{R_{b}} \\
& \dot{\mathbf{x}}_{m, b}(t)=\zeta_{b}(t)-\frac{u_{\text {outs }}(t)}{m_{b}(t)} \mathbf{x}_{m, b}(t), \quad \mathbf{x}_{i n, b}(0)=\mathbf{0}_{p_{m}} \\
& \dot{\mathbf{x}}_{i n, b}(t)=\mathbf{u}_{i n, b}(t)-\frac{u_{o u}(t)}{m_{b}(t)} \mathbf{x}_{i n, b}(t), \quad \mathbf{x}_{i n, b}(0)=\mathbf{0}_{p_{b}} \\
& \dot{x}_{i c, b}(t)=-\frac{u_{a t a b}(t)}{m_{b}(t)}-\frac{u_{a u s b}(t)}{m_{b}(t)} x_{i c, b}(t), \quad x_{i c, b}(0)=0 \quad \text { with } \mathbf{x}_{i v, b}(t)=0_{q_{b}}
\end{aligned}
$$

Fluid-Fluid reaction systems Orthogonal spaces in 5-way decomposition

space of initial conditions
 space of reaction extents

S_{b}-dim space of the number of moles in phase B

Fluid-Fluid reaction systems Transformation to RMV form

\circ When $\operatorname{rank}\left(\left[\mathbf{N}_{b}^{\mathrm{T}} \mathbf{W}_{m, b} \mathbf{W}_{i n, b} \mathbf{n}_{0, b}\right]\right)<R_{b}+p_{m}+p_{b}+1\left(\mathbf{u}_{i n, b}(t)\right.$ and $u_{\text {out }, b}(t)$ known $)$, the numbers of moles are rearranged in

Reaction Mass-transfer Variant (RMV) form:

$$
\begin{aligned}
\mathbf{n}_{b}^{\mathrm{RMV}}(t) & =\mathbf{N}^{\mathrm{T}} \mathbf{x}_{r, b}(t) \pm \mathbf{W}_{m, b} \mathbf{x}_{m, b}(t)=\left[\begin{array}{ll}
\mathbf{N}^{\mathrm{T}} & \pm \mathbf{W}_{m, b}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{r, b}(t) \\
\mathbf{x}_{m, b}(t)
\end{array}\right] \\
& =\mathbf{n}_{b}(t)-\mathbf{W}_{i n, b} \mathbf{x}_{i n, b}(t)-\mathbf{n}_{0, b}\left(1+x_{i c, b}(t)\right)
\end{aligned}
$$

- The R_{b} vessel extents of reaction and p_{m} extents of mass transfer are then computed as: $\left[\begin{array}{c}\mathbf{x}_{r, b}(t) \\ \mathbf{x}_{m, b}(t)\end{array}\right]=\left[\begin{array}{ll}\mathbf{N}^{\mathrm{T}} & \pm \mathbf{W}_{m, b}\end{array}\right]^{+} \mathbf{n}_{b}^{\mathrm{RMV}}(t)$

Fluid-Fluid reaction systems Chlorination of butanoic acid in a CSTR

Chlorination of butanoic acid comprises $S_{\ell}=5$ (BA, MBA, DBA, $\left.\mathrm{Cl}_{2}, \mathrm{HCl}\right)$ and $S_{g}=3\left(\mathrm{Cl}_{2}, \mathrm{HCl}\right.$, air) species, $R_{\ell}=2$ reactions, $p_{\ell}=1$ and $p_{g}=1$ inlets and 2 outlets

Extents of reaction?

Fluid-Fluid reaction systems Chlorination of butanoic acid in a CSTR

$R=2$ Extents of reaction

Number of moles in liquid phase

$$
\mathbf{N}_{\ell}, \mathbf{W}_{m, \ell}, \mathbf{W}_{i n, \ell}, \mathbf{n}_{0, \ell}
$$

$$
p_{m}=2 \text { Extents of m.t. }
$$

Fluid-Fluid reaction systems Chlorination of butanoic acid in a CSTR

- Identification of the rate expression for the main reaction R1
- Rate expression candidates
$r_{1}^{(1)}=k_{1} c_{\ell, \mathrm{BA}} c_{\ell, \mathrm{Cl}_{2}}$
$r_{1}^{(2)}=k_{1} c_{\ell, \mathrm{Cl}_{2}}$
$r_{1}^{(3)}=k_{1} c_{\ell, \mathrm{BA}} c_{\ell, \mathrm{Cl}_{2}} c_{\ell, \mathrm{MBA}}$
$r_{1}^{(4)}=k_{1} c_{\ell, \mathrm{BA}} c_{\ell, \mathrm{Cl}_{2}} \sqrt{c_{\ell, \mathrm{MBA}}}$
- Identified rate expression

$$
r_{1}^{(4)}=1.3543 c_{\ell, \mathrm{BA}} c_{\ell, \mathrm{Cl}_{2}} \sqrt{c_{\ell, \mathrm{MBA}}}
$$

Time [h]

Fluid-Fluid reaction systems Chlorination of butanoic acid in a CSTR

- Identified rate expressions
$\begin{array}{ll}r_{1} & =k_{1} c_{\ell, \mathrm{BA}} c_{\ell \ell \mathrm{Cl}_{2}} \sqrt{c_{\ell, \mathrm{MBA}}} \\ r_{2} & =k_{2} r_{1} c_{\ell, \mathrm{Cl}}^{2} \\ \zeta_{\mathrm{Cl}_{2}} & =k_{\mathrm{Cl}_{2}} A_{s} V_{\ell} M_{w, \mathrm{Cl}_{2}}\left(c_{\mathrm{Cl}_{2}}^{*}-c_{\ell, \mathrm{Cl}_{2}}\right) \\ \zeta_{\mathrm{HCl}}=k_{\mathrm{HCl}} A_{s} V_{\ell} M_{w, \mathrm{HI}}\left(c_{\ell, \mathrm{HCl}}-c_{\mathrm{HCl}}^{*}\right)\end{array}$
- Results of curve fitting (2% noise level)

Parameter	Simulated value	Estimated value	95\% Confidence interval
k_{1}	1.3577	1.3543	$[1.3207-1.3879]$
k_{2}	0.1	0.105	$[0.0884-0.1216]$
$k_{\mathrm{Cl}_{2}}$	$0.666 \cdot 10^{-4}$	$0.594 \cdot 10^{-4}$	$\left[0.514 \cdot 10^{-4}-0.674 \cdot 10^{-4}\right]$
k_{HCl}	$0.845 \cdot 10^{-4}$	$0.813 \cdot 10^{-4}$	$\left[0.763 \cdot 10^{-4}-0.863 \cdot 10^{-4}\right]$

Outline

\checkmark Motivation
\checkmark Concept of vessel extent
\checkmark Homogeneous reaction systems
\checkmark Incremental model identification
\checkmark Fluid-Fluid reaction systems

- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems

Recent extensions

Rank augmentation of conc. data by calorimetry

- Homogeneous reaction systems

$$
\begin{aligned}
& \mathbf{n}_{\text {avg }}^{\mathrm{RV}}(t):=\left[\begin{array}{c}
\mathbf{n}_{a}^{\mathrm{RV}}(t) \\
Q_{r}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathbf{N}_{a}^{\mathrm{T}} \\
-\Delta \mathbf{H}_{r}^{\mathrm{T}}
\end{array}\right] \mathbf{x}_{r}(t):=\mathbf{N}_{\text {aug }}^{\mathrm{T}} \mathbf{x}_{r}(t) \\
& \mathbf{x}_{r}(t)=\left(\mathbf{N}_{\text {aug }}^{\mathrm{T}}\right)^{+} \mathbf{n}_{\text {aug }}^{\mathrm{RV}}(t)
\end{aligned}
$$

- Fluid-Fluid reaction systems

$$
\begin{aligned}
& \mathbf{n}_{\text {anv }}^{\mathrm{RNV}}(t):=\left[\begin{array}{c}
\mathbf{n}_{\ell, a}^{\mathrm{RNV}}(t) \\
Q_{r m}(t)
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{N}_{\ell, a}^{\mathrm{T}} & \mathbf{W}_{m, \ell, a} \\
-\Delta \mathbf{H}_{r, \ell}^{\mathrm{T}} & -\Delta \mathbf{H}_{m, \ell}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{r, \ell}(t) \\
\mathbf{x}_{m, \ell}(t)
\end{array}\right]:=\mathbf{N}_{\ell, \text { augg }}^{\mathrm{T}}\left[\begin{array}{l}
\mathbf{x}_{r, \ell}(t) \\
\mathbf{x}_{m, \ell}(t)
\end{array}\right] \\
& {\left[\begin{array}{l}
\mathbf{x}_{r, \ell}(t) \\
\mathbf{x}_{m, \ell}(t)
\end{array}\right]=\left(\mathbf{N}_{\ell, \text { uug }}^{\mathrm{T}}\right)^{+} \mathbf{n}_{\text {auv }}^{\mathrm{RuV}}(t)}
\end{aligned}
$$

Recent extensions

Construction of calibration models in spectroscopy

Required
measurements

Calibration
model

CAL	: construction of calibration model
$\mathrm{S}_{\text {cal }}^{\text {Ral } v}$	$=\left\{\mathbf{u}_{\text {in }, l, \text { cal }}(t), u_{\text {out } t, l, \text { cal }}(t), m_{l, \text { cal }}(t), V_{l, \text { cal }}(t), \mathbf{W}_{\text {in }, l, \text { cal }}, \mathbf{n}_{l 0, c a l}, \mathbf{A}_{i n, \text { cal }}, \mathbf{a}_{0, c a l}\right\}$
$\mathrm{S}_{\text {cal }}^{\text {ev }}$	$=\left\{\mathbf{u}_{\text {in,f,cal }}(t), u_{\text {out,f,cal }}(t), m_{f, c a l}(t), V_{f, c a l}(t), \mathbf{W}_{\text {in,f,cal }}, \mathbf{W}_{m, f, c a l}, \mathbf{n}_{f 0, c a l}, \mathbf{A}\right.$

Recent extensions

Prediction of concentrations from spectral data

Outline

\checkmark Motivation
\checkmark Concept of vessel extent
\checkmark Homogeneous reaction systems
\checkmark Incremental model identification
\checkmark Fluid-Fluid reaction systems
\checkmark Extensions to calorimetry and spectroscopy

- Perspectives: distributed reaction systems

Perspectives

Distributed reaction systems

PDE: $\frac{d}{d t} \mathbf{c}(t, x)=\mathbf{N}^{\mathrm{T}} \mathbf{r}(t, x)+\mathbf{D} \frac{d^{2}}{d x^{2}} \mathbf{c}(t, x)$,

$$
\begin{array}{ll}
\mathbf{c}(0, x)=\mathbf{c}_{0}(x) & (\mathrm{IC}) \\
\mathbf{c}(t, 0)=\mathbf{c}_{g}^{*}(t) & \text { (BC) } \\
\mathbf{c}(t, \delta)=\frac{\mathbf{n}_{\ell}(t)}{V_{\ell}(t)} & \text { (BC) } \tag{BC}
\end{array}
$$

Perspectives

Distributed reaction systems

Laboratoire d'Automatique

Prof. Bonvin, Prof. Longchamp, Prof. Jones, Dr. MER Karimi 6 Postdocs +20 PhD students + technical / administrative staff

Thank you for your attention

Model reduction

- M. Amrhein, PhD dissertation $n^{\circ} 1861$ (1998), EPFL, Switzerland
- Bhatt et al, Comp. \& Chem. Eng. (2011), submitted

Transformation to variants/invariants (extents)

- N. Bhatt, PhD dissertation n ${ }^{\circ} 5028$ (2011), EPFL, Switzerland
- Amrhein et al, AIChE J. 56 (2010) 2873
- Bonvin et al, TFMST, Lyon, July 13-16, 2013 (to be published)

Incremental model identification

- Bhatt et al, Ind. \& Eng. Chem. Res. 49 (2010) 7704
- Bhatt et al, Ind. \& Eng. Chem. Res. 50 (2011) 12960
- Bhatt et al, Chem. Eng. Sci. 8 (2012) 24

Rank augmentation by calorimetric data

- Srinivasan et al, Chem. Eng. J. 207-208 (2012) 785

Incremental kinetic modeling of spectroscopic data

- Billeter et al, Anal. Chim. Acta 767 (2013) 21

