Incremental Model Identification of Reaction Systems

CPAC / ATOCHEMIS Workshop
25 – 27 March 2013, Rome – Italy

Julien Billeter

Ecole Polytechnique Fédérale de Lausanne
Laboratoire d’Automatique
Switzerland
Outline

- Motivation
- Concept of vessel extent
- Homogeneous reaction systems
- Incremental model identification
- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems
Model reduction
Separate fast / slow dynamics

○ Discard redundant (invariant) states
 • What is the minimal number of states (variants) ?
 • Batch reactors: $S \rightarrow R$ extents
 • Open reactors: $S \rightarrow R+p+1$ vessel extents
 • Open G-L reactors: $S \rightarrow R+p_m+p+1$ vessel extents

○ Separate fast/slow dynamics
 • Rates are fast/slow, not individual concentrations
 \rightarrow work with extents, not concentrations…

M. Amrhein, PhD dissertation n°1861 (1998), EPFL, Switzerland
Motivation

- Concept of vessel extent
- Homogeneous reaction systems
- Incremental model identification
- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems
Definitions
Extent vs vessel extent of reaction

- **Extent of the** \(i \)-th reaction \(\xi_{r,i}(t) \):

 number of moles produced by the \(i \)-th reaction

 \[
 \xi_{r,i}(t) = \frac{1}{v_{s,i}} \dot{n}_s = r_{v,i}(t) \quad \xi_{r,i}(0) = 0
 \]

- **Vessel extent of the** \(i \)-th reaction \(x_{r,i}(t) \):

 number of moles produced by the \(i \)-th reaction still in vessel

 \[
 \dot{x}_{r,i}(t) = r_{v,i}(t) - \frac{u_{\text{out}}(t)}{m(t)} x_{r,i}(t) \quad x_{r,i}(0) = 0
 \]

N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
Definitions

Extent vs vessel extent of mass transfer

- **Extent of the** j-th **mass transfer** $\xi_{m,j}(t)$:
 mass transferred by the j-th mass transfer

 Differential extent of mass transfer

 \[
 \dot{\xi}_{m,j}(t) = \xi_j(t) \quad \xi_{m,j}(0) = 0
 \]

- **Vessel extent of the** j-th **mass transfer** $x_{m,j}(t)$:
 mass transferred by the j-th mass transfer still in vessel

 Differential vessel extent of mass transfer

 \[
 \dot{x}_{m,j}(t) = \xi_j(t) - \frac{u_{out}(t)}{m(t)} x_{m,j}(t) \quad x_{m,j}(0) = 0
 \]

N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
General concept of vessel extent

A vessel extent indicates the amount of material (number of moles, mass, volume), associated with one phenomenon, that is still in the vessel...

Differential vessel extent (\(i\)-th phenomenon \(f\))

\[
\dot{x}_{f,i}(t) = \dot{\xi}_{f,i}(t) - \frac{u_{out}(t)}{m(t)} x_{f,i}(t) \quad \quad x_{f,i}(0) = 0
\]

N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
Outline

✅ Motivation

✅ Concept of vessel extent

- Homogeneous reaction systems
- Incremental model identification
- Fluid-Fluid reaction systems
- Extensions to calorimetry and spectroscopy
- Perspectives: distributed reaction systems
Homogeneous reaction systems

Mole balance equations

Homogeneous reaction system consisting of S species, R independent reactions, p independent inlets and one outlet

Mole balances for S species

$$ \dot{n}(t) = N^T r_v(t) + W_{in} u_{in}(t) - \frac{u_{out}(t)}{m(t)} n(t), \quad n(0) = n_0 $$

Mass, volume and concentrations

$$ m(t) = 1^T_S M_w n(t), \quad V(t) = \frac{m(t)}{\rho(t)}, \quad c(t) = \frac{n(t)}{V(t)} $$

Amrhein et al, AIChE J. 56 (2010) 2873
Homogeneous reaction systems
Decomposition in variants and invariants

- Condition: \(\text{rank}(\begin{bmatrix} N^T & W_{in} & n_0 \end{bmatrix}) = R + p + 1 \)

- Vessel extents (variants) and \(q = S - R - p - 1 \) redundant information (invariants)

\[
\begin{align*}
\dot{x}_r(t) &= R N^T r_v(t) + R W_{in} u_{in}(t) - \frac{u_{out}(t)}{m(t)} x_r(t), \quad x_r(0) = 0_R \\
\dot{x}_{in}(t) &= F N^T r_v(t) + F W_{in} u_{in}(t) - \frac{u_{out}(t)}{m(t)} x_{in}(t), \quad x_{in}(0) = 0_p \\
\dot{x}_{ic}(t) &= q N^T r_v(t) + q W_{in} u_{in}(t) - \frac{u_{out}(t)}{m(t)} (1 + x_{ic}(t)), \quad x_{ic}(0) = 0 \\
\dot{x}_{iv}(t) &= Q N^T r_v(t) + Q W_{in} u_{in}(t) - \frac{u_{out}(t)}{m(t)} \dot{x}_{iv}(t), \quad x_{iv}(0) = 0_q
\end{align*}
\]

Amrhein et al, AIChE J. 56 (2010) 2873
Homogeneous reaction systems
Decomposition in variants and invariants

- **Condition:** \(\text{rank} \left(\left[N^{T} W_{\text{in}} n_{0} \right] \right) = R + p + 1 \)

\[
\begin{bmatrix}
x_{r}(t) \\
x_{\text{in}}(t) \\
x_{\text{ic}}(t) \\
x_{\text{iv}}(t)
\end{bmatrix} \Leftrightarrow \begin{bmatrix} R \\ F \\ q^{T} \\ Q \end{bmatrix} (n(t) - n_{0})
\]

- **Vessel extents (variants) and** \(q = S - R - p - 1 \) **redundant information (invariants)**

\[
\begin{align*}
\dot{x}_{r}(t) &= r_{v}(t) - \frac{u_{\text{out}}(t)}{m(t)} x_{r}(t), \\
\dot{x}_{\text{in}}(t) &= u_{\text{in}}(t) - \frac{u_{\text{out}}(t)}{m(t)} x_{\text{in}}(t), \\
\dot{x}_{\text{ic}}(t) &= -\frac{u_{\text{out}}(t)}{m(t)} - \frac{u_{\text{out}}(t)}{m(t)} x_{\text{ic}}(t), \\
x_{\text{iv}}(t) &= 0_{q}
\end{align*}
\]

\[
x_{r}(0) = 0_{R}, \quad x_{\text{in}}(0) = 0_{p}, \quad x_{\text{ic}}(0) = 0
\]

- **Reconstruction:** \((n(t) - n_{0}) \cong N^{T} x_{r}(t) + W_{\text{in}} x_{\text{in}}(t) + n_{0} x_{\text{ic}}(t) \)

Amrhein et al, AIChE J. 56 (2010) 2873
Homogeneous reaction systems
Orthogonal spaces in 4-way decomposition

\[
\begin{align*}
\text{space of initial conditions} & \quad n_0 q^T \\
\text{space of reaction extents} & \quad N^T R \\
\text{space of invariants} & \quad Q Q^T \\
\text{space of inlet extents} & \quad W_{in} F \\
\text{S-dim space of the number of moles} & \quad \mathbb{R}^1, \mathbb{R}^q, \mathbb{R}^R, \mathbb{R}^T, \mathbb{R}^p
\end{align*}
\]

Amrhein et al, AIChE J. 56 (2010) 2873
Homogeneous reaction systems
Transformation to RV form

- When \(\operatorname{rank}\left(\begin{bmatrix} \mathbf{N}^T & \mathbf{W}_{\text{in}} & \mathbf{n}_0 \end{bmatrix}\right) < R + p + 1 \) (\(u_{\text{in}}(t) \) and \(u_{\text{out}}(t) \) known), the numbers of moles are rearranged in Reaction Variant (RV) form:

\[
\mathbf{n}^{\text{RV}}(t) = \mathbf{N}^T \mathbf{x}_r(t) = \mathbf{n}(t) - \mathbf{W}_{\text{in}} \mathbf{x}_{\text{in}}(t) - \mathbf{n}_0 \left(1 + \mathbf{x}_{\text{ic}}(t)\right)
\]

- The \(R \) vessel extents of reaction are then computed as:

\[
\mathbf{x}_r(t) = \left(\mathbf{N}^T\right)^+ \mathbf{n}^{\text{RV}}(t)
\]
Outline

✓ Motivation
✓ Concept of vessel extent
✓ Homogeneous reaction systems
 ○ Incremental model identification
 ○ Fluid-Fluid reaction systems
 ○ Extensions to calorimetry and spectroscopy
 ○ Perspectives: distributed reaction systems
Kinetic investigation
From measurements to rate expressions

1. Simultaneous approach
2. Incremental approach (rate-based)
3. Incremental approach (extent-based)

Incremental model identification
Extent-based method

- The kinetic problem is decomposed into sub-problems of lower complexity that are solved individually.

- The model identification proceeds in two steps:
 - Transformation to extents (v+iv)
 Computation of the contribution of each dynamic effect (reaction, inlets and outlets) as extents
 - Model identification (Parameter estimation)
 Individual model identification of each effect from its corresponding extent with the integral method of parameter estimation.
Extent-based model identification
Model identification and parameter estimation

A dynamic model is postulated for each extent of interest and a regression problem is solved individually using the integral method of parameter estimation.

Example: fitting of R extents of reaction

![Graph showing extent of reaction over time](image-url)
Extent-based model identification
Model identification and parameter estimation

A dynamic model is postulated for each extent of interest and a regression problem is solved individually using the integral method of parameter estimation.

Example: fitting of R extents of reaction

$$\min_{\theta_{r,i}} \left\| x_{r,i}(t) - \hat{x}_{r,i}(t, \theta_{r,i}) \right\|^2$$

s.t. $$\dot{\hat{x}}_{r,i}(t, \theta_{r,i}) = r_{v,i}(t, \theta_{r,i}) - \frac{u_{out}(t)}{m(t)} \hat{x}_{r,i}(t), \quad \hat{x}_{r,i}(0) = 0$$

$$\theta_{r,i}^L \leq \theta_{r,i} \leq \theta_{r,i}^U$$

Homogeneous reaction systems
Ethanolysis of phthalyl chloride in a CSTR

Ethanolysis of phthalyl chloride (A) comprising seven species ($S = 7$), three reactions ($R = 3$), two inlets ($p = 2$) and 1 outlet

$$\begin{align*}
N &= \begin{bmatrix}
-1 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 & 1 \\
\end{bmatrix} \\
W_{in} &= \begin{bmatrix}
w_{in,A} & 0 & 0 & 0 & 0 & 0 & 0 \\
w_{in,B} & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}^T
\end{align*}$$

A + B \rightarrow C + D
C + B \rightarrow E + D
$D + B \leftrightarrow F + G$

Extents of reaction?

N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
Homogeneous reaction systems
Ethanolysis of phthalyl chloride in a CSTR

\[R = 3 \text{ Extents of reaction} \]

\[\mathbf{N}, W_{\text{in}}, n_0 \]

Number of moles

Each extent of reaction can then be modeled individually, that is, independently from all the other phenomena / extents…
Outline

✓ Motivation

✓ Concept of vessel extent

✓ Homogeneous reaction systems

✓ Incremental model identification
 - Fluid-Fluid reaction systems
 - Extensions to calorimetry and spectroscopy
 - Perspectives: distributed reaction systems
Fluid-Fluid reaction systems

Mole balance equations

Fluid-Fluid reaction system consisting of:

- **Phase L**: \(S_\ell \) species with \(R_\ell \) reactions, \(P_m \) mass transfers, \(P_\ell \) inlets and 1 outlet
- **Phase G**: \(S_g \) species with \(R_g \) reactions, \(P_m \) mass transfers, \(P_g \) inlets and 1 outlet

Mass transfer described by various models…

Mole balances on phase \(B \)

\(R_b \) reactions, \(P_m \) mass transfers, \(P_b \) inlets, 1 outlet

\[
\dot{n}_b(t) = N_b^T \mathbf{r}_{v,b}(t) \pm W_{m,b} \zeta_b(t) + W_{in,b} \mathbf{u}_{in,b}(t) - \frac{u_{out,b}(t)}{m_b(t)} n_b(t), \quad n_b(0) = n_{0,b}
\]

\((S_b \times 1) \) \((S_b \times R_b)(R_b \times 1) \) \((S_b \times P_m)(P_m \times 1) \) \((S_b \times P_b)(P_b \times 1) \) \((S_b \times 1) \)

Fluid-Fluid reaction systems
Decomposition in variants and invariants

- Condition: \(\text{rank} \left(\begin{bmatrix} N_b^T & W_{m,b} & W_{in,b} & n_{0,b} \end{bmatrix} \right) = R_b + P_m + p_b + 1 \)

\[
\begin{bmatrix}
 x_r (t) \\
 x_m (t) \\
 x_{in} (t) \\
 x_{ic} (t) \\
 x_{iv} (t)
\end{bmatrix} = \begin{bmatrix}
 R_b \\
 M_b \\
 F_b \\
 q_b^T \\
 Q_b
\end{bmatrix} \left(n_b (t) - n_{0,b} \right) \quad b \in \{ \ell, g \}
\]

- Vessel extents (variants) and \(q_b = S_b - R_b - P_m - p_b - 1 \) invariants

\[
\begin{align*}
 \dot{x}_{r,b} (t) &= R_b N_b^T r_{v,b} (t) \pm R_b W_{m,b} \zeta_b (t) + R_b W_{in,b} u_{in,b} (t) - \frac{u_{out,b}(t)}{m_b(t)} x_{r,b} (t), \quad x_{r,b} (0) = 0_{R_b} \\
 \dot{x}_{m,b} (t) &= M_b N_b^T r_{v,b} (t) \pm M_b W_{m,b} \zeta_b (t) + M_b W_{in,b} u_{in,b} (t) - \frac{u_{out,b}(t)}{m_b(t)} x_{m,b} (t), \quad x_{in,b} (0) = 0_{p_m} \\
 \dot{x}_{in,b} (t) &= F_b N_b^T r_{v,b} (t) \pm F_b W_{m,b} \zeta_b (t) + F_b W_{in,b} u_{in,b} (t) - \frac{u_{out,b}(t)}{m_b(t)} x_{in,b} (t), \quad x_{in,b} (0) = 0_{p_b} \\
 \dot{x}_{ic,b} (t) &= q_b^T N_b^T r_{v,b} (t) \pm q_b^T W_{m,b} \zeta_b (t) + q_b^T W_{in,b} u_{in,b} (t) - \frac{u_{out,b}(t)}{m_b(t)} (1 + x_{ic,b} (t)), \quad x_{ic,b} (0) = 0
\end{align*}
\]
Fluid-Fluid reaction systems
Decomposition in variants and invariants

- Condition: \(\text{rank} \left(\begin{bmatrix} N_b^T & W_{m,b} & W_{in,b} & n_{0,b} \end{bmatrix} \right) = R_b + P_m + p_b + 1 \)

\[
\begin{bmatrix}
\dot{x}_r(t) \\
\dot{x}_m(t) \\
\dot{x}_{in}(t) \\
\dot{x}_{ic}(t) \\
\dot{x}_{iv}(t)
\end{bmatrix} = \mathcal{L}_b
\begin{bmatrix}
R_b \\
M_b \\
F_b \\
q_b \\
Q_b
\end{bmatrix}
\begin{bmatrix}
(n_b(t) - n_{0,b})
\end{bmatrix} \quad b \in \{\ell, g\}
\]

- Vessel extents (variants) and \(q_b = S_b - R_b - P_m - p_b - 1 \) invariants

\[
\begin{align*}
\dot{x}_{r,b}(t) &= r_{v,b}(t) - \frac{u_{out,b}(t)}{m_b(t)} x_{r,b}(t), & x_{r,b}(0) &= 0_{R_b} \\
\dot{x}_{m,b}(t) &= \zeta_{b}(t) - \frac{u_{out,b}(t)}{m_b(t)} x_{m,b}(t), & x_{in,b}(0) &= 0_{P_m} \\
\dot{x}_{in,b}(t) &= u_{in,b}(t) - \frac{u_{out}(t)}{m_b(t)} x_{in,b}(t), & x_{in,b}(0) &= 0_{P_b} \\
\dot{x}_{ic,b}(t) &= -\frac{u_{out,b}(t)}{m_b(t)} - \frac{u_{out,b}(t)}{m_b(t)} x_{ic,b}(t), & x_{ic,b}(0) &= 0 \\
\end{align*}
\]

with \(x_{iv,b}(t) = 0_{q_b} \)

\[
(n_b(t) - n_{0,b}) \overset{\mathcal{L}_b^{-1}}{=} N_b^T x_{r,b}(t) \pm W_{m,b} x_{m,b}(t) + W_{in,b} x_{in,b}(t) + n_{0,b} x_{ic,b}(t)
\]
Fluid-Fluid reaction systems
Orthogonal spaces in 5-way decomposition

space of initial conditions

space of reaction extents

space of mass-transfer extents

space of invariants

space of inlet extents

S_b-dim space of the number of moles in phase B

Fluid-Fluid reaction systems
Transformation to RMV form

○ When \(\text{rank} \left(\begin{bmatrix} N_b^T & W_{m,b} & W_{in,b} & n_{0,b} \end{bmatrix} \right) < R_b + P_m + p_b + 1 \) (\(u_{in,b}(t) \) and \(u_{out,b}(t) \) known), the numbers of moles are rearranged in Reaction Mass-transfer Variant (RMV) form:

\[
\begin{align*}
 n_b^{\text{RMV}}(t) &= N^T x_{r,b}(t) \pm W_{m,b} x_{m,b}(t) = \begin{bmatrix} N^T & \pm W_{m,b} \end{bmatrix} \begin{bmatrix} x_{r,b}(t) \\ x_{m,b}(t) \end{bmatrix} \\
 &= n_b(t) - W_{in,b} x_{in,b}(t) - n_{0,b} \left(1 + x_{ic,b}(t) \right)
\end{align*}
\]

○ The \(R_b \) vessel extents of reaction and \(P_m \) extents of mass transfer are then computed as:

\[
\begin{bmatrix} x_{r,b}(t) \\ x_{m,b}(t) \end{bmatrix} = \left[N^T \pm W_{m,b} \right]^+ n_b^{\text{RMV}}(t)
\]
Chlorination of butanoic acid comprises $S_\ell = 5$ (BA, MBA, DBA, Cl$_2$, HCl) and $S_g = 3$ (Cl$_2$, HCl, air) species, $R_\ell = 2$ reactions, $p_\ell = 1$ and $p_g = 1$ inlets and 2 outlets.

\[
\begin{align*}
\text{Phase } G & : \text{Cl}_2, \text{HCl}, \text{Air} \\
\text{Phase } L & : \text{BA, MBA, DBA, Cl}_2, \text{HCl}
\end{align*}
\]

\[
\begin{align*}
BA + Cl_2 & \xrightarrow{\text{cat}} MBA + HCl & \text{(R1)} \\
BA + 2Cl_2 & \xrightarrow{\text{cat}} DBA + HCl & \text{(R2)}
\end{align*}
\]

Extents of reaction?

N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
Fluid-Fluid reaction systems
Chlorination of butanoic acid in a CSTR

\[T \begin{bmatrix} R_m \\ M_m \end{bmatrix} = T \begin{bmatrix} R_m \\ M_m \end{bmatrix} + T \begin{bmatrix} q_m \\ Q_m \end{bmatrix} \]

Number of moles in liquid phase

\[N_l, W_m, W_{in}, n_0, \ell \]

\[R = 2 \text{ Extents of reaction} \]

\[p_m = 2 \text{ Extents of m.t.} \]

N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
Fluid-Fluid reaction systems
Chlorination of butanoic acid in a CSTR

○ Identification of the rate expression for the main reaction R1

○ Rate expression candidates

\[
\begin{align*}
 r_1^{(1)} &= k_1 \ c_{\ell,BA} \ c_{\ell,Cl_2} \\
 r_1^{(2)} &= k_1 \ c_{\ell,Cl_2} \\
 r_1^{(3)} &= k_1 \ c_{\ell,BA} \ c_{\ell,Cl_2} \ c_{\ell,MBA} \\
 r_1^{(4)} &= k_1 \ c_{\ell,BA} \ c_{\ell,Cl_2} \ \sqrt{c_{\ell,MBA}}
\end{align*}
\]

○ Identified rate expression

\[
\begin{align*}
 r_1^{(4)} &= 1.3543 \ c_{\ell,BA} \ c_{\ell,Cl_2} \ \sqrt{c_{\ell,MBA}}
\end{align*}
\]
Fluid-Fluid reaction systems
Chlorination of butanoic acid in a CSTR

- Identified rate expressions

\[r_1 = k_1 c_{\text{BA}} c_{\ell,\text{Cl}_2} \sqrt{c_{\ell,\text{MBA}}} \]
\[r_2 = k_2 r_1 c_{\ell,\text{Cl}_2} \]
\[\zeta_{\text{Cl}_2} = k_{\text{Cl}_2} A_s V_\ell M_{w,\text{Cl}_2} (c_{\text{Cl}_2}^* - c_{\ell,\text{Cl}_2}) \]
\[\zeta_{\text{HCl}} = k_{\text{HCl}} A_s V_\ell M_{w,\text{HCl}} (c_{\ell,\text{HCl}} - c_{\text{HCl}}^*) \]

- Results of curve fitting (2% noise level)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simulated value</th>
<th>Estimated value</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>1.3577</td>
<td>1.3543</td>
<td>[1.3207 – 1.3879]</td>
</tr>
<tr>
<td>(k_2)</td>
<td>0.1</td>
<td>0.105</td>
<td>[0.0884 – 0.1216]</td>
</tr>
<tr>
<td>(k_{\text{Cl}_2})</td>
<td>0.666\cdot10^{-4}</td>
<td>0.594\cdot10^{-4}</td>
<td>[0.514\cdot10^{-4} – 0.674\cdot10^{-4}]</td>
</tr>
<tr>
<td>(k_{\text{HCl}})</td>
<td>0.845\cdot10^{-4}</td>
<td>0.813\cdot10^{-4}</td>
<td>[0.763\cdot10^{-4} – 0.863\cdot10^{-4}]</td>
</tr>
</tbody>
</table>

N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
✓ Motivation
✓ Concept of vessel extent
✓ Homogeneous reaction systems
✓ Incremental model identification
✓ Fluid-Fluid reaction systems
 ○ Extensions to calorimetry and spectroscopy
 ○ Perspectives: distributed reaction systems
Recent extensions
Rank augmentation of conc. data by calorimetry

○ Homogeneous reaction systems

\[
\mathbf{n}_{\text{aug}}^{\text{RV}}(t) := \begin{bmatrix} \mathbf{n}_{a}^{\text{RV}}(t) \\ Q_r(t) \end{bmatrix} = \begin{bmatrix} \mathbf{N}_{a}^{T} \\ -\Delta H_{r}^{T} \end{bmatrix} \mathbf{x}_{r}(t) := \mathbf{N}_{\text{aug}}^{T} \mathbf{x}_{r}(t)
\]

\[
\mathbf{x}_{r}(t) = \left(\mathbf{N}_{\text{aug}}^{T}\right)^{+} \mathbf{n}_{\text{aug}}^{\text{RV}}(t)
\]

○ Fluid-Fluid reaction systems

\[
\mathbf{n}_{\text{aug}}^{\text{RMV}}(t) := \begin{bmatrix} \mathbf{n}_{\ell,a}^{\text{RMV}}(t) \\ Q_{rm}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{N}_{\ell,a}^{T} \\ -\Delta H_{r,\ell}^{T} & -\Delta H_{m,\ell}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{r,\ell}(t) \\ \mathbf{x}_{m,\ell}(t) \end{bmatrix} := \mathbf{N}_{\ell,\text{aug}}^{T} \begin{bmatrix} \mathbf{x}_{r,\ell}(t) \\ \mathbf{x}_{m,\ell}(t) \end{bmatrix}
\]

\[
\begin{bmatrix} \mathbf{x}_{r,\ell}(t) \\ \mathbf{x}_{m,\ell}(t) \end{bmatrix} = \left(\mathbf{N}_{\ell,\text{aug}}^{T}\right)^{+} \mathbf{n}_{\text{aug}}^{\text{RMV}}(t)
\]

Recent extensions
Construction of calibration models in spectroscopy

\[
\begin{align*}
&\text{Required measurements} \\
&\begin{aligned}
&\left(C_{l,\text{cal}}, A_{\text{cal}} \right) \\
&\mathcal{S}_{\text{cal}}^{\text{RMV}} \\
&c_{g,\text{cal}}(t)
\end{aligned} \\
&\text{RMV} \\
&\mathcal{S}_{\text{cal}}^{\text{RV}} \\
&\text{CAL} \\
&\mathcal{F}^{\text{RMV}} \\
&\text{CAL} \\
&\mathcal{F}^{\text{RV}} \\
&\left(C_{l,\text{cal}}, A_{\text{cal}} \right) \\
&\text{Calibration model}
\end{align*}
\]

RMV, RV : transformation to RMV-, RV-form
CAL : construction of calibration model
\[
\mathcal{S}_{\text{cal}}^{\text{RMV}} = \{u_{\text{in},l,\text{cal}}(t), u_{\text{out},l,\text{cal}}(t), m_{l,\text{cal}}(t), V_{l,\text{cal}}(t), W_{\text{in},l,\text{cal}}, n_{0,\text{cal}}, A_{\text{in,cal}}, a_{0,\text{cal}}\}
\]
\[
\mathcal{S}_{\text{cal}}^{\text{RV}} = \{u_{\text{in},f,\text{cal}}(t), u_{\text{out},f,\text{cal}}(t), m_{f,\text{cal}}(t), V_{f,\text{cal}}(t), W_{\text{in},f,\text{cal}}, W_{\text{in},f,\text{cal}}, n_{0,\text{cal}}, A_{\text{in,cal}}, a_{0,\text{cal}}, A_{m,\text{cal}}\}
\]
Recent extensions
Prediction of concentrations from spectral data

\[\begin{align*}
\text{Required measurements} & \quad \text{Predicted concentrations of calibrated species} & \quad \text{Predicted extents} & \quad \text{Predicted concentrations} \\
RMV & \quad a_{RMV}(t) & \quad F_{RMV} & \quad \hat{e}_{l,c}^{RMV}(t) & \quad L_{RMV} & \quad \left(\begin{array}{c}
\hat{x}_r(t) \\
\hat{x}_{m,i}(t)
\end{array} \right) & \quad R_{RMV} & \quad \hat{e}_l(t) \\
& \quad S_{RMV}^1 & & & & \\
& \quad S_{RMV}^2 & & & & \\
\text{RV} & \quad a_{RV}(t) & \quad F_{RV} & \quad \hat{e}_{l,c}^{RV}(t) & \quad L_{RV} & \quad \left(\begin{array}{c}
\hat{x}_r(t) \\
\hat{x}_{m,i}(t) \\
\hat{\lambda}_i(t)
\end{array} \right) & \quad R_{RV} & \quad \hat{e}_l(t) \\
& \quad S_{RV}^1 & & & & \\
& \quad S_{RV}^2 & & & & \\
& \quad c_g(t) & & & & \\
\end{align*} \]

- \(F \), \(F_{RV}, F_{RMV} \): prediction via calibration
- \(L, L_{RV}, L_{RMV} \): linear transformation to extents
- \(R, R_{RV}, R_{RMV} \): reconstruction of all concentrations from extents
- RMV, RV: transformation to RMV-, RV-form

- \(S_{RMV}^1 = \{u_{in,i}(t), u_{out,i}(t), m_i(t), V_i(t), W_{in,i}, u_0\} \)
- \(S_{RMV}^2 = \{A_{in}, a_0\} \)
- \(S_{RV}^1 = \{u_{in,f}(t), u_{out,f}(t), m_f(t), V_f(t), W_{in,f}, W_{in,f}, n_{f0}\} \), where \(f \in \{g,l\} \)
- \(S_{RV}^2 = \{A_{int}, A_{in}, a_0\} \)
Outline

✓ Motivation
✓ Concept of vessel extent
✓ Homogeneous reaction systems
✓ Incremental model identification
✓ Fluid-Fluid reaction systems
✓ Extensions to calorimetry and spectroscopy

○ Perspectives: distributed reaction systems
Perspectives
Distributed reaction systems

Bonvin et al, TFMST, Lyon, July 13–16, 2013 (to be published)
Perspectives

Distributed reaction systems

How to decouple reaction, convection and diffusion phenomena?

PDE: \[\frac{d}{dt} \mathbf{c}(t, x) = N^T \mathbf{r}(t, x) - v_x \frac{d}{dx} \mathbf{c}(t, x) + D \frac{d^2}{dx^2} \mathbf{c}(t, x), \]

How to decouple reaction, convection and diffusion phenomena?

- \(\mathbf{c}(0, x) = \mathbf{c}_{t=0}(x) \) (IC)
- \(\mathbf{c}(t, 0) = \mathbf{c}_{x=0}(t) \) (BC)
- \(\mathbf{c}(t, \delta) = \mathbf{c}_{x=L}(t) \) (BC)
Laboratoire d’Automatique

Prof. Bonvin, Prof. Longchamp, Prof. Jones, Dr. MER Karimi
6 Postdocs + 20 PhD students + technical / administrative staff
Model reduction
- M. Amrhein, PhD dissertation n°1861 (1998), EPFL, Switzerland

Transformation to variants/invariants (extents)
- N. Bhatt, PhD dissertation n°5028 (2011), EPFL, Switzerland
- Amrhein et al, AIChE J. 56 (2010) 2873
- Bonvin et al, TFMST, Lyon, July 13–16, 2013 (to be published)

Incremental model identification

Rank augmentation by calorimetric data

Incremental kinetic modeling of spectroscopic data