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Abstract— In many industrial applications, finding a model
from physical laws that is both simple and reliable for control
design is a hard and time-consuming undertaking. When a
set of input/output (I/O) measurements is available, one can
derive the controller directly from data, without relying on
the knowledge of the physics. In the scientific literature, two
main approaches have been proposed for control system design
from data. In the “model-based” approach, a model of the
system is first derived from data and then a controller is
computed based on the model. In the “data-driven” approach,
the controller is directly computed from data. In this work, the
above approaches are compared from a novel perspective. The
main finding of the paper is that, although from the standard
perspective of parameter variance analysis the model-based
approach is always statistically more efficient, the data-driven
controller might outperform the model-based solution for what
concerns the final control cost.

I. I NTRODUCTION

In the last decade, the progress of data-acquisition tech-
nology has made it easy and straightforward to collect a
large amount of measurements from industrial plants. The
use of data as an alternative to physical knowledge to design
fixed-order controllers,e.g.PID, has attracted more and more
interest throughout the years, since it is often cheaper and
less time-consuming. Specifically, two main approaches have
been studied in the scientific literature.
In the “model-based” approach, a model of the plant is
identified from data and used to compute the fixed-order
controller satisfying some user-defined requirements. As an
example, in model reference control, the identified model
is used to design a controller that minimizes the model
reference criterion, either algebraically or through optimiza-
tion, and a controller-order reduction step is performed (if
needed) before implementation. However, this controller is
not necessarily optimal when connected to the plant, and the
control performance is limited by modeling errors.
In the “data-driven” controller tuning approach, the con-
troller is directly derived from input/output (I/O) data. These
techniques have been proposed to avoid the problem of
under-modeling and to facilitate the design of fixed-order
controllers, both iteratively [7], [15], [11], [8] and non-
iteratively [5], [1], [21]. Specifically, in non-iterativeap-
proaches, stability can be guaranteed [21] and, since the
controller parameter estimation problem is convex for most
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interesting controller structures, the global optimum canbe
found. Various application examples (e.g., [4], [3]) have
shown that critical control problems can be dealt with by
using a data-driven method. However, it can be debated
whether similar results can be obtained if the same amount
of data is available for system identification and a model-
based controller tuning approach is used.
In the context of system identification, it has been shown
that an indirect approach consisting of two optimization steps
is statistically efficient [19]. As a matter of fact, according
to the invariance principle of maximum likelihood (ML)
estimators, an estimator of a function of the model parameter
estimates is asymptotically efficient if the model parameter
estimate is statistically efficient. Translating these results to
the specific case of controller tuning, arguments have been
put forward in favor of model-based approaches [6]. In fact,
based on the translation of the previous results to controller
estimation, it can be argued that an efficient model-based
approach is optimal and will therefore achieve equivalent
or better results than data-driven approaches that are not
statistically efficient.
Analysis of the accuracy of controller estimates is limited
both for data-driven and model-based approaches and a quan-
titative comparison confirming the argument given above is
lacking. One of the problems in performing such an analysis
is that the achieved performance of model-based controller
tuning methods strongly depends on the modeling technique
that is used. If an identified parametric model is used, the
control performance depends on the identification approach
and the resulting amount of under-modeling. Furthermore,
the order of the controller depends in general on the order
of the identified model. In practice, bounds on the modeling
error can be defined, but the exact amount of under-modeling
will be unknown and problem dependent.
In this paper, a model-based controller tuning approach based
on the invariance principle of ML estimators is proposed
that allows for a comparison of the asymptotic variance of
the controller parameter estimate with the accuracy achieved
by data-driven approaches. A high-order model is identified
using ML estimation (in this step the modeling error can
be assumed negligible) and the controller parameters are
estimated using anL2 approach, under the assumption that
the control objective is achievable. According to the argu-
ments set out above, this approach achieves the Cramér-
Rao lower bound [6]. Moreover, this method can fairly be
compared to non-iterative data-driven control (in this work,
the Correlation-based Tuning, CbT [21], will be accounted
for) as both approaches are based on convex optimization
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only. However, from the perspective of control design,the
variance analysis of the controller parameters is only an
intermediate steptowards the evaluation of the methods. In
fact, the real final objective is the control cost achieved by
the designed controller.
In this work, the accuracy of this final control objective
is analyzed. By doing so, a more direct analysis of the
performance will be carried out. The main conclusions of
this paper are the following:

• if the model structure is perfectly known and the model
order is low, the model-based approach is theoretically
always the best in terms of statistical performance, as
argued in [6];

• if the model structure is not completely known and/or
a high-order model is identified using a ML estimator
as indicated above, the data-driven approach can statis-
tically outperform the model-based solution in terms of
the control cost, even if the variance of the parameters
remains larger.

• Since in the real world the model structure is never
perfectlyknown and under-modeling cannot be avoided
with a low-order model, the data-driven approach may
give better results in real applications.

The remainder of the paper is as follows. Preliminaries and
notation are given in Section II. The model-based and data-
driven methods used in the paper for fixed-order model-
reference design are described in Section III. The main
results on accuracy analysis are presented in Section IV.
A simulation example is used in Section V to illustrate the
theoretical observations on the benchmark system introduced
in [12]. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. The approximate model reference control problem

Consider the stable linear SISO plantG(q−1), whereq−1

denotes the backward shift operator. Specifications for the
controlled plant are given as a reference modelM(q−1). In
the following, it is assumed thatM 6= 1. The backward
shift operator will be omitted in the sequel for convenience.
The control objective is to design the controllerK(ρ),
parameterized throughρ, such that the closed-loop system
resembles the reference modelM . This can be achieved
by minimizing the two-norm of the difference between the
reference model and the achieved closed-loop system:

Jmr(ρ) =

∥

∥

∥

∥

M − K(ρ)G

1 +K(ρ)G

∥

∥

∥

∥

2

2

(1)

A discussion on the choice ofM can be found in [2]. In
the following, the controller structure is chosen linear inthe
parameters,

K(q−1, ρ) = βT (q−1)ρ, ρ ∈ DK ⊆ R
nρ (2)

where the setDK is compact and

β(q−1) = [β1(q
−1), · · · , βnρ

(q−1)]T (3)

is a vector of sizenρ of linear discrete-time transfer operators
(in general an orthogonal basis). Only the cases whereK(ρ)

is stable or it contains an integrator ifM(1) = 1 will be
considered.
The ideal controllerK∗ can be defined indirectly byG and
M as

K∗ =
M

G(1 −M)
, (4)

that always exists sinceM 6= 1. Notice thatK∗ might be
of very high order, it might not stabilize the plant internally
and it might be non-causal.

Notice that the model reference criterion (1) is non-convex
with respect toρ. An approximation that is convex for
linearly parameterized controllers (2) can be defined using
the reference model, as follows. The ideal sensitivity function
is given by

1

1 +K∗G
= 1 −M.

Note that this function is causal (as well as the reference
model M ) independent of the causality ofK∗. Recalling
(4), the model reference criterion (1) can be expressed as:

Jmr(ρ) =

∥

∥

∥

∥

K∗G−K(ρ)G

(1 +K∗G)(1 +K(ρ)G)

∥

∥

∥

∥

2

2

(5)

Approximation of 1/(1 + GK(ρ)) by 1 − M , the ideal
sensitivity function, leads to the following approximation of
the model reference criterion:

J(ρ) =

∥

∥

∥

∥

K∗G−K(ρ)G

(1 +K∗G)2

∥

∥

∥

∥

2

2

= (6)

=
∥

∥

∥
(1 −M)[M −K(ρ)(1 −M)G]

∥

∥

∥

2

2
. (7)

The quality of this approximation ofJmr(ρ) is discussed in
[1]. Notice that, with the selected parameterization,J(ρ) is a
quadratic function ofρ and its global optimizer can be easily
found using the least squares techniques.
The optimal controller is defined asKo = K(ρo) with

ρo = arg min
ρ∈DK

J(ρ) (8)

In practice, if the controller order is fixed according to
(2), the objective is not necessarily achievable andK∗ /∈
{K(ρ)}, Ko 6= K∗ and J(ρo) > 0. To allow for analysis
of the accuracy of the estimated controller parameters, it is
assumed that

A1 The objective can be achieved,i.e. K∗ ∈ {K(ρ)}.
Therefore, it holds thatKo = K(ρo) = K∗ and
J(ρo) = 0.

B. System identification

Assume that a set of input,r(t), and output data,y(t), with
data lengthN is available from an open-loop experiment.
Suppose that the output is generated as:

y(t) = G(q−1)r(t) + v(t) (9)

wherev(t) is the measurement noise.
From the point of view of system identification, many
different approaches can be employed to identify the system
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dynamics. In this paper, an FIR model̂G of G will be
identified, as the optimization is convex and does not require
any prior knowledge on the system structure, except for the
length of its impulse response (that however can be inferred
from data, if the energy of noise is low).

Introduce the impulse responseg(t) of G and θo =
[g(0) . . . g(n − 1)]T , where n the length of the impulse
response, such thatg(t) ≈ 0, t ≥ n. Note now that (9)
can be rewritten asy(t) ≈ ψT (t)θo + v(t), where

ψ(t) = [r(t) . . . r(t− n+ 1)]T .

An FIR estimate ofG of lengthn is given by:

θ̂ =

[

1

N

N
∑

t=1

ψ(t)ψT (t)

]−1

1

N

N
∑

t=1

ψ(t)y(t). (10)

Assume now that

A2 The measurement noisev(t) is uncorrelated with
r(t).

A3 The measurement noise can be represented as
v(t) = Hve(t), wheree(t) is a zero-mean white
noise signal with varianceσ2 and bounded fourth
moments.Hv andH−1

v are stable filters.
A4 r(t) is persistently exciting of ordern and (1 −

M)2G has no zero on the imaginary axis.
A5 The FIR model order is such thatn ≥ nρ.

The estimate (10) provides a unique solution, ifA4 is
satisfied, given bŷθ = θo + θ̃, where

θ̃ =

[

1

N

N
∑

t=1

ψ(t)ψT (t)

]−1

1

N

N
∑

t=1

ψ(t)v(t). (11)

This estimate is consistent:limN→∞ θ̂ = θo, w.p.1, [13].
Moreover, if v(t) is white, (10) is a maximum-likelihood
(ML) estimator and the Craḿer-Rao lower bound for the
variance is achieved. When this is the case, the following
principle (Theorem 5.1.1 [23]) holds, regarding all quantities
derived fromθ̂.

Invariance principle of maximum-likelihood estimation:
Let f : Θ → Ω be a function mappingθ ∈ Θ ∈ R

n to
an intervalΩ ∈ R

m, with m 6 n. The invariance principle
of ML estimation then states that, if̂θ is a ML estimator of
θ, thenf(θ̂) is a ML estimator off(θ).

III. M ODEL REFERENCE CONTROL DESIGN FROM DATA

A. The correlation approach

Consider the scheme in Fig. 1, whenv = 0 and the
reference signalr(t) = u(t), with u(t) a white noise of
unit variance. This scheme can be used to derive the optimal
controller without using any explicit mathematical model of
the process.
As a matter of fact, the most important observation at the

basis of the CbT rationale is that, in the noiseless setting,

Fig. 1. Tuning scheme for Correlation-based Tuning

the error signalεc(t, ρ) can be directly computed from I/O
data as follows:

εc(t, ρ) = Mr(t) − (1 −M)K(ρ)Gr(t)

= Mu(t) − (1 −M))K(ρ)y(t)

and, assumingA1 holds, the minimizer of the two-norm of
εc(t, ρ) is exactlyKo.
When data are collected in a noisy environment, the method
resorts to the correlation approach to identify the controller.
Specifically, an extended instrumental variableζ(t) corre-
lated withu(t) and uncorrelated withv(t) is introduced to
decorrelate the error signalεc(t) andu(t). ζ(t) is defined as

ζ(t) = [u(t+ l), . . . , u(t), . . . , u(t− l)]T , (12)

wherel is a sufficiently large integer. The correlation func-
tion is defined as

fN,l(ρ) =
1

N

N
∑

t=1

ζ(t)εc(t, ρ) (13)

and the correlation criterion as

JN,l(ρ) = fT
N,l(ρ)fN,l(ρ). (14)

In [21], it has been proven that

lim
N,l→∞,l/N→0

JN,l(ρ) = J(ρ), (15)

for any sufficiently exciting input sequence, if data inζ(t)
are prefiltered byLc(q

−1), defined as

Lc(e
−jω) =

1 −M(e−jω)

Φu(ω)
, (16)

whereΦu(ω) denotes the spectral density ofu(t). Notice that
such a prefilter may be non-causal but it can be implemented
off-line.
The optimal controller is then defined asKCbT = K(ρ̂CbT )
with

ρ̂CbT = arg min
ρ∈DK

JN,l(ρ) (17)

B. Model-based model reference control

If a modelĜ of the system is available, a model reference
controllerK̂ can be computed as

K̂ =
M

Ĝ(1 −M)
.

However, in any model-reference method this might lead to
a high-order controller that may destabilize the system if
M is not minimum phase.H2 control theory can be used
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to compute a full-order model reference controller followed
by a controller order reduction technique to compute a
fixed-order controller. The accuracy of the final (fixed-order)
controller is difficult to compute.
An alternative design of a fixed-order controller by
minimization of the model reference criterion (1)
approximated using the model̂G leads to a non-convex
optimization approach. The quality of this controller estimate
will depend on the initial values of the optimization variables
and a fair comparison with data-driven approaches based
on convex optimization is not possible. In this paper, the
approximate control criterion (7) used in the data-driven
approaches is therefore considered to develop a model-based
approach that is comparable to the data-driven approaches.

Specifically, the approximate model reference criterion (7)
can be approximated using the modelĜ of the plantG, by
minimizing

∥

∥

∥
(1 −M)[M −K(ρ)(1 −M)Ĝ

∥

∥

∥
over ρ. Since

a parametric model is available, a simulated output sequence
can be generated. This sequence can then be used to approx-
imate the control criterion. This approach has also been used
in model reduction,i.e. [19], [18].

In the following, a high-order parametric model̂G
parametrized througĥθ with an FIR structure is used to-
gether with the impulse excitation signalδ(t) to generate a
simulated impulse response sequence,yθ̂(t) = Ĝδ(t). This
simulated output can be used to minimize the approximate
model reference criterion

ρ̂θ̂ = arg min
ρ∈DK

Jmb(ρ, θ̂) (18)

Jmb(ρ, θ̂) =
1

Nδ

Nδ
∑

t=1

(

s(t) −K(ρ)(1 −M)2yθ̂(t)
)2
, (19)

wheres(t) is the impulse response of(1−M)M , i.e. s(t) =
(1−M)Mδ(t) and the number of generated samplesNδ ≥ n.
The error can be written as:

s(t) −K(ρ)(1 −M)2yθ̂(t) = s(t) − φT
θ̂
(t)ρ, (20)

where the regression vectorφθ̂(t) is given by

φθ̂(t) = β(1 −M)2yθ̂(t) = (21)

= β(1 −M)2Gδ(t) + β(1 −M)2∆Gδ(t) , φo(t) + φ̃θ̂(t),
(22)

and∆G = Ĝ−G. The minimizer of (19) is given by

ρ̂θ̂ =

[

1

Nδ

Nδ
∑

t=1

φθ̂(t)φ
T
θ̂
(t)

]−1
1

Nδ

Nδ
∑

t=1

φθ̂(t)s(t) (23)

For simplicity, from now on, letNδ = N without loss of
generality.

Proposition 1: Assume thatA1, A2, A3, A4, A5 are
satisfied and letN > n. Then, if the FIR model̂θ is estimated
according to (10) and the controller parametersρ̂θ according
to (23),

lim
N→∞

ρ̂θ̂ = ρo, w.p.1.

Proof: The noise-free signals(t) can be written as
s(t) = φT

θ̂
(t)ρo − φ̃θ̂(t)ρo, the estimation error is given by

ρ̂θ̂ − ρo = −
[

1

N

N
∑

t=1

φθ̂(t)φ
T
θ̂
(t)

]−1
1

N

N
∑

t=1

φθ̂(t)φ̃
T
θ̂
(t)ρo.

(24)
SincelimN→∞ θ̂ = θo, a continuous function of this variable
f(θ̂) converges w.p.1 tof(θo) ([14], page 450). Conse-
quently limN→∞ φ̃θ̂(t) = 0, w.p. 1, the regressor converges
to the noise-free regressor,limN→∞ φθ̂(t) = φo(t),w.p.1,
and

lim
N→∞

1

N

N
∑

t=1

φθ̂(t)φ
T
θ̂
(t) = Ro, w.p.1, (25)

with Ro defined as

Ro = lim
N→∞

1

N

N
∑

t=1

φo(t)φ
T
o (t). (26)

This matrix has full rank sinceN ≥ n andA4, A5 hold. It
follows that limN→∞(ρ̂θ̂ − ρo) = 0,w.p.1, which completes
the proof.

IV. A CCURACY ANALYSIS

A. Variance analysis

For the correlation approach, ifA1 holds, the error be-
tween the estimated controller parametersρ̂CbT and the opti-
mal controller parametersρo is asymptotically normally dis-
tributed and the asymptotic covariance matrix of

√
N(ρ̂CbT−

ρo) is given by [17]:

Pc = σ2(QTQ)−1QTSQ(QTQ)−1 (27)

where

Q = lim
N→∞

1

N

N
∑

t=1

ζ(t)φT
o (t)

S = lim
N→∞

1

N

N
∑

t=1

[H∗ζ(t)][H∗ζ(t)]T .

andH∗ = K∗(1 −M)H.

For model-based control, the accuracy of the estimateρ̂θ̂
of (23) clearly depends on the accuracy of the estimate of the
model parameterŝθ defined in (10). However, the invariance
principle of ML estimation provides a condition on̂θ that
assures that̂ρθ is statistically efficient. As a matter of fact,
according to the invariance principle,̂ρθ is a ML estimator
of ρo if θ̂ is a ML estimator ofθo. If the measurement noise
is white (i.e., H = 1), the FIR estimatêθ is a ML estimator,
whose variance corresponds to the Cramér-Rao bound, and
alsoρ̂θ is a ML estimate. Specifically, the Cramér-Rao bound
for the functionf(θ) of the ML estimateθ is given by

∂f(θ)

∂θ
Pθ
∂f(θ)

∂θ
,

wherePθ is the Craḿer-Rao bound for the estimatêθ [10].
The best variance that can be achieved thus depends on the
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function f(θ). Results from asymptotic analysis in system
identification can be used to calculate the Cramér-Rao bound
for f(θ) as illustrated by the following Proposition.

Proposition 2: Assume thatN > n. Then, if θ̂ is esti-
mated according to (10) and̂ρθ̂ according to (23),

√
N(ρ̂θ̂ −

ρo) is asymptotically normally distributed with covariance
matrix Pmb:

Pmb = σ2R−1
o CR−1

o , (28)

whereC is defined as

C = lim
N→∞

1

N

N
∑

t=1

[H∗φo(t)][H
∗φo(t)]

T . (29)

Proof: The proof is based on Theorem 9.1 of [13]. It
can be shown that the estimateρ̂θ satisfies the assumptions
of Theorem 9.1 of [13]. A complete proof can be found in
[20].
According to the previous analysis, the given model-based
control design method using any full-order model is statis-
tically efficient if the noise is white, whereas the proposed
data-driven technique is not, for anyH. In the following, it
will be shown that this does not imply that the model based
approach achieves better control performance.

B. The control objective

The main idea behind data-driven methods is that the
model of the system to control is only an intermediate step
towards the final controller tuning phase, and therefore it
might be better to directly focus on the final objective,
to avoid the risk of losing some information in under-
modeling. According to this mindset,also the variance of
the parameters is only an intermediate steptowards the
evaluation of what happens to the control criterion when
data are noisy andN is large, but finite.

In this subsection, the effect of noise will be assessed on
the capability of the control design criteria of estimating(7).
The estimate will be shown to be biased whenN is large but
finite and therefore the average model-matching error will be
greater than zero even whenA1 holds. It will be also shown
that, from this point of view,a criterion based on a ML
estimator of the model is not always statistically better, in
terms of the control cost(7), than data-driven design.
Concerning CbT, the following result holds, already proven
in [21].

Proposition 3: For largeN , the expected value of the
correlation criterion (14) is as follows.

E
[

JN,l(ρ)
]

≈ J(ρ) +
σ2(2l + 1)

2πN

∫ π

−π

|1 − M |4 |K(ρ)|2 |H|2

Φu(ω)
dω.

(30)

Proof: See [21].
The same approach applied to model-reference control using
model-based formula (23) gives the following bias for the
control cost for large and finiteN .

Proposition 4: For largeN , the expected value of the
model-based cost function (23) is as follows.

E [Jmb(ρ)] ≈ J(ρ) +
σ2n

2πN

∫ π

−π

|1 −M |4 |K(ρ)|2 |H|2

Φu(ω)
dω.

(31)

Proof: Consider again the model-based control cost
(19) and define∆G = G− Ĝ. Sinceŷθ(t) = Ĝδ(t), where
δ(t) is the discrete-time impulse, the control cost is given by

Jmb(ρ) =
1

N

N
∑

t=1

(

s(t) −K(ρ)(1 −M)2ŷθ(t)
)2

=

=
1

N

N
∑

t=1

(

s(t) −K(ρ)(1 −M)2Gδ(t)
)2

+

+
1

N

N
∑

t=1

(

K(ρ)(1 −M)2∆Gδ(t)
)2

+

+
2

N

N
∑

t=1

(

s(t) − K(ρ)(1 − M)2Gδ(t)
) (

K(ρ)(1 − M)2∆Gδ(t)
)

.

Notice that the first term of the sum is a (noiseless) consistent
estimator ofJ(ρ). Since the estimate ofG is consistent,i.e.
E[∆G] = 0, then the expectation ofJmb(ρ) becomes

E[Jmb(ρ)] = J(ρ) +
1

N

N
∑

t=1

E

[

(

K(ρ)(1 −M)2∆Gδ(t)
)2

]

and its Parseval counterpart is

E[Jmb(ρ)] = J(ρ) +
1

2π

∫ π

−π

|1 − M |4 |K(ρ)|2 E

[

|∆G|2
]

Φδ(ω)dω.

(32)

In the literature [13], it is well-known that for high order
models the following approximation holds

E

[

|∆G|2
]

≈ n

N
|H|2 σ2Φ−1

u (ω)

Moreover, beingδ an impulse,Φδ(ω) = 1, ∀ω and therefore
(31) holds, which completes the proof.
Propositions 3 and 4 indicate that:

• both the data-driven and the model-based criteriaJN,l

andJmb are biased and the bias depends onρ;
• the bias is composed by an integral term (equal in (31)

and (30)) and a coefficient that is different in the two
cases;

• depending onl/n, the bias will be larger in one case or
in the other.

The results of the previous analysis will be commented upon
in detail in the next subsection.

C. Discussion

The results of the last subsection are interesting as they
evaluate the average behaviour of the model-based and
data-driven controllers from a different view than standard
statistical analysis. This new perspective highlights some
critical points that should be evaluated before drawing final
conclusions about the comparison of model-based and data-
driven approaches.
In standard statistical analysis, the performance of an es-
timator that is asymptotically consistent is evaluated by
means of the asymptotic variance. The method that achieves
the lowest asymptotic variance is usually considered to be
the best estimator. If such an evaluation, combined with
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the invariance principle of maximum-likelihood estimation,
is applied to the controller design methods discussed in
this paper, the model-based design approach (that achieves
optimal asymptotic variance) can be considered the best
estimator. However, the results in Propositions 3 and 4 show
that the expectation of the final control criterion islower
in the data-driven case, when the model is high-order and
n > 2l+1. The reason for this discrepancy is that the analysis
based on asymptotic variance does not take into account the
other factors affecting the final control criterion,i.e. l and
n. These design parameters offer a trade-off between the
minimizer of the real criterion to minimize,i.e. J , and the
minimizer of a bias term that is null ifρ = 0. Notice that
the case ofn > 2l + 1 is all but unlikely in real-world
applications. As a matter of fact,l should be close to the
length of the impulse response ofM −KG(1−M), which
is unknown. However, standing on the assumption that it is
possible to match most ofM with K, the choice ofl equal
to the length of the impulse response ofM is sufficient. For
the conditionn > 2l + 1 to be satisfied, it is then sufficient
that the settling time of the FIR model̂G is larger than that
of M or Ĝ is low-damped (see Section V).
In standard practice of model-based design, when the system
is complex and a low order model is not sufficient to
accurately describe the I/O dynamics, one may think that
increasing the order is the best way to find a good model.
For what said above, one of the main conclusions of this
paper is thatthis is not generally true if the model has to be
used for control design. A data-driven method, that does not
depend on a model of the system, might be a better solution
instead.
Furthermore, it should also be considered that the “order”
of a real system is a badly defined concept. Every model
is only an approximation of the real world. It follows that
the data-driven method might outperform the model-based
method also when the model is low-order. In the following
section, it will be shown that this might happen even when
the model error is very small and when standard procedures
for system identification are followed.
Finally, notice that the data-driven approach is convex if the
controller is linearly parameterized, whereas in the model-
based approach, both the model and the controller need
to be linearly parameterized to obtain convexity. These
observations make data-driven techniques appealing for the
practical use.

V. NUMERICAL EXAMPLE

A. The benchmark system

The flexible transmission system proposed as a benchmark
in [12] was used in [1], [16] and [9] to illustrate data-driven
controller tuning approaches. The same example is used here.
The plant is given by the discrete-time model

G(q−1) =
0.28q−3 + 0.51q−4

1 − 1.42q−1 + 1.59q−2 − 1.32q−3 + 0.89q−4
.

The controller structure is given as

K(ρ) =
ρ1 + ρ2q

−1 + ρ3q
−2 + ρ4q

−3 + ρ5q
−4 + ρ6q

−5

1 − q−1
.

PRBS signals with unity amplitude are used as input to the
system,r(t). The output of the plant is disturbed by zero-
mean white noisev(t). Results are given forN = 1000,
sampling timeTs = 50ms and increasing length of the
instrumental variablel. A Monte-Carlo simulation with100
experiments is performed, using a different noise realization
for each experiment, for a signal-to-noise ratio (SNR) of10
in terms of standard deviation. The noise realizations are the
same for all methods. The reference model is defined as

M(q−1) =
K(ρo)G

1 +K(ρo)G
(33)

with

ρo = [0.2045,−0.2715, 0.2931,−0.2396, 0.1643, 0.0084]T .
(34)

The optimal controllerK(ρo) ∈ {K(ρ)} and the objective
can be achieved. In Figure (2), the impulse response ofG
andM are illustrated. Since the number of nonzero samples
is (almost)180 for G and (almost)35 for M , an FIR model
with n = 180 is used in the model-based approach whereas
for CbT l = 35 is selected.
The results of the 100 Monte Carlo runs for the model-based

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time [s]

Fig. 2. Impulse response ofG (dashed) andM (solid).

design using an FIR model withn = 180, for CbT with
l = 35 and for CbT withl = 130 are summarized in Table
I. Two estimates ofE[J(ρ)] and E[Jmr(ρ)] are calculated,
respectively, as

Vc =
1

100

100
∑

i=1

J(ρ̂(i)) (35)

and

Vmr =
1

100

100
∑

i=1

Jmr(ρ̂
(i)), (36)
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where ρ̂(i) is the controller parameter vector at theith

Montecarlo run, and the average trace of the parameter
variance

Vt =
1

100

100
∑

i=1

tr
{

var[ρ̂(i)]
}

(37)

is also given. For comparison, the performance achieved
using low order models estimated using the OE approach
is finally presented.
As predicted by the theory of Propositions 3 and 4, the
average of the cost criterion is lower in the data-driven case
whenn > 2l + 1, even if the parameter variance is larger.
When l is overestimated,e.g.when l = 130 andn < 2l+ 1,
the variance of the model-based design remains smaller, but
now the average of the control cost is also lower than that
for the data-driven design.
If both the model structure (OE) and the model order are
known, the low order model-based solution outperforms the
data-driven approach (note that in this case, since the order
of the real systemn = 4 is low, the result of Proposition 4 no
longer holds). However, this does not mean that the model-
based approach is more suitable in practice. In the real-world,
a “full-order model” does not exist and any description is by
definition an approximation. The results presented in TableI
show that even a small under-modeling error may jeopardize
the control performance. The case where an OE model with
the right number of poles and the right relative degree but
without zeros introduces a modeling error that is very likely
in practice. As a matter of fact, note that the physics usually
suggest the order of the model but not the exact number of
zeros, especially in discrete time. The identified model is
very similar to the real system, as illustrated in Figure 3 and
the user may believe that this is an accurate description of
the system, but the resulting controller does not yield good
control performance. The same observations can be made for
the case where the relative degree is4 instead of3 (only one
more than the “real” system).
The average of the achieved original model-reference crite-
rion Jmr is reported to show that the approximate criterion
J is a good approximation and that therefore the conclusions
hold for the original model reference criterion, even if the
analysis has been carried out with respect to the convexified
one. The results show thatJmr and J are very similar
for the FIR and CbT approaches as well as the low-order
model approach when no under-modeling is present. In
the case of under-modeling in the model-based approach,
the approximation is less good since (19) depends on the
model (and not on system) dynamics. As a result, the model
reference control cost (1) is larger than (7), which further
encourages the use of a data-driven technique.
This example then shows that:

• standard, statistically efficient model-based approaches
achieve better performance than the data-driven solution
considered in this paper only if the correct model
structure and order are used;

• the data-driven approach can outperform a statistically
efficient model-based solution based on a high-order
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Fig. 3. Output error modeling ofG: magnitude of the frequency response
of the real plant (thick grey line), of the OE(2,4,3) model (solid black line),
of the OE(1,4,3) model (dashed black line) and of the OE(2,4,4) model
(dash-dotted grey line).

model (if n > 2l + 1);
• the data-driven approach can outperform a statistically

efficient model-based solution in case of (slight) under-
modeling.

VI. CONCLUSIONS

In this paper, the accuracy of data-driven non-iterative
controller tuning is compared to the accuracy of a model-
based approach using a maximum likelihood estimator,
in the case where the control objective can be achieved.
Data-driven non-iterative controller tuning approaches lead
to a non standard identification problem, where estimates are
consistent also if the control objective cannot be achieved,
but they are statistically not optimal [22],i.e. the Craḿer-
Rao bound is not reached. It could therefore be argued that,
from a statistical point of view, it is always better to first
identify a model and then design a model-based controller.
However, this assessment of the statistical properties does
not look at the final control objective.
In this paper, it has been shown that the expected value of
the final control cost is biased and the bias depends not only
on the variance of the controller parameters, but also on
some parameters. Specifically, in CbT, the bias is affected
by the length of the instrumental variable, while in the
model-based approach it is influenced by the model order.
It might therefore happen that for large but finite number
of data, a data-driven approach achieves a lower control
cost than a statistically efficient model-based approach, as
illustrated in the proposed numerical example. In the paper,
it is also shown that, when applied to real systems, also the
best model found via standard identification techniques can
be outperformed by a data-driven method. This is due to the
fact that in a real setup, a “full-order” model does not exists
and every description is by definition an approximation of
the reality.
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TABLE I

ACHIEVED PERFORMANCE(35), (36)AND (37) OVER 100 RUNS FOR MODEL-BASED (MB) AND DATA -DRIVEN (CBT) DESIGN.

MB CbT
OE(2,4,3) OE(2,4,4) OE(1,4,3) FIR: n = 180 l = 35 l = 130

Vt (×10−3) 0.3676 0.3896 0.0144 0.7378 3.0578 0.9646
Vc 0.0064 0.0688 0.1332 0.0573 0.0375 0.0586
Vmr 0.0064 0.0759 0.1424 0.0575 0.0376 0.0587

The comparison in this paper is clearly limited, as, in
the analysis, it is assumed that the control objective can be
achieved. This will not be the case in practice, and the perfor-
mance of different methods will be strongly case dependent.
The results of this paper do show that the conclusion from
[19] that “it is never better to estimate the (low order) model
directly from data, compared to estimating it viaL2 model
reduction of a high order FIR model” is true for reduced-
order system identification butdoes not hold for controller
tuning.
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