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Model-based and data-driven model-reference control:
a comparative analysis

Simone Formentin, Klaske van Heusden and Alireza Karimi

Abstract—In many industrial applications, finding a model interesting controller structures, the global optimum tan
from physical laws that is both simple and reliable for control  found. Various application example®.q, [4], [3]) have
design is a hard and time-consuming undertaking. When a  gpo\wn that critical control problems can be dealt with by
set of input/output (I/O) measurements is available, one can . . .
derive the controller directly from data, without relying on using a Qatg—drlven method. HOW‘?Ver' _'t can be debated
the knowledge of the physics. In the scientific literature, two Whether similar results can be obtained if the same amount
main approaches have been proposed for control system design of data is available for system identification and a model-
from data. In the “model-based” approach, a model of the pased controller tuning approach is used.
system is first derived from data and then a controller is |, the context of system identification, it has been shown

computed based on the model. In the “data-driven” approach, that an indirect h isti £ timizati t
the controller is directly computed from data. In this work, the at anindirect approach consisting of two optimizati@ps

above approaches are compared from a novel perspective. The IS statistically efficient [19]. As a matter of fact, accorgi
main finding of the paper is that, although from the standard to the invariance principle of maximum likelihood (ML)
perspective of parameter variance analysis the model-based estimators, an estimator of a function of the model paramete
approach is always statistically more efficient, the data-driven estimates is asymptotically efficient if the model paramete
controller might outperform the model-based solution for what timate is statisticallv efficient. T lating th Hisst
concerns the final control cost. estimate is statistically efficient. Translating theseultssto
the specific case of controller tuning, arguments have been

I. INTRODUCTION put forward in favor of model-based approaches [6]. In fact,

hased on the translation of the previous results to costroll

In the last decade, the progress of data-acquisition tec stimation, it can be argued that an efficient model-based
nology has made it easy and straightforward to collect B i . gue . .
aenproach is optimal and will therefore achieve equivalent

large amount of measurements from industrial plants. Th r better results than data-driven approaches that are not
use of data as an alternative to physical knowledge to desi p o - PP
atistically efficient.

fixed-order controllerss.g.PID, has attracted more and moreA alysis of the accuracy of controller estimates is limited
interest throughout the years, since it is often cheaper ahd' 2y . y

. . - . both for data-driven and model-based approaches and a quan-
less time-consuming. Specifically, two main approaches ha\(’tat' e comparison confirming the arqument diven above i
been studied in the scientific literature. :elckli\:w Ong oflsthe robllen:s%n erfcr)?;in sugclx an an:; sliz
In the “model-based” approach, a model of the plant ig 9. P P g Y

5 that the achieved performance of model-based controller

identified from data and used to compute the fixed-ordjunin methods stronalv depends on the modeling techniaue
controller satisfying some user-defined requirements. s 9 ngly cep . g q
tpat is used. If an identified parametric model is used, the

example, in model reference control, the identified modg ontrol performance depends on the identification approach
is used to design a controller that minimizes the modéi P P PP

o . . - and the resulting amount of under-modeling. Furthermore
reference criterion, either algebraically or through wyiza- . ’
g y 9 the order of the controller depends in general on the order

tion, and a controller-order reduction step is performéd (iof the identified model. In practice, bounds on the modelin
needed) before implementation. However, this controker i i - NP ' 9
ror can be defined, but the exact amount of under-modeling

not necessarily optimal when connected to the plant, and tl\(ﬁ?verm be unknown and oroblem deoendent
control performance is limited by modeling errors. X P P |

In the “data-driven” controller tuning approach, the con-Inthls pgper,.amodel.-bgsed controllert_unlng approacladaas
troller is directly derived from input/output (I/O) datah@&se on the invariance principle of ML estimators is proposed

echiques ave been proposed (0 avoid he povien 2 295 072 comparcn of e aaymoite e o
under-modeling and to facilitate the design of fixed-orde P y

controllers, both iteratively [7], [15], [11], [8] and non- y_:atzagrl;lepn?;tpégaqge;_A Qgh'&rger;(%(ﬁil 'Sel::grntg;end
iteratively [5], [1], [21]. Specifically, in non-iterativeap- using st ion (i IS step Ing

proaches, stability can be guaranteed [21] and, since tltq)g_assumed.negllgmle) and the controller paramfeters are
Stimated using at., approach, under the assumption that

controller parameter estimation problem is convex for mo‘i1 2 e . .
P P % e control objective is achievable. According to the argu-
Laboratoire d’AutomatiqueEcole Polytechnique &grale de Lausanne ments set out above, this approa_Ch achieves the _@Fam
(EPFL), 1015 Lausanne, Switzerland. Rao lower bound [6]. Moreover, this method can fairly be
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only. However, from the perspective of control desitile is stable or it contains an integrator 47 (1) = 1 will be
variance analysis of the controller parameters is only arconsidered.
intermediate stepowards the evaluation of the methods. InThe ideal controllers™* can be defined indirectly bg and
fact, the real final objective is the control cost achieved by/ as
the designed controller. K* — L) (4)
In this work, the accuracy of this final control objective G(1—-M)
is analyzed. By doing so, a more direct analysis of théhat always exists sincé/ # 1. Notice that K* might be
performance will be carried out. The main conclusions obf very high order, it might not stabilize the plant interdgal
this paper are the following: and it might be non-causal.
« if the model structure is perfectly known and the model
order is low, the model-based approach is theoreticallMotice that the model reference criterion (1) is non-convex
always the best in terms of statistical performance, asith respect top. An approximation that is convex for
argued in [6]; linearly parameterized controllers (2) can be defined using
« if the model structure is not completely known and/oithe reference model, as follows. The ideal sensitivity fiomc
a high-order model is identified using a ML estimatoris given by

as indicated above, the data-driven approach can statis- 1 —1—_ M.

tically outperform the model-based solution in terms of 1+ K*G

the control cost, even if the variance of the parameteidote that this function is causal (as well as the reference
remains larger. model M) independent of the causality df*. Recalling

« Since in the real world the model structure is neve(4), the model reference criterion (1) can be expressed as:
perfectlyknown and under-modeling cannot be avoided K*G — K(p)G
with a low-order model, the data-driven approach may H
give better results in real applications. 1+ K*G)(1+ K(p)G) ||,

The remainder of the paper is as follows. Preliminaries andlpproximation of 1/(1 + GK( )) by 1 — M, the ideal
notation are given in Section Il. The model-based and dataensitivity function, leads to the following approximatiof
driven methods used in the paper for fixed-order modethe model reference criterion:

2

®)

reference design are described in Section Ill. The main X 2
. . . K*G - K(p)G
results on accuracy analysis are presented in Section IV. J(p) = oz || = (6)
A simulation example is used in Section V to illustrate the (1+ )l
theoretical observations on the benchmark system intextiuc - 2
in [12]. Finally, Section VI concludes the paper. - H(l — MM = K(p)(1 = M)G]Hz' )
[l. PRELIMINARIES The quality of this approximation of,,,,(p) is discussed in

[1]. Notice that, with the selected parameterizatid(y) is a

A. The approximate model reference control problem . . : -y .
) . o o guadratic function op and its global optimizer can be easily
Consider the stable linear SISO plar{q—'), wheregq found using the least squares techniques.

denotes the backward shift operator. Specifications for thg,s optimal controller is defined ds, = K (p,) with
. - o
controlled plant are given as a reference matigly—1). In ¢

the following, it is assumed that/ # 1. The backward po = arg m7i3n J(p) (8)
shift operator will be omitted in the sequel for convenience

The control objective is to design the controliéf(p), N practice, if the controller order is fixed according to
parameterized through, such that the closed-loop system(z) the objective is not necessarily achievable dnd ¢
resembles the reference mod&l. This can be achieved {K(p)}, Ko # K* and J(p,) > 0. To allow for analysis
by minimizing the two-norm of the difference between thef the accuracy of the estimated controller parameters, it i

reference model and the achieved closed-loop system: —assumed that

2 Al  The objective can be achieveide. K* € {K(p)}.
Tonr( (1) Therefore, it holds thatk, = K(p,) = K* and
1+ K )G J(po) = 0.

A discussion on the choice af/ can be found in [2]. In

the following, the controller structure is chosen lineathe B. System identification
parameters, Assume that a set of input(t), and output datay(t), with

. T . data lengthN is available from an open-loop experiment.
K(g—.p)=8"(¢)p, peDg CR™ (2)  suppose that the output is generated as:
where the seDy is compact and y(t) = Glg Hr(t) +v(t) 9)

-1y _ -1y ... —1\1T
Bla) =15ula™) - Bn, (a7)] (3) wherew(t) is the measurement noise.

is a vector of sizey, of linear discrete-time transfer operatorsFrom the point of view of system identification, many

(in general an orthogonal basis). Only the cases wh&ie)  different approaches can be employed to identify the system
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open—loop experiment

dynamics. In this paper, an FIR modél of G will be

identified, as the optimization is convex and does not requir _ V‘

any prior knowledge on the system structure, except for the_ | ¢ | “pt" g 1-M > K(p) >
length of its impulse response (that however can be inferred : *

from data, if the energy of noise is low). v

Introduce the impulse responsg(t) of G and 6, =
[9(0)...g(n — 1)]", wheren the length of the impulse
response, such that(t) ~ 0, ¢ > n. Note now that (9)
can be rewritten ag(t) ~ 7 (t)0, + v(t), where

Fig. 1. Tuning scheme for Correlation-based Tuning

the error signak.(¢, p) can be directly computed from 1/O
W) =[r(t)...r(t —n+1)]T. data as follows:
ec(t,p) = Mr(t) — (1 - M)K(p)Gr(t)

= Mu(t) = (1 = M))K(p)y(t)

1 N
e Zw(t)y(t). (10) and, assuming\l holds, the minimizer of the two-norm of
N e.(t, p) is exactly K.
When data are collected in a noisy environment, the method
resorts to the correlation approach to identify the coferol
Specifically, an extended instrumental varialjlg) corre-
lated with u(¢) and uncorrelated withv(¢) is introduced to
8&correlate the error signal(t) andu(t). ¢(¢) is defined as

An FIR estimate ofG of lengthn is given by:

i | LS pier
= |5 v

Assume now that
A2 The measurement noisgt) is uncorrelated with

r(t).

A3 The measurement noise can be represented
v(t) = Hye(t), wheree(t) is a zero-mean white
noise signal with variance? and bounded fourth C(t) = [ult+1),...,u(t),...,ut =", (12)
moments.H, and H,; ! are stable filters.

A4 r(t) is persistently exciting of orden and (1 —
M)?G has no zero on the imaginary axis.

A5  The FIR model order is such that> n,.

The estimate (10) provides a unique solution, A#t is
satisfied, given by = 0, + 6, where

i= |~ 3 )T (¢
= N;w()w ()

This estimate is consistentmy_.o 8 = 6,, w.p.1, [13]. Nl—»(lionll/N—@ Ini(p) = J(p), (15)
Moreover, if v(t) is white, (10) is a maximum-likelihood o

(ML) estimator and the Cra@r-Rao lower bound for the for any sufficiently exciting input sequence, if datadfy)
variance is achieved. When this is the case, the followingre prefiltered byl..(¢~'), defined as
principle (Theorem 5.1.1 [23]) holds, regarding all quaes ' 1— M(e—7%)
derived fromé. L.(e™%) = EENORE

Invariance principle of maximum-likelihood estimation:where®, (w) denotes the spectral density«ft). Notice that
Let f : © — Q be a function mapping € © € R™ to such a prefilter may be non-causal but it can be implemented
an intervalQ) € R™, with m < n. The invariance principle Off-line.
of ML estimation then states that, ffis a ML estimator of The optimal controller is then defined &1 = K (povr)
0, then f(#) is a ML estimator off(6). with

where! is a sufficiently large integer. The correlation func-
tion is defined as

N
Fralo) = 5 3 C0zelt.p) (13)

and the correlation criterion as

Ina(p) = fai(p) faalp)- (14)

In [21], it has been proven that

1 1 N

~ 2. Y. (1)
v

(16)

pcvr = arg lélli)ﬂ Ini(p) (17)
I11. M ODEL REFERENCE CONTROL DESIGN FROM DATA pEPK
B. Model-based model reference control

If a model G of the system is available, a model reference
Consider the scheme in Fig. 1, when= 0 and the controller & can be computed as

reference signak(t) = w(t), with u(¢) a white noise of

A. The correlation approach

. . . - . - M
unit variance. This scheme can be used to derive the optimal K=——-—.
controller without using any explicit mathematical modél o G(1 - M)
the process. However, in any model-reference method this might lead to

As a matter of fact, the most important observation at tha high-order controller that may destabilize the system if
basis of the CbT rationale is that, in the noiseless setting/ is not minimum phasel, control theory can be used
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to compute a full-order model reference controller followe Proof: The noise-free signak(t) can be written as
by a controller order reduction technique to compute a(t) = qﬁg(t)po — ¢4(t)po, the estimation error is given by
fixed-order controller. The accuracy of the final (fixed-ajde .

controller is difficult to compute. . B 1 & T e <7

An alternative design of a fixed-order controller by P9 ~ FPo = ~| PLIOEAG) N > 0(1)85 (t)po-
minimization of the model reference criterion (1) =t =t (24)
approximated using the modél’ leads t0 a non-convex sincelim . § = 6, a continuous function of this variable
optimization approach. The quality of this controller estte  ¢(4) converges w.p.1 tof(6,) ([14], page 450). Conse-
will depend on the initial values of the Optimization vatied quenﬂyth_)OO Qzé (t) — 0’ w.p. 1, the regressor converges

and a fair comparison with data-driven approaches basggl the noise-free regressdimy_ d4(t) = ¢o(t),W.p.l,
on convex optimization is not possible. In this paper, thgng

approximate control criterion (7) used in the data-driven . 1 & "
approaches is therefore considered to develop a modettbase Jim > os(t)of (t) = Roy, W.pLL, (25)
approach that is comparable to the data-driven approaches. t=1

with R, defined as
Specifically, the approximate model reference criteriop (7 N
can be approximated using the modglof the plantG, by R, = lim x Z%(tw:{(t)- (26)
minimizing H(l — M)[M - K(p)(1 - M)GH over p. Since N=oo N i

a parametric model is available, a simulated output sequenghis matrix has full rank sinc&V > n and A4, A5 hold. It

can be generated. This sequence can then be used to appfgifows thatlimy . (p5 — po) = 0,W.p.1, which completes
imate the control criterion. This approach has also beed usge proof. m

in model reductionj.e. [19], [18]. R
In the following, a high-order parametric model

IV. ACCURACY ANALYSIS

parametrized througld with an FIR structure is used to- A. Variance analysis

gether with the impulse excitation sign&lt) to generate a

simulated impulse response sequenggf) = G‘(S(t). This

For the correlation approach, A1 holds, the error be-
tween the estimated controller paramet@sgr and the opti-

simulated output can be used to minimize the approximaje..| ~ontroller parameters, is asymptotically normally dis-

model reference criterion

pg = arg ,}Q}}; Jmp(p, 0) (18)
A 1 Ns 2
Jmb(p,0) = A D (s(t) = K(p)(1 = M)*ys(t))”, (19)

t=1

wheres(t) is the impulse response 0f — M)M, i.e. s(t) =
(1—M)M(t) and the number of generated sampigs> n.
The error can be written as:

s(t) = K(p)(1 = M)?ys(t) = s(t) — o5 (t)p,  (20)
where the regression vectoy(t) is given by
04(t) = B(L = M)?yy(t) = (21)

= B(1 — M)2G5(t) + B(1 — M)2AGS(t) 2 ¢o(t) + d(t),
(22)
and AG = G — G. The minimizer of (19) is given by

1 Qs R
Pg = [M;%(t)éf’g(tﬂ E;‘bé(t)s(t) (23)

For simplicity, from now on, letNs = N without loss of
generality.

Proposition 1: Assume thatAl, A2, A3, A4, A5 are
satisfied and lel > n. Then, if the FIR modef is estimated
according to (10) and the controller parametgrsaccording
to (23),

]\}Enoo P§ = Po, W.p.1.

tributed and the asymptotic covariance matrixav (pcyr—
po) is given by [17]:

P.=o%(QTQ)7'QTSQQTQ) ™! (27)
where
1 N
— L _ T
Q= lim ;wm (*)
1 N
§ = lim <> [HCOIH )

t=1
and H* = K*(1 — M)H.

For model-based control, the accuracy of the estingte
of (23) clearly depends on the accuracy of the estimate of the
model parameteré defined in (10). However, the invariance
principle of ML estimation provides a condition dghthat
assures thapy is statistically efficient. As a matter of fact,
according to the invariance principlgy is a ML estimator
of p, if 0 is a ML estimator o). If the measurement noise
is white (.e, H = 1), the FIR estimat® is a ML estimator,
whose variance corresponds to the CeatRao bound, and
alsopy is a ML estimate. Specifically, the Cr@&mRao bound
for the functionf(#) of the ML estimated is given by
9f(9) ,, I(9)
06 "’ o0
where P, is the Cranér-Rao bound for the estimate[10].
The best variance that can be achieved thus depends on the
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function f(6). Results from asymptotic analysis in system Proof: Consider again the model-based control cost
identification can be used to calculate the CeaiRao bound (19) and defineAG = G — G. Sincegy(t) = Go(t), where

for f(0) as illustrated by the following Proposition. d(t) is the discrete-time impulse, the control cost is given by
Proposition 2: Assume thatN > n. Then, if 6 is esti- N
mated according to (10) ani} according to (23)y/N (p; — J _ 1 O — K (o)1 — M)2a0 ()2 =
po) is asymptotically normally distributed with covariance b (p) N ; (S( ) () )V ho( >)
matrix P,,: N
_ 2p—1 —1

Py, =0”R;'CR, ", (28) - %Z (s(t) — K(p)(1 — M)*G5(t))” +

whereC' is defined as t=1
1Y L
C= lim — Y [H*¢,(t)][H*po(t)]". (29) 1 a2 2
RUSDD oy 2 (K- 20*265(0)" +

Proof: The proof stIbased on Theorem 9.1 of [13]. It
can be shown that the estimaig satisfies the assumptions 9 N 5 5
of Theorem 9.1 of [13]. A complete proof can be found in +N; (s(t) = K(p)(1 = M) G4(t)) (K(p)(1 — M)*AGS(1)) -
[20]. [ '

According to the previous analysis, the given model-basayotice that the first term of the sum is a (noiseless) constiste

control design method using any full-order model is statis€Stimator ofJ(p). Since the estimate a¥ is consistentj.e.
AG] = 0, then the expectation of,,;(p) becomes

tically efficient if the noise is white, whereas the propose@[
data-driven technique is not, for ardy. In the following, it 1 X 5
will be shown that this does not imply that the model based[J,..,(p)] = J(p) + ~ Z]E [(K(p)(l — M)*AG6(t)) }
approach achieves better control performance. t=1

B. The control objective and its Parseval counterpart is

The main idea behind data-driven methods is that th%[me(P)]:J(p)—&-i/ﬂ ‘1_M‘4‘K(p)|QEhAG‘2] B (w)dw.
model of the system to control is only an intermediate step 27 ) 32)
towards the final controller tuning phase, and therefore |tn the literature [13], it is well-known that for high order
might be better to directly focus on the final objective, . L

. . . . . . models the following approximation holds
to avoid the risk of losing some information in under-
modeling. According to this mindseslso the variance of 9 n 2 9.1
the parameters is only an intermediate stepvards the E “AG‘ } - N‘H| 0" P, (w)

evaluation of what happens to the control criterion WheR,qreover being’ an impulse®;(w) = 1, Vw and therefore
data are noisy andV is large, but finite. (31) holds, which completes the proof. -
Propositions 3 and 4 indicate that:

In this subsection, the effect of noise will be assessed on . —
the capability of the control design criteria of estimati{ag. ° Zﬁtdh Jthe;Zt%}gggﬁnaigigzebir;g%eel'tgzzd c;ntdm@
The estimate will be shown to be biased whegrnis large but mb ¢ . P sg .

« the bias is composed by an integral term (equal in (31)

finite and therefore the average model-m.atchmg error will b and (30)) and a coefficient that is different in the two
greater than zero even whéd holds. It will be also shown

) ) . o cases;
that, from this point of viewa criterion based on a ML depending ofi/n, the bias will be larger in one case or
estimator of the model is not always statistically bettar, i ° in ?he oth%r G 9

terms of the control codf7), than data-driven design ] o
Concerning CbT, the following result holds, already proverd N€ results of the previous analysis will be commented upon

in 1211. in detail in the next subsection.
roposition 3: For large N, the expected value of the . .
correlation criterion (14) is as follows. C. Discussion
o220 +1) 7 |1— M[*|K(p)]? |HI? The results of the last subsection are interesting as they
ElIna] = I+ —rg /_,r D, (w) ¥~ evaluate the average behaviour of the model-based and
(30)  data-driven controllers from a different view than stamdar
Proof: See [21]. [ ]

) _statistical analysis. This new perspective highlights som
The same approach applied to model-reference control USigica| points that should be evaluated before drawingl fina

model-based formula (23) gives the following bias for the o cusions about the comparison of model-based and data-
control cost for large and finitév. driven approaches.

Prolposmon 4 Fofr Iarge N, the expfeﬁted value of the |, standard statistical analysis, the performance of an es-
model-based cost function (23) is as follows. timator that is asymptotically consistent is evaluated by
o*n (™ |1—M|"|K(p) |H J means of the asymptotic variance. The method that achieves
onN | P, (w) “- the lowest asymptotic variance is usually considered to be

(31) the best estimator. If such an evaluation, combined with

E [Jms(p)] = J(p) +
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the invariance principle of maximum-likelihood estimatjo The controller structure is given as

is applied to the controller design methods discussed in . 9 _3 _4 _5
this paper, the model-based design approach (that achieves(p) = P1+ p2q "+ p3q +P4f11 T P54 +peq "
optimal asymptotic variance) can be considered the best l—q

estimator. However, the results in Propositions 3 and 4 shomRBS signals with unity amplitude are used as input to the
that the expectation of the final control criterion l@ver system,r(¢). The output of the plant is disturbed by zero-
in the data-driven case, when the model is high-order anflean white noises(t). Results are given forv = 1000,

n > 2[4-1. The reason for this discrepancy is that the analysisampling time7, = 50ms and increasing length of the
based on asymptotic variance does not take into account tiigtrumental variablé. A Monte-Carlo simulation withl00
other factors affecting the final control criterione. [ and  experiments is performed, using a different noise reatinat
n. These design parameters offer a trade-off between ther each experiment, for a signal-to-noise ratio (SNR)Lof
minimizer of the real criterion to minimize,e. J, and the in terms of standard deviation. The noise realizations lage t
minimizer of a bias term that is null ib = 0. Notice that same for all methods. The reference model is defined as
the case ofn > 20 + 1 is all but unlikely in real-world K(py)G

applications. As a matter of fact, should be close to the Mg = m (33)

length of the impulse response df — KG(1 — M), which

is unknown. However, standing on the assumption that it iith
possible to match most af/ with K, the choice ofl equal -
to the length of the impulse responseldfis sufficient. For Po = [0.2045, —0.2715, 0.2931, —0.2396, 0.1643, 0.0084] .

the conditionn > 2/ + 1 to be satisfied, it is then sufficient _ (34)
that the settling time of the FIR modél is larger than that The optimal controlleri'(p,) € {(p)} and the objective
of M or G is low-damped (see Section V). can be achieved. In Figure (2), the impulse responsé’ of

In standard practice of model-based design, when the systé}'ﬁd M are illustrated. Since the number of nonzero samples
is complex and a low order model is not sufficient to'S (@lmost)180 for G and (almostp5 for M, an FIR model
accurately describe the /0 dynamics, one may think thdltith 7 =180 is used in the model-based approach whereas
increasing the order is the best way to find a good modd@r CbT I = 35 is selected.

For what said above, one of the main conclusions of thid h€ results of the 100 Monte Carlo runs for the model-based
paper is thathis is not generally true if the model has to be

used for control designA data-driven method, that does not 1
depend on a model of the system, might be a better solutic ."
instead.

Furthermore, it should also be considered that the “orde
of a real system is a badly defined concept. Every mod

I
0.5h

1
is only an approximation of the real world. It follows that no ho
the data-driven method might outperform the model-base 0 ]Nj ! :
method also when the model is low-order. In the following SIEH
section, it will be shown that this might happen even whe n
the model error is very small and when standard procedur I
for system identification are followed.
Finally, notice that the data-driven approach is conveké t
controller is linearly parameterized, whereas in the mode
based approach, both the model and the controller ne. =1, 2 4 6 8 10
to be linearly parameterized to obtain convexity. Thes Time [s]

observations make data-driven techniques appealing éor th
practical use. Fig. 2. Impulse response &f (dashed) and\/ (solid).

_05 L

design using an FIR model with = 180, for CbT with

[ = 35 and for CbT with! = 130 are summarized in Table
I. Two estimates off[.J(p)] and E[.J,..(p)] are calculated,
respectively, as

V. NUMERICAL EXAMPLE

A. The benchmark system

The flexible transmission system proposed as a benchmark | oo
in [12] was used in [1], [16] and [9] to illustrate data-dnive V, = 72 J([;(i)) (35)
controller tuning approaches. The same example is used here 100 =
The plant is given by the discrete-time model and
L . 1 Lo A
Gla™) = g TN . Vinr = 155 2 Fr (6. (36)
A2¢g—1 +1.59¢q 1.32¢7° 4+ 0.89¢q i=1
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where 5() is the controller parameter vector at thig'
Montecarlo run, and the average trace of the paramet
variance

30

1 100 20t
- 5(1)
Vi = 1OOZtr {var[p ]} (37)
=1 10t
is also given. For comparison, the performance achieve
using low order models estimated using the OE approac 0

is finally presented.
As predicted by the theory of Propositions 3 and 4, th  -10¢
average of the cost criterion is lower in the data-driverecas
whenn > 2[ + 1, even if the parameter variance is larger  -20r
When! is overestimatede.g.when! = 130 andn < 2]+ 1,
the variance of the model-based design remains smaller, t  -30'; X
now the average of the control cost is also lower than thi 10 10

h . Frequency [Hz]
for the data-driven design.
If both the model structure (OE) and the model order argig. 3. output error modeling af: magnitude of the frequency response
known, the low order model-based solution outperforms thef the real plant (thick grey line), of the OE(2,4,3) modelligsblack line),
data-driven approach (note that in this case, since ther oroglé the OE(1,4,3) model (dashed black line) and of the OE(Z.#ddel

. L. ash-dotted grey line).

of the real systemx = 4 is low, the result of Proposition 4 no
longer holds). However, this does not mean that the model-
based approach is more suitable in practice. In the reddwor model (if n > 21 + 1):

a “full-order model” does not exist and any description is by, the data-driven approach can outperform a statistically

definition an approximation. The results presented in Table efficient model-based solution in case of (slight) under-
show that even a small under-modeling error may jeopardize modeling.

the control performance. The case where an OE model with
the right number of poles and the right relative degree but VI. CONCLUSIONS

without zeros introduces a modeling error that is very 1“(6' In this paper, the accuracy of data-driven non-iterative
in practice. As a matter of fact, note that the physics ugualontroller tuning is compared to the accuracy of a model-
suggest the order of the model but not the exact number phsed approach using a maximum likelihood estimator,
Zeros, espeCiaIIy in discrete time. The identified model |ﬁ] the case where the control Objective can be achieved.
very similar to the real system, as illustrated in Figure 8 anpata-driven non-iterative controller tuning approachesdl
the user may believe that this is an accurate description g a non standard identification problem, where estimates ar
the system, but the resulting controller does not yield googhnsistent also if the control objective cannot be achigved
control performance. The same observations can be made fjt they are statistically not optimal [22]e. the Cranér-
the case where the relative degred isstead of3 (only one  Rao bound is not reached. It could therefore be argued that,
more than the “real” system). from a statistical point of view, it is always better to first
The average of the achieved original model-reference-critgjentify a model and then design a model-based controller.
rion J,,,- is reported to show that the approximate criteriorjowever, this assessment of the statistical properties doe
J is a good approximation and that therefore the conclusionst |ook at the final control objective.
hold for the original model reference criterion, even if thgn this paper, it has been shown that the expected value of
analysis has been carried out with respect to the convexifigge final control cost is biased and the bias depends not only
one. The results show that,, and J are very similar on the variance of the controller parameters, but also on
for the FIR and CbT approaches as well as the low-ordejome parameters. Specifically, in CbT, the bias is affected
model approach when no under-modeling is present. I the length of the instrumental variable, while in the
the case of under-modeling in the model-based approaghodel-based approach it is influenced by the model order.
the approximation is less good since (19) depends on themight therefore happen that for large but finite number
model (and not on system) dynamics. As a result, the modg} data, a data-driven approach achieves a lower control
reference control cost (1) is larger than (7), which furthegost than a statistically efficient model-based approash, a
encourages the use of a data-driven technique. illustrated in the proposed numerical example. In the paper
This example then shows that: it is also shown that, when applied to real systems, also the
« standard, statistically efficient model-based approaché&gst model found via standard identification techniques can
achieve better performance than the data-driven solutidre outperformed by a data-driven method. This is due to the
considered in this paper only if the correct modefact that in a real setup, a “full-order” model does not exist
structure and order are used, and every description is by definition an approximation of
« the data-driven approach can outperform a statisticallhe reality.
efficient model-based solution based on a high-order
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The comparison in this paper is clearly limited, as, ir19] F. Tjamnstbm and L. Ljung.

the analysis, it is assumed that the control objective can be

[20] K. van HeusdenNon-lterative Data-Driven Model Reference Control

achieved. This will not be the case in practice, and the perfo
mance of different methods will be strongly case dependent.

The results of this paper do show that the conclusion frogll

[19] that “it is never better to estimate the (low order) miode

CONFIDENTIAL. Limited circulation. For review only.

TABLE |

ACHIEVED PERFORMANCE(35), (36)AND (37) OVER 100 RUNS FOR MODEL-BASED (MB) AND DATA-DRIVEN (CBT) DESIGN.

MB cbT
OE(2,4,3) | OE(2,4,4) | OE(1,4,3) | FIRin =180 || 1 =35 | 1 =130
(x10 %) || 0.3676 0.3896 0.0144 0.7378 3.0578 | 0.9646
0.0064 0.0688 0.1332 0.0573 0.0375 | 0.0586
0.0064 0.0759 0.1424 0.0575 0.0376 | 0.0587

directly from data, compared to estimating it via model

reduction of a high order FIR model” is true for reduced{22l

order system identification butoes not hold for controller
tuning

(1]

(2]

(3]

(4]

(5]

(6]
(7]
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