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a b s t r a c t

In this work we present a first feasibility study of the ClearPEM technology for simultaneous PET-MR

imaging. The mutual electromagnetic interference (EMI) effects between both systems were evaluated

on a 7 T magnet by characterizing the response behavior of the ClearPEM detectors and front-end

electronics to pulsed RF power and switched magnetic field gradients; and by analyzing the MR system

performance degradation from noise pickup into the RF receiver chain, and from magnetic suscept-

ibility artifacts caused by PET front-end materials.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the last few years, there have been a growing interest on
the development of MR-compatible PET detectors for simulta-
neous PET-MR imaging. Despite the drawbacks of the APD-based
PET detectors, they have proven to be a solid technology over the
last decade, being therefore suitable for the development of new
PET-MR systems.

The ClearPEM is a dedicated APD-based PET detector for high-
resolution breast cancer imaging [1]. The basic detector super-
module is composed of 12 modules of 4� 8 LYSO:Ce crystal
matrices optically coupled to Hamamatsu S8550 APD arrays on
both ends, that are assembled between two front-end electronic
boards (FEB). Each FEB integrates two low-noise front-end ASICs
(AMS 350 nm CMOS, 70 mm2) for the readout (pulse amplifica-
tion and shaping) of 192 APD input channels; two free-sampling
dual 10-bit ADC (running at the system clock, 50 MHz) for the
analog-to-digital data conversion; and a low-voltage differential
signaling (LVDS) channel link transmitter (2.4 Gbps) for digital
data serialization and transmission to the off-detector data
acquisition system [2].

The strong potential of the ClearPEM technology to be adapted
to different detector system designs has opened a window of
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opportunity on exploiting the feasibility of integration of the
technology with MR systems. In this sense, this work intends to
present a first study of the electromagnetic compatibility of the
ClearPEM detectors and front-end electronics for a combined PET-
MR imaging system.
2. Materials and methods

The mutual electromagnetic interference tests between Clear-
PEM front-end electronics and the MR system components were
carried out at the 7 T magnet facility at EPFL, Switzerland. The
system integrates an actively shielded 7 T magnet—68 cm bore
diameter (Magnex Scientific, Oxford, U.K.) with a dedicated head
gradient coil (36 cm inner diameter), allowing for maximum
gradient strengths of 80 mT/m switched at slew rates of up to
700 mT/m/ms [3].

Proper shielded cables were used for the electrical connections
(LV and HV power, clock, control and data links) between the on-
detector front-end electronics (placed inside the 7 T magnet bore)
and the power supply units, the off-detector data acquisition
system and the measurement equipments placed outside the
magnet room. The detector electronics was cooled through a
plastic pipe connected to an air cooling device placed outside the
magnet room, and the temperature was monitored by an optical-
fiber based probe.

The methods described below summarize the experimental
tests that were performed to evaluate the mutual electromagnetic
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interference mechanisms between both systems. In the different
methods no EMI shielding was used intending to assess the
mutual EMI effects in a worst-case scenario.

1. The EMI from the RF coils was assessed as the tolerance of
the PET front-end electronics to pulsed RF power. Experimentally,
we have used an RF surface coil driven by different RF powers for
a pulse sequence corresponding to an RF gate of 2 ms and with a
repetition time of 1 s. A water-filled phantom was used to load
the RF coil, maximizing the electromagnetic field coupling (RF
power transfer) between the coil and the PET front-end
electronics.

2. The EMI from PET front-end electronics was evaluated by
measuring the pickup noise to the RF coil with a spectrum
analyzer (Agilent 4396B). In a second approach, and intending
to assess the effects of picked up noise on the final MR image, an
MR scan from a phantom was performed with the surface RF coil
in the vicinity of the PET front-end.

3. The effects of the switched magnetic field gradients on the
PET front-end electronics were studied with a conventional echo-
planar imaging (EPI) readout sequence. The front-end boards
were placed perpendicular to the gradient field lines to maximize
the area of field penetration through the boards (worst case
analysis).

4. A preliminary evaluation of the susceptibility artifacts
caused by PET front-end materials was performed by measuring
the static B0 field distortions via a B0 phase-difference mapping
acquired with a the ClearPEM supermodule placed in the vicinity
of a oil-filled spherical phantom (24 cm diameter).
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Fig. 2. Pickup noise spectrum from the RF coil system (two circular coils

assembled in quadrature). The picture inside corresponds to a narrow band for

300 MHz.
3. Experimental results and discussion

3.1. EMI from RF coils

Experimental tests have shown that for an RF power below
50 W, the LVDS analog output of the front-end ASIC rejects
common-mode noise pickup from RF coil. However, by increasing
the RF power up to 2.8 kW we have observed a charge saturation
of the front-end ASIC dynamic range during the RF pulse; and a
self-triggering state induced by RF eddy-currents. This state is
characterized by a burst of spurious events remaining up to
1.2 ms after an RF pulse. Fig. 1 intends to illustrate this effect:
the labels (A) corresponds to the 176Lu events from the intrinsic
radioactivity of LYSO crystals; (B) represents an RF gate of 2 ms
when the ASIC reaches the saturation; and (C) represents the
burst of spurious events after the RF gate.

3.2. EMI from PET front-end electronics

Spectrum analyzer measurements of the pickup noise on the
RF coils have shown a significant EMI from high-frequency fields
radiated from the digital blocks of the front-end electronics, and
Fig. 1. Analog output of the ClearPEM front-end ASIC seen
as demonstrated by Fig. 2, the high-frequency harmonics from the
50 MHz system clock are easily picked up by the RF coils.
However, from the acquired spectrum, the 6th harmonic of the
clock (300 MHz) was found to be the only frequency component
entering in the narrow dynamic range of the RF preamplifiers,
being responsible for noise propagation into the RF receiver chain
and for the whole MR system SNR degradation.

The effects on the final MR acquired image caused by the SNR
degradation of the system are depicted in Fig. 3: the figure on the
left shows an acquired MR image of a water-filled phantom with
the front-end electronics powered on but with the digital blocks
driven by the 50 MHz system clock turned off; in contrast, the
figure on the right demonstrates the degradation on the imaging
quality when the system clock is turned on (one can clearly see a
substantial increase in the image noise, and a set of vertical bands
corresponding to imaging artifacts caused by EMI).

Despite the results presented above have been achieved with-
out any EMI shielding, a considerable reduction of the EMI from
the PET front-end electronics is expected by introducing a shift on
the clock frequency from 50 to 52.5 MHz. In this way the 6th
harmonic of the clock is kept away from a resonance frequency of
297 MHz.

3.3. EMI effects of switched gradients on PET front-end electronics

The switching of the magnetic field gradients has shown to
produce a non-significant degradation on the PET front-end
readout performance. However, in a worst-case scenario with
front-end perpendicular to the gradient field lines, high slew-rate
gradient transitions (dB/dx/dt) were found to be responsible for
induced eddy-currents on front-end boards power and ground
planes. From Fig. 4, such eddy-currents are evidenced through
induced fluctuations on the ASIC baseline, a ringing distortion
through an oscilloscope—EMI from pulsed RF power.



Fig. 3. Effects of noise pickup from the PET front-end electronics on an acquired MR image of a water-filled phantom.

Fig. 4. EMI effects of switched gradients on PET front-end electronics (the screenshots from the oscilloscope shows on the Channel 2 (green) the analog output of the front-

end ASIC; and on the Channels 3 (purple) and 4 (pink), respectively the phase and frequency-encoding gradients). (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
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with an exponential decay time of 600 ms (A); and through the
generation of bursts of a few tens of spurious events on the analog
output of the ASIC (B).

3.4. Susceptibility artifacts caused by PET front-end materials

The homogeneity level of the static B0 field was evaluated via a
phase-difference B0 mapping technique. B0 field distortions below
10 ppm were observed over an extension of 5 cm over the DSV of
an oil-filled spherical phantom placed in the vicinity of a Clear-
PEM supermodule inside a head birdcage RF coil. Nickel plated
sockets for the assembling of the APD to the front-end boards
were found to be responsible for the observed B0 field lines
distortions.

In conclusion, in this conference we have presented the first
results of the feasibility and electromagnetic compatibility study
of the ClearPEM detectors and front-end electronics for combined
PET-MR imaging. The experimental tests were conducted without
any EMI shielding intending to identify the mutual interference
effects in a worst case scenario. The main presented results show
that the front-end electronics withstands to pulsed RF power and
to the strong magnetic field gradients, being feasible for the
integration with a 7 T MR system.
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