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Abstract
Natural and artificial societies often divide the workload between specialized members.

For example, an ant worker may preferentially perform one of many tasks such as brood

rearing, foraging and nest maintenance. A robot from a rescue team may specialize in

search, obstacle removal, or transportation. Such division of labor is considered crucial

for efficient operation of multi-agent systems and has been studied from two perspec-

tives. First, scientists address the "how" question seeking for mechanical explanations

of division of labor. The focus has been put on behavioral and environmental factors

and on task allocation algorithms leading to specialization. Second, scientists address

the "why" question uncovering the origins of division of labor. The focus has been put

on evolutionary pressures and optimization procedures giving rise to specialization.

Studies have usually addressed one of these two questions in isolation, but for a full

understanding of division of labor the explanation of the origins of specific mechanisms

is necessary. Here, we rise to this challenge and study three major transitions related to

division of labor. By means of theoretical analyses and evolutionary simulations, we

construct a pathway from the occurrence of cooperation, through fixed castes, up to

dynamic task allocation.

First, we study conditions favoring the evolution of cooperation, as it opens the

doors for the potentially following specialization. We demonstrate that these conditions

are sensitive to the mechanisms of intra-specific selection (or "selection methods"). Next,

we take an engineering perspective and we study division of labor at the genetic level in

teams of artificial agents. We devise efficient algorithms to evolve fixed assignments of

agents to castes (or "team compositions"). To this end, we propose a novel technique that

exchanges agents between teams, which greatly eases the search for the optimal com-

position. Finally, we take a biological perspective and we study division of labor at the

behavioral level in simulated ant colonies. We quantify the efficiency of task allocation

algorithms, which have been used to explain specialization in social insects. We show

that these algorithms fail to induce precise reallocation of the workforce in response to

changes in the environment. We overcome this issue by modeling task allocation with

artificial neural networks, which lead to near optimal colony performance.
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Abstract

Overall, this work contributes both to biology and to engineering. We shed light on

the evolution of cooperation and division of labor in social insects, and we show how to

efficiently optimize teams of artificial agents. We resolve the encountered methodologi-

cal issues and demonstrate the power of evolutionary simulations to address biological

questions and to tackle engineering problems.

Keywords: artificial evolution, multi-agent systems, cooperation, division of labor,

specialization, team composition, task allocation, response thresholds, artificial neural

networks, simulations, evolutionary computation, selection method, crossover
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Résumé
Les sociétés naturelles et artificielles divisent souvent la charge de travail entre des

membres spécialisés. Par exemple, une fourmi ouvrière peut préférentiellement effectuer

l’une de nombreuses tâches telles que l’élevage du couvain, la recherche de nourriture ou

l’entretien du nid. Un robot d’une équipe de secours peut se spécialiser dans la recherche,

la suppression d’obstacles, ou le transport. La division du travail est considérée comme

cruciale pour le fonctionnement efficace des systèmes multi-agents et a été étudié sous

deux angles. Tout d’abord, les scientifiques abordent la question du «comment» et

cherchent des explications mécaniques à la division du travail. L’accent est mis sur les

facteurs comportementaux et environnementaux et sur les algorithmes d’allocation des

tâches qui conduisent à la spécialisation. Deuxièmement, les scientifiques abordent la

question du «pourquoi» et cherchent les origines de la division du travail. L’accent est

mis sur les pressions évolutives et sur les procédures d’optimisation qui provoquent la

spécialisation. Les études ont généralement traité ces deux questions séparément, mais

pour une compréhension complète de la division du travail l’explication de l’origine

des mécanismes spécifiques est nécessaire. Ici, nous relevons ce défi et nous étudions

trois transitions majeures relatives à la division du travail. Par des analyses théoriques

et des simulations évolutives, nous établissons un scénario menant de l’apparition de la

coopération et de castes fixes jusqu’à l’allocation dynamique de tâches.

Tout d’abord, nous étudions les conditions qui favorisent l’évolution de la coopéra-

tion, car cela ouvre la porte à une spécialisation plus poussée. Nous démontrons que ces

conditions sont sensibles aux mécanismes de sélection intra-spécifique (ou «méthodes

de sélection»). Ensuite, nous prenons un point de vue technique et nous étudions la

division du travail au niveau génétique au sein d’équipes d’agents artificiels. Nous

concevons des algorithmes efficaces permettant de faire évoluer les assignations fixes

d’agents à des castes (ou «compositions des équipes»). À cette fin, nous proposons une

nouvelle technique d’échange d’agents entre les équipes, ce qui facilite grandement

la recherche de la composition optimale. Enfin, nous nous plaçons d’un point de vue

biologique et nous étudions la division du travail au niveau comportemental dans les

colonies de fourmis simulées. Nous quantifions l’efficacité des algorithmes d’allocation
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Résumé

des tâches, qui ont été utilisés pour expliquer la spécialisation chez les insectes sociaux.

Nous montrons que ces algorithmes n’induisent pas de répartition précise des ouvrières

en réponse aux changements environnementaux. Nous remédions à ce problème par

une modélisation de la répartition des tâches avec les réseaux de neurones artificiels,

grâce à laquelle les colonies peuvent atteindre une performance quasi optimale.

Dans l’ensemble, nous contribuons à la biologie et à l’ingénierie. Nous éclairons

l’évolution de la coopération et de la division du travail chez les insectes sociaux, et

nous montrons comment optimiser efficacement des équipes d’agents artificiels. Nous

résolvons les problèmes méthodologiques rencontrés et démontrons la puissance de

simulations évolutives pour répondre à des questions biologiques et pour s’attaquer à

des problèmes d’ingénierie.

Mots clés : évolution artificielle, systèmes multi-agents, coopération, division du travail,

spécialisation, composition des équipes, allocation des tâches, seuil de réponse, réseaux

neuronaux artificiels, simulations, algorithmes évolutionnaires, méthode de sélection,

enjambement

viii



Contents
Acknowledgements iii

Abstract (English/Français) v

List of figures xi

List of tables xv

Introduction 1

1 Selection methods regulate evolution of cooperation in artificial evolution 15

1.1 Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Selection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Model of cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Evolutionary experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.4 Genetic architecture, selection and reproduction . . . . . . . . . . . . 20

1.4.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Formal analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7.1 Mathematical model of cooperation in populations of related indi-

viduals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7.2 Evolution of cooperation under proportionate selection method . . 33

1.7.3 Evolution of cooperation under rank selection method . . . . . . . . 34

1.7.4 Evolution of cooperation under truncation selection methods . . . 34

ix



Contents

1.7.5 Evolution of cooperation under tournament selection method . . . 38

1.7.6 Effects of random drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Evolving team compositions by agent swapping 45

2.1 Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Restricted and free agent swapping . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.3 Evolutionary experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.4 Genetic architecture, selection and reproduction . . . . . . . . . . . . 56

2.4.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.1 Restricted and free agent swapping . . . . . . . . . . . . . . . . . . . . 58

2.5.2 Restricted and free agent swapping - disparities in the initial pop-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.3 Combining free and restricted agent swapping . . . . . . . . . . . . . 62

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.7.1 1-point and 2-point crossover . . . . . . . . . . . . . . . . . . . . . . . . 68

2.7.2 Effects of changing agent swapping probability . . . . . . . . . . . . 71

2.7.3 Effects of mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7.4 Effects of selection pressure . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.7.5 Best team performance in the population . . . . . . . . . . . . . . . . 76

2.7.6 Alternative methods of combining team crossover operators . . . . 77

2.7.7 Other operators altering team composition . . . . . . . . . . . . . . . 79

3 Neural networks as mechanisms to regulate division of labor 81

3.1 Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Task allocation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Colony tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.3 Genetic architecture, selection and reproduction . . . . . . . . . . . . 88

3.4.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



Contents

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.1 Formal analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.7 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7.1 Mathematical model of task allocation . . . . . . . . . . . . . . . . . . 98

3.7.2 Behavioral flexibility in response thresholds models . . . . . . . . . 99

3.7.3 Analyses of other response thresholds models . . . . . . . . . . . . . 101

3.7.4 Effects of population size and mutation . . . . . . . . . . . . . . . . . 103

Conclusions 107

A Association between performance and fitness in evolutionary simulations 111

B Application of team crossover operators in the evolution of decentralized con-

trollers for task allocation 115

C Formal definition of the task allocation simulation 119

Bibliography 142

Curriculum Vitae 143

xi





List of Figures
1.1 Mean cooperation level evolved under different selection methods, the

average over all conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Mean cooperation level evolved under different selection methods, the

average over conditions with the same relatedness level and the average

over conditions with the same benefit of cooperation . . . . . . . . . . . . . 24

1.3 Mean cooperation level evolved under different selection methods for

every condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Mean cooperation level evolved under different selection methods for

conditions with fixed benefit of cooperation . . . . . . . . . . . . . . . . . . . 26

1.5 Mean stability of the cooperation level evolved under different selection

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Two approaches in the evolution of heterogenous teams . . . . . . . . . . . 48

2.2 Crossover operators acting on teams of agents . . . . . . . . . . . . . . . . . 50

2.3 Restricted and free agent swapping . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Mean performance of teams evolved with restricted and with free agent

swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Mean variation between the teams evolved with restricted and with free

agent swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Structure of teams evolved with restricted and with free agent swapping . 60

2.7 Mean performance of teams evolved with restricted and with free agent

swapping without disparities in the initial population . . . . . . . . . . . . . 62

2.8 Mean performance of teams evolved with restricted, with free, and with

mixed free/restricted agent swapping . . . . . . . . . . . . . . . . . . . . . . . 63

2.9 Mean variation between the teams evolved with mixed free/restricted

agent swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.10 Mean performance of teams evolved with 1-point and with 2-point crossover 69

2.11 Mean variation between teams evolved with 1-point and with 2-point

crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiii



List of Figures

2.12 Structure of teams evolved with 1-point and with 2-point crossover . . . . 70

2.13 Mean performance of teams evolved with restricted and with free agent

swapping, using low probability of agent swapping . . . . . . . . . . . . . . 71

2.14 Mean variation between teams evolved with restricted and with free

agent swapping, using low probability of agent swapping . . . . . . . . . . 71

2.15 Structure of teams evolved with restricted and with free agent swapping,

using low probability of agent swapping . . . . . . . . . . . . . . . . . . . . . 72

2.16 Mean performance of teams evolved with restricted and with free agent

swapping, using mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.17 Mean variation between teams evolved with restricted and with free

agent swapping, using mutation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.18 Structure of teams evolved with restricted and with free agent swapping,

using mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.19 Mean performance of teams evolved with restricted and with free agent

swapping, using high selection pressure . . . . . . . . . . . . . . . . . . . . . 75

2.20 Mean variation between teams evolved with restricted and with free

agent swapping, using high selection pressure . . . . . . . . . . . . . . . . . 75

2.21 Structure of teams evolved with restricted and with free agent swapping,

using high selection pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.22 Best performance of teams evolved with restricted and with free agent

swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.23 Alternative ways of combining free and restricted agent swapping, mean

performance of and mean variation between teams . . . . . . . . . . . . . . 78

3.1 Task allocation mechanisms and the neuronal formalism . . . . . . . . . . . 85

3.2 Mean performance in task allocation of colonies evolved with determinis-

tic, probabilistic and extended response threshold model . . . . . . . . . . . 91

3.3 Distribution of workers to tasks in colonies evolved with deterministic,

probabilistic and extended response threshold model, the average over

colony lifespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Distribution of workers to tasks in colonies evolved with deterministic,

probabilistic and extended response threshold model, in a function of time 92

3.5 Proportion of workers switching between tasks in colonies evolved with

deterministic, probabilistic and extended response threshold model, the

average over colony lifespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Efficiency in the regulatory task in colonies evolved with deterministic,

probabilistic and extended response threshold model . . . . . . . . . . . . . 93

xiv



List of Figures

3.7 Mean proportion of colonies evolved evolved with deterministic, proba-

bilistic and extended response threshold model that successfully perform

regulatory task in a function of time . . . . . . . . . . . . . . . . . . . . . . . . 94

3.8 Mean performance in task allocation of colonies evolved with alternative

versions of deterministic and probabilistic response threshold models . . . 101

3.9 Distribution of workers to tasks in colonies evolved with alternative

versions of deterministic and probabilistic response threshold models, in

a function of lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.10 Mean performance in task allocation of colonies evolved with determinis-

tic, probabilistic and extended response threshold model, using different

population sizes and different mutations . . . . . . . . . . . . . . . . . . . . . 104

3.11 Distribution of workers to tasks in colonies evolved with alternative

versions of deterministic and probabilistic response threshold models,

in a function of lifetime, using different population sizes and different

mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1 Association between fitness and performance under proportionate, rank,

truncation-proportionate, truncation-uniform, and tournament selection

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1 Mean performance of teams using deterministic and extended response

threshold models of task allocation, evolved with restricted and free agent

swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xv





List of Tables
1.1 A sample of approaches to perform artificial selection, and to study the

evolution of social traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Conditions in which cooperative (defective) allele is under positive selec-

tion when the defective (cooperative) allele is fixated, assuming different

selection pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 A sample of approaches in the evolution of heterogeneous teams using

individual encoding and team encoding. . . . . . . . . . . . . . . . . . . . . . 49

xvii





Introduction

This thesis is concerned with the evolution of
division of labor in biological and engineered
multi-agent systems. Here, we set up the scene
with key concepts, motivations, and methods
which bind our work together. We present the
main questions and challenges surrounding the
evolution of division of labor and outline the
method of evolutionary simulations which we
used to address the ones of our interest. We
emphasize the interdisciplinary context of our
research by drawing parallels between natural
and engineering sciences. Biologists identify
behavioral mechanisms and evolutionary pres-
sures that give rise to division of labor in so-
cial insects, whereas engineers implement func-
tional specialization into the teams of artificial
agents to increase their performance.
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Introduction

The ability to coordinate individual activities is fundamental to efficient opera-

tion of many engineered and biological societies. A promising strategy to control the

group-level behavior is dividing the task performance among functionally specialized

members. Studies of this phenomenon, named “division of labor”, span across many

fields of science. In human economies, people specialize in different occupations, such

as teaching, farming or trading (Smith 1776). In computer clusters, different types of

computational tasks are delegated to dedicated electronic components, such as digi-

tal signal processors, graphical processing units, or field-programmable gate arrays

(Topcuoglu et al. 2002). In robotics, multiple robots varying in hardware or control

algorithms work together to achieve tasks typically reserved only for complex machines

(Dorigo et al. in press). Last but not least, division of labor occurs at many levels of

biological organization, e.g., duplicated genes often evolve to serve different functions

(Rueffler et al. 2012); cells differentiate into many types (Ispolatov et al. 2012); colonies

of social insects divide reproduction into fertile queens and males and sterile workers

(Wilson 1971); the sterile workers further divide the labor by specializing in different

activities such as nest maintenance, foraging, and brood rearing (Oster and Wilson 1978).

Division of labor is a concept unifying a diverse body of research, nevertheless

different fields often ask highly specific questions. For instance, cell differentiation and

human economy have little in common, although in both cases authors emphasize the

importance of functional specialization. In this thesis, we narrow the scope to division

of labor displayed by multiple autonomous agents working together, much like workers

in an insect colony or robots in a team. With this respect, scientific effort usually follows

one of the two agendas aiming to understand (i) the mechanisms and (ii) the origins of

division of labor. Answering the first question involves devising models and algorithms

of task allocation that explain the work distribution observed in social insects (e.g.,

Beshers and Fewell 2001), or induce desired global behavior in teams of artificial agents

(e.g., Gerkey and Matarić 2004). The second question is usually addressed by considering

the costs and benefits that specialization incurs on the society, as to understand when it

evolves (e.g., Rueffler et al. 2012), or how to optimize it (e.g., Panait and Luke 2005).

The two types of questions on division are usually studied in isolation (but see

Goldsby et al. 2012). However, to gain a full understanding one needs to address them

simultaneously (Duarte et al. 2012). Biologists need to understand when specific mecha-

nisms of specialization are favored by natural selection, whereas engineers need to know

how to optimize the chosen task allocation algorithm. This thesis aims to rise to those

challenges. To this end, by means of evolutionary simulations and formal analyses, we

construct an evolutionary pathway for division of labor from the occurrence of coop-
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Mechanisms of division of labor

eration, through fixed specialization, up to behavioral flexibility in task allocation. In

doing so, we address several scientific and methodological questions both from biology

and from engineering. In particular: How does intra-specific selection affect evolution

of cooperation? How to choose a selection method in evolutionary simulations? How

to design a crossover operation as to efficiently evolve fixed assignments of agents to

tasks? What is the role of genetic variance in a population during team evolution? How

efficient in task allocation are the existing models explaining division of labor in social

insects?

In the rest of this introduction we shall review the related literature that motivated

all these questions. First, we separately discuss the mechanisms and the origins of func-

tional specialization in biological and artificial multi-agent systems. Next, we describe

the method of evolutionary simulations that allow us to merge the two perspectives. We

end with describing the thesis outline and contents.

Mechanisms of division of labor

Social insects perform a multitude of tasks such as feeding the brood, nest maintenance,

defense, and foraging (Wilson 1971), and divide the labor among hundreds, thousands,

or even millions of workers (Dornhaus et al. 2012). Similarly, engineers envision swarms

of autonomous agents jointly performing complex and multiple tasks (Bonabeau et al.

1999; Eberhart et al. 2001). If so, the questions arise: What factors enable a multi-agent

system to display division of labor? What mechanisms of task allocation do social insects

apply, and robotic swarms should use? A common misconception is that a queen in an

ant nest commands workers what to do, whereas in fact the workers are autonomous

and perform tasks without any central point of control (Gordon 1996; Robinson 1992).

Similarly, coordination of numerous robots operating in noisy and varying environments

usually rules out centralized control algorithms. For these reasons, decentralized and

self-organized division of labor in biological and engineered societies have received

increased attention in the recent years.

Components of division of labor

The overall pattern of the division of labor often consists of multiple components, each

stemming from a different source. Consequently, the observed level of specialization is

caused by a mix of environmental, phenotypic, genetic, learning and social factors. We

shall now describe them shortly, and support with empirical evidence from biology and

3



Introduction

engineering.

To begin with, division of labor might be caused purely by environmental factors

such as heterogeneous distribution of tasks in space (Johnson 2010). For example, assum-

ing preferential performance of proximate tasks (Franks and Tofts 1994), young workers

should engage in activities near their place of birth (e.g., brood rearing), and transit to

tasks located outside the nest when old (e.g., foraging) (Tofts 1993). In consequence,

task repertoire of workers is expected to be associated with their age, a phenomenon

called “temporal polytheism”, which has been observed in many species of ants and

bees (Oster and Wilson 1978; Wilson 1971). Similarly, teams of identical robots have

displayed “situated” specialization (Baldassarre et al. 2003; Nouyan et al. 2009), demon-

strating that homogeneous groups may divide the labor solely due to differences in the

sensory-motor states caused by variation in the environment.

More often than not, specialization is owed to explicit variation in task preferences

caused by phenotypic and/or genetic differences between workers. Embodied agents

differing in morphology often preferentially attend to tasks best suited to their bodies.

For example, around 15% of ant genera develop polymorphic workers (Gordon 1996)

with small workers rearing the brood and large workers defending the nest (Robinson

et al. 2009; Wilson 1980, 1985). Artificial agents may also have different bodies affecting

their task repertoire, e.g., multi-robotic platform “Swarmanoid” has been composed of

flying robots with the task to monitor the environment (eyebots) and ground robots

with the task to transport and manipulate objects (footbots and handbots, respectively)

(Dorigo et al. in press).

In the majority of biological and artificial societies agents do not display different

morphologies, and yet they divide the labor due to the genetic factor. For example, in

species with multiply-mated queens or multiple queens per colony, distinct lineages

have been showed to differ in preferences of tasks such as guarding (Robinson and Page

1988), thermoregulation (Jones et al. 2004) and foraging (Fewell and Page Jr 2000; Ingram

et al. 2005). Similarly, in engineered systems, an artificial agent may engage in selected

tasks depending on the preprogrammed behavior (Luke et al. 1998). Such fixed patterns

of division of labor are often discovered by optimization algorithms (Panait and Luke

2005), in particular by evolutionary simulations (Bongard 2000a; Potter and De Jong

2000). Here, we touch on this subject in Chapter 2 where we evolve fixed assignments of

agents to tasks (“team compositions”).

Differences in task preferences are not always fixed, and may change due to agents’

4



Mechanisms of division of labor

plasticity. Labella et al. (2006) inspired by foraging behavior of ants successfully demon-

strated division of labor in a team of robots by self-reinforcement in previously per-

formed tasks (Spencer et al. 1998; Theraulaz et al. 1998). Similarly, Ravary et al. (2007)

showed that ant workers tend to engage in tasks which they have experienced before. Al-

though social insects have demonstrated remarkable learning abilities (Leadbeater and

Chittka 2007), it is unclear whether the link between task preferences and plasticity goes

beyond simple examples of self-reinforcement of previously performed tasks (Theraulaz

et al. 1998). In contrast, in engineering, plastic specialization is often obtained through

non-trivial learning algorithms often involving artificial neural networks, with appli-

cations in machine learning (Liu et al. 2000), decision making (Kohl and Miikkulainen

2009), and task allocation in multi-robotic systems (Eiben et al. 2007).

Finally, task preferences are often internally regulated by the society, showing

the “social component” in division of labor. In honeybees, for example, the previously

mentioned age polytheism is modulated by the demographic structure of the colony

(Huang and Robinson 1996). In the absence of old bees, young bees produce more

juvenile hormone and transit more quickly to foraging tasks (Beshers et al. 2001; Huang

and Robinson 1992; Robinson 1987b). Similarly, the differentiation into morphologically

distinct castes in ants may be a consequence of variation in nutrition that young larvae

had received (Smith et al. 2008a). Other colony-level properties presumably affect

specialization, too. Colony size is predicted to be positively associated with the level of

division of labor (Bourke 1999; Jeanson et al. 2007), however empirical results are mixed

(e.g., Dornhaus and Franks (2006); Dornhaus et al. (2009); Thomas and Elgar (2003)).

Patterns of division of labor change also with the colony age (e.g., during the colony

foundation more workers are involved in the nest maintenance than in the adult colony;

Mailleux et al. 2003).

Task allocation algorithms

To account for various factors affecting division of labor, biologists proposed several

task allocation mechanisms that social insects are argued to apply (see Beshers and

Fewell 2001; Bonabeau et al. 1997b; Duarte et al. 2011; Fewell 2003; Gordon 1996, 2003;

Robinson 1992 for reviews). The most prominent feature of these algorithms is that

they produce patterns of division of labor which are not fixed in time by allowing for

some flexibility in workers’ behaviors (Johnson 2003; Robinson 1992). There are many

empirical evidence showing that external factors sensed directly through environmental

cues (Bonabeau et al. 1996; Franks and Tofts 1994), or indirectly through interactions

5



Introduction

with other workers (Adler and Gordon 1992; Gordon 1996; Pratt 2005), indeed induce

workers to switch between tasks.

Similarly, artificial agents often need to dynamically change tasks in order to

achieve prescribed goals. To this end, engineers have proposed many algorithms which

assign agents to tasks in (nearly) optimal according to some measure, e.g., makespan

or energy consumed (e.g., Berman et al. 2009; Campos et al. 2000; Dahl et al. 2009;

Gerkey and Matarić 2002; Jones and Matarić 2003; Matarić et al. 2003; Schneider-Fontan

and Matarić 1998). Also, multi-agent task allocation develops interesting links with

other problems, such as scheduling (Gerkey and Matarić 2004), consensus building

(Franceschelli et al. 2010; see Olfati-Saber et al. 2007; Ren et al. 2005 for reviews), and

machine learning (Stone and Veloso 2000). Many of the algorithms used to solve such

problems are inspired by the biological models of division of labor in social insects

(Bonabeau et al. 1999, 2000), showing again the synergies between the two fields.

Franks and Tofts (1994) proposed the basic model called “foraging for work”, in

which workers actively seek tasks and attend to the first available one. Consequently,

the model describes division of labor as an emergent process owing to external factors,

and with no variation among workers. It may account for some cases of age polytheism

and specialization within the same caste (Tofts 1993) but fails to explain strong patterns

of division of labor (Theraulaz et al. 1998). Consequently, it has been proposed to be

treated as a “baseline” model denoting the level of specialization which should be

expected due to spatiotemporal constraints present in the nest (Traniello and Rosengaus

1997). Similarly, in engineering, some proposed to leverage an emergent division of

labor caused by spatial variation in tasks (Balch and Arkin 1998; Schneider-Fontan and

Matarić 1998), or by noise in communication channel (Quinn et al. 2003).

In the “response threshold” models workers engage in a task only if the external

stimuli denoting the need for its performance exceeds their internal threshold for the

task (Bonabeau et al. 1996; Jeanson et al. 2007; Page Jr and Mitchell 1998; Robinson

1992). Usually, the values of thresholds are fixed during ontogeny and differ between

the workers, thus reflecting the intra-colony genetic, morphological or age variation. In

the “adaptive” version of the model values of the response thresholds change due to

individual experience thus reflecting self-reinforcement (Theraulaz et al. 1998). Response

threshold models have been successfully applied to explain colony reaction to perturba-

tions (Waibel et al. 2006) and division of labor patterns observed in honeybees (Bertram

et al. 2003), ants (Bonabeau et al. 1996), and primitively eusocial wasps (Theraulaz et al.

1998).
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Due to their apparent simplicity, response threshold models have been extensively

used by engineers as task allocation algorithms for groups of artificial agents (Bonabeau

et al. 1999, 2000). With this respect there are, however, two issues. First, there is a

question of how to find appropriate values of the thresholds. Biologists often randomize

the thresholds (e.g., Jeanson et al. (2007)) which, however, may impair the overall

performance of the society. To overcome this problem, engineers optimize the values of

thresholds with learning algorithms (Labella et al. 2006), or by means of evolutionary

simulations (Campos et al. 2000). We touch on this subject in Chapter 2 where we evolve

fixed assignments of agents to tasks, and more in Chapter 3 were we evolve the values

of response thresholds in a foraging scenario.

The second problem is that response threshold models originally assumed that

tasks stimuli are commonly available to every worker (Bonabeau et al. 1996), which

is possible only when the needs of the society may be efficiently communicated and

aggregated by the members. This is the case of multi-agent systems with adequate

communication capabilities, like teams of robots with a central unit overseeing their

behavior (Berman et al. 2009; Krieger et al. 2000). Also, response thresholds have

been used to solve scheduling (Bonabeau et al. 1997a; Campos et al. 2000) and load

balancing (Cao 2004; Freeman et al. 2006) problems in computational clusters where

communication between computer processes is relatively easy. Alternatively, global

needs may sometimes be inferred from locally accessible information (Agassounon and

Martinoli 2002; Jones and Matarić 2003; Matarić et al. 2003, but see Parker 1993).

To address the issue of global stimuli, biologists developed “networking” models

of division of labor, which focus on information transfer through the colony by intra-

specific cues and signals (Fewell 2003; Gordon 1996; Gordon et al. 1992; Pacala et al.

1996; Solé et al. 1993). In these models, workers choose tasks in response to inter-

workers interactions. For example, individuals from inside the nest have been observed

switching to foraging if recruited by patrollers who successively located the food source

(Greene and Gordon 2007b; Richardson et al. 2010), or if successful foragers come back

at a precise rate (Gordon et al. 2008; Greene and Gordon 2007a; Schafer et al. 2006). Of

note, “networking” models often emphasize the similarity between a nervous system

and an insect society as if the colony were a big neuronal network with single workers

mimicking neurons (Hirsh and Gordon 2001; Seeley et al. 2012).

Message passing between neighboring agents is also an often used technique in

task allocation in robotic systems (Dahl et al. 2009; Parker and Zhang 2009). The most

well-known family of such methods are market-based algorithms (Gerkey and Matarić
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2002; Lagoudakis et al. 2005; Tovey et al. 2005), where agents compare their desire to

perform a task (“bid”) and the most eager agent actually performs it (“wins the auction”).

The market-based algorithms are similar to the ones using response thresholds, in the

sense that with the former approach agents compare their will to perform the task with

each other, whereas in latter approach they compare it with their internal thresholds

(see also Kalra and Martinoli 2006).

Origins of division of labor

Mechanistic explanations of division of labor answer “how” specialization may be

achieved, but say little about “why” it occurs, evolves, or should be implemented.

Although specialization may be an emergent process (e.g., Franks and Tofts 1994),

more often than not it is the effect of evolutionary pressures, or engineering decisions.

Dividing activities among specialized workers is presumably the main source of high

ecological success of social insects (Hölldobler and Wilson 1990; Oster and Wilson 1978;

Robinson 1992). Similarly, engineers create teams of specialized artificial agents hoping

it will increase the system’s performance (in comparison to a group of non-specialists

Panait and Luke 2005). If so, questions arise: What benefits are associated with division

of labor? Are there any costs? And more precisely, what evolutionary pressures and

engineering guidelines favor or prevent functional specialization?

Benefits and costs of division of labor

The effects of division of labor on societies have been first considered by Smith (1776),

the pioneer of economical science. He speculated that division of labor benefits human

industries in three ways: (i) increases individual efficiency, (ii) avoids the costs of task

switching, and (iii) facilitates the invention of machines. These three arguments made

their way into biology and engineering, however each to a different extent.

The first argument raised by Smith (1776) states that specialized individuals become

masters of their trades and increase the quality and the quantity of their work. This is

often true in engineered systems. For example, in heterogeneous computational clusters

each type of electronic devices is dedicated to a different computational task, in which

it greatly outperforms general purpose computers (Bader et al. 2009). In the RoboCup

challenge, robots increased their individual efficiency by specializing in some aspect of

the soccer game, like goalkeeping and shooting. Consequently, teams that divided the

labor beat the ones that did not (Luke et al. 1998). In contrast to engineered systems, the
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evidence that division of labor increases individual efficiency in insects colonies is mixed.

In ants with morphological castes, smaller workers may be indeed more efficient in

brood care, whereas larger workers may be better at nest defense and foraging (Gordon

1996). However, without differences between workers in morphology or size, individual

experience does not affect the efficiency in task performance (Dornhaus 2008), despite it

may change the task preferences (Ravary et al. 2007).

The second argument raised by Smith (1776) states that with each task being

handled by a distinct group of individuals, no one needs to switch between the tasks

thus avoiding the associated costs, such as cognitive overhead and the time lost in

passing from one activity to another (Sendova-Franks and Franks 1995). The avoidance

of task switching costs has been argued to be an important evolutionary pressure that

give rise to division of labor in social insects (Dornhaus 2008). This hypothesis has been

recently supported by means of computer simulations which demonstrated that higher

costs of task switching lead to the evolution of stronger division of labor in colonies of

digital organisms (Goldsby et al. 2012). Additionally, in engineering, switching between

tasks incurs costs related to actually building agents capable of multi-tasking, which

might prove challenging. Decomposing a single complex robot into a team of specialized

simpler units is an alternative and promising approach in designing robotic systems.

For example, the previously mentioned Swarmanoid system was the first to successfully

demonstrate a team of relatively simple robots which divided the labor and collectively

performed human-like tasks, such as reaching for a book on a shelf. By designing the

system as a set of functionally specialized robots, engineers avoided the difficulties

(costs) of building complex humanoid robot (Dorigo et al. in press).

The final third argument raised by Smith (1776) states that division of labor facili-

tated the invention of machines because specialization led to partitioning of complex

activities into many small tasks, which then became easier to automate. This argument

is specific to human industries and to our knowledge has not been adopted by biol-

ogists, nor by engineers. However, radical forms of workers’ polymorphism might

be interpreted as the equivalence of inventing machines. For example, in honeypots

ants, some workers are overfed and their abdomens swell which turns them into living

containers of food, from which other ants nourish (Ratnieks and Anderson 1999). It

might be speculated that previous weaker forms of division of labor opened the doors

for such strong specialization.

Functional specialization entails many other benefits that go beyond the original

list proposed by Smith (1776). For example, the evolution of age polytheism may be
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explained by variation in mortality risks associated with tasks (O’Donnell and Jeanne

1995; Wakano et al. 1998). Foraging is more death threatening than brood rearing

due to higher activity of predators outside than inside the nest. Since production of

workers requires high energetic expenses (Hou et al. 2010), thus to maximize the utility

derived from each worker they should engage in task activities until the end of their

natural lifespan. Consequently, young workers should perform tasks with low mortality

risk (inside the nest), whereas old workers may transit to tasks with high mortality

risks (outside the nest). Such reasoning provides an evolutionary explanation of the

previously mentioned temporal polytheism displayed by social insects. A yet another

example is “task partitioning”, when a single complex task is divided into two or more

that are handled by specialized workers (Ratnieks and Anderson 1999). In such a case,

the benefit of division of labor stems from eliminating the preexisting constraint on

effective performance of the original complex task. In engineering, perhaps the most

vivid example of task partitioning is the invention of the assembly line by Henry Ford.

Although division of labor is a widespread strategy to control the group-level

behavior, it has not evolved and has not been implemented in all instances of biological

and engineered societies. To identify when division of labor is under negative selection,

or should be avoided, one needs to understand the costs it incurs. Already Smith (1776)

noticed that division of labor might impair the well-being of workers due to mundane

repetitions of the same task over and over again. Most importantly, high levels of

specialization and task partitioning often entails a loss in system’s robustness against

external perturbations (Ratnieks and Anderson 1999; Rueffler et al. 2012; Waibel et al.

2006), a point valid for both biological and engineered systems. In social insects, for

example, fixed division of labor decreases the overall performance when needs of a

colony change during ontogeny (Waibel et al. 2006). It has been argued that social insects

overcome this issue by producing an excess of workers, which remain inactive and

engage in task performance only when mobilized (Robinson 1992). Similar arguments

are raised with respect to robustness against failure in robotic swarms (Şahin 2005).

In technical sciences, there are two other costs related to engineering functional

specialization in societies of artificial agents. First, building platforms composed of

specialized subunits may impose additional maintenance costs related to, e.g., hardware

integration. Second, many argued that it is usually more challenging to optimize

multiple distinct controllers than a single one applied by all agents in a team (Panait and

Luke 2005). However, in contrast, functionally specialized agents often require simpler

control mechanisms than generalists due to reduced behavioral repertoire (Bongard

2000b). This tradeoff between intra- and inter-agent complexity remains a big open
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question in the field of team optimization (see Chapter 2 for further information).

Beyond cooperative societies

So far, we took a group-level perspective and considered benefits received and costs

payed by the entire society due to functional specialization of its members. But to

display a stable pattern of division of labor, these members must cooperate with each

other. For example, human industries are constrained by job contracts, and artificial

agents are often designed to work together by default. In contrast, in biology, evolution

of cooperation has been considered puzzling (Colman 2006) and has attracted extensive

scientific interest (see Griffin et al. 2004; Lehmann and Keller 2006; Robinson et al. 2005;

Sachs et al. 2004; West et al. 2006 for reviews). This is because, although cooperation is

often beneficial, it is also sensitive to cheating. To illustrate this, consider a cooperative

act of one individual towards the other that infers a fitness cost to the donor, and a fitness

benefit to the recipient. The recipient of the cooperative act who does not cooperate

himself (defects) increases his fitness at the expense of others. For example, in a pack

of predators that share the prey, a defector fakes the participation and benefits easy

access to the food while not risking the dangers of hunting. Defectors gain a survival

advantage over cooperators, they spread in the population and cooperation collapses.

Thus, even if the animals in the pack have had specialized in different parts of the hunt,

this division of labor would collapse along with cooperation.

Various mechanisms may oppose the spread of defectors and facilitate cooperation

(see Lehmann and Keller 2006; Nowak 2006b for overviews). For example, punishment

of defection (Fowler 2005; Hamilton 1970; Ratnieks et al. 2006) renders it to be an

unrewarding behavior, whereas positive assortment between cooperators limits the

number of defective interactions. The positive assortment might be caused by, e.g.,

relatedness between interacting individuals (Foster et al. 2006; Hamilton 1964; Queller

1992), or by reciprocity towards cooperators (Queller 1985; Rand et al. 2009; Trivers 1971).

Indeed, many cases of division of labor have been reported in genetically identical multi-

component systems like multi-cellular organisms in which there are no reproductive

conflicts (Rueffler et al. 2012). Similarly, insect species known to divide the labor (ants,

bees, and termites) are highly social and live in family-based colonies, supporting the

idea that the relatedness indeed plays a crucial role in the evolution of cooperation

(Hamilton 1964). Consequently, only the societies of highly related members evolve

functional specialization, as only them can withstand the invasion of selfish individuals.

We touch more on this subject in Chapter 1 where we show how mechanisms of intra-
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specific selection regulate the evolution of cooperation.

Evolutionary synthesis of mechanisms and origins

We have discussed the mechanisms and the effects of functional specialization in multi-

agent systems rather independently from each other. To fully understand division

of labor one must inevitably merge the two perspectives (Duarte et al. 2011). Biolo-

gists need to understand the evolutionary pathways leading to specific mechanisms

enabling division of labor observed in nature. Engineers need to know how to optimize

task allocation algorithms, which they have crafted. These two are very challenging

problems but both may be addressed (to certain extent) by means of simulations of

evolution performed in a computer. These computational methods are at the heart of

this thesis. Here, we provide a short introduction to evolutionary simulations, for a

more detailed description and applications in biology and engineering see Sections 1.3

and 2.3, respectively.

Originally, evolutionary simulations were proposed to automatically find solu-

tions to computational problems, much like evolution discovers new adaptive traits

(Fogel 1994; Fogel et al. 1966). Evolutionary simulations usually operate on a finite

population of genotypes, where each genotype encodes a solution to a given problem.

For example, in evolutionary robotics a genotype is a sequence of parameters, which

define the control system of a robot or its morphology (Floreano and Keller 2010). These

artificial genotypes are subjects to differential selection, mutation, and/or recombination.

Genotypes encoding better solutions are selected more often than genotypes encoding

worse solutions. Consequently, fitter genotypes spread in the population and artificial

evolution occurs (Adami 2006; Smith 1992).

Evolutionary simulations have been popularized by many practitioners (e.g.,

De Jong 2007; Goldberg 1989; Holland 1992; Koza 1992; Mitchell 1996) and are mainly

applied to problem solving. In particular, they have been successfully used to optimize

group-level behavior in teams of artificial agents (Panait and Luke 2005). Neverthe-

less, evolution of teams remains a challenging problem with many open questions (see

Chapter 2 for more details). In parallel, evolutionary simulations become increasingly

popular in biological studies (Foster 2001; Smith 1992; Wagner and Altenberg 1996),

mainly because they give precise control over the experimental conditions (Floreano and

Keller 2010) and allow the study of evolution at unprecedented level of detail (Adami

2006). In particular, they have been used to address challenging biological questions,
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including those related to division of labor (Duarte et al. 2012; Tarapore et al. 2010;

Waibel et al. 2006; see Chapters 1 and 3 for more details).

Thesis outline

The rest of this thesis is composed of the three chapters containing the main results and

the conclusions summarizing our main contributions and pointing to future direction of

research. All three main chapters contain material submitted to or published in scientific

journals (see Sections 1.1, 2.1, and 3.1 for more details). Consequently, all chapters

follow the same, article-like structure composed of five main parts: (1) Introduction

presenting state of the art and main motivations of a chapter; (2) Methods explaining

experimental settings and modeling details; (3) Results with novel contributions; (4)

Discussion putting the results in a broader context; and (5) Supplementary materials

with formal proofs and additional analyses.

In Chapter 1, we use evolutionary simulations of artificial agents with behavior

reduced to a binary choice between cooperation and defection (no cooperation). We

show theoretically and experimentally that the mechanisms of intra-specific selection

regulate the evolution of cooperation. Knowing the conditions that enable cooperation

and open the doors for division of labor, in the two following chapters we focus on

cooperative societies. In Chapter 2, we explore the ways to optimize genetically fixed

specialization by means of evolutionary simulations. We show how to control the genetic

variance in the population, and consequently make the evolutionary search find globally

optimal assignments of agents to tasks (“team compositions”). Finally, in Chapter 3, we

study functional specialization at the behavioral level in simulated ant colonies. We

quantify and compare the efficiency and flexibility in task allocation between several

commonly used biological models of division of labor. We show theoretically and

experimentally that these models fail to explain precise reallocation of workforce in

response to changes in the environment.
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1 Selection methods regulate evo-
lution of cooperation in artificial
evolution

To begin with, members of a society must coop-
erate with each other in order to divide the labor.
Biologists have identified many factors which fa-
cilitate the evolution of cooperation such as, for
example, a positive relatedness level between
the society members. Here, we contribute to the
understanding of the origins of cooperation by
demonstrating theoretically and experimentally
that its evolution is regulated by mechanisms of
intra-specific selection. We, thus, show a novel
pathway to cooperation, and to the potentially
following division of labor which we will study
in the next two chapters. From a methodological
standpoint, we expose that deciding on a par-
ticular “selection method” that chooses which
individuals survive during evolutionary simu-
lations constitutes a crucial step in the modeling
process as it has important implication on the
evolutionary outcome of the investigated traits.
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Chapter 1. Selection methods regulate evolution of cooperation in artificial
evolution

1.1 Disclosure

Contents of this chapter are taken from an article of the same title, which have been

recently submitted to a scientific journal. The article is authored by Paweł Lichocki, Dario

Floreano and Laurent Keller. Paweł Lichocki developed formal analyses, implemented

and executed simulations, and wrote the manuscript. All authors designed the project,

discussed the results and revised the manuscript. Steffen Wischmann and Barbara

Piasecka contributed useful comments on the manuscript. The work was supported by

the Swiss National Science Foundation and an ERC advanced grant.

1.2 Abstract

A key, yet often neglected, component of artificial evolution is the “selection method”

which assigns fitness (number of offspring) to individuals based on their performance

scores (efficiency in performing tasks). Here, we formally and experimentally study the

evolution of cooperation under the five most common selection methods (proportionate,

rank, truncation-proportionate, truncation-uniform, and tournament). We consider

related individuals engaging in a prisoner’s dilemma game where individuals can either

cooperate or defect with cooperation’s costs and benefits affecting their performance

scores. We show that cooperation was positively associated with the relatedness between

interacting individuals under all methods. However, the change in the performance

benefit of cooperation affected the populations’ average level of cooperation only under

the proportionate selection methods. Truncation and tournament methods introduced

negative frequency-dependence and led to the evolution of polymorphic populations.

This study reveals that the mode of selection plays an important role in regulating the

evolution of cooperation.

1.3 Introduction

Researchers address evolutionary questions with various methods ranging from mathe-

matical models to wet-lab and field experiments. These approaches are highly successful,

but have limitations. For example, mathematical models make simplifying assumptions

about complex ecological interactions in order to be tractable (Schoener 2011). Long-term

evolutionary experiments with organisms having generation time higher than bacteria

are practically impossible (Adami 2006). Artificial evolution performed with computer

simulations have been advocated as an alternative and promising approach to bypass
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such limitations (Adami 2006; DeAngelis and Mooij 2005; Floreano and Keller 2010;

Foster 2001; Mitri et al. 2013; Smith 1992; Wagner and Altenberg 1996). An evolutionary

simulation operates on a finite population of individuals (Fogel 1994), each having a

genome encoding its morphology and/or behavior. The “selection method” determines

on the basis of individual performance which individuals will contribute offspring, after

selection and/or recombination, to the next generation.

Several selection methods are being used in studies of artificial evolution with com-

puter simulations. The proportionate selection method (PSM) chooses the individuals

contributing to the next generation proportionally to their performance scores (Goldberg

1989). The rank selection method (RSM) chooses a parent proportionally to the ranks

(positions in a sequence of individuals sorted ascending by the performance scores)

(Mitchell 1996). With both PSM and RSM any individual has a chance to contribute

to the next generation. In contrast, with the “truncation” methods of selection only

a certain fraction of the population (i.e., the best performing individuals) contributes

offspring to the next generation. The truncation-proportionate selection method (TPSM)

chooses a parent proportionally to performance scores, whereas the truncation-uniform

selection method (TPSM) chooses a parent uniformly at random (Back 1994; Crow and

Kimura 1979; Crow et al. 1970; Milkman 1978; Schlierkamp-Voosen 1993). Finally, the

tournament selection method (TSM) forms “tournaments” by sampling individuals with

replacement uniformly at random from the entire population. The genotypes of the

individuals with the highest performance scores in each tournament are copied to the

descending generation (Blickle and Thiele 1995; Goldberg and Deb 1991).

While all five selection methods are frequently used to simulate differential selection

(Table 1.1.A), the choice between them is rarely justified. Moreover, little attempt

has been made to quantify the effects of selection methods on the dynamics of the

evolutionary simulation (but see Ficici et al. 2005; Hauert and Doebeli 2004). This

is a major issue because each selection method defines a different mapping between

performance scores and fitness (Appendix A), thus having important implications on

the course of evolution (Gillespie 1975, 1977; Lehmann and Balloux 2007; Rice 2008).

To address this problem, we investigate theoretically and in simulations how the five

selection methods regulate the evolution of cooperation. We focus on cooperation

because evolutionary simulations are especially popular in this domain (Table 1.1.B),

and it is an important biological phenomenon that has attracted extensive scientific

interest (see Griffin et al. 2004; Lehmann and Keller 2006; Robinson et al. 2005; Sachs et al.

2004; West et al. 2006 for reviews). We consider a population of related individuals, each

having a genotype that consists of a haploid allele encoding for cooperation or defection.
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Table 1.1: A sample of approaches to perform artificial selection (a), and to study the
evolution of social traits by means of evolutionary simulations (b).

(A) Selection method References

Proportionate selection
method (PSM)

Meuleau and Lattaud (1996), Agah and Bekey (1997),
Bowles and Gintis (2004), Hauert and Doebeli (2004),
Leimar and Hammerstein (2001), Ward et al. (2001),
Marocco et al. (2003), Doherty and O’Riordan (2007),
Waibel et al. (2009), Waibel et al. (2011), Mitri et al.
(2011), Duarte et al. (2012), Goldsby et al. (2012), Niv
et al. (2002)

Rank selection method
(RSM)

Quinn et al. (2003), Wischmann et al. (2012)

Truncation-
proportionate selection
method (TPSM)

Tarapore et al. (2010), Lichocki et al. (2012), Tuci et al.
(2002)

Truncation-uniform se-
lection method (TUSM)

Nolfi and Floreano (1998), Cangelosi and Parisi (1998),
Cangelosi (2001), Baldassarre et al. (2003), Waibel
et al. (2006), Floreano et al. (2007), Mitri et al. (2009),
Agogino et al. (2000), Kashtan et al. (2007)

Tournament selection
method (TSM)

Huberman and Glance (1993), Riolo et al. (2001),
Hauert and Doebeli (2004)

(B) Domain References

Cooperation

Meuleau and Lattaud (1996), Agah and Bekey (1997),
Ward et al. (2001), Leimar and Hammerstein (2001),
Bowles and Gintis (2004), Hauert and Doebeli (2004),
Doherty and O’Riordan (2007), Waibel et al. (2009),
Waibel et al. (2011), Mitri et al. (2011), Axelrod (1987),
Nolfi and Floreano (1998), Fogel (1993), Huberman
and Glance (1993), Riolo et al. (2001), Quinn et al.
(2003), Baldassarre et al. (2003)

Communication
Marocco et al. (2003), Quinn (2001),Cangelosi and
Parisi (1998),Cangelosi (2001), Floreano et al. (2007),
Mitri et al. (2009), Wischmann et al. (2012)

Division of labor
Duarte et al. (2012), Goldsby et al. (2012), Waibel et al.
(2006), Tarapore et al. (2010), Lichocki et al. (2012)

The individuals engage in a social game of prisoner’s dilemma (Eshel and Cavalli-Sforza

1982; Smith and Price 1973) where a cooperator pays a cost and its partner receives a

benefit. Because individuals only interact once, a cooperative trait is effectively altruistic

as it decreases the lifetime performance and fitness of the individual performing it

(Hamilton 1964; Lehmann and Keller 2006). In mathematical models, the cost and

benefit of cooperation directly affect the fitness of the individuals (Nowak 2006a; Rice

2004). We extend this approach by considering that the cost and benefit of cooperation
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affect performance scores, which are translated into fitness by one of the five selection

methods (PSM, RSM, TPSM, TUSM, and TSM). For each selection method, we formally

identify the conditions in which cooperation evolves and we experimentally quantify its

level.

1.4 Methods

1.4.1 Selection methods

All selection methods, except for TSM, constructed the descending generation in a

population of n individuals by independently sampling with replacement n individuals

from the parenting generation. With PSM the probability of sampling the individual

i was equal fi /
Pn

j˘1 f j , where fi was the performance score of the individual i . With

RSM the probability of sampling the individual i was equal ri /
Pn

j˘1 r j , where ri was

the rank of the individual i , i.e., its position in the sequence of all individuals sorted

ascending by performance scores (individuals with the same performance score had the

same rank). With TPSM and TUSM only the t fraction of individuals with the highest

performance scores in the population were considered viable. Let St denote the set of

viable individuals’ indices. With TPSM the probability of sampling the individual i was

equal fi /
P

j2St
f j if i 2 St , and 0 otherwise. With TUSM the probability of sampling the

individual i was equal 1/jSt j if i 2 St , and 0 otherwise. Finally, TSM with the tournament

size s constructs the descending generation in a population of n individuals by selecting

the winners of n independent tournaments. In each tournament, s individuals were

sampled with replacement uniformly at random from all n individuals of the parenting

generation. The tournament’s winner was the individual with the highest performance

score among the s individuals, and ties were resolved uniformly at random.

1.4.2 Model of cooperation

Each individual interacted with probability r once in its lifetime with itself, and with

another individual chosen uniformly at random, otherwise (Eshel and Cavalli-Sforza

1982). We kept the population size constant, thus, r reflected the average genetic

relatedness between the individuals (Zhang and Hui 2011). Depending on the outcome

of the interaction, each individual received a performance score equal to the payoff of

the normalized linear prisoner’s dilemma game (Smith and Price 1973). A cooperator

received performance score B if it interacted with a cooperator, and 0 if it interacted with

a defector. A defector received performance score B ¯C if it interacted with a cooperator,
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and C if it interacted with a defector.

1.4.3 Evolutionary experiments

We evolved a population of 1000 individuals in 11 treatments. In each treatment we

used a different selection method: PSM, TPSM with truncation threshold t ˘ 0.8,0.5,0.2,

TUSM with truncation threshold t ˘ 0.8,0.5,0.2, TSM with tournament size s ˘ 2,3,5, and

RSM. For each treatment we investigated 40£51 conditions, with the performance cost of

cooperation C fixed to 1, the performance benefits of cooperation B ranging between 1.1

and 5 with a step of 0.1, and the relatedness level r ranging between 0 and 1 with a step

of 0.02. For each treatment and each condition we replicated the numerical experiment

30 times. Each evolutionary experiment lasted for 1000 generations. Population size,

and the values of B and r were kept constant across generations.

1.4.4 Genetic architecture, selection and reproduction

Each individual had a genotype consisting of one binary allele denoting the lack (0) or

the possession (1) of the cooperative trait. At the first generation of each evolutionary run

all 1000 individuals had the allele set to 0. At each generation, the parenting individuals

were entirely replaced by their offspring. The individuals received performance scores

of the normalized linear prisoner’s dilemma game with fixed performance cost of

cooperation C equal 1. Consequently, a cooperator (defector) received performance score

B (B ¯1) if it interacted with a cooperator, and 0 (1) if it interacted with a defector. To

construct the descending generation, 1000 individuals were chosen by a selection method

that depended on the treatment. Finally, the genotypes of the selected individuals were

copied to the descending generation, and mutated (with probability 0.001 the value of

an allele was flipped).

1.4.5 Statistical analysis

For each replicate, treatment and condition, we measured the evolved cooperation

level as the proportion of cooperators in a population averaged across generations

900¡1000. To compare the selection methods, we considered mean cooperation level

over all conditions (Fig. 1.1). To investigate the effect of the relatedness level r , we

quantified the average cooperation level over all conditions with the same value of r (Fig.

1.2, red line). To investigate the effect of the performance benefit of cooperation B , we

quantified the average cooperation level over all conditions with the same value of B (Fig.
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1.2, blue line). In addition, we compared the results of formal analyses and numerical

simulations (Figures 1.3 and 1.4). Finally, for each replicate, treatment and condition,

we measured the stability of the evolved population as the mean absolute difference

between proportions of cooperators in a population in consecutive generations, averaged

across generations 900¡1000 (Fig. 1.5). Statistical significance between all treatments

was determined with Kruskal-Wallis test (nonparametric one-way analysis of variance)

and between a pair of treatments with Wilcoxon test (rank sum test for equal medians).

1.5 Results

1.5.1 Formal analyses

We formally investigated the spread of a cooperative allele in a population of individuals

related at level r on average. Individuals interact in pairs, and a cooperator pays a cost

C ¨ 0 which is subtracted from its performance score, whereas the partner of a cooperator

receives a benefit B ¨ C which is added to its performance score. The performance scores

of the individuals are translated into their fitness values by one of the five selection

methods: PSM, RSM, TPSM, TUSM, and TSM. Two of them (PSM and RSM) do not have

any free parameters. In contrast, TPSM and TUSM are characterized by the truncation

threshold t , which determines the fraction of individuals (i.e., those with the highest

performance scores) which are viable. Finally, TSM is characterized by the tournament

size s, which indicates the number of individuals that compete between each other in

randomly formed groups. Using each of the five selection methods we identified the

Table 1.2: Conditions in which (A) the cooperative allele is under positive selection
assuming the defective allele is fixated, and (B) vice versa. r denotes the relatedness
level between individuals, B is the performance benefit of cooperation, and C is the
performance cost of cooperation. The performance scores of the individuals were
transformed into fitness by one of the five selection methods: proportionate (PSM),
rank (RSM), truncation-proportionate with truncation threshold t (TPSM t), truncation-
uniform with truncation threshold t (TUSM t), and tournament with tournament size s
(TSM s).

Selection
(A) Cooperation invades (B) Defection invades
defection when cooperation when

PSM r ¨ C/B r ˙ C/B
RSM r ¨ 1/2 r ˙ 1/2
TPSM t r ¨ tC/B r ˙ 1¡ tB/(B ¯C )
TUSM t r ¨ t r ˙ 1¡ t
TSM s r ¨ 1/s r ˙ 1¡1/s
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conditions for the evolution of cooperation (Table 1.2.A) and defection (Table 1.2.B).

In general, these conditions depend on the frequency of cooperators in a population

(Supplementary materials, Sections 1.7.1-1.7.5). Thus, we focused on the conditions when

the invading allele is under positive selection, assuming that the opposite allele is fixated.

With PSM, cooperation is under positive selection in a population of defectors when

r ¨ C/B , whereas defection is under positive selection in a population of cooperators

when r ˙ C/B . With TPSM these conditions are relaxed, and cooperation is under

positive selection in a population of defectors when r ¨ tC/B , whereas defection is under

positive selection in a population of cooperators when r ˙ 1¡ tB/(B ¯C ). In contrast to

PSM and TPSM, with RSM, TUSM, and TSM the conditions for invasion of cooperation

and of defection are independent of C and B . Cooperation is under positive selection

in a population of defectors when r ¨ 1/2 for RSM, r ¨ t for TUSM, and r ¨ 1/s for

TSM. Similarly, the defection is under positive selection in a population of cooperators

when r ˙ 1/2 for RSM, r ˙ 1¡ t for TUSM, and r ˙ 1¡1/s for TSM. All results are jointly

presented in Table 1.2. For formal derivations and extended analyses see (Supplementary
materials, Sections 1.7.1-1.7.5).

1.5.2 Simulations

To verify and extend our formal analyses, we experimentally quantified by means of

computer simulations the average cooperation level in 30 populations under each of the

five selection methods. Overall, there were eleven treatments because we systematically

investigated different values of the truncation threshold t and of the tournament size s

(PSM, RSM, TPSM t ˘ 0.8,0.5,0.2, TUSM t ˘ 0.8,0.5,0.2, TSM s ˘ 2,3,5). For simplicity, we

fixed the performance cost of cooperation C ˘ 1, and investigated the combined effects of

the relatedness level r and the performance benefit of cooperation B on the cooperation

level. There were significant differences in the level of cooperation averaged across all

conditions between all eleven treatments (Fig. 1.1, Kruskal-Wallis test, d f ˘ 10, p ˙ 0.001)

and between each pair of treatments (55 pairwise Wilcoxon tests, d f ˘ 29, all p ˙ 0.001).

The performance benefit of cooperation B had different effects on the level of

cooperation depending on the selection method used. The cooperation level increased

with B in the four treatments with PSM and TPSM t ˘ 0.8,0.5,0.2. By contrast, in the five

other treatments the value of B had no effect on the level of cooperation (Fig. 1.2, blue

line).

In all 11 treatments, the level of cooperation increased with relatedness r (Fig. 1.2,
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Figure 1.1: Mean § s.d. cooperation level over all conditions (30 replicates). There
were 11 treatments, and in each a different selection method was used: proportionate
(PSM), truncation-proportionate with threshold t ˘ 0.8 (TPSM 0.8), t ˘ 0.5 (TPSM 0.5),
and t ˘ 0.2 (TPSM 0.2), truncation uniform with threshold t ˘ 0.8 (TUSM 0.8), t ˘ 0.5
(TUSM 0.5), and t ˘ 0.2 (TUSM 0.2), and tournament with size s ˘ 2 (TSM 2), s ˘ 3 (TSM
3), and s ˘ 5 (TSM 5).

red line). However, there were differences among treatments about the nature of the

transition from defection to cooperation. There was a thresholding effect in the four

treatments with RSM, TUSM t ˘ 0.8,0.5, and TSM s ˘ 2 as the evolved populations

contained either defectors (for low values of r ) or cooperators (for high values of r ;

Fig. 1.2.BFGI, red line). By contrast, in the seven other treatments the transition from

defection to cooperation with the increase of r was gradual. This was because the

cooperation level depended on combined effects of r and B with PSM and TPSM

t ˘ 0.8,0.5,0.2 (Fig. 1.3.ACDE), and because polymorphic populations evolved with

TPSM t ˘ 0.8,0.5,0.2, TUSM t ˘ 0.2, and TSM s ˘ 3,5 (Fig. 1.3.CDEHJK).
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same performance benefit of cooperation, (red): all conditions with the same relatedness
level (30 replicates). There were 11 treatments, and in each a different selection method
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Fig. 1.2 for the explanation of the treatments. Cooperation was always under positive
selection (irrespective of the proportion of cooperators and defectors in the population)
in conditions above dashed line. Defection was always under positive selection (irre-
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below solid line. Either cooperation or defection was under positive selection depending
on the proportion of cooperators in a population in conditions above the solid line and
below the dashed line (compare with Table 1.2).
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For all treatments, the simulations’ outcomes were in good agreement with the

predicted conditions where cooperation should invade defection, and vice versa (Fig. 1.3

and Fig. 1.4). Cooperation level was low in conditions where a population of defectors

was predicted to be resistant against the invasion of cooperation (Fig. 1.3, area below

the solid line). By contrast, cooperation always went to fixation in conditions where

it was predicted to invade a population of defectors and defection was not predicted

to invade a population of cooperators (Fig. 1.3, area above the dashed line). Finally,

populations were polymorphic in conditions for which both cooperation was predicted

to invade a population of defectors and defection was predicted to invade a population

of cooperators (Fig. 1.3CDEHJK; TPSM t ˘ 0.8,0.5,0.2, TUSM t ˘ 0.8,0.5,0.2, and TSM

s ˘ 3,5, intersection of the area below the dashed line and the area above the solid line).

Despite the good agreement between formal analyses and experimental results,

there were few small discrepancies. In contrast to the predicted conditions for evolution

of cooperation under TUSM (i.e., r ¨ t), cooperation evolved when r was slightly lower

than t (i.e., r ˘ 0.78 instead of 0.8 with TUSM t ˘ 0.8, and r ˘ 0.46,0.48 instead of 0.5

with TUSM t ˘ 0.5) Similarly, in contrast to the predicted conditions for evolution of

cooperation under TSM (i.e., r ¨ 1/s), cooperation evolved in conditions when r was

slightly lower than 1/s (r ˘ 0.48 instead of 0.5 with TSM s ˘ 2). These small discrepancies

stem from the effects of mutation in finite populations, which relaxed the conditions for

evolution of cooperation with TUSM and TSM (Supplementary materials, Section 1.7.6).

In all eleven treatments and in all conditions, the evolved populations were stable.

The only exception was under TPSM with t ˘ 0.2 and TUSM with t ˘ 0.2 in conditions

with r ranging between 0.25 and 0.5 (Fig. 1.5). Due to the low value of the truncation

threshold in these two methods of selection, the number of parents was small in relation

to the population size. Low effective population size has been shown to suppress

selection and amplify random drift (Lieberman et al. 2005), which explains the instability

of the evolved populations. Interestingly, high level of relatedness (r ¨ 0.5) prevented

instability of populations. The combined effect of high relatedness and low truncation

threshold on the stability of populations will require further studies.

1.6 Discussion

The results show that cooperation level is positively associated with relatedness level

regardless of the selection method used. This supports the long recognized view (Hamil-

ton 1964; Lehmann and Balloux 2007; Waibel et al. 2011) that the relatedness between
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individuals or, more generally, the positive assortment between interacting individuals

(Eshel and Cavalli-Sforza 1982; Hamilton 1971), facilitates the evolution of cooperation.

However, the results also show that selection methods regulate the evolution of coopera-

tion, by strengthening or relaxing the conditions in which cooperation could evolve. For

example, a significant level of cooperation evolved in a wide range of conditions under

TPSM and TUSM with low truncation threshold (t ˘ 0.2), and under TSM with high

tournament size (s ˘ 5). Since low truncation threshold and high tournament size both

reflect strong selection pressure, this suggests that cooperation may originate more easily

in harsh environments, or at the beginning of invasion events when the population is

not yet well adapted to the new environment.

The level of cooperation was also positively associated with benefits of cooperation

on performance, but only under PSM and TPSM. With the other selection methods,

the value of the performance benefit did not affect the cooperation level. This is be-

cause, RSM, TUSM and TSM select the genomes of the individuals to the descending

generation based only on the relative performance scores (i.e., whether one individual

has higher performance score than the other). Thus, the effect of cooperation on per-

formance scores does not affect the likelihood of individuals to contribute to the next

generation under RSM, TUSM and TSM, provided that the general relationship B ¨ C ¨ 0

holds. Consequently, with non-proportionate selection methods all prisoner’s dilemma

games are equivalent for a given relatedness level, and lead to the same evolutionary

outcome. This result is consistent with a previous report on a hawk-dove game played

in populations of unrelated individuals (Ficici et al. 2005).

Our analyses also demonstrate that polymorphic populations evolve with TPSM,

TUSM, and TSM in some conditions. In polymorphic populations, cooperation and

defection co-exist simultaneously which is a sign of frequency-dependent selection. The

reproductive advantage of cooperators over defectors depends on their proportion in the

population. With low proportion of cooperators, they have the reproductive advantage

and increase in numbers. However, with high proportion of cooperators, they loose

the reproductive advantage and decrease in numbers. Overall, TPSM, TUSM and TSM

act in such conditions as balancing selection that stabilizes the cooperation level at an

intermediate value. Similar conclusions were reached for cooperation evolving under

selection in ephemeral networks (Godfrey-Smith and Kerr 2009), which in fact resemble

much the method of the tournament selection.

It remains an open question which method of selection to use in evolutionary

simulations. With PSM, the performance score is equal to fitness since fitness is linearly
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proportional to performance scores (Appendix A) and because fitness is irrelevant to

scaling (Wagner 2010). Thus, evolutionary simulations using PSM directly correspond

to mathematical models which usually simply use fitness values (Rice 2004).

Truncation selection was proposed based on the observation that many biological

processes display a thresholding effect (Crow and Kimura 1979; Crow et al. 1970; Milk-

man 1978). For example, only the rabbits with the running speed higher than a certain

threshold value may escape predators, survive and reproduce (Crow et al. 1970). Fitness

distributions supporting the idea of truncation were observed in social insects in the

wild (Rodriguez-Munoz et al. 2010). Overall, truncation selection methods approximate

natural selection by predation (Genovart et al. 2010), when the weakest are eliminated

from the gene pool. They also resemble to some extent a purifying selection, which

removes deleterious mutations (Hurst 2009). From yet another perspective, selection

with truncation mimics competition for limited resources in highly mobile species, such

as the competition for nest sites in birds.

Finally TSM, which simulates direct competition in small groups, resembles in-

trasexual selection where individuals of the same sex directly compete between each

other to reproduce, and unsuccessful competitors have few or no offspring (Darwin

1859). This method is also similar to selection in ephemeral networks, i.e., short-lasting

groups in which individuals interact and compete, which form in microbes, marine

invertebrates, annual plants and other organisms (see Godfrey-Smith and Kerr 2009 for

more details).

The measurement of fitness of organisms in the wild is difficult, and there has been

a considerable discussion about how to measure fitness in natural population and how

to represent it mathematically (Wagner 2010). Our formal analyses and simulations

indeed show that each of the five commonly used selection methods regulates the

evolution of cooperation in a distinct way. The difference in outcomes between the

selection methods stems from differences in the mapping between performance and the

relative contribution of genotypes to the next generation. The actual mapping between

phenotype and fitness poses a great challenge for both evolutionists and ecologists

because it likely depends on many factors such as the nature of intra- and interspecific

competition (Ferriere and Michod 2011). Consequently, the choice of a selection method,

although often marginalized, is a crucial step in the modeling process as it has important

implication on the evolutionary outcome of the investigated traits.
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1.7 Supplementary materials

1.7.1 Mathematical model of cooperation in populations of related individ-
uals

Cooperative task and relatedness between individuals

We considered an infinite population of individuals which are cooperators or defectors

(i.e., non-cooperators). Individuals interact with each other in random pairs. With

probability 0 ˙ r ˙ 1 an individual interacts with itself (e.g., with its identical clone).

Otherwise, with probability 1 ¡ r , the individual interacts with an individual chosen

uniformly at random from the population (Eshel and Cavalli-Sforza 1982). Note that r

equals to average genetic relatedness between the individuals (Zhang and Hui 2011).

In each pair, the two individuals play one iteration of prisoner’s dilemma game (Smith

and Price 1973) with payoffs R,S,T,P . A cooperator receives a “reward” payoff R

when paired with a cooperator, and a “sucker’s” payoff S when paired with a defector.

A defector receives a “temptation” payoff T when paired with a cooperator, and a

“punishment” payoff P when paired with a defector. Cooperation is beneficial (R ¨ P)

but sensitive to cheating (T ¨ R and P ¨ S). The payoffs received by the individuals

equal to their performance scores which are translated into fitness by one of the five

selection methods: PSM, RSM, TPSM with truncation threshold t , TUSM with truncation

threshold t and TSM with tournament size s. For each selection method, we derived

the conditions in which cooperation invades a population of defectors, and vice versa.

Without loss of generality, we assume the payoffs R,S,T,P are non-negative (because

PSM and TPSM operate on non-negative performance scores). With PSM and TPSM,

we also investigate the linear version of the prisoner’s dilemma game with benefit of

cooperation B ˘ R ¡S ˘ T ¡P and cost of cooperation C ˘ T ¡R ˘ P ¡S in its normalized

form, i.e., S ˘ 0.

Population structure

Let 0 ˙ p ˙ 1 denote the proportion of cooperators in the population at a given generation.

The probability that the given cooperator interacts with a cooperator equals r ¯ (1¡ r )p,

and the probability it interacts with a defector equals (1¡ r )(1¡ p). The probability that

the given defector interacts with a defector equals r ¯ (1¡ r )(1¡ p), and the probability it

interacts with a cooperator equals (1¡ r )p. Consequently, the proportion of defectors
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with performance T is equal:

pdc ˘ p(1¡ p)(1¡ r )

The proportion of cooperators with performance R is equal:

pcc ˘ p ¡ p(1¡ p)(1¡ r )

The proportion of defectors with performance P is equal:

pdd ˘ (1¡ p)¡ p(1¡ p)(1¡ r )

The proportion of cooperators with performance S is equal:

pcd ˘ p(1¡ p)(1¡ r )

Positive selection of cooperation and of defection

Let Pc denote the probability that a cooperator is chosen by the given selection method

to contribute an offspring to the descending generation. Cooperation is under positive

selection when there are cooperators in the population:

p ¨ 0

and the proportion of cooperators in the descending generation is higher than in the

current one:

Pc/p ¨ 1

Let Pd denote the probability that a defector is chosen by the given selection method

to contribute an offspring to the descending generation. Defection is under positive

selection when there are defectors in the population:

1¡ p ¨ 0

and the proportion of defectors in the descending generation is higher than in the current

one:

Pd /(1¡ p) ¨ 1
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1.7.2 Evolution of cooperation under proportionate selection method

Positive selection of cooperation

The probability Pc that PSM chooses a cooperator to contribute an offspring to the

descending generation is equal:

Pc ˘ Rpcc ¯Spcd

Rpcc ¯Spcd ¯T pdc ¯Ppcd

Pc ˘ R(p ¡ p(1¡ p)(1¡ r ))¯Sp(1¡ p)(1¡ r )

R(p ¡ p(1¡ p)(1¡ r ))¯Sp(1¡ p)(1¡ r )¯T p(1¡ p)(1¡ r )¯P (1¡ p ¡ p(1¡ p)(1¡ r ))

Cooperation is under positive selection when p ¨ 0 and Pc/p ¨ 1, which gives:

R(1¡ (1¡ p)(1¡ r ))¯S(1¡ p)(1¡ r )

R(p ¡ p(1¡ p)(1¡ r ))¯Sp(1¡ p)(1¡ r )¯T p(1¡ p)(1¡ r )¯P (1¡ p ¡ p(1¡ p)(1¡ r ))
¨ 1

(1.1)

Defection is near fixation when the invasion of cooperation starts. In the limit of p ! 0,

Inequality 1.1 simplifies to:

r ¨ P ¡S

R ¡S
(1.2)

Assuming linear and normalized payoffs (B ˘ R ¡ S ˘ T ¡ P , C ˘ T ¡ R ˘ P ¡ S, S ˘ 0),

Inequality 1.1 simplifies to:

r ¨ C

B
(1.3)

Note that Inequality 1.2 holds only in the limit of p ! 0, whereas Inequality 1.3 holds for

any p such that 0 ˙ p ˙ 1.

Positive selection of defection

The probability Pd that PSM chooses a defector to contribute an offspring to the descend-

ing generation is equal:

Pd ˘ T pdc ¯Ppcd

Rpcc ¯Spcd ¯T pdc ¯Ppcd

Pd ˘ T p(1¡ p)(1¡ r )¯P (1¡ p ¡ p(1¡ p)(1¡ r ))

R(p ¡ p(1¡ p)(1¡ r ))¯Sp(1¡ p)(1¡ r )¯T p(1¡ p)(1¡ r )¯P (1¡ p ¡ p(1¡ p)(1¡ r ))
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Defection is under positive selection when 1¡ p ¨ 0 and Pd /(1¡ p) ¨ 1, which gives:

T p(1¡ r )¯P (1¡ p(1¡ r ))

R(p ¡ p(1¡ p)(1¡ r ))¯Sp(1¡ p)(1¡ r )¯T p(1¡ p)(1¡ r )¯P (1¡ p ¡ p(1¡ p)(1¡ r ))
¨ 1

(1.4)

Cooperation is near fixation when the invasion of defection starts. In the limit of p ! 1,

Inequality 1.4 simplifies to:

r ˙ T ¡R

T ¡P
(1.5)

Assuming linear and normalized payoffs (B ˘ R ¡ S ˘ T ¡ P , C ˘ T ¡ R ˘ P ¡ S, S ˘ 0),

Inequality 1.4 simplifies to:

r ˙ C

B
(1.6)

Note that Inequality 1.5 holds only in the limit of p ! 1, whereas Inequality 1.6 holds for

any p such that 0 ˙ p ˙ 1.

1.7.3 Evolution of cooperation under rank selection method

RSM act on ranks of the individuals. Thus, with RSM the derivation follows the one for

PSM assuming payoffs equal to appropriate ranks, i.e., T ˘ 4,R ˘ 3,P ˘ 2,S ˘ 1. Therefore,

cooperation is under positive selection when:

r ¨ 1

2
(1.7)

and defection is under positive selection when:

r ˙ 1

2
(1.8)

Note that Inequalities 1.7 and 1.8 hold for any p such that 0 ˙ p ˙ 1, and regardless of

the original payoff values.

1.7.4 Evolution of cooperation under truncation selection methods

Truncated selection with truncation coefficient 0 ˙ t ˙ 1 considers only the t fraction of

individuals with the highest performance as viable.
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Positive selection of cooperation

Let assume the following:

pdc ¯ pcc ˙ t ˙ pdc ¯ pcc ¯ pdd (1.9)

Note that pdc ¯ pcc ˘ p and 1 ¡ p ˙ pdc ¯ pcc ¯ pdd , thus Inequality 1.9 holds when

p ˙ t ˙ 1 ¡ p. Consequently, Inequality 1.9 holds for a wide range of values of t when

p is small. In particular, Inequality 1.9 holds for any 0 ˙ t ˙ 1 when the invasion of

cooperation starts, and defection is near fixation, i.e., p ! 0. When Inequality 1.9 holds,

it implies that the set of viable individuals contains all cooperators with performance R,

all defectors with performance T and some defectors with performance P .

TPSM t chooses parents from the set of viable individuals at random, proportion-

ally to the performance scores. Therefore, the probability Pc that TPSM t chooses a

cooperator to contribute an offspring to the descending generation is equal:

Pc ˘ Rpcc ¯0pcd

Rpcc ¯0pcd ¯T pdc ¯P (t ¡ pdc ¡ pcc )¯0(pdd ¡ t ¯ pdc ¯ pcc )

Pc ˘ R(p ¡ p(1¡ p)(1¡ r ))

R(p ¡ p(1¡ p)(1¡ r ))¯T p(1¡ p)(1¡ r )¯P (t ¡ p)

Cooperation is under positive selection when p ¨ 0 and Pc/p ¨ 1, which gives:

R(1¡ (1¡ p)(1¡ r ))

R(p ¡ p(1¡ p)(1¡ r ))¯T p(1¡ p)(1¡ r )¯P (t ¡ p)
¨ 1 (1.10)

Defection is near fixation when the invasion of cooperation starts. In the limit of p ! 0

Inequality 1.10 simplifies to:

r ¨ Pt

R
(1.11)

Assuming linear and normalized payoffs (B ˘ R ¡ S ˘ T ¡ P , C ˘ T ¡ R ˘ P ¡ S, S ˘ 0)

Inequality 1.10 simplifies to:

r ¨ Ct ¡Cp2

B ¯Cp ¡Bp ¯Cp2 (1.12)

which in the limit of p ! 0 further simplifies to:

r ¨ Ct

B
(1.13)
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Note that Inequalities 1.11 and 1.13 hold only in the limit of p ! 0, whereas Inequality

1.12 holds for any p such that 0 ˙ p ˙ 1.

TUSM t chooses parents from the set of viable individuals uniformly at random.

Therefore, the probability Pc that TUSM t chooses a cooperator to contribute an offspring

to the descending generation is equal:

Pc ˘ 1pcc ¯0pcd

1pcc ¯0pcd ¯1pdc ¯1(t ¡ pdc ¡ pcc )¯0(pdd ¡ t ¯ pdc ¯ pcc )

Pc ˘ p ¡ p(1¡ p)(1¡ r )

t

Cooperation is under positive selection when p ¨ 0 and Pc/p ¨ 1, which gives:

r ¨ t ¡ p

1¡ p
(1.14)

Defection is near fixation when the invasion of cooperation starts. In the limit of p ! 0

Inequality 1.14 simplifies to:

r ¨ t (1.15)

Note that Inequality 1.15 holds only in the limit of p ! 0, whereas Inequality 1.14 holds

for any p such that 0 ˙ p ˙ 1.

Positive selection of defection

Let assume the following

pdc ˙ t ˙ pdc ¯ pcc (1.16)

Note that pdc ˙ 1 ¡ p and pdc ¯ pcc ˘ p, thus Inequality 1.16 holds when 1 ¡ p ˙ t ˙ p.

Consequently, Inequality 1.16 holds for a wide range of values of t when p is large. In

particular, Inequality 1.16 holds for any 0 ˙ t ˙ 1 when the invasion of defection starts,

and cooperation is near fixation, i.e., p ! 1. When Inequality 1.16 holds, it implies that

the set of viable individuals contains some cooperators with performance R and all

defectors with performance T .

TPSM t chooses parents from the set of viable individuals at random, proportion-

ally to the performance scores. Therefore, the probability Pd that TPSM t chooses a

defector to contribute an offspring to the descending generation is equal:
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Pd ˘ T pdc ¯0pdd

R(t ¡ pdc )¯0(pcc ¡ t ¯ pdc )¯0pcd ¯T pdc ¯0pdd

Pd ˘ T p(1¡ p)(1¡ r )

R(t ¡ p(1¡ p)(1¡ r ))¯T p(1¡ p)(1¡ r )

Defection is under positive selection when 1¡ p ¨ 0 and Pd /(1¡ p) ¨ 1, which gives:

T p(1¡ r )

R(t ¡ p(1¡ p)(1¡ r ))¯T p(1¡ p)(1¡ r )
¨ 1 (1.17)

Cooperation is near fixation when the invasion of defection starts. In the limit of p ! 1

Inequality 1.17 simplifies to

r ˙ 1¡ Rt

T
(1.18)

Assuming linear and normalized payoffs (B ˘ R ¡ S ˘ T ¡ P , C ˘ T ¡ R ˘ P ¡ S, S ˘ 0)

Inequality 1.17 simplifies to

r ˙ 1¡ Bt

Bp ¯Cp2 (1.19)

which in the limit of p ! 1 further simplifies to

r ˙ 1¡ Bt

B ¯C
(1.20)

Note that Inequalities 1.18 and 1.20 hold in the limit of p ! 1, whereas 1.19 holds for any

p such that 0 ˙ p ˙ 1.

TUSM t chooses parents from the set of viable individuals uniformly at random.

Therefore, the probability Pd that TUSM t chooses a defector to contribute an offspring

to the descending generation is equal:

Pd ˘ 1pdc ¯0pdd

1(t ¡ pdc )¯0(pcc ¡ t ¯ pdc )¯0pcd ¯1pdc ¯0pdd

Pd ˘ p(1¡ p)(1¡ r )

t

Defection is under positive selection when 1¡ p ¨ 0 and Pd /(1¡ p) ¨ 1, which gives:

r ˙ 1¡ t

p
(1.21)
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Cooperation is near fixation when the invasion of defection starts. In the limit of p ! 1

Inequality 1.21 simplifies to:

r ˙ 1¡ t (1.22)

Note that Inequality 1.22 holds only in the limit of p ! 1, whereas Inequality 1.21 holds

for any p such that 0 ˙ p ˙ 1.

1.7.5 Evolution of cooperation under tournament selection method

With TSM the analyses are not as straightforward as with other selection methods. This

is because TSM creates “tournaments”, i.e., groups of s ‚ 2 individuals sampled with

replacement uniformly at random from the entire population. The individual with the

highest performance score in a tournament is chosen to contribute an offspring to the

descending generation.

Positive selection of cooperation

A cooperator with performance R wins a tournament only if not set against defector(s)

with performance T . A cooperator with performance S wins a tournament only if set

against s ¡1 cooperators with performance S. Therefore, the probability Pc that TSM s

chooses a cooperator to contribute an offspring to the descending generation is equal:

Pc ˘
sX

i˘1

ˆ
s

i

!
(pcc )i (pdd ¯ pcd )s¡i ¯ (pcd )s

Pc ˘ pcc

sX
i˘1

ˆ
s

i

!
(pcc )i¡1(pdd ¯ pcd )s¡i ¯ (pcd )s

Pc ˘ pcc

"ˆ
s

1

!
(pcc )1¡1(pdd ¯ pcd )s¡1 ¯

sX
i˘2

ˆ
s

i

!
(pcc )i¡1(pdd ¯ pcd )s¡i

#
¯ (pcd )s

Pc ˘ pcc

"
s(pdd ¯ pcd )s¡1 ¯

sX
i˘2

ˆ
s

i

!
(pcc )i¡1(pdd ¯ pcd )s¡i

#
¯ (pcd )s

Pc ˘ (p¡p(1¡p)(1¡r ))

"
s(1¡ p)s¡1 ¯

sX
i˘2

ˆ
s

i

!
(p ¡ p(1¡ p)(1¡ r ))i¡1(1¡ p)s¡i

#
¯(p(1¡p)(1¡r ))s
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Cooperation is under positive selection when Pc/p ¨ 1, which gives:

(1¡(1¡p)(1¡r ))

"
s(1¡ p)s¡1 ¯

sX
i˘2

ˆ
s

i

!
(p ¡ p(1¡ p)(1¡ r ))i¡1(1¡ p)s¡i

#
¯p s¡1(1¡p)s(1¡r )s ¨ 1

(1.23)

The defectors are near fixation when the invasion of cooperations starts. In the limit of

p ! 0 Inequality 1.23 simplifies to:

(1¡(1¡0)(1¡r ))

"
s(1¡0)s¡1 ¯

sX
i˘2

ˆ
s

i

!
(0¡0(1¡0)(1¡ r ))i¡1(1¡0)s¡i

#
¯0s¡1(1¡0)s(1¡r )s ¨ 1

r (s ¯0)¯0 ¨ 1

r ¨ 1

s
(1.24)

Note that Inequality 1.24 holds only in the limit of p ! 0, whereas Inequality 1.23 holds

for any p such that 0 ˙ p ˙ 1.

Positive selection of defection

A defector with performance T always wins a tournament. A defector with performance

P wins a tournament only if set against defectors with performance P and cooperators

with performance S. Therefore, the probability Pd that TSM s chooses a defector to

contribute an offspring to the descending generation is equal:

Pd ˘
sX

i˘1

ˆ
s

i

!
(pdc )i (1¡ pdc )s¡i ¯

sX
i˘1

ˆ
s

i

!
(pdd )i (pcd )s¡i

Pd ˘ pdc

sX
i˘1

ˆ
s

i

!
(pdc )i¡1(1¡ pdc )s¡i ¯

sX
i˘0

ˆ
s

i

!
(pdd )i (pcd )s¡i ¡ (pcd )s

Pd ˘ pdc

"ˆ
s

1

!
(pdc )1¡1(1¡ pdc )s¡1 ¯

sX
i˘2

ˆ
s

i

!
(pdc )i¡1(1¡ pdc )s¡i

#
¯ (pdd ¯ pcd )s ¡ (pcd )s

Pd ˘ pdc

"
s(1¡ pdc )s¡1 ¯

sX
i˘2

ˆ
s

i

!
(pdc )i¡1(1¡ pdc )s¡i

#
¯ (pdd ¯ pcd )s ¡ (pcd )s

Pd ˘ p(1¡p)(1¡r )

"
s(1¡ p(1¡ p)(1¡ r ))s¡1 ¯

sX
i˘2

ˆ
s

i

!
(p(1¡ p)(1¡ r ))i¡1(1¡ p(1¡ p)(1¡ r ))s¡i

#
¯
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¯(1¡ p)s ¡ (p(1¡ p)(1¡ r ))s

Defection is under positive selection when Pd /(1¡ p) ¨ 1, which gives:

p(1¡ r )

"
s(1¡ p(1¡ p)(1¡ r ))s¡1 ¯

sX
i˘2

ˆ
s

i

!
(p(1¡ p)(1¡ r ))i¡1(1¡ p(1¡ p)(1¡ r ))s¡i

#
¯

¯(1¡ p)s¡1 ¡ p s(1¡ p)s¡1(1¡ r )s ¨ 1 (1.25)

The cooperators are near fixation when the invasion of defection starts. In the limit of

p ! 1 Inequality 1.25 simplifies to:

1(1¡ r )

"
s(1¡1(1¡1)(1¡ r ))s¡1 ¯

sX
i˘2

ˆ
s

i

!
(1(1¡1)(1¡ r ))i¡1(1¡1(1¡1)(1¡ r ))s¡i

#
¯

¯(1¡1)s¡1 ¡1s(1¡1)s¡1(1¡ r )s ¨ 1

(1¡ r )(s ¯0)¯0¡0 ¨ 1

r ˙ 1¡ 1

s
(1.26)

Note that Inequality 1.26 holds only in the limit of p ! 1, whereas Inequality 1.25 holds

for any p such that 0 ˙ p ˙ 1.

1.7.6 Effects of random drift

We have observed small differences between theoretical predictions (Section 1.5.1) and

evolutionary simulations (Section 1.5.2). We shall now explain these differences by

investigating the effects of random drift caused by mutation, which was present in the

simulations and not taken into account in the formal analyses. Note that in simulations

we used normalized linear payoffs (B ˘ R ¡S ˘ T ¡P , C ˘ T ¡R ˘ P ¡S, S ˘ 0) with fixed

costs of cooperation (C ˘ 1).

Proportionate selection method

Following Inequality 1.3, cooperation is under positive selection when r ¨ 1
B for any

value of p such that 0 ˙ p ˙ 1. Consequently, with PSM, random drift does not influence
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the conditions for the evolution of cooperation.

Rank selection method

Following Inequality 1.7, cooperation is under positive selection when r ¨ 1
2 for any

value of p such that 0 ˙ p ˙ 1. Consequently, random drift does not influence the

conditions for the evolution of cooperation.

Truncation-proportionate selection method

Following Inequality 1.12, cooperation is under positive selection when 0 ˙ p ˙ t ˙ 1¡p ˙
1 and

r ¨ t ¡ p2

B ¯ p ¡Bp ¯ p2 (1.27)

Due to mutations and random drift the value of p may increase by chance. Since

Inequality 1.27 depends on p, random drift may influence the conditions for evolution

of cooperation. In the limit of p ! 0, Inequality 1.27 simplifies to:

r ¨ t

B

Assuming p is a small positive fraction (e.g., 0 ˙ p ˙ 0.1), we may disregard in Inequal-

ity 1.27 the components with p in the second power as irrelevant in comparison to

components with p in the first and zeroth power, and obtain:

t ¡ p2

B ¯ p ¡Bp ¯ p2 … t

B(1¡ p)¯ p
¨ t

B

Consequently, with TPSM, random drift sharpens the conditions for the evolution

of cooperation. For example, with B ˘ 3, t ˘ 0.5 and p ˘ 0.1 cooperation invades a

population when r ¨ 0.174 (instead of r ¨ 0.167).

Truncation-uniform selection method

Following Inequality 1.15 cooperation is under positive selection when 0 ˙ p ˙ t ˙ 1¡p ˙
1 and

r ¨ t ¡ p

1¡ p
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This in the limit of p ! 0 gives:

r ¨ t

Consequently, random drift relaxes the conditions for the evolution of cooperation

because:

t ¨ t ¡ p

1¡ p

For example, with t ˘ 0.5 and p ˘ 0.1 cooperation invades a population when r ¨ 0.44

(instead of r ¨ 0.5).

Tournament selection method

Due to the complexity of Inequality 1.23 the analysis of the effects of mutation and

random drift is difficult for a general case of TSM with any tournament size s ‚ 2. Thus,

we will perform it solely for s ˘ 2. Following Inequality 1.23 we obtain that cooperation

invades a population under TSM s ˘ 2 when:

p3r 3 ¡2p3r ¯ p3 ¡2p2r 2 ¯4p2r ¡2p2 ¯ pr 2 ¡4pr ¯2p ¯2r ¨ 1

Assuming p is a small positive fraction (e.g., 0 ˙ p ˙ 0.1), we may disregard all compo-

nents with p in the second power or higher as irrelevant in comparison to components

with p in the first and zeroth power, and obtain:

pr 2 ¡4pr ¯2p ¯2r ¨ 1

With 0 ˙ p ˙ 0.5, the solution for r is:

r ¨
p

2p2 ¡3p ¯1¯2p ¡1

p

Following Inequality 1.24, the condition for the evolution of cooperation under TSM

s ˘ 2 in the limit of p ! 0 is

r ¨ 1

2
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Consequently, random drift relaxes the conditions for the evolution of cooperation

because for 0 ˙ p ˙ 0.5:

1

2
¨

p
2p2 ¡3p ¯1¯2p ¡1

p

For example, with p ˘ 0.1 cooperation invades a population when r ¨ 0.48 (instead of

r ¨ 0.5).
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2 Evolving team compositions by
agent swapping

In the previous chapter, we learnt about the pre-
requisites for division of labor by understand-
ing how selection methods shape the conditions
in which cooperation evolves. Here, we take a
step further and investigate the evolution of ge-
netically encoded specialization, assuming that
agents cooperate and do not cheat. We take
an engineering approach and demonstrate how
to efficiently and automatically find the opti-
mal fixed assignment of agents to tasks (“team
composition”), a problem which often occurs in
technical sciences when one designs teams of
autonomous agents working together. To this
end, we propose a novel algorithm that swaps
agents between teams during evolution. This
opens the doors to evolve more complex mech-
anisms of task allocation, in which we will en-
gage in the final chapter. From a methodological
standpoint, we demonstrate the importance of
crossover operators to maintain a balance be-
tween exploration and exploitation aspect of the
evolutionary simulation in team optimization.
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2.2 Abstract

Optimizing collective behavior in multiagent systems requires algorithms to find not

only appropriate individual behaviors but also a suitable composition of agents within

a team. Over the last two decades, evolutionary methods have been shown to be a

promising approach for the design of agents and their compositions into teams. The

choice of a crossover operator that facilitates the evolution of optimal team composition

is recognized to be crucial, but so far it has never been thoroughly quantified. Here we

highlight the limitations of two different crossover operators that exchange entire agents

between teams: restricted agent swapping that exchanges only corresponding agents

between teams and free agent swapping that allows an arbitrary exchange of agents.

Our results show that restricted agent swapping suffers from premature convergence,

whereas free agent swapping entails insufficient convergence. Consequently, in both

cases the exploration and exploitation aspects of the evolutionary algorithm are not well

balanced resulting in the evolution of suboptimal team compositions. To overcome this

problem we propose to combine the two methods. Our approach first applies free agent

swapping to explore the search space and then restricted agent swapping to exploit it.

This mixed approach turns out to be a much more efficient strategy for the evolution

of team compositions compared to either strategy alone. Our results suggest that such

a mixed agent swapping algorithm should always be preferred whenever the optimal

composition of individuals in a multiagent system is unknown.
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2.3 Introduction

The optimization of collective behavior displayed by teams of agents plays a crucial

role in an increasing number of applications (Bonabeau et al. 1999, 2000), spanning

from software agents (e.g., Mathews et al. 2009; Reynolds 1993; Xiang and Lee 2008) to

robotics (e.g., Dorigo et al. 2004; Parker and Zhang 2009; Quinn et al. 2003). Evolutionary

computation has been advocated as an effective and promising strategy in this domain

(Baldassarre et al. 2003; Nolfi and Floreano 2000). An important question in this respect

is the composition of the teams of agents. All agents from one team may either use

the same control algorithm (genetically homogenous teams) or employ different ones

(genetically heterogenous teams) (Iba 1996; Panait and Luke 2005; Waibel et al. 2009).

Evolving homogenous teams does not differ conceptually from evolving single agents,

because in both cases only one control algorithm is discovered (Miconi 2003). In con-

trast, with heterogeneous teams a set of distinct control algorithms must be optimized

simultaneously. Consequently, the challenge is not only to find the optimal agents, but

also the optimal composition of agents within a team (Waibel et al. 2009). Heterogenous

teams are of growing interest in the evolutionary community, because they are expected

to perform better than homogeneous teams in problems that require task specialization

(Bongard 2000a; Panait and Luke 2005; Waibel et al. 2009).

In heterogeneous team evolution, two genetic encodings can be used: (1) individ-

ual encoding, where a genome represents one agent and (2) team encoding, where a

genome represents a whole team. Consequently, there are differences in an evolutionary

algorithm used with individual and team encoding (Fig. 2.1). With individual encoding,

one must decide on a method of grouping agents into temporary teams for purpose of

performance evaluation (Fig. 2.1.A). With team encoding, one must choose a crossover

operator that exchanges genetic material between teams (i.e., swap agents), and not

only between agents (Fig. 2.1.B). Both issues are facets of the same challenge: How

to (re)compose agents in teams, in order to facilitate the evolutionary search. This

question has already been studied for individual encoding (Table 2.1.A-C) but scarcely

addressed for team encoding, although the body of work using team encoding is rich

(Table 2.1.D-G).
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Figure 2.1: The evolutionary algorithm cycle in the evolution of heterogenous teams
using (A) individual encoding and (B) team encoding. (A) Individual encoding: the
evolutionary algorithm operates on a population of genotypes, each encoding one agent
(depicted as squares). (A1) The agents are grouped into teams and their performance
is evaluated together. Each agent must be assigned with a fitness value (the credit
assignment problem, see Grefenstette 1988; Panait and Luke 2005; Waibel et al. 2009). A
straightforward way of addressing this problem is to distribute the team’s performance
score equally among the team members (top two teams in A1). This is known as global
reward (Panait and Luke 2005), or team-level selection (Waibel et al. 2009). Alternatively,
the agents can be assigned with different fitness values, proportional to their personal
contribution into the team’s performance score (bottom two teams in A1). This is known
as local reward (Panait and Luke 2005), or individual-level selection (Waibel et al. 2009).
For simplicity, global and local rewards are illustrated together in one population, but
typically only one kind of reward is used with all teams from the population. Next,
(A2) the algorithm proceeds with the selection of the agents accordingly to their fitness
values. In (A1) a darker color denotes higher fitness values, which translates into more
copies of fitter agents (A2). Afterwards, (A3) the agents’ genotypes are recombined or
mutated. Finally, (A4) the agents are grouped into new teams before the performance
evaluation and the algorithm starts over with (A1). (B) Team encoding: the evolutionary
algorithm operates on a population of genotypes, each encoding one entire team (a
square depicts a part of the team’s genome corresponding to one agent). Consequently,
there is no need for an extra step of grouping agents into teams and the algorithm
begins at once with (B1) the evaluation of the teams’ performance. There is no credit
assignment problem, because team encoding implies that all agents in the team share
the same fitness. Next, (B2) the teams are selected according to their fitness values. In
(B1) a darker color denotes higher fitness values, which translates into more copies
of fitter teams (B2). Then, (B3) the team’s genotypes are subject to mutation or agent
recombination. Finally, (B4) entire agents may be swapped between the teams. This
concludes the cycle and the algorithm starts over with (B1). Note that swapping agents
between teams in team encoding conceptually corresponds to grouping of agents into
teams in individual encoding.
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Table 2.1: A sample of approaches in the evolution of heterogeneous teams using
individual encoding and team encoding.

Individual encoding
Agent grouping References

(A) One team

Miconi (2001), Werner and Dyer (1991), Fi-
cici et al. (1999), Stanley et al. (2005), Wat-
son et al. (2002), Spector et al. (2005), Ward
et al. (2001), Simoes and Barone (2002),
Bianco and Nolfi (2004), Agah and Bekey
(1997), Cangelosi and Parisi (1998)

(B) Many teams

Waibel et al. (2009), Quinn (2001), Suzuki
and Arita (2006), Agah and Tanie (1997),
Bull (1998), Eiben et al. (2007), Floreano
et al. (2007), Soule and Heckendorn (2008)

(C) Sub-populations

Iba (1996), Eiben et al. (2007), Potter and
De Jong (1994), Potter and De Jong (2000),
Wiegand et al. (2001), Mirolli and Parisi
(2005), Panait et al. (2006)

Team encoding
Crossover References

(D) Restricted agent recombination

Iba (1996), Miconi (2003), Bongard (2000a),
Miconi (2001), Suzuki and Arita (2006),
Soule and Heckendorn (2008), Andre
and Teller (1999), Brameier and Banzhaf
(2001), Hara and Nagao (1999), Luke et al.
(1998), Luke and Spector (1996), Botee and
Bonabeau (1998), Haynes and Sen (1996),
Haynes and Sen (1997)

(E) Free agent recombination

Suzuki and Arita (2006), Brameier and
Banzhaf (2001), Luke and Spector (1996),
Haynes and Sen (1997), Agogino et al.
(2000)

(F) Restricted agent swapping Andre and Teller (1999), Luke et al. (1998)
(G) Free agent swapping -

In team encoding a single genotype encodes the entire team, which makes it

decomposable into parts corresponding to the agents. Thus, a crossover operator may

exchange genetic material on two levels (Miconi 2003). First, the crossover can recombine

the genetic material between agents from the parenting teams. We refer to this process

as agent recombination (Table 2.1.DE and Fig. 2.2.AB). Second, the crossover can swap

entire agents between the parenting teams. We refer to this process as agent swapping

(Table 2.1FG and Fig. 2.2.CD). In contrast to agent recombination, agent swapping does

not exchange genetic material between the agents. Consequently, the purpose of agent
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A   restricted agent recombination B       free agent recombination

C       restricted agent swapping D          free agent swapping

Figure 2.2: Applying four crossover operators on the genotype of two teams of four
agents each. Black and white segments of teams’ genotypes correspond to agents taking
part in the crossover. Grey segments of teams’ genotypes correspond to agents not taking
part in the crossover. The crossover can either recombine the genetic material from
two agents from parenting teams (A and B), or swap entire agents between parenting
teams (C and D). In addition, the crossover may be restricted to act only on agents on
corresponding positions in parenting teams (A and C). Or, it may be free to act on any
agents from parenting teams (B and D).

recombination is to discover “good” agents, and the purpose of agent swapping is to

discover “good” team compositions. In addition, one may consider a team to be an

ordered sequence of agents. In such a case, the crossover may be restricted to act only on

agents on corresponding positions in the parenting teams (Table 2.1.DF and Fig. 2.2.AC).

Or, it may be free to act on any agents from the parenting teams (Table 2.1.EG and Fig.

2.2.BD).

In contrast to agent recombination (see, e.g., Haynes and Sen 1997; Luke and

Spector 1996; Suzuki and Arita 2006), no attempts have been made to quantify the

efficiency of agent swapping in the evolution of teams (Panait and Luke 2005). In

particular, it has not been tested if and why using agent swapping leads, or not, to the

evolution of optimal team compositions. Here, we experimentally compare restricted

agent swapping (RAS) and free agent swapping (FAS) in a problem of finding the

optimal team composition. We consider multiple agents that need to divide the labor in

order to achieve top performance, i.e., the optimal team is composed of distinct groups

of genetically identical agents. We focus on team encoding, which assumes team level of

selection (Fig. 2.1) that has been advocated as an efficient strategy in the optimization

of teams (Waibel et al. 2009). Consequently, agent interactions and their impact on

individual selection pressures are out of scope of this study. Also, we focus on the
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evolution of team compositions, and not on the evolution of agents themselves. Thus,

we mainly consider large teams of agents having small genomes, i.e., a valid single agent

is relatively easy to evolve. We further elaborate on these assumptions in Section 2.6.

We highlight the limitations of both RAS and FAS and explain the conditions under

which they fail to evolve teams displaying the optimal composition. These limitations

are opposite to each other. With RAS the evolutionary algorithm suffers from premature

convergence of the population, whereas with FAS it suffers from insufficient convergence

of the population. Consequently, in both cases the exploration and exploitation aspects

of the evolutionary algorithm are not well balanced. To overcome this problem we

propose to combine the two methods, i.e., first use FAS to explore the search space, and

then use RAS to exploit it. This mixed approach proves to be a more efficient strategy in

the evolution of team compositions than restricted or free agent swapping alone. Finally,

we also validated RAS and FAS on a problem of optimizing decentralized controllers for

task allocation and discussed our results in the context of other real-life applications.

2.3.1 Background

The differentiation into individual and team encoding resembles an old discussion on

evolving rule-based systems (De Jong 1988). In the approach taken by De Jong, dubbed

“the Pitt approach”, a single individual encoded the entire rule set. In contrast, in the

approach taken by Holland, dubbed “the Michigan approach”, a single individual

encoded just a single decision rule, and the entire population corresponded to the rule

set (see De Jong (1988) and references therein for more details).

The approaches using individual encoding can be classified into three categories,

according to how the agents are grouped into teams for the purpose of the performance

evaluation. With the “one team” approach, all agents from the population are evaluated

together, i.e., they compose one team (Table 2.1.A). This method is often used with a

continuously updated gene-pool (“steady-state evolution”). With the “many teams”

approach, the agents are randomly grouped into many teams (Table 2.1.B). This method

is often used with separate gene-pools for subsequent generations (“generational evo-

lution”). With the “sub-populations” approach there are separate subpopulations of

agents (Table 2.1.C). An individual is evaluated by teaming it up with individuals from

other subpopulations. This method is known as cooperative co-evolution.

In individual encoding the teams are created ad hoc for the purpose of performance

evaluation. Consequently, there are no genetic operators applied at the team level. In

51



Chapter 2. Evolving team compositions by agent swapping

contrast, in team encoding we distinguish four qualitatively different types of crossover

operators that exchange genetic material between the teams (Fig. 2.2). The crossover

either recombines the agents from the parenting teams (Table 2.1.DE) or it swaps entire

agents between the parenting teams (Table 2.1.FG). In addition, the crossover is either

restricted to act only on agents on corresponding positions in the parenting teams

(Table 2.1.DF), or it is free to act on any agents from the parenting teams (Table 2.1.EG).

Note that agent swapping is in fact a special case of agent recombination, where the

recombination points are always chosen at the beginning (or at the end) of the two

genotypes’ parts that encode the parenting agents.

The concept of restricted (also called “fixed” by Suzuki and Arita (2006)) and free

(also called “unfixed” by Suzuki and Arita 2006 and “interpositional” by Brameier and

Banzhaf 2001) agent recombination was introduced independently by Luke and Spector

(1996) and by Haynes and Sen (1996). Agent recombination was called “inner crossover”

by Miconi (2003). Restricted agent swapping (RAS), called “team transformation” by

Andre and Teller (1999), was introduced by Luke et al. (1998) and by Andre and Teller

(1999). Free agent swapping (FAS) has not been studied directly yet (Table 2.1.G). Note

that evolutionary algorithms with individual encoding, random grouping of agents into

many teams and global reward yield high resemblance to team encoding with free agent

swapping (Fig. 2.1). This includes some of the work referenced in Table 2.1.B (i.e., Bull

1998; Eiben et al. 2007; Floreano et al. 2007; Soule and Heckendorn 2008; Suzuki and

Arita 2006; Waibel et al. 2009).

Haynes and Sen (1996) noted that RAS may be implemented as uniform crossover

(i.e., swapping bits on corresponding positions between two genotypes with some

probability), with the difference that instead of bits it swaps entire agents. Here, we

analogously note that FAS may be implemented as shuffle-uniform crossover (i.e.,

swapping bits on shuffled positions between two genotypes with some probability),

with the difference that instead of bits it swaps entire agents. The family of uniform

crossovers was introduced by Syswerda (1989) and analytically studied by Eshelman

et al. (1989) and De Jong and Spears (1992), but not in the context of team evolution. In

addition, Miconi (2003) and Nakashima et al. (2006) used a simple 1-point or 2-point

crossover to recombine the teams’ genotypes. This approach leans itself to the category

of restricted crossovers. During the crossover, it usually swaps entire agents between

teams, with the exception of the agents that happen to be placed on the crossover cutting

points. The 1-point and 2-point crossovers, and generally n-point crossover, have been

shown to have less exploratory power than uniform crossover (Eshelman et al. 1989).
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A few attempts have been made to quantify the efficiency of agent recombination

for the evolution of teams, but the studies are inconclusive (Panait and Luke 2005). Some

authors advocate using restricted agent recombination (Haynes and Sen 1997; Luke

and Spector 1996) and some are proponents of free agent recombination (Brameier and

Banzhaf 2001). The problem of evolving team compositions has been addressed only for

genetic programming by Hara and Nagao (1999) (automatically defined groups) and

by Bongard (2000a) (the Legion system). In these two approaches both the agents and

their partitioning into separate sub-teams are evolved together. These approaches are

promising, but designed for the tree representation typical for genetic programing. In

addition, authors considered only a small number of evolving sub-teams (maximum

number of sub-teams: 6 in Hara and Nagao 1999 and 3 in Bongard 2000a). Importantly,

there is no study that quantifies the efficiency of agent swapping for the evolution of

teams.

Operators similar to RAS and FAS have been proposed in different fields of evo-

lutionary computation. Agent swapping is equivalent to root crossover in genetic

programming, which swaps whole trees instead of subtrees (Luke et al. 1998). Also

in genetic programming, Koza (1995) studied operators altering the architecture of a

multi-part program, which he used with automatic defined functions. These opera-

tors included branch duplication and deletion, which in the context of evolving team

composition would translate into agent deletion and duplication, respectively. In gene

expression programming, Ferreira (2001) proposed gene recombination and gene trans-

position. Gene recombination swaps entire genes between the parenting genotypes, and

thus is equivalent to restricted agent swapping. Gene transposition overwrites one gene

with a copy of another gene, and thus is equivalent to agent deletion and duplication

performed jointly. Finally, in the field of evolutionary strategies, Sebag and Schoenauer

(1996) proposed mutation by imitation. With imitation the probability of an allele’s

mutation depends on whether the allele is the same or different as the corresponding

alleles in some of the best/worst individuals in the population. Consequently, mutation

by imitation might be considered a sort of restricted recombination.

2.4 Methods

2.4.1 Restricted and free agent swapping

We evolve teams of agents using team encoding and study restricted agent swapping

(RAS, Fig. 2.3.A) and free agent swapping (FAS, Fig. 2.3.B). We implement RAS as
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a uniform crossover (Syswerda 1989), which exchanges the i th agent from the first

team with the i th agent from the second team, with probability p for each agent. In an

additional experiment we tested RAS implemented as a 1-point and 2-point crossover

(Supplementary materials, Section 2.7.1).

We implement FAS as a shuffle-uniform crossover (Syswerda 1989), which ex-

changes the i th agent from the first team with the S(i )th agent from the second team,

with probability p for each agent. S is a random permutation of integers from 1 to M ,

where M is the number of agents in the team. RAS may be considered a specific case

of FAS where the sequence S is set to 1,2, ...,M . For sake of simplicity we consider a

situation with only two parenting teams, but the operators can scale to any number of

parenting teams.

In addition, we theoretically investigate the connections between RAS, FAS and

other operators that alter the team composition inspired by architecture-changing op-

erators (Koza 1995) used in genetic programming and gene expression programming

(Supplementary materials, Section 2.7.7).

a b c d e f g h a b c d e f g h

A B C D E F G H

A      Restricted agent swapping B           Free agent swapping

A B C D E F G H

A b C D e f g H

a B c d E F G h

C b D H e f g F

A B a c E h G d

Figure 2.3: Restricted agent swapping (A) and free agent swapping (B) applied on two
teams of eight agents. In the presented example the probability of agent swapping was
p ˘ 0.5, black lines denote the exchanged agents and the grey lines denote the agents
that happen to be kept in their original team. The random permutation used to reshuffle
the agents before the swap in (b) is (3,1,4,8,2,5,7,6).
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2.4.2 Problem formulation

We experimentally compare RAS and FAS in the evolution of agent teams facing a

problem of finding the optimal team composition (i.e., the division of a team into groups

of identical agents). Our aim is to mimic a situation when a team needs to display a

certain composition of agents in order to achieve top performance (Berman et al. 2009).

For example, multiple robots may be more efficient if they compose distinct groups,

each focusing on a different task (Dahl et al. 2009). In biology, this process is known as

division of labor (see Beshers and Fewell 2001; Duarte et al. 2011; Smith et al. 2008b for

comprehensive reviews). For example, in many species of honey bees and ants, some

workers forage for food, others care for the brood, others perform maintenance work in

the nest, etc. (Fewell 2003; Gordon 1996; Robinson et al. 2009; Robinson 1992).

We consider a team consisting of M agents. There are D distinct types of agents.

Thus, there are overall DM different teams possible. We assume that the optimal team

contains K distinct agents, each repeating R times (for simplicity we assume M ˘ K ¢R).

Thus, the optimal composition of a team is defined as “K groups of R agents”, where the

agents between the groups are different and the agents within a group are identical. The

optimal team is homogeneous for K ˘ 1 and R ˘ M . The optimal team is heterogeneous

for K ˘ M and R ˘ 1. And, the optimal team is hybrid (Panait and Luke 2005) (also called

partially heterogenous, see, e.g., Waibel et al. 2009) for 1 ˙ K ˙ M and 1 ˙ R ˙ M .

For a real-life problem the optimal team composition, and consequently the values

of K and R are unknown. They are discovered by means of artificial evolution, driven

by a fitness function F that measures team performance for a given problem. It should

be expected that team performance is correlated with the composition of the team. Thus,

we set K and R a priori and we define a fitness function f that directly depends on the

proportion of “proper” agents in each of the K groups f ˘ PK
j˘1 min( R

M ,x j ). The value x j

is the fraction of agents from a team that belong to the j th group and operator min(a,b)

takes a value a if a ˙ b, and b otherwise.

For example, consider three types of agents: A, B and C . Let (x, y,z) denote the

number of agents A, B and C , respectively, in a team. The team size is set to six (i.e.,

x ¯ y ¯ z ˘ 6), and the optimal team consists of three agents A and three agents B , i.e.,

(3,3,0)). Exactly one team (0,0,6) has the lowest performance f ˘ 0. Exactly one team

(3,3,0) has the maximal performance f ˘ 1. And, for instance, teams (1,1,4), (0,2,4)

and (2,0,4) all have performance f ˘ 0.33; teams (6,0,0), (3,0,3) and (1,2,3) all have

performance f ˘ 0.5; and teams (2,2,2), (1,5,0) and (1,3,2) all have performance f ˘ 0.67.
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The fitness function f , although not directly applicable to real-life problems, lets

us to test the efficiency of RAS and FAS in the evolution of team composition under

controlled conditions. The advantage of our approach is the ease of generating instances

of various complexities and sizes. This enables us to perform systematic studies and

thus draw statistically significant conclusions. We believe that the presented formulation

abstracts well the core properties of many problems when one needs to optimize the

team composition in a multi-agent system. We further elaborate on this issue in Section

2.6. In addition, we show the applicability of our results by validating the efficiency of

RAS and FAS in the evolution of decentralized controllers in a task-allocation problem

(Appendix B).

2.4.3 Evolutionary experiments

We evolve teams of agents in three treatments: 1) using RAS for all generations of the

evolutionary algorithm, 2) using FAS for all generations of the evolutionary algorithm

and 3) using FAS for the first half, and RAS for the second half, of all generations of the

evolutionary algorithm. We also investigated alternative ways of combining FAS and

RAS (Supplementary materials, Section 2.7.6).

We compare RAS and FAS under three conditions, where the optimal team is

composed of 1000, 100 and 10 groups of 1, 10 and 100 identical agents, respectively

(K 2 {1000,100,10} and R 2 {1,10,100}). Overall, this makes a total of 9 experimental

lines (3 treatments £ 3 conditions). Each experimental line is replicated 10 times. In

all numerical experiments we use populations of 1000 teams of M ˘ 1000 agents each.

Population size and team sizes are kept constant across generations. The number of

all distinct types of agents is set to D ˘ 10000. Each evolutionary run lasts for 1000

generations, with the exception of an additional experiment, where the number of

generations is set to 2000 (see Appendix B for more details).

The software testbed has been implemented with the help of ECJ framework (Luke

2010). The numerical experiments have been run on the Pleiades cluster at EPFL,

Lausanne.

2.4.4 Genetic architecture, selection and reproduction

A team’s genotype consists of 1000 alleles (one allele per agent), which are integers

from 1 to 10000. At the first generation of each evolutionary run, each of 1000 £ 1000

alleles is independently set to a random integer value between 1 and 10000 with uniform
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distribution. Teams are evaluated in the collaborative task (i.e., how similar the team’s

composition and the optimal composition are) and assigned a performance (see Section

2.4.2). To construct the 1000 teams of the following generation we select 500 times

two teams. Each parent is independently selected from the current population using

tournament selection with tournament size set to 2, with the exception of an additional

experiment, where tournament size is set to 7 (Supplementary materials, Section 2.7.4).

The two selected teams are reorganized with FAS or RAS, which results in two new

teams that are added to the next generation’s population. We use RAS and FAS with

the probability of exchanging the agents between two teams set to p ˘ 0.5 for each

position in a team, with the exception of an additional experiment, where p ˘ 0.2 is

used (Supplementary materials, Section 2.7.2). Note that p ˘ 0.5 is the highest possible

value, because swapping agents between teams A and B with probability 0.5 ˙ p • 1 is

equivalent to swapping agents between teams B and A with probability 1¡p. The newly

added teams are not subject to mutation, with the exception of an additional experiment,

where each allele is independently set to a random integer value between 1 and 10000

(uniform distribution) with a probability 0.001 (Supplementary materials, Section 2.7.3).

We do not use mutations in the main experiments for two reasons. First, our intention is

to investigate the evolutionary dynamics of RAS and FAS. Thus, to get clearer results on

the effects of agent swapping, we do not use the mutation. Second, with 10000 different

agents, the population of 1000£1000 agents already contains each agent on average 100

times. Thus, the introduction of the innovative genetic material during evolution should

not be necessary, if the agent swapping does efficiently compose optimal teams. Finally,

one of the 1000 new teams of the following generation is randomly chosen, discarded

and replaced by an exact copy of the best team from the current generation (i.e., elitism

of size 1).

2.4.5 Statistical analysis

To compare the teams evolved with RAS and FAS we average, for each experimental

line and replicate, team performance over 1000 teams (10 replicates) at generation 1000.

We report also the best team performance from 1000 teams (10 replicates) (Supplementary
materials, Section 2.7.5). We explain the differences in team performance in terms of

variation between teams that RAS and FAS introduced into the population. To this

aim, we calculated the standard deviation of teams’ performance in a population for

each of the 1000 generations. In particular, we compared the convergence time (i.e.,

the number of generations until the measured standard deviation reached zero) and

the final variation level between the teams (i.e., the value of the measured standard
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