Monte-Carlo utility estimates for Bayesian reinforcement learning

This paper introduces a set of algorithms for Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-Carlo estimation of upper bounds on the Bayes-optimal value function is employed to construct an optimistic policy. Secondly, gradient-based algorithms for approximate upper and lower bounds are introduced. Finally, we introduce a new class of gradient algorithms for Bayesian Bellman error minimisation. We theoretically show that the gradient methods are sound. Experimentally, we demonstrate the superiority of the upper bound method in terms of reward obtained. However, we also show that the Bayesian Bellman error method is a close second, despite its significant computational simplicity.


    • EPFL-REPORT-184949

    Record created on 2013-03-12, modified on 2017-05-12

Related material