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Abstract

Recent space research and activities have been characterized by a growing emphasis on the

development of small spacecrafts. Since the year 2000, more than 30 micro/nano satellites

were built and launched. Today, constellations of micro-satellites are an efficient alternative

to traditional platforms for short missions involving security and survey, imaging and data

acquisition or telecommunications. Typical functionalities like TT&C or inter-satellite

cross-link require multi-functional antenna systems for the concurrent generation of different

antenna modes; the extremely stringent accommodation requirements pose a significant

challenge as the integration of the antenna with the spacecraft can critically affect the

radiation performance, especially when the size of the satellite platform becomes comparable

with the wavelength.

The lack of established methodologies for the design of antenna systems for small satel-

lites, providing specific radiation patterns, inspired the research performed in this thesis work.

In the frame of the ESA project MAST, requiring the design of a typical antenna system

for small platform, we developed a specific design strategy, based on the use of platform-

independent antennas, which led to the implementation of the simulation software SatAF.

Targeting the accurate predictions of the radiation performance of large arrays of identical

elements, together with a competitive computational time, the simple 3D Array Theory was

integrated in SatAF with original implementations of the Method of Moments.

In view of dedicated applications to slot antennas, a novel, simplified slot excitation model

was developed, allowing the realistic representation of the physical feeding mechanism without

the necessity of including the feeding structure in the simulation model.

The “Magic Distance Inspired” method, an original formulation of the Nyström method for

the numerical approximation of Integral Equations, allowed the replacement of the time-

demanding computation of the four fold integrals, necessary in canonical MoM algorithms,

with point-to-point computations performed according to special point grids. Together with a

significative reduction of computational time, the formulation offers a number of advantages,

like an efficient computation of the singular, quasi- and non-singular entries of the MoM ma-

trix with a single formulation, and the possibility of extension to complex environment where,

for instance, potentials and MPIE encounter difficulties.

The development of SatAF-MDI as alternative to brute force full-wave software constitutes

the original contribution of this thesis.

Keywords: Micro-satellites, Slot antennas, Computational electromagnetics, Method of Mo-

ments, EFIE, MPIE, Nyström method.
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Sintesi

La recente attività di ricerca in ambito spaziale è stata caratterizzata da una crescente enfasi

posta sullo sviluppo di micro-/nano-satelliti, con un totale di più di 30 missioni effettuate

dall’inizio del secolo. Costellazioni di microsatelliti rappresentano oggi una valida soluzione

in missioni di sicurezza, sorveglianza, acquisizione di dati o telecomunicazioni.

Funzionalità quali TT&C o cross-link inter-satellitare richiedono sistemi multi-funzionali di

antenne per la generazione simultanea dei diversi modi di radiazione; gli stringenti requisiti

di alloggiamento costituscono inoltre una vera e propria sfida in quanto l’integrazione

dell’antenna con la navicella può compromettere severamente la radiazione.

L’attività di ricerca compiuta in questa tesi è stata ispirata dalla mancanza di ben affermate

metodologie di design di sistemi di antenne per micro-satelliti.

Nell’ambito del progetto ESA “MAST”, che richiedeva il progetto di un sistema di antenne

per micro-satelliti, abbiamo sviluppato una strategia basata sull’uso di antenne indipendenti

dalle caratteristiche della struttura circostante, che ha condotto all’implementazione del

software di simulazione SatAF. Mirando ad un’accurata previsione delle caratteristiche di

radiazione di array costituiti da un elevato numero di elementi identici fra loro, oltre che a un

competitivo tempo di calcolo, i semplici elementi di Teoria degli Array tridimensionale sono

stati integrati in SatAF insieme con un’originale implementazione del Metodo dei Momenti.

Nella prospettiva di un’applicazione orientata in particolare ad antenne ad apertura, è stato

sviluppato un innovativo e semplificato modello per l’eccitazione della slot, che permette

una realistica rappresentazione del fenomeno fisico di accoppiamento senza la necessità di

includere nel modello di simulazione la struttura di alimentazione.

Il metodo “Magic Distance Inspired”, una originale formulazione del metodo di Nyström

per la soluzione di Equazioni Integrali ha permesso di sostituire il calcolo degli integrali in

quattro dimensioni, necessari per gli algoritmi canonici del MoM, con calcoli punto-punto

effettuati sulla base di speciali griglie. Insieme a una significativa riduzione del tempo di

calcolo, la formulazione offre una serie di vantaggi quali un efficiente calcolo dei termini,

singolari, e non, del MoM con un’unica formulazione valida in ambienti complessi dove, ad

esempio, i potenziali e la formulazione MPIE entrano in crisi.

Lo sviluppo di SatAF-MDI come alternativa ai software full-wave costituisce il contributo

originale di questa tesi.

Parole chiave: Micro-satelliti, antenna ad apertura, metodi numerici per

l’elettromagnetismo, Metodo dei Momenti, EFIE, MPIE, metodo di Nyström .
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1. Introduction

1.1. General context

Like in many other technological fields, the trend in satellites is towards miniaturization.

The words micro-satellites (less than 100Kg), nano-satellites (less than 10Kg) and even

pico-satellites (around 1Kg) are frequently encountered in the literature, while Cubesats

(10 × 10× 10 cm) have become a standard for university research groups.

Recent industrial space research and activities have been characterized by a growing

emphasis on the development of micro- and nano-satellites: with strongly reduced mass, size,

cost and time-line, clusters of these platforms are a very promising alternative to classic,

larger spacecraft in short space mission involving security and survey, data acquisition and

transmission, etc. In typical scenarios, a constellation of micro-satellites can cover different

functions including Telemetry, Tracking and Command (TT&C), Global Positioning System

(GPS), Global Navigation Satellite Systems (GNSS), and inter-satellite cross links [1–3].

From the electromagnetic point of view, it is often required the generation of different

radiation patterns, such as multi-beam and omnidirectional patterns or high directive beams.

Multi-functional antenna systems [4, 5], allowing the concurrent generation of different

radiation modes, are an efficient solution for such requirements.

The different communication functionalities are usually performed in classic spacecraft by

distributed antenna systems.

Micro/nano satellites pose the further challenge of extremely stringent accommodation re-

quirements, leading to the need of antenna system miniaturisation and multiple functionality.

In fact, micro/nano satellite antennas have very specific design requirements [6, 7]. In some

cases, very small size of the platform even makes the whole satellite act as an antenna,

impacting on the radiation pattern much more than usually seen on antenna systems in

classic satellites.

1.2. State of the Art: existing and up-coming small satellite

missions

Since the year 2000, more than 30 micro/nano satellites were built and launched [3, 8]; one

of the most remarkable events took place in 2008 and included 7 Cubesats on board of the

1



2 Chapter 1: Introduction

Indian launch vehicle PSLV. Now, technology maturity and miniaturization allows even small

student groups to create their own satellite, while special efforts are directed towards the

realization of combinations of two or more Cubesats to allow a larger payload allocation and

a better solar power accumulation.

The establishment of a telecommunication uplink and down-link capability is one of

the major challenges that most design teams have to face, due to severe restrictions on

weight, power and accommodation; for these reasons, UHF and VHF bands are preferred

in many applications. This holds in particular for Cubesats, whose antenna systems often

operate in the range of AM frequencies, also known as Radio Amateurs band. These

frequencies only allow 1200 ∼ 9600Kbit/s down-link and are subject to high levels of noise.

S-Band on the other hand requires a lot of power (for Cubesat capabilities) and only a

few of such spacecrafts employed S-band antennas. Among them, it is worth mentioning

GeneSat, which has used a transmitter Microhard MHX-2400, allowing 2.4GHz operations [1].

One of the most well-known space missions employing micro-satellites is PROBA, started

in 2001 with the launch of a spacecraft of size 60 × 60 × 80 cm and a weight of 100Kg. It

uses an S-band antenna allowing a 4Kbit/s uplink and 1Mbit/s down-link; on the ground,

a 2.4m portable parabolic dish closes the communication loop. A 2.4m dish antenna [9] is

used in the follow-up PROBA-2 [10,11] which was launched in 2009.

The European Student Earth Orbiter (ESEO) [12] is another small satellite which uses

two S-band antenna subsystems to establish a telemetry down-link using 2400.1MHz band

with a data rate of 9.6Kbit/s. The first one [13] is a set of three directional patch antennas,

producing a total of 3W of circularly polarised radiation with a half-power beam width of

approximately 70 degrees. The second radiator is a circularly-polarized compact High-Gain

Antenna (HGA), realized by stacking two coaxial Shorted Annular Patches (SAP) [14] where

the top one is placed half a wavelength above the lower one. The antenna is illustrated in

Fig. 1.1 together with the satellite.

High Gain Antenna
(HGA) prototype

ESEO HGA

Figure 1.1.: ESEO satellite and HGA antenna [12].



Section 1.2: State of the Art: existing and up-coming small satellite missions 3

The SSETI Express satellite [15] was an educational mission launched in 2005 that

deployed Cubesat pico-satellites developed by universities to take pictures of the Earth.

The operational down-link speed is 38.4Kbit/s [16] using the standard AX-25 protocol for

communications. Two S-band antennas are allocated onboard the satellite (Fig. 1.2): the

patch antenna system ”S-band ANT”, adapted from the ESEO micro-satellite, a second patch

”S-band TX”, plus an UHF system providing the uplink of commands from the ground station.

UHF ANT

S-band TX

S-band ANT

Figure 1.2.: UHF and S-band antennas on SSETI EXPRESS [15].

Slightly bigger than PROBA, with a mass of 125Kg, is the British satellite TopSat [17]

, launched in 2005. It uses an X-band antenna to down-link the high-resolution images

acquired by the spacecraft. The spacecraft is slewed to point the antenna towards the mobile

user directly after imaging is completed.

Also using X-band antenna is the ST5 (Space Technology 5) constellation, launched in

2006 and consisting of 3 micro-satellites with a weight of 25Kg each, within a cylinder shape

of 50 cm of diameter by 50 cm of height. These satellites operated flawlessly during the

three-months mission. The antenna [18], shown in Fig. 1.3, satisfies the requirements of large

beam-width, circular-polarization, and large bandwidth. Theses satellites fly in geostationary

orbit and communicate with 34m ground-based dish antenna [19].

Bottom
deckTop deck

Antenna
ground plane

Figure 1.3.: X-band antenna on one of the ST5 micro-satellites [18].
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AISSat-1 [20] is a 6Kg Norwegian nano-satellite, constructed on behalf of the government

of Norway by UTIAS/SFL, whose primary mission is to investigate the feasibility and

performance of a spacecraft-based Automatic Identification System (AIS) sensor in low-Earth

orbit as a means of tracking maritime assets, and secondly the integration of the AIS data

into a national maritime tracking information system. AISSat-1 is intended as both a

research and development platform and a demonstration mission for a larger operational

capability. The satellite design is based on the Generic Nano-satellite Bus (GNB), which

measures 200 × 200× 200mm in size and mounts a VHF antenna system (see Fig. 1.4).

Figure 1.4.: The generic Nano-Satellite Bus used for AISSat-1 [20].

Pathfinder2 (Fig. 1.5), developed by LuxSpace, was launched in September 2009. It

entered operational service in October the same year and since then provides acquisition of

AIS messages on a global scale. With a down-link of 115Kbit/s and internal memory, it has

the capability to collect and download all AIS messages. It is equipped with a 2 channels

AIS receiver fed by a monopole antenna, a UHF down-link and a GPS system. The platform

has a dimension of 55× 35× 7 cm and is powered by 12W solar panels.

Figure 1.5.: The Pathfinder 2.
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In 2009, the EPFL Space Center completed a three year project and built its own

nano-satellite, the SwissCube [10, 21]. The SwissCube passed its Qualification Test and was

flown on September, 23. The satellite has been entirely designed and built by the EPFL

Space Center in cooperation with many universities and schools of advanced technology in

Switzerland. The primary scientific objective of this satellite is to image solar wind induced

glow at the Earth’s atmospheric boundary; the successful technologies used in SwissCube

payload will be used for future orientation sensors on larger satellites.

SwissCube uses two dipole antennas are used to communicate with the ground stations; due

to the stowed size requirement of 10 cm, an antenna deployment system is required. Fig. 1.6

shows the spacecraft: the VHF antenna is 610mm long when in the straight ideal position,

while the deployed UHF antenna reaches 176mm.

Figure 1.6.: The SwissCube [21].

The GapFiller program (2011) relies on a very rugged and flexible platform. A view of the

satellite model in launch configuration is shown in Fig. 1.7. The platform weight is 27Kg,

with a size of 30× 30× 45 cm fully equipped (excluding protrusions); the payload includes 2

UHF receivers and 2 UHF high speed transmitters (up to 512Kbit/s), realized with an array

of 2 × 2 dipoles, generating a radiation pattern characterized by sharp nulls and a narrow

beam width.

Figure 1.7.: The Gapfiller in launch configuration.
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The State-of-the-Art research performed and illustrated in this section allowed us to derive

useful guidelines for the design of the antenna system, setting the basis for the design of the

ESA-MAST antenna system described in Chap. 2 which constitutes one of the main topics

of this thesis work.

1.3. Miniaturized antennas for micro/nano satellites

According to the State-of-the-Art survey, Tab. 1.1 summarizes the satellites’ characteristics

the most relevant for this thesis work. From our investigation, it already appears that two

Table 1.1.: Resume of the relevant features of the satellites illustrated in the State of the Art.

Mission name
Weight

Max satellite Antenna characteristics:

and year linear dimensions Type, frequency, coverage and size

PROBA 2001 100Kg 80 cm S-band

PROBA-2 2009 100Kg 80 cm Reflector, S-band, directive, 2.4m

ESEO 2009 < 100Kg 100 cm
3 patches, S-band, omni

SAP, S-band, directive

SSETI Express 2005 86Kg 90 cm

Patch, S-band

Patch, S-band, directive

Monopole, UHF

TopSat 2005 125Kg X-band, directive

ST5 2006 3× 25Kg 50 cm Wire, X-band, low-gain

AISSat-1 16Kg 20 cm Monopole, VHF

PathFinder2 2009 55 cm 2× Monopole, UHF/GPS,

GapFiller 2011 27Kg 45 cm 2× 2λ Dipoles, UHF

SwissCube 2009 1Kg 10 cm
Wire, VHF, 61 cm

Wire, UHF, omni, 17.6 cm

strategies can be used in the design of antenna systems for micro/nano satellites. Antennas

are either deployable and have dimensions comparable to wavelengths, or they are integrated

on the satellite surface: in this case, they must be miniaturized (especially in the low VHF

and UHF bands) and they usually behave as point sources.

As for the radiation pattern, two situations should be considered. In the first case, antennas

can exhibit radiation characteristics rather independent of the satellite platform: this can

be obtained by a proper design or when the electrical dimensions of the platform are very

small. On the opposite situation, the antennas’ radiation can be critically affected by the
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platform and strongly dependent on it. This usually happens with low directivity antennas

on spacecrafts of size comparable to the wavelength. In this case, the design of the antenna

cannot be made without including in the simulation model the platform, which becomes de

facto a part of the antenna.

An intermediate situation can occur with mildly directive antennas, which couple only weakly

with the platform and can be modeled using essentially a good estimation of their embedded

pattern and classical array theory.

1.4. A typical example: the ESA project MAST

The European Space Agency awarded the project MAST (Miniaturized multi-functional

Antenna System for micro/nano satellites) to LEMA-EPFL in 2009. It constitutes the

paradigm of small satellite missions and set the frame for the antenna engineering challenges

faced in this thesis.

An overview of the project, based on the parent documents [22–26], follows hereafter.

The objective of MAST is to study and demonstrate a proof-of-concept miniaturised

antenna system suitable for Telemetry, Tracking and Command (TT&C) and data transmis-

sion, fitting the extremely tight accommodation requirements of micro/nano-satellites.

Antenna modeling capabilities required also to be developed, eventually on the bases of

existing and proven tools used for ’classical’ distributed antenna systems, where necessary to

achieve the essential design capability.

In fact, one of the MAST goals was to develop a simple but accurate enough model to

characterize the radiation of antennas located on small platforms. Opposite to standard

full-wave algorithms (as existing in most commercial software tools), MAST called for a

software able to decide quickly on the feasibility of a given radiation pattern once the antenna

platform and the number and type of antenna elements were known.

Typical requirements for the antenna, as provided by ESA, were:

Accommodation requirements

� Platform size: micro-nano satellite platform with dimensions variable between a cube

of 25 cm side and a box of 60 × 60 × 10 cm.

� Mass: the antenna system shall have a mass lower than 200 g (goal 100 g).

� The antenna system shall be integrated with other sub-systems, i.e. sharing the same

area on the platform, including eventually solar panels.

� Minimum space occupation is required, e.g. antennas could be simple slots in the space-

craft walls.
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Antenna system functional requirements

S-band was targeted as a good compromise corresponding to current developments. This

makes platform dimension comparable to wavelength (usually between 0.5 and 2.0 free space

wavelengths). The 3 following radiation patterns were of relevance for the functionalities

required in this type of satellites:

� Mode A: Full-sphere coverage in single or double polarisation.

� Mode B: Directional coverage in single polarisation (60 deg cone).

� Mode C: RF-tracking coverage (4 tracking lobes within a 60 deg cone).

Circular polarization is required for all modes, either single or double (any of the R- or L-

HCP).

Minimum gain level and ripple are set for the three modes as:

� Mode A: Gain −3 dBi, ripple 6 dB.

� Mode B: Gain 5 dBi, ripple 3 dB.

� Mode C: Gain 3 dBi, ripple 1 dB.

Although, of course, specifications can be also added in other aspects, like matching/return

loss or frequency bandwidth, the main goal of the ESA activity was to characterize the

antenna system in terms of the radiation performances including radiation patterns, Axial

Ratio in circular polarization, discrimination between Right- and Left-Hand Circular Polar-

ization, Gain ripple versus angle and maximum Gain variation versus frequency.

Accordingly, antenna performances will be usually expressed in this work in terms of radiation

pattern; also, where not differently specified, all the radiation patterns appearing in this

thesis work are Directivity patterns expressed in [ dBi].

Special attention was finally paid to the concept of ”Global Coverage”, which, referring

to the omnidirectional antenna mode (Mode A), indicates the portion of the ideal radiation

sphere where requirements are satisfied. The Global Coverage being a non-standard parame-

ter, we provide here its definition.

Indicating with GCP the Polarization Gain∗ and with G0 = max {G} the maximum (total)

Gain, we define the function:

f (θ, ϕ) =

⎧⎪⎨
⎪⎩
1 10 log10

(
GCP (θ, ϕ)

G0

)
∈ [−6, 0]

0 otherwise

(1.1)

∗GCP (θ, φ) = 4π |ECP (θ, φ)|2 / ∮
Ω
dΩ |ECP (θ, φ)|2
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and finally the Global Coverage:

C =
1

4π

∮
Ω
dθ dϕ f (θ, ϕ) (1.2)

Note that a normalization of f with respect to the maximum polarization Gain would have

been misleading.

The Global Coverage quantifies the degree of fulfillment of the specifications allowing a

comparison between different solutions.

An appropriate design strategy was developed aiming specifically at these goals and led

to the implementation of SatAF, a very efficient algorithm that was delivered to ESA as a

MATLAB software and that constitutes one of the original contributions of this thesis.

1.5. Outline and motivation of the thesis: original contributions

The leading thread of this thesis work is the development and improvement of the simulation

software SatAF (Satellite Array Factor), designed for the fast computation of the radiation

pattern generated by antenna systems allocated on small spacecrafts.

The first version of the software was developed in the frame of the ESA project MAST

(Chap. 2). The adopted design strategy called strongly for speed and approximation, rather

than accurate but computationally demanding full-wave methods.

In its basic formulation, SatAF implements a 3D Array Theory algorithm where sources

are represented by simple antennas (e.g. dipoles, patches, slots) radiating in an ideal

environment, either free-space (low-frequency approximation, the satellite is electrically

small) or on an infinite ground plane (high frequency approximation, very large satellite).

With this choice, direct radiation is assumed to be the predominant component of the

radiated fields, while diffraction or mutual coupling are considered second-order phenomena

and neglected.

The software allows the full characterization of the radiation performance, including the

discrimination between polarization and the automatic evaluation of the strongest component

as well as the Global Coverage (1.2).

Thanks to its modular approach, SatAF represents a valid tool for the characterization

of the radiation pattern. SatAF allowed the design and realization of the multi-functional

antenna system for micro-satellites [26], consisting of the customized slot antenna described

in [4].

A successful measurement campaign proved the solidity of the design and validated the

reliability and usefulness of SatAF. At the same time, the design experience revealed some

limitations of the software, in particular the impossibility of handling non-standard radiators

or the restriction to moderate or high directive elements in order to verify the hypotheses on
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the radiation mechanism.

The clever combination of SatAF with full-wave software was readily identified as a possibility

for a two-fold improvement: the extension of the range of applicability to any type of radiator

and an increased accuracy in the predictions. The main idea consists in performing local

full-wave simulations of sub-sets of elements to generate the radiated fields which, once

imported in SatAF, allow the computation of the total radiation pattern.

The Surface Integral Equation in its Mixed Potential formulation, solved with the Method

of Moments, is known as one of the most efficient algorithms for the analysis of metallic

structures in free space and was selected as the full-wave method to be combined with SatAF.

Targeting in particular the analysis of slot antenna system, in Chap. 4 we developed [27]

a novel model for the excitation of aperture antennas, based on charge accumulation and

perfectly compatible with the MoM-MPIE framework. Integrated in the MoM and combined

with SatAF, it demonstrated in a series of test configurations the expected improvement of

the software.

Even in its combination with the MoM, SatAF proved to be competitive in terms of

computational time with the most renown commercial software. Yet, we considered the

possibility of a further acceleration of the method, which we achieved with a reformulation of

the MoM canonical algorithm. The expensive 4D integration required for the computation of

the interaction matrix entries is replaced [28, 29] with a point-to-point computation scheme

inspired by the Nyström method: the Magic Distance Inspired method, described in Chap. 5.

The formulation allows a strong reduction of calculations with respect to classical quadrature

algorithms, e.g. Gauss-Legendre, with a minor impact on the accuracy of the solution (the

currents induced on the satellite surface), furthermore mitigated on the far field.

The ultimate version of SatAF, combining the features here introduced, was used in a final

validation in Chap. 6 to compute the radiation pattern of the MAST antenna system: a final

comparison with measurements demonstrated the solidity of the method.







2. A possible design approach for antennas on
small satellites: the SatAF software

In this section we describe the work performed in the frame of the ESA project MAST

[22–26], which led to the design of a multi-functional antenna system for micro/nano satellites,

according to the project requirements introduced in Sec. 1.4. After introducing the possible

design strategies (Sec. 2.1) we discuss in Sec. 2.2 the adopted methodology. In Sec. 2.3,

we illustrate the in-house MATLAB tool SatAF, developed in the frame of this thesis work,

which allowed the design of the antenna system (Par. 2.4.1), prototyped and characterized

with a measurement campaign.

A final assessment on the reliability of SatAF (Sec. 2.5) paves the way to the discussion of

the possible improvements (Sec. 2.6). Sec. 2.7 summarizes and closes the chapter.

2.1. The design strategy

The antenna systems designed for the missions illustrated in the State-of-the-Art (Sec. 1.2)

usually consist of an array of elementary radiators, especially patches and dipoles, used to

generate the required antenna modes.

On the basis of the literature overview, we decided from the very beginning that the

strategy we had followed for the design of the antenna system consisted in using an array

of elementary sources, such as patches or slot antennas, which properly displaced on the

spacecraft surface and with the right excitation shall produce the required radiation patterns.

In fact, while the directive beam (Mode B) and the tracking lobes (Mode C) can be obtained

using a simple planar array whose technology is mature and consolidated, the generation of

an omnidirectional radiation pattern (Mode A), in circular polarization and in the presence

of a small metallic scatterer constituted the real challenge: as no established guidelines were

available in the literature, an in-depth study on the feasibility of the possible approaches and

their performances was required .

Using omnidirectional elements could appear a simple and obvious way to achieve

full-sphere coverage. For extreme satellite sizes, antennas placed on a satellite’s surface can

behave almost as in free space (low frequency or very small satellite) or they can see the

platform as an infinite ground plane (large satellites, high frequencies). In both cases, it is

quite easy to design antennas that show an isotropic 2D or even 3D behavior (close to full

coverage). As an example, many antennas designed for W-LAN applications [30–33] can be

13
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included in one of these two categories.

We found in [34–36] an useful insight on the design of antenna arrays allocated on small

spacecrafts and on the way the sources orientation and displacement affects the radiation

pattern. In these papers, circularly polarized patch antennas operating in S-band are chosen

as radiating elements and their position is optimized on a cube satellite of dimension 50 ×
50×60 cm. It is interesting to notice how in [36], the radiation performance of three elements

placed around a corner of the satellite is significantly enhanced adding a fourth element on

the opposite corner (Fig. 2.1).

Figure 2.1.: Displacement of four antennas on a cubic satellite for optimal omnidirectional coverage.

Following the thread, we performed a feasibility study on the use of elements which present,

at least in a stand-alone environment, a low-gain radiation pattern and, more in depth, on the

consequences of using surface currents spread on the satellite as primary radiator. A positive

output could translate in the possibility of reducing the size of the RF-emitters to the bare

minimum. Unfortunately, the platforms considered in this thesis, with dimensions in the

order of the wavelength, lie in the midpoint between the two extreme situations mentioned

above. Moreover, low directive sources are prone to induce currents in the satellite platform

which in turn will produce a secondary or spurious radiation. While it is theoretically

possible to use this phenomenon to improve the satellite radiation characteristics, this would

lead to very complex and platform-dependent procedures, at the opposite of our strategy

aiming at a modular approach, as independent as possible from platform details.

Finally, the joint use of several omnidirectional antennas can lead to severe interference

problems. These potential drawbacks are illustrated in the following examples.

2.1.1. Platform size effect

A simple example of the impact of a metallic platform on radiation is observed when

considering a short electric dipole of length 0.45λ at a frequency f = 2.45GHz. When

the dipole radiates in free space (Fig. 2.2a), it generates a pattern like Fig. 2.2b (results
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(a) (b)

(c) (d)

0.45 λ 

Figure 2.2.: Effect of the satellite scattering on a stand-alone low gain source.(a) Dipole in free space
and (b) associated radiation pattern; (c) dipole in presence of a 25 cm cubic metallic
scatterer and (d) radiation pattern.

generated using Ansoft HFSS). It appears that, already with one simple element, a good

degree of coverage is obtained (the concept of coverage was introduced in Sec. 1.4 as an

estimation of the performance of the antenna system with respect to Mode A specifications),

at least on one plane and around 65% of the full sphere.

Unfortunately, the presence of an electrically large metallic body critically perturbs the

radiation, causing a significant degradation of performance. Fig. 2.2d shows the radiation

pattern generated by the same dipole in presence of a 25 cm (2λ) cubic satellite: it is evident

that the perturbation is severe (Fig. 2.2d): coverage is reduced below 35% and the maximum

radiation occurs opposite to the position of the dipole.

We can also shortly comment the fact that the antenna used for SwissCube, very similar to

this example, is working with excellent performance. The difference lies in the operational

band, UHF: in fact, at a frequency of 900MHz, the 10 cm satellite is only a ”point” of λ/30

size and hence has a negligible influence on the antenna, while in the example the satellite is

(at least) a 2λ side cube.

A thin rectangular slot on an infinite ground plane is another antenna which exhibits on one

cut (its H-plane) an omnidirectional pattern. It is well known anyway that the radiation on the

H-plane is severely affected by the size of the ground plane and ceases to be omnidirectional

as soon as it becomes of finite size.
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2.1.2. Sensitivity of induced platform surface currents

Using surface currents induced on the satellite as primary radiator is a very appealing

solution and could in fact allow to reduce the size of the RF-emitters to the bare minimum.

Such a choice implies that the satellite itself becomes the antenna, excited by a number of

sources. Using a structure as an antenna means, on the other hand, fixing its shape and

dimensions according to the constraints imposed by the antenna design. This is not an issue

in those cases where full control by the antenna designer on the structure which is destined

to work as an antenna is assumed. This is obviously not the case if the structure which has

to act as an antenna is the entire satellite, due to the obvious necessity of allocating different

payloads on the satellite (instruments, telescopes, solar cells) whose disposition follows logics

which do not take into account the electromagnetic point of view. It is therefore critical as

first action to understand to which extent small perturbations in the satellite structure can

affect the radiation pattern.

The previous paragraph already contains an account on the way the current induced on

the satellite surface by a source affects the radiation pattern. Moreover, the representation

of the satellite with a completely metallic, perfectly smooth surfaces is only an idealization,

since on its surfaces are usually allocated solar cells, electronic components or instruments.

These elements are not electromagnetic-invisible and currents induced on the platform will

be affected by their presence, generating a certain perturbation, in some cases severe, of

the radiation pattern. This is shown in the following examples, with two basic cases where

currents interact with cuts on the surface or metallic pins. To make the examples meaningful,

cuts and pins are intentionally placed in regions where surface currents are strong, as a

realistic representation of the phenomenon we want to describe.

A cut on the satellite surface can represent a generic discontinuity or a part of the platform

filled with dielectric. Using a thin λ/2 slot to excite currents on the satellite, we show in

Fig. 2.3 (models solved with HFSS) the effect of the introduction of cuts of in the order of

0.8λ × λ/4 (a) and (b) and λ/2× λ/4 (c).

As further proof, we show the impact of a small metallic object on the pattern. Two cases

are considered and shown in Fig. 2.4: a cylinder of radius 0.1λ and height 0.2λ (a), and a

cuboid of dimensions 0.6 × 0.1 × 0.1 wavelengths (b). Note that, especially in the cylinder

case, the electrical dimensions are quite small; nevertheless, the surface currents are severely

affected by their presence.

2.1.3. Interference effects when combining omnidirectional patterns

As shown in the previous section, any element in presence of a large metallic scatter becomes

more directive. As a consequence, using only two elements on opposite faces produces a

poorly omnidirectional pattern: this makes the use of four elements on the side faces not an
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(c)

(b)(a)

Figure 2.3.: Perturbation of currents induced on the satellite surface produced by different cuts.

(b)(a)

(c)

Figure 2.4.: Perturbation of the currents induced on the satellite surface produced by metallic objects:
(a) a pin, (b) a cuboid and (c) detail.



18 Chapter 2: A possible design approach for antennas on small satellites: the SatAF software

(c)(b)(a)

Figure 2.5.: The benefit of combining right- and left-hand circular polarization. (a) layout: six patch
antennas on a cubic platform, (b) radiation pattern when all antennas are RHCP, (c)
radiation pattern when top and bottom elements are LHCP.

optional but an essential expedient to achieve a good performance.

When combining radiation from different sources, the problem of interference arises. It is

well-known from planar array theory [37] that, when the element spacing is larger than λ/2,

the pattern inevitably presents nulls; the same condition holds, even though with a slightly

different formulation, for three-dimensional arrays. To reduce the ripple and the null regions

in the pattern is therefore necessary an accurate study on pattern superposition, which

depends on element position and orientation. We found that the expedient of taking the

strongest between right- and left-hand circular polarization components of the field (Sec.

1.4) significantly improves performances: since a purely RHCP polarized field has no LHCP

component, the interference and the presence of radiation nulls is greatly reduced.

Anticipating its description in Sec. 2.3, we use in the following example our in-house

MATLAB software SatAF to highlight the interference effect. Six patch antennas are allocated

on the faces of a cubic platform (Fig. 2.5a): when all the elements are RHCP, several null

regions are present in the radiation pattern (Fig. 2.5b). If the top/bottom elements are LHCP

and the strongest component between right- and left-hand polarizations is taken, the pattern

assumes the more uniform shape as in Fig. 2.5c.

2.2. Final design guidelines

In the previous sections, we have investigated the dependency and stability of the radiation

pattern, generated by a low directive element, against modifications in its environment.

These modifications are mainly due to modifications of a given platform (non-smoothness of

surfaces and presence of metallic objects or holes) and they are responsible for perturbations

which can critically affect the radiation pattern.

It appears obvious that a design which is essentially based on the use of low-gain sources

to induce surface currents in the platform, transforming the whole satellite into a unique
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antenna is unpractical if the platform’s parameters and characteristics are not exactly

specified. On the other hand, considering the satellite surface as perfectly smooth is

an unrealistic assumption which can reveal critical for performance. Even assuming the

exact knowledge of the platform characteristics, such a strategy would require the use of

powerful full-wave softwares to fully analyze the effect of the platform on the antennas

for every position of them. Although this is a possible strategy and has been followed

in an ESA companion project [5], it won’t be adopted here, as incompatible with the

use of simple but very fast quasi-analytical models that we are targeting. Moreover, the

tuning elements used to better adapt to platform changes are an expensive and delicate option.

Because of these issues, the use of this class of sources as primary radiators, even if

appealing in principle, does not appear as the right way to accomplish the task. Also,

the same argumentation leads to the conclusion that it is unreliable to use scattering and

diffraction phenomena as secondary radiation sources, for instance for filling those nulls

which are direct consequence of using combined discrete elementary radiators.

We can conclude at this point with the strategy which we considered the most suited for

the problem and led to the identification of the antenna configuration. This methodology can

be summarized with the following statements:

� The design must be based on platform-independent antennas and radiation from the

platform has to be minimized.

� Effect of surface currents and diffraction will be considered as a degradation component

for the targeted radiation pattern.

� Relatively high Gain antennas are associated with currents concentrated in limited re-

gions of the platform surface and allow to minimize the effect of scattering and spurious

radiation. Such antennas should be combined and used for isotropic modes (mode A in

the ESA project).

� A subset of Mode A antennas can be a good candidate for the generation of more

directive modes (B and C).

This design procedure will likely allow a robust design which can be easily adapted to

different platforms and whose performance is expected to have a good degree of stability in

case of arbitrary satellite surfaces.

The characteristics and the development of a software performing this task is one original

development of this thesis that will be described in the next section.
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Figure 2.6.: A 2× 2 circular patch array is simulated in 6 different positions between the center and
the edge (as indicated by the arrow) of a metallic platform.

2.3. The Satellite Array Factor (SatAF) software

Radiation from sources displaced around the satellite body can be thought as the result of

three components:

� Direct radiation from sources

� Diffraction of the fields radiated by the sources impinging on the satellite metallic surface

� Mutual coupling between sources

According to the adopted design strategy and on the basis of the discussion of the previous

section, the first component is expected to be the most influential contribution to the radiated

fields. On the other hand, accounting for the other two contributions requires a precise

electromagnetic model and the development of an accurate analysis tool and therefore a

considerable amount of computational time and resources to simulate each configuration.

A quantification of the error introduced by this hypothesis in typical MAST scenarios can be

obtained anticipating one of the radiating elements proposed for a preliminary design of the

antenna system. A directive element, a sub-array of 2× 2 circular patch antennas on a small

cubic platform, is simulated in different positions on a cubic platform (black arrow in Fig. 2.6)

with the commercial, full-wave software Ansoft HFSS. The radiation patterns shown in Fig.

2.7 exhibit a very good degree of stability with respect to the change of position, confirming

that in the class of problems under investigation, direct radiation can actually be considered

predominant on edge diffraction.

We considered therefore of great relevance, at least in the stage of the project involving the

the study of optimal disposition of sources around the platform and oriented to the fulfillment

of the radiation specifications, to dispose of a simulation tool able to quickly predict the 3D

radiated field, even if in the approximation of the sole direct radiation.

The radiating elements will be represented in a first approximation by ”ideal” entities lying in

a homogeneous environment, for which is available an analytical expression for the represen-

tation of radiated fields: examples are patch and aperture antennas on infinite ground planes.
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Figure 2.7.: Radiation patterns generated by the 6 configurations described in Fig. 2.6

These elementary sources will be used to identify the best performing architecture in terms

of sources displacement, postponing the detailed analysis and design of the real radiator to a

later stage of the project.

2.3.1. Description of the software

On the basis of all the aforementioned considerations, we developed SatAF (Satellite Array

Factor), a MATLAB simulation software for fast calculation of 3D radiation pattern. The tool

disposes of a User Interface (UI), shown in Fig. 2.8a which allows the definition of any number

of different types of elementary radiators (point sources, dipoles, patches, slots and others),

and the control of the relevant parameters (such as dimensions and excitation). Additionally,

the tool offers an UI for the customization of the satellite shape (Fig. 2.8b) and a third one

(Fig. 2.8c) which handles the import/export of patterns and the creation of SatAF elements.

Once the array has been designed, the software calculates the pattern generated by each ra-

diating element, depending on their orientation with respect to a global reference system and

generates the total field accounting for the phase delays introduced by the position of elements.

We prefer to anticipate in this section, among the various functionalities of SatAF, the

description of a feature which was developed in the frame of the improvement of SatAF. We

implemented the possibility of importing radiation patterns generated with external software,

supplied in the form of a data table containing the electric far field components in the whole

radiation sphere. The procedure consists of an algorithm which interpolates the values of

the data table, which refer to the local coordinate system used in the external simulator, in

order to generate the values in the points of the global coordinate system associated with the

satellite.

A more detailed illustration of the algorithm is given in Par. 2.3.2.
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(a)

(b)

(c)

Figure 2.8.: SatAF user interfaces: (a) main window, (b) satellite shape customization and (c) im-
port/export and element generation interface.
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It follows here a schematic resume of the possibilities and characteristics offered by the tool.

Features

� User Interfaces

– Main interface for controlling the array elements’ parameters

– UI for the design of the satellite platform

– UI for the creation, import and export of radiation patterns generated with external

software

� Management of projects and direct transfer of elements between them

Array characteristics

� Satellite shape and size

� Elements position and orientation

� Excitations amplitude and phase

Elements library

� Point source

� Dipole

– Infinitesimal dipole

– Finite size dipole

� Loop antenna

� Slot antenna

– Rectangular or circular aperture

– Linear, RH or LH circular polarization

� Patch antenna

– Rectangular patch

– Circular patch

� Fundamental (TM11) and higher order modes (TM21, TM02, . . . )

– Substrate type and thickness

– Linear, RH or LH circular polarization
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External software interface

� Ansoft HFSS [38]

� CST Microwave Studio [39]

� EMSS FEKO [40]

� Agilent ADS [41]

� Possibility of exporting / importing data produced by SatAF itself

Outputs

� Layout of the satellite and array elements

� Radiation patterns

– Quantities

� Radiated field, total or in its θ, φ components

� Directivity, total or in its θ, φ components

� Axial ratio

– Format

� 3D polar radiation pattern

� 2D rectangular map

� 1D plot of a cut-plane, rectangular or polar and in different scales

2.3.2. Analytical formulation

The core of SatAF is the algorithm handling the 3D rotation of the elements. We describe

here the theoretical aspects implemented in the software; the source code is included in App.

B.

We find convenient expressing the position of an element and its orientation in the 3D space

by defining the following quantities, depicted in Fig. 2.9:

� rE : distance of the element from the center of the reference system

� θE , ϕE : angular position of the element in spherical coordinates

� αE : rotation of the element around the unit vector r (which can be associated for planar

elements with the normal to their surface).

While the parameters rE, θE , ϕE localize the element, αE defines the orientation and can be

associated in some cases (e.g. a circular patch) with the polarization of the element itself.
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   zÊ ≡    ẑ0E 

ΣE 

αE 

ẑ

ŷ

x̂

Σ

(θ,ϕ)

r̂ ≡    z0̂E 

θ ̂ ≡ x̂0E 

ϕ ̂ ≡ ŷ0E  
(rE,θE,ϕE)

Σ0E 

(xE,    yE,zE)

Figure 2.9.: A generic radiator in the 3D space: coordinate systems and quantities used to identify
its position and orientation.

We suppose that the electric field E0 radiated by a generic source is available in closed

form with respect to a local reference system Σ0 = (x̂0, ŷ0, ẑ0). The same element is then

placed in a point (rE , θE , ϕE) expressed in terms of the global reference system Σ = (x̂, ŷ, ẑ)

and oriented according to the angle αE. The first step consists in translating the observation

point (θ, ϕ) from the global to the local reference system (θ0, ϕ0), where the field is evaluated.

Before the rotation (αE = 0), the local coordinate system Σ0E is:

x̂0E = θ̂E

ŷ0E = ϕ̂E

ẑ0E = r̂E

(2.1)

The relation between Σ and Σ0E is given by the rotation matrix RSC :

RSC (θE , ϕE) =

⎛
⎝cos θE cosϕE cos θE sinϕE − sin θE

− sinϕE cosϕE 0

sin θE cosϕE sin θE sinϕE cos θE

⎞
⎠ (2.2)

The rotation does not affect ẑ0E and allows to define the rotation matrix R0E:

R0E (αE) =

⎛
⎝ cosαE sinαE 0

− sinαE sinαE 0

0 0 0

⎞
⎠ (2.3)

The local coordinate system can therefore be expressed as a function of the global coordinate

system:

Σ0 (θE, ϕE , αE) = R0E (αE) · RSC (θE, ϕE) · Σ (2.4)

Using the classic formulas for the transformation between Cartesian and Spherical coordinate

TC2S and viceversa TS2C , the desired far field field in the point (in global coordinate system)
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E (θ, φ) is found by computing E0 (θ0, φ0) with:⎛
⎝ 1

θ0
ϕ0

⎞
⎠ = TC2S ·R0E (αE) · RSC (θE, ϕE) · TS2C ·

⎛
⎝1θ
ϕ

⎞
⎠ (2.5)

The field derived is a vector with components along the local unit vectors θ̂0, ϕ̂0. By reversing

the reasoning, the global coordinate system is expressed as:

Σ = [RSC (θE, ϕE)]
−1 · [R0E (αE)]

−1 · Σ0 (2.6)

When combined with the formulas for transformation of cartesian to spherical components

VC2S and the inverse VS2C , we obtain finally:

E (θ, ϕ) =

⎛
⎝ 0

Eθ (θ, ϕ)

Eϕ (θ, ϕ)

⎞
⎠ =

VC2S (θ, ϕ) · [RSC (θE, ϕE)]
−1 · [R0E (αE)]

−1 · VS2C (θ, ϕ)

⎛
⎝ 0

Eθ0 (θ, ϕ)

Eϕ0 (θ0, ϕ0)

⎞
⎠

(2.7)

2.3.3. Validation

A exhaustive benchmark campaign has been performed in order to validate on one side

the correct formulation and implementation of the 3D Array Theory and on the other the

actual accuracy and usefulness of the approximate method. We report here those results we

find pertinent to the illustration of this thesis work; in particular, we omit the part of the

campaign validating the bare implementation, showing instead the cases more closely related

to the design process we followed and proving the consistency of the hypotheses on the

radiation mechanism. As the preliminary designs of the antenna system envisaged the use of

circular patch antennas, the software was tested using mainly such a radiating element; slot

antennas have also been considered in some test cases.

The configurations we present involve circular patch antennas in R- or LHCP polarization

either in planar or spatial array distribution. The patches are fed with 4 coaxial lines excited in

sequential rotation 0, 90, 180, 270 deg which provide the circular polarization; in this context,

with ”patch orientation” we refer to the orientation of the ideal vector connecting the center

of the patch with the coaxial with 0 deg excitation. The characteristic dimensions of the

patches, coaxial lines and substrate are given in Tab. 2.1; the ”Position” parameter refers to

the distance from the center of the ground plane (Patch row) or from the center of the patch

(Coaxial row).

In SatAF, the patches are represented with a mathematical model which includes all the

information about the dimensions but assumes the presence of an infinite ground plane. As
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Table 2.1.: Characteristic dimensions used for the benchmark configurations. The parameter ”Posi-
tion” refers to the distance from the center of the ground plane (Patch row) or from the
center of the patch (Coaxial row).

Element Parameter Value

Patch
Radius 18.5mm

Position 12 cm

Substrate
εr 4.4

Thickness 1.6mm

Coaxial

Inner radius 0.7mm

Outer radius 1.6mm

Position 9.3mm

a reference, the configurations are simulated with the commercial, full-wave software Ansoft

HFSS and the radiated fields on the main cuts are compared.

The operative frequency is 2.45GHz.

The first configuration envisages an array of 4 patches on a 36 cm (3λ) ground plane, as

depicted in Fig. 2.10. The patches are oriented in different directions for a more complex

test case. As shown in Fig. 2.11, the radiation pattern predicted with SatAF is in excellent

agreement with the reference in all the cuts and in the whole region above the ground plane,

while the weakness of the fields below it (< −10 dB) demonstrates that the assumption of an

infinite ground plane is in fact realistic.

The second benchmark configuration consists of a spatial array of three groups of two

patches on three sides of a cubic platform of 25 cm side (2λ), the actual dimension requested

for the MAST satellite. The patches are moved cm away from the center towards a corner of

the respective face, as shown in Fig. 2.12. Like in the previous configuration, polarizations

and patch orientations are mixed for a more complex test case. Results are again in excellent

agreement with the reference in the regions of direct radiation, as it is illustrated in Fig.

2.13.

The third test case is identical to the previous one but the satellite is now smaller (15 cm ≈
1.2λ) in order the patches to be located very close to the platform edges and one to each

other, as shown in Fig. 2.14. The effect of diffraction and mutual coupling is therefore

expected to affect the radiation pattern in a stronger way than in the previous cases. In fact,

now deviations are observed in some cuts (Fig. 2.15), but the overall behavior is again well

predicted and the agreement with HFSS is still acceptable.
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Figure 2.10.: Benchmark configuration 1: four patches on a 36 cm ground plane.
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Figure 2.11.: Benchmark configuration 1: radiation pattern on the elevation cuts (a) ϕ = 0deg, (b)
ϕ = 45 deg, (c) ϕ = 90 deg, (d) ϕ = 135 deg.
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Figure 2.12.: Benchmark configuration 2: six patches on three faces of a 25 cm cubic platform.
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Figure 2.13.: Benchmark configuration 2: radiation pattern on the elevation cuts (a) ϕ = 0deg, (b)
ϕ = 45 deg, (c) ϕ = 90 deg, (d) ϕ = 135 deg.
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Figure 2.14.: Benchmark configuration 3: six patches on three faces of a 15 cm cubic platform.
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Figure 2.15.: Benchmark configuration 3: radiation pattern on the elevation cuts (a) ϕ = 0deg, (b)
ϕ = 45 deg, (c) ϕ = 90 deg, (d) ϕ = 135 deg.
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These three test cases demonstrate that the assumptions made for the development

of SatAF actually hold in the cases of interest for the project: in those regions of space

illuminated by direct radiation, the accuracy of the predictions is very good confirming that

the diffraction can be safely neglected for the most part of the cases.

When sources are located close to the edges of the satellite, the assumptions made are pushed

to the limits and minor deviations eventually appear in the comparisons. Nevertheless, the

positions of lobes and nulls is well predicted and the overall accuracy can still be considered

satisfying.

The last part of the benchmark involves the impact of mutual coupling and the capability

of SatAF to handle radiation patterns generated with external software. Two elements, also

studied for the final design of the antenna system have been used: a sub-array of 2 × 2

RHCP circular patches, Fig. 2.16a (a stub is used to induce RHCP), and a sub-array of 2× 2

C-shaped slots, Fig. 2.16b.

Two of these elements lie on two faces of a cubic platform. The single elements are simulated

when lying in the center of the satellite face using the commercial, full-wave softwares Ansoft

HFSS and CST Microwave Studio respectively; radiation patterns are then imported in

SatAF which handles the rotation and Array Factor effects. The same software is then used

to simulate the whole structures and radiation patterns are computed as reference.

Edge diffraction is now (roughly) accounted for by the full-wave software and only mutual

coupling is actually neglected.

The comparison of the radiation patterns is shown in Fig. 2.16 for the patch array (patterns

on the left, Fig. 2.16c and Fig. 2.16e) and for the slot array (patterns on the right, Fig. 2.16d

and Fig. 2.16f). The comparison with the full wave software confirms the negligible impact

of mutual coupling, validating the solidity of the approach used and the correct software

implementation.

Through the benchmark campaign, SatAF proved to be a solid and reliable software and

was established as a valuable design tool to be extensively used during the project.
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Figure 2.16.: Benchmark configuration 4 and 5: 2 sub-arrays of 4 elements, (a) circular pathes, (b)
C-shaped slots. Radiation patterns: configuration 4, (c) ϕ = 0deg, (e) ϕ = 90 deg;
configuration 5, (d) ϕ = 0deg, (f) ϕ = 90 deg.
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2.4. A typical SatAF application: the design of the ESA-MAST

antenna system

In this section we resume the work that led to the final design of the MAST Mode A

(omnidirectional) antenna system.

Reflecting the actual design process, the first part of the section illustrates the configurations,

in terms of the distribution of the array elements, which better fulfill the antenna mode

requirements. The investigation was performed with the in-house MATLAB tool SatAF

using ideal elements as radiators; consequently to the choice of circular patch antennas for

the preliminary design, ideal patches (lying on an infinite ground plane) were mainly used

throughout the design.

Once the optimal array and especially the optimal radiation pattern was identified, in the

second part of the design we focused on the realization of the real radiator able to produce the

desired pattern and, simultaneously, fulfilling the requirements in terms of reflection losses

and bandwidth. These latter aspects, even if less pertinent to the radiation performance,

drove some of the key design decision and are therefore addressed.

During the element design phase, slot antennas were found to be better performing than

patches from the technological point of view and were finally preferred. This choice did not

interfere in any way with the investigation conducted in the first part of the design, whose

output was an optimal radiation pattern rather than the element producing it.

We limit the information illustrated in this section to that pertinent to the discussion of

the thesis. The reader can refer to App. A for the complete documentation about the design

of Mode B and C antenna system and a more detailed technical description of the Proof-Of-

Concept and the measurement campaign.

2.4.1. Satellite architectures and arrays

The Mode A, or omnidirectional coverage, can be considered as the most challenging and

difficult to be achieved; not only for the good performance required in terms of power cover-

age, but also for the circular polarization purity. After the deep study of the state-of-the-art

carried out, no references to antenna systems combining a good performance in terms of

circular polarization and full-sphere coverage have been found, as well as mature guidelines

for the design.

On account of these facts, we have concentrated most of the efforts on the omnidirectional

mode, focusing on the achievement the required level of Directivity and polarization purity,

trusting on the fact that once this mode was accomplished, the directional and multi-beam

modes could have been generated by sub-sets of elements. The requirements provided by

ESA (Sec. 1.4) target a minimum gain of −3 dBi with a ripple not higher than 6 dB, either

in right or left hand circular polarization.
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Thanks to SatAF, a high number of different array configurations have been simulated; we

present here the best performing solutions for the omnidirectional mode, evaluated according

to the following figures of merit:

� Performance, indicated by the Global Coverage (1.2) and shown on a 2D rectangular

diagram representing the 3D space in θ, ϕ coordinates

� Number of elements

� Encumbrance of satellite surfaces

The pattern used in the presented solutions is produced by three models of circular patches,

all lying on a substrate with relative permittivity εr = 4.4 and thickness 1.6mm. The radius

of the patches and the excited mode are summarized in Tab. 2.2. In the following layouts,

the patch is depicted as a yellow circle, where two arms represent the orientation of the 0 deg

current (blue) and the polarization, red for RHCP, green for LHCP.

The computations are performed at the frequency of 2GHz.

Table 2.2.: Parameters of the three models of patch antennas used in the presented arrays.

Patch Radius Mode

Type 1 2.7 cm TM 11

Type 2 3.5 cm TM 11

Type 3 4.5 cm TM 21

Octagonal satellite

The best performance achieved for the omnidirectional mode involves the use of an

octagonal platform. The shape is less usual than the standard cubic platform but has already

been used in other missions, for instance [18], as seen in the State-of-the-Art, Sec. 1.2. The

size of the platform is 25×25×25 cm and eight Type 1 RHCP patches are located on the side

faces of the prism, plus two LHCP ones on the top and bottom faces. The layout is illustrated

in Fig. 2.17a, while Fig. 2.17b shows that this configuration produces a coverage higher than

95%. Such performance is balanced by some drawbacks: the shape of the satellite is not a

standard one, a high number of elements is required and, consequently, a high amount of

surface is occupied by the antenna system.

Cubic satellite, edge elements

A very good performance can be obtained using a cubic satellite where six Type 2 patches,

differently R/LHCP polarized, are allocated in proximity of the platform edges, as it is de-

picted in Fig. 2.18. Coverage is inferior to Architecture 1 but still is higher than 90% (Fig.

2.19).
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Figure 2.17.: Architecture 1, octagonal satellite. (a) layout and (b) Directivity 2D map of the highest
R/LHCP radiated field component.
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Figure 2.18.: Architecture 2, six patches around the edges of a cubic platform, layout: (a) front and
(b) back view.
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Figure 2.19.: Architecture 2, six patches around the edges of a cubic platform. Directivity 2D map
of the highest R/LHCP radiated field component.
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Cubic satellite, corner elements

An interesting solution envisages the use of six Type 2 patches allocated around two op-

posite corners of a cubic satellite, as it is depicted in Fig. 2.20. The main advantage of this

configuration is that elements are confined within two limited regions of the satellite, min-

imizing the surface occupation. Again, patches are differently R/LHCP polarized. A little

price is paid in terms of coverage, now reduced to 86% (Fig. 2.21).
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Figure 2.20.: Architecture 3, six patches around the corners of a cubic platform, layout: (a) front
and (b) back view.
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Figure 2.21.: Architecture 3, six patches around the corners of a cubic platform. Directivity 2D map
of the highest R/LHCP radiated field component.

Hexagonal satellite

As requested by the ESA, we investigated also creative solutions and in this context one

of the most interesting is illustrated in Fig. 2.22: the platform is now an irregular hexagon

allocating four Type 3 patches, excited with the TM21 Mode. The number of elements is

minimized (4 patches) and the results, shown in Fig. 2.23, are very promising with a coverage

higher than 85%.



Section 2.4: A typical SatAF application: the design of the ESA-MAST antenna system 37

�0.1

Y [m]
0

0.1�0.1

0
X [m]

0.1

�0.1

�0.05

0

0.05

0.1

Z
[m

]

(a)

0.1

X [m]
0

�0.10.1

0
Y [m]

�0.1

�0.1

�0.05

0

0.05

0.1

Z
[m

]

(b)

Figure 2.22.: Architecture 4, four TM21 patches on an hexagonal platform, layout: (a) front and (b)
back view.
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Figure 2.23.: Architecture 4, four TM21 patches on an hexagonal platform, Directivity 2D map of
the highest R/LHCP radiated field component.

Summary and final remarks

We presented in this section the configurations producing the best performing patterns

with respect to the omnidirectional mode, Mode A. The architectures are resumed with their

characteristic parameters in Tab. 2.3.

Table 2.3.: Architectures proposed for the Mode A.

Architecture Patch N◦ of elements Coverage

Octagonal prism Type 1 10 96%

Cube, edge Type 2 6 90%

Cube, corners Type 2 6 86%

Hexagonal prism Type 3 4 85%
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The solutions represent different trade-off solutions between performance, number of ele-

ments and encumbrance on the satellite surface. Other configurations, resorting either on

sources protruding from the satellite surface, or allocated on unusual cuts (like the design

in [36]) were discarded for technological issues.

The architecture selected as best candidate was Architecture 2. This choice identified in par-

ticular in the Type 2 radiation pattern the one to be synthesized and it is shown in Fig. 2.24.

For the realization of the Proof-Of-Concept (Par. 2.4.5 and App. A), a simpler configuration

was chosen, in order to ease the manufacturing process’ time and cost and it was decided

that an agreement between simulations and measurements could constitute a sufficient proof

of validity and reliability of the other proposed architectures.

-15

-10

-5

0

5
10

θ = 0◦

180◦

30◦

150◦

60◦

120◦

90◦90◦

120 ◦

60◦

150◦

30◦

ϕ = 0◦ϕ = 180◦

Figure 2.24.: The target radiation pattern, as it is generated by the Type 2 patch.

2.4.2. Practical possible choices for the radiating element

The first phase of the design led to the identification of the optimal radiation pattern to be

targeted in the design of the radiating element. In this section, we resume the process which

led to the design of the radiator best reproducing the ideal pattern and, at the same time,

fulfilling the specifications on antenna matching and bandwidth.

Even though the ideal pattern was originally associated with a patch antenna, different

types of radiators have been considered, including Printed Inverted F-Antennas (PIFAs) and

printed dipoles. Two possible implementations have finally been investigated in depth, one

consisting of patch antennas, the second envisaging the use of slot antennas.
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Suitable technologies

A detailed investigation was initially carried out with the goal of identifying key points

and weaknesses of the different available technologies. In Tab. 2.4 is resumed the study on

the most important trade-off parameters on the most suitable candidates for be the basic

radiating element. Printed dipoles and PIFAs can be considered similar technologies except

Table 2.4.: Evaluation of the most important trade-off parameters of the most suitable radiating
sources candidates.

Slots Patches Printed dipoles PIFAs

Size
Surface + – + +

Thickness – + – +

Integration level

(SP, instruments,

edges...)

+ – + +

Performance (Gain,

BW)
+ + + +

Polarization purity + + + +

BFN design + + + –

Mechanical imple-

mentation
+ + + –

Robustness + – – –

for their mounting and mechanical implementation. If on one hand both are easy to integrate

due to their reduced dimensions, the vertical mounting is not compatible with the satellite

separation method especially for very small satellites and CubeSats; moreover, they are

known to be sensitive to other metallic structures in their surroundings. Finally, the lack of

circular polarization purity can be only fairly improved by resorting to an appropriate array

disposition.

Slot antennas offer the best performance in terms of robustness and integration ease, while

the main advantage of patches are the polarization purity and low-profile.

It is also important to note that some other radiating elements like helix antennas and

(non-printed) dipoles have been discarded due to their non-friendly integration on such small

satellites.
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2.4.3. Patch antennas designs

The first step was the design of a single radiating element with a relatively low gain and thin

profile, suitable at the same time for placement on small spacecrafts walls with permissible

outline limits. Although examples of elements of this type (often called Low Gain Anten-

nas, LGA) can be found in literature, we preferred to design our own single radiating element.

The first logical attempt to traduce the ideal pattern generated by a theoretical patch

antenna into a physical radiator was trying to use a patch with characteristics similar to the

ideal one. The target pattern being a rather narrow beam, it became quickly evident that a

sub-array of low-gain sources could be more efficiently employed, both for its easier and more

standard design (with respect to a large patch) and for the possibility of taking advantage of

sequential rotation to improve the polarization purity. As a figure of merit of the degree of

similarity with the ideal element we take into account the Gain on the principal cuts.

Figure 2.25.: Layout of the single CP patch on the finite ground plane.

The layout of the antenna is illustrated in Fig. 2.25; the substrate used is the Rogers

Duroid 5880 (Tab. 2.5), which thanks to its very low permittivity and thickness, allowed us

to achieve a low degree of encumbrance on the satellite walls and a high efficiency of the

antenna system. The details and characteristic dimension of the antenna are given in Tab. 2.6.

Table 2.5.: Characteristics of the substrate employed for printing the single CP patch.

Duroid 5880

Relative permittivity εr = 2.20

Thickness h = 3.15mm

Dielectric losses tan δ = 0.0005

Table 2.6.: Single CP patch, characteristic dimensions.

Single patch

Radius 22.5mm

Probe dist. from center 7.14mm
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The design has been performed using the commercial software Agilent ADS, assuming as

layout a finite ground plane with the dimensions of the target satellite face (most of the cases

250 × 250mm).

In order to generate the circular polarization, two probes were placed at the proper distance

from the center, in order to excite the two main orthogonal modes with a 90 deg delay and

produce the field rotation in counterclockwise sense for RHCP. The antenna is matched at

the operating frequency according to specifications, as it is reported in Fig. 2.26. The Axial

Ratio (AR) values are well satisfying the specifications in the band of interest; besides, the

power characteristics show a maximum Directivity of 7.2 dB and an efficiency levels higher

than 85% at the center frequency (Fig. 2.27).
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Figure 2.26.: Simulated input return losses of the single circular CP patch.
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Figure 2.27.: Simulated radiation pattern and power levels of the single circular CP patch, elevation
plane.
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Figure 2.28.: Array of 2× 2 round CP patches, layout.

Once the suitable radiating source was identified, we focused on the design of the sub-array

capable to produce the required Directivity, with an eye on the size occupied in order to

reduce the surface occupation. The target pattern was achieved by disposing four round

patches at a distance of 50mm in a 2 × 2 arrangement as presented in Fig. 2.28. Moreover,

in order to improve the circular polarization performance, the elements are fed in sequential

rotation. As well-known [42], by feeding the elements with increasing phase in the circular

polarization sense, the composition of fields is made in a coherent way that improves the AR.

The most significant information on the radiation performance is shown in Fig. 2.29.

m1
THETA = 0
Dir = 10.736 dBi

Figure 2.29.: Array of 2× 2 round CP patches, simulated radiation pattern, elevation plane.



Section 2.4: A typical SatAF application: the design of the ESA-MAST antenna system 43

In addition, due to the fact that the antenna sub-system occupies different positions on

the satellite surface, further investigations on the robustness of the performances have been

carried out. The 2 × 2 elements array has been simulated on the most critical positions on

the single face of the satellite, including corners and edges and, as anticipated in the fourth

benchmark shown in Par. 2.3.3, all the simulations led to non-critical modifications on the

basic radiation pattern performances and the impact of these variations, although existing,

did not degrade significantly the characteristics of the array.

2.4.4. Slot antennas designs

The first attempt of implementing the ideal radiation pattern revealed the necessity of using

a sub-array, rather than a single radiator, to achieve the required Directivity; this made the

surface occupation of patch antennas a major drawback of the solution. For these reasons,

patch antennas were considered as a second level candidate, while the investigation was

oriented towards slot antennas.

The main advantage of slot antennas as elementary radiators lies in the integration easiness

and robustness. Fig. 2.30 shows a possible way of mounting the antenna behind the satellite

wall, in which an aperture slightly larger than the radiating slot is performed, leaving the

remaining satellite surface available for the allocation of other devices and functionalities.

Figure 2.30.: Slot antenna mounted behind the wall of the satellite.

Slots on a Ground Plane (GP) can be used as efficient and quite broadband antennas, but

the nature of the slot radiation is essentially bi-directional and typically a reflector must

be used in order to suppress back radiation. However, when a metallic reflector is placed

behind the radiating slot, the parasitic Transverse Electric Magnetic (TEM), Parallel Plate

WaveGuide (PPWG) mode and can propagate between the slot GP and the reflector. The

power leakage through this mode may result in a severe decrease of the antenna Gain and/or

in deterioration of the original radiation pattern due to the diffraction occurring at the end

of the GPs, as well as in unwanted coupling between elements. An optimum distance of

about one-quarter wavelength between the slot and reflector is generally recommended and
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in our case is about 35mm. Such an antenna thickness on a cubic spacecraft with faces of

250× 250mm represents an unacceptable volume occupation. As a result, enhanced solutions

must be sought after in order to make slot antennas viable candidates for the application. To

that respect, a deep survey on reflector-backed slot antennas has been carried out with the

aim of reducing their height while maintaining suitable radiation performances.

Cross slot

A first slot-based solution is inspired by [42] and is composed of four apertures arranged

as a cross. The element is depicted in Fig. 2.31a. Each cross arm is a folded linear slot: this

produced a very small element while retaining most of the characteristics of a simpler cross

slot. Each radiator is excited with a 100� line. The two horizontal slots are excited in phase

and they have a phase shift of 90 deg with respect to the vertical ones. As depicted in Fig.

2.31b, the couples of slots oriented in the same direction are connected via 100� lines to a

50� microstrip line. The phase shift between the vertical and the horizontal slots is obtained

by changing the length of the 100� line. Finally, the two 50� lines are joined together using

a Wilkinson power divider. A back reflector is placed 30mm behind the antenna in order

to increase its directivity (Fig. 2.31a). This element is designed to work in S-band between

2200MHz and 2290MHz.

(a) (b)

Figure 2.31.: Single cross slot: (a) exploded view of the element and (b) layout of the feeding network.

The cross slot element can be arranged in an array configuration in order to implement

re-configurability and multi-beam functions and to improve the circular polarization per-

formance. A possible solution envisages four elements disposed in a 2 × 2 configuration,

as depicted in Fig. 2.32a. Each element is turned 90 deg with respect to the other and

is fed with a phase shift of 90 deg using the feeding network shown in Fig. 2.32b. The

measured radiation pattern, depicted in Fig. 2.32c, presents a directive behavior with a
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(a) (b)

(c)

Figure 2.32.: Cross slot sub-array [42]: (a) layout, (b) feeding network and (c) radiation pattern on
the elevation plane.

Gain of 10.3 dB; this value, slightly higher than the targeted 9.8 dB, can be controlled by

acting on the amplitude and phases of the four elements. In the same way, by applying a

multi-beam-forming network it is possible to generate four different beams with the required

directivity necessary to fulfill the specifications for the TT&C mode (Mode C).

Square array of slot antennas

An improved version of the previous configuration is shown in Fig. 2.33. In this case, the

identical single slot element is used and the array is re-arranged for a simpler and smaller

structure. At the same time, this configuration allows higher integration level by leaving

most of the surface of each face available for the allocation of other components on the

spacecraft. The elements are fed in such a way as to obtain a good polarization purity, while

the distance between them is optimized targeting the requested Directivity and, at the same

time, minimizing the grating lobes. The elevation cut (equivalently on the plane ϕ = 0, 90)
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Figure 2.33.: 8 slot elements in square array configuration.

of the radiation pattern at the center frequency of the operative band is depicted in Fig. 2.34

(simulations performed with Agilent ADS): a good polarization purity is achieved and the

Side Lobe Level is −10 dB, while the maximum of the directivity is exactly 9.8 dB.

(a) (b)

(c) (d)

m1
THETA = 0
Dir = 9.872 dBi

m1
THETA = 0
Efficiency = 9.872 dBi

Figure 2.34.: Radiation pattern and power levels of the 8 slot square array at the frequency 2.5GHz
on one of the two main elevation planes.

If on one hand the presented configurations of slot antennas well satisfy the project

specifications, they all suffer the problem of PPWG mode excitation: in fact, no solution
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was found to prevent the PPWG mode excitation with a reasonably low thickness, while

keeping a sufficiently large bandwidth. For this reason, we focused on the investigation of

cavity-backed slot antennas.

Cavity-backed slot antennas

A back-cavity naturally allows the total cancellation of the parasitic PPWG mode.

Moreover, using specific cavity modes combined with the slot resonance allows to achieve

efficient resonant antennas using much thinner structures (a few millimeters) than the

classical reflector solution which requires a quarter-wavelength thickness (around 35mm in

S-band). However, this type of antennas suffer from a decreased bandwidth (a few percent)

because they rely on strong resonances occurring in a small volume.

The investigation on cavity-backed slot antennas involved the design of three possible

solutions. We describe here the final model; the complete illustration of all the designs can

be found in App. A. The final antenna design is shown in Fig. 2.35.

Figure 2.35.: Layout of the final slot single element.

It consists of two thin slots which have been bent to decrease the linear dimension. The

radiator occupies a surface of 60 × 30mm, while the air gap which separates the ground

plane from the reflector is 12mm. The slot is fed by a 50� T-shaped microstrip line and

surrounded by vias to avoid the propagation of the unwanted PPWG mode. The structure

can be seen as some sort of cavity-backed slot antenna, but where the vertical walls of the

cavity are not completely closed, which also appears more favorable in terms of bandwidth

than completely closed cavities.

The substrate for the feed is the space qualified Rogers RO4350B (details in Tab. 2.7). The

antenna has been simulated with Agilent ADS Momentum; in the simulation model, both

ground planes are infinite. The relevant parameters of the antenna at the four frequencies

which delimit the two bands of interest are reported in Tab. 2.8. The high efficiency observed

confirm that the unwanted PPWG mode is effectively eliminated. Indeed, in the simulation
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Table 2.7.: RO4350B substrate parameters.

Rogers RO4350B

Relative permittivity εr = 3.66

Dielectric losses tan δ = 0.0037

Table 2.8.: Performance of the final proposed antenna at the frequencies which delimit the bands of
interest) (S11: reflection coefficient, D: directivity, G: gain, η: efficiency, GR: realized
gain).

Freq [GHz] S11 [ dB] D [ dB] G [ dB] η [%] GR [ dB]

2.025 -19.4 5.4 5.3 96 5.2

2.120 -15.5 5.5 5.4 99 5.3

2.200 -16.0 5.5 5.4 97 5.3

2.300 -18.4 5.6 5.4 94 5.3

any power leaked through this mode is not radiated since the two ground planes in the

simulation model are infinite and would not contribute to the radiation.

The final sub-array

As it was studied in Par. 2.4.1, the target pattern for one face for achieving Mode A, or

omnidirectional mode, consists of a rather directional beam of 9.8 dB of maximum directivity.

Major advantage of our strategy is the fact that this directive beam already meets the

specifications of Mode B and can be re-used to generate the required directional beam.

Therefore, the goal of the proposed solution is to arrange the basic radiating elements to

achieve the target pattern.

The best performing solution is composed of 4 double slots arranged in a 2 × 2 squared

configuration, as depicted in Fig. 2.36; the 3D radiation pattern is shown in Fig. 2.37, while

the radiation performance on the elevation cut is illustrated in Fig. 2.38.

Figure 2.36.: Layout of the complete sub-array.
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Figure 2.37.: 3D radiation pattern of the face sub-array designed for Mode A (reusable for Mode B).

(d)(c)

(b)(a)

Figure 2.38.: 2D Gain and Axial Ratio cuts at (a,b) 2050MHz and (c,d) 2250MHz.

The detailed design and characterization of such sub-array is left to App. A which contains

all the technological details of the adopted solution. Moreover, it is shown there that the

final sub-array of Fig. 2.36 is also suitable for antenna Modes B and C. It was found that the

best position which minimizes the radiation towards end-fire angles was obtained by spacing

the elements 64mm apart (almost λ/2 in free space) and turning them to form a square.

Furthermore, applying a sequential rotation to the linear elements provides the circularly

polarized radiation pattern.
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The comparison between the obtained face sub-array and the target pattern is shown in

Fig. 2.39: the agreement is very good on both planes, anticipating a good preservation of the

radiation performance obtained with the ideal antenna system.
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Figure 2.39.: Radiation pattern comparison between the ideal and the designed radiator; (a) ϕ = 0
plane and (b) ϕ = 90

2.4.5. The final antenna system and the measurement campaign

The sub-array of customized slot antennas described in the previous section has been manu-

factured and assembled to realize the Proof-Of-Concept architecture. Fig. 2.40 illustrates the

exploded structure: the satellite walls and the six face elements. In Fig. 2.41(a) is visible the

inside of the satellite, with four of the six face-elements connected to the power divider. Fig.

2.41(b) shows the final prototype.

Figure 2.40.: The exploded view of the POC.
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(a) (b)

Figure 2.41.: The POC: (a)internal view of the POC and (b) the final assembly.

The measurement campaign

The three antenna modes generated by the POC were measured in EPFL-LEMA anechoic

chamber. A standard linearly polarised horn antenna was used for the Co- and Cross-

Polarization measurements; though the polarization could not be directly identified with our

measurement setup, it was easily inferable form the measures in the regions where one of the

two polarization are predominant and known.

Measurements were performed within the operative frequency 2025 ∼ 2030MHz. Absolute

Gain measures could not be obtained due to unavailability at the time of the campaign of

a third antenna for the ”three antennas method”; the curves in this section are therefore

presented as Normalized Gain patterns [ dBn]. Note that the normalized Gain is perfectly

sufficient for the quantification of the Global Coverage (1.2), defined with respect to the

maximum Gain.

The measurements of the Mode A (omnidirectional) radiation pattern were performed along

two cuts:

� Plane “R”: the satellite lies on a LHCP face (Fig. 2.42) and the face sub-arrays on the

four lateral faces are RHCP. The cut is along the azimuth plane.

� Plane “RL”: the satellite lies on a RHCP face (similar to Fig. 2.42) but the lateral faces

sub-arrays are alternately R- and L-HCP polarized. The cut is along the azimuth plane.

The center frequency (f = 2.15GHz) radiation pattern are presented hereafter in Fig. 2.43

and Fig. 2.44. The diagrams on the left column show separately the normalized Gain for

RHCP and LHCP components of the radiated fields, renamed CO- and X-POL. As the

specifications require the strongest of the two circular polarizations to be within a range

−6 dB from the maximum gain, in the plot on the right it is shown for better readability the
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Figure 2.42.: Measurement setup for cuts R and RL (the POC is lying on a different face in the
second case).

strongest of the two polarization and the range where patterns are within the specifications

(light blue area).

A more exhaustive characterization of the antenna system radiation patterns for the three

modes and within the whole operative bandwidth, together with the measurements of the

Beam Feeding Network reflection losses, is documented in App. A.

Regarding performances, the Global Coverage ranges from 70% up to 90% in all the patterns

shown and can be retained overall satisfying. This holds in particular not only at center

frequency, but also in the adjacent frequencies within the operation bandwidth dictated by

the antenna reflection coefficient.

2.5. MAST measurements compared with SatAF

The satisfying results of the measurement campaign are an important and necessary proof

of the solidity of the work performed; more interesting than the very results is anyway

the comparison of the measured radiation patterns with SatAF predictions, not only in
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Figure 2.43.: Measured radiation pattern of Mode A in “R” setup: CO- and X-POL diagrams (left)
and strongest R-/L-HCP component (right). The three frequencies correspond to lower
bound, center and upper bound of the operative band.

Freq = 2.15  GHz
5

0

-5

-10

-15

-20

-25

G
ai

n 
(n

or
m

) 
[d

B
i]

ϕ       [deg]
-180 120600-60-120 180

Freq = 2.15  GHz
0

-5

-10

-15

-20

G
ai

n 
(n

or
m

) 
[d

B
i]

ϕ       [deg]
-180 120600-60-120 180

Figure 2.44.: Measured radiation pattern of Mode A in “RL” setup: CO- and X-POL diagrams (left)
and strongest R-/L-HCP component (right). The three frequencies correspond to lower
bound, center and upper bound of the operative band.

the context of this thesis but also due to the decision of manufacturing and measuring a

Proof-of-Concept antenna system, similar but simpler than the architecture identified as

best candidate (Par. 2.4.1), privileging the validation of the adopted design strategy to the

maximization of performances. A reasonable agreement between predicted and measured

radiation patterns was decided to constitute a sufficient proof of the reliability and quality of

the actually proposed antenna system.

The measured patterns for Mode A are here compared with SatAF predictions. As the

sub-array was re-adapted for the additional generation of Mode C, the slight modification in

its radiation pattern, in the form of a narrowing of the main lobe, has been compensated by
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Figure 2.45.: Radiation pattern comparison between SatAF predictions and measurements: (a),
RHCP component relative to the “R” setup; (b), strongest R-/L-HCP component rel-
ative to the “RL” setup

.

increasing the size of the virtual element (the circular patch described in Par. 2.4.1) used as

input for SatAF, in order to make the comparison actually meaningful.

In Fig. 2.45 are shown the comparisons relative to the setups “R” and “RL”. In the first

plot, the RHCP component of the field is shown, being the predominant in the considered cut;

in the second, R- and L-HCP polarizations are mixed and the strongest component is drawn.

The curves exhibit a good agreement: the overall pattern shape is correctly predicted and,

despite the evident differences between the ideal element and the realized one, the deviation

is almost everywhere lower than 1.5 dB.

2.6. SatAF final assessment and potential improvements

The MATLAB tool SatAF was designed for a first-approach analysis of the radiation

performance of the antenna systems involved in the design process performed in the frame of

the MAST project.

The strategy adopted for the design allowed the definition of a series of hypotheses and

simplifications: basically, we assumed that the far fields generated by an array of sources

allocated on a metallic platform is only determined by direct radiation, while the phenomena

of edge diffraction and mutual coupling are assumed negligible. This concept has been

implemented in SatAF obtaining a strong reduction of the antenna arrays simulation time.
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The design of the antenna system, at level of radiation pattern and for the three requested

antenna modes, was almost exclusively performed through SatAF. The reliability and

usefulness of the software have been confirmed by benchmark campaign described in the

previous sections.

It is anyway a fact that this basic version of SatAF suffers some non-negligible limitations.

In first place, when slot antennas were selected as radiating element, an external software

(Agilent ADS) was necessary to analyze apertures with non standard shape (such as C-slots

or dog-bones), as the original SatAF does not offer any possibility in this direction.

Secondly, it must be kept in mind that the hypotheses on which SatAF is based can be

safely assumed only when working with directive elements, which represent only a restricted

class of radiators. This fact actually limits the range of applicability of the software to a

particular type of problems, whose most representative example is obviously MAST. The

degradation of accuracy which occurs when any of the hypotheses is violated can include

lobes misplacement and significative pattern discontinuities.

A strategic combination of SatAF with a full-wave analysis method could remove all the

aforementioned limitations and significantly improve the accuracy of the software, without

renouncing to computational speed, main advantage of the tool. Retaining the fundamental

concept of identifying a “basic radiator” in an antenna array, computing and replicating

its radiation pattern according to the different positions and orientations, a local full-wave

simulation can be used to generate the “basic” radiation pattern (in place of the analytical

formula used in the first version of the software) which is then imported in SatAF and treated

according to 3D Array Theory.

Some preliminary test on simple geometries, inspired by the MAST design process, were

performed and confirmed the expectations; the most significant one are illustrated hereafter.

In the examples, we consider arrays of slot antennas lying either on finite size ground planes

or on 3D platforms. In each case, we compare three methods:

� The array is solved using the basic version of SatAF, i.e. using analytical formulas to

generate the basic element’s radiation pattern (SatAF + Math).

� The radiation pattern of a sub-set of elements is generated using the commercial full-

wave software Ansoft HFSS and is imported in SatAF, which is used to generate the

total radiation pattern (SatAF + HFSS).

� The simulation of the whole structure, performed with HFSS, is used as reference (Full

HFSS).

For each case, we specify the sub-set used for point 2 (SatAF + HFSS) and we refer to it

with “basic element”.
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Let us consider in the first test case a pair of thin, rectangular apertures of size 0.4×7.6 cm

on a finite size ground plane (a square of 15 cm side) as shown in Fig. 2.46; the operating

frequency is set to 2GHz. As “basic element” we use a single slot lying in the center of the

ground plane. The comparison on the two main cuts is shown in Fig. 2.47: the limits of using

an analytical formula for the slot are evident, as well as the excellent agreement obtained

combining SatAF and HFSS.
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Figure 2.46.: Test case 1, layout.
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Figure 2.47.: Test case 1: radiation pattern comparison on (b) ϕ = 0deg and (c) ϕ = 90 deg.
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The second test case involves a 4 elements array of slot pairs (Fig. 2.48a). Three “basic

elements” are used for SatAF:

� A single slot in the center of the ground plane (SatAF A + HFSS).

� A double slot in the center of the ground plane (SatAF B + HFSS).

� A double slot occupying on the ground plane the same position as in the array (SatAF C

+ HFSS).

The three basic elements are sketched in Fig. 2.48b. Now, we see that only in the third case

an acceptable agreement is obtained (Fig. 2.49).
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Figure 2.48.: Test case 2: (a) layout and (b) basic elements used.
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Figure 2.49.: Test case 2: radiation patterns on the ϕ = 0deg cut.
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When considering a 3D geometry, the benefits of introducing a local full-wave analysis

become more evident. We propose as last test case a cubic geometry similar to the MAST

antenna system: six rings of four slot pairs are located in the center of the faces of a 25 cm

cubic platform, as it is sketched in Fig. 2.50. A single pair of slots lying on a ground plane

of the size of the face is used as input for SatAF (case “C” in Fig. 2.48b).
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Figure 2.50.: Test case 3, layout.

The radiation pattern comparison is performed using two different excitation phase schemes

for the array elements, simply named Feed Scheme 1 and Feed Scheme 2; results are shown

respectively in the groups of figures Fig. 2.51, Fig. 2.52, Fig. 2.53 and Fig. 2.54, Fig. 2.55,

Fig. 2.56 representing the main elevation and azimuth cuts.

The plots contain a twofold information: using a mathematical model, the position and

amplitude of the radiation lobes and nulls can be fairly predicted but in some regions the

deviation from the reference reaches high values. The accuracy improvement obtained with

the local full-wave simulation is significant and makes the predictions in excellent agreement

with the reference.
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Figure 2.51.: Test case 3, Feed Scheme 1: radiation patterns on ϕ = 0deg cut.
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Figure 2.52.: Test case 3, Feed Scheme 1: radiation patterns on ϕ = 90 deg cut.
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Figure 2.53.: Test case 3, Feed Scheme 1: radiation patterns on θ = 90 deg cut.
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Figure 2.54.: Test case 3, Feed Scheme 2: radiation patterns on ϕ = 0deg cut.
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Figure 2.55.: Test case 3, Feed Scheme 2: radiation patterns on ϕ = 90 deg cut.
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Figure 2.56.: Test case 3, Feed Scheme 2: radiation patterns on θ = 90 deg cut.
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After this investigation, the most advantageous strategy for combining SatAF with full

waves simulators can be summarized in the following statements:

� The basic version of SatAF, making use of analytical formulas to represent elements’

radiation patterns, is inadequate for the analysis of complex arrays of slot antennas.

� Local full-wave simulations are absolutely necessary for the correct treatment of non-

standard geometries, in particular offset-fed or customized shaped slot antennas.

� In two dimensional geometries, the radiation pattern of slot antenna arrays are accu-

rately predicted only when the basic element occupies, on the ground plane, the same

position as in the array.

� On a 3D platform, the analysis of the entire antenna system can be reduced to the

simulation of a sub-array on a 2D geometry (a ground plane representing a platform

face), once the basic element is identified. After the faces sub-array radiated fields are

computed, they can be imported in SatAF for the generation of the total radiation

pattern.

� The replacement of the sub-array ground plane with the 3D platform introduces a min-

imal improvement which does not justify the increase in complexity and computational

time.

2.7. Conclusions

In this chapter we illustrated the multi-functional antenna system for micro/nano-satellites

designed in the frame of the ESA project MAST. The proposed architecture consists of an

array of customized slot antennas allocated on a micro-satellite (a platform of 25 cm side) and

allows the generation of three antenna modes:

� Mode A - Omnidirectional

� Mode B - Directive beam

� Mode C - Tracking lobes

operating in circular polarization in S-band and according to the specifications provided in

Sec. 1.4.

The omnidirectional mode was recognized as the real challenge of the design. The presence

of the satellite (a metallic body of an electric size which could be considered neither small

like in missions operating in V/UHF band, and thus be neglected, neither very large, like

in classic spacecrafts and be assimilated to an indefinite metallic surface) prevents the

use of independent elements producing by themselves omnidirectional patterns, as their

radiation would be significantly affected by the platform, deteriorating in all likelihood the
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performance.

Two opposite strategies were conceived to deal with the problem: on one hand, the use of

simple emitters to excite currents on the satellite surface, which would generate the required

radiation pattern; a second possibility envisaged the use of directive elements, less dependent

on the specific characteristics of the platform, to generate by pattern superposition the

omnidirectional field.

Simple electromagnetic consideration led us to adopt from the very beginning the second

strategy. The idea of making use of the satellite as an antenna proved fascinating and yet

misleading, due to the implicit and non realistic constraint of having the design of the entire

spacecraft to be dictated exclusively according to electromagnetic issues. On the other hand,

concentrating surface currents in limited regions of the platform allows a robust design, easily

adaptable to different platforms, A feasibility study was undertaken and quickly confirmed

the expectations.

A number of different architectures involving the radiating elements the most suitable for

space applications were investigated and evaluated according to three parameters: perfor-

mance (in terms of omnidirectional coverage), number of elements required and complexity

of the satellite shape.

A key role in the phase of array designing was held by the in-house developed MATLAB

software SatAF. The tool, essentially combining three-dimensional array theory with pattern

interpolation and neglecting second-order radiation components such as diffraction or mutual

coupling between sources, constitutes a good compromise between simulation speed and

accuracy of results, other than offering a convenient interface for the quick control of the

array elements, often present in a high number.

A sub-array of customized slot antennas was designed according to the outcomes of the

array design phase. As an extra asset, the antenna system re-uses this very element to

generate the two remaining antenna modes (Mode B or directive beam, Mode C or TT&C

mode), via dedicated Beam Forming Networks, for a maximum degree of integration.

A set of best performing architectures was selected among the proposed designs while a

simplified structure was selected as prototype, retaining an agreement between simulated

results and measurements a proof of the performance of the other antenna systems. The

Proof-of-Concept was realized and characterized through a measurement campaign. The

outcome was that performance generally confirms simulations predictions, even though some

aspects, typical of realization processes, have been identified as responsible for perturbations.

The measurements validated the strategy adopted through the development of the project

and highlighted the robustness of the software SatAF, its usefulness and its correct imple-

mentation.



64 Chapter 2: A possible design approach for antennas on small satellites: the SatAF software

The benchmark and measurement campaigns established the in-house software SatAF as

a reliable simulation software and proved its usefulness, especially for the design of antenna

systems for small platforms. Nevertheless, a successful use of the tool requires the knowledge

and the respect of the hypotheses on which the implemented method is based; if on one

hand this aspect did not prevent the application of SatAF for the design of MAST, it limited

its use to a restricted class of configurations: when the design was oriented towards slot

antennas, in particular with non-standard geometries, the use of an external software became

necessary to support the design.

The combination of SatAF with local simulations of sub-sets of the elements constituting

the antenna system appears as an interesting opportunity to extend SatAF beyond the

restricted class of problems for which it was designed and to improve the accuracy of the

predictions, without compromising its advantage in computational speed with respect to

all-purpose simulation software.

In particular we showed that retaining the array theory concept, core of the tool, the

solution of complex 3D architectures can be successfully decomposed into the analysis of

two-dimensional geometries to be solved with a full- wave method and elaborated with SatAF

to produce the total radiation pattern.

This perspective is investigated in the remaining part of this thesis work, with special

attention dedicated to the treatment of aperture antennas, both for their relevancy as space-

qualified radiator and for the weakness shown by SatAF towards them.

Starting with the choice as full-wave method of the Method of Moments (MoM) and the recall

of the fundamental theoretical concepts necessary for the discussion (Chap. 3), the dissertation

proceeds through Chap. 4 where a novel, simplified analysis model for the excitation of slot

antennas is introduced, to the illustration in Chap. 5 of an original computational method

which we call the “Magic Distance Inspired” method: derived from the classical formulation of

MoM, it allows a strong reduction of the computational effort especially in its final combination

with SatAF, whose description in Chap. 6 concludes this thesis work.







3. Integral Equations and Method of
Moments

In the frame of the development of an improved version of the simulation tool SatAF, already

used for the design of the MAST antenna system, we investigated the possibility of simplifying

the classical formulation of one among the most popular and reliable analysis methods in

Computational Electromagnetics: the Integral Equation (IE) formulation solved with the

Method of Moments (MoM). Targeting the best compromise between speed and accuracy

in the prediction of the radiation performance of an antenna system and concentrating on

the type of structures relevant to MAST, we explored the MoM in all its aspects and we

concentrated on the ones relevant for our purposes, in particular the replacement of the

integral evaluations with point-to-point calculations.

In this chapter, we recall the analytical background elements necessary for the illustration

of the methods studied in this work: the fundamental electromagnetic theory, the definition of

Integral Equation and its solution via the Method of Moments. The concepts of this chapter

can be found scattered among many textbooks and tutorial papers and are collected here with

a uniform notation for the sake of completeness of the thesis.

3.1. Electromagnetics fundamentals

In this section we recall the mathematical elements necessary for the discussion of the numeri-

cal methods developed in the frame of this thesis work, in particular the Method of Moments.

The treatment of the various topics is specialized to the class of problems involving metallic

structures radiating in free space, in view of the application to the design of antenna systems

treated in the previous chapter.

3.1.1. Maxwell equations

Classical electromagnetic phenomena occurring within an arbitrary medium can be described

by a consistent set of vector equations, the Maxwell Equations. When fields are characterized

by a harmonic time dependance exp (jωt), the equations can be expressed in the frequency

67
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domain in differential form [43]:

∇×E = −jωB−M (3.1a)

∇×H = +jωD+ J (3.1b)

∇ ·D = ρe (3.1c)

∇ ·B = ρm (3.1d)

where E and H are the electric and magnetic field intensities, D and B are the electric and

magnetic flux densities, J and M the electric and magnetic current densities and ρe, ρm
the electric and magnetic charge densities. Induced magnetic current and charges have been

introduced to the classical Maxwell-Minkowski formulation [44] to balance the equations; even

if not present in nature, they appear as equivalent quantities in many physical problems. In

this formulation, (3.1a) is the (modified) Faraday’s Law, (3.1b) is the Ampere’s Law, (3.1c)

and (3.1d) are respectively called the electric and (modified) magnetic Gauss Laws.

In addition to (3.1), a set of three equations relating the electromagnetic fields is introduced

to account for the characteristics of the medium, the constitutive relations:

D = εE (3.2a)

B = μH (3.2b)

J = σE (3.2c)

where ε is the complex permittivity of the medium, μ the complex permeability and σ the

complex conductivity.

These constitutive equations won’t be much relevant in this thesis since we concentrate on

free-space situations. On the other hand, the Continuity Equations relating current and

charges are of particular interest in our formulations. Taking the divergence of (3.1b) and

using (3.1c) we get the first of:

∇ · J + jωρe = 0 (3.3a)

∇ ·M+ jωρm = 0 (3.3b)

while the second equation can be obtained for the corresponding magnetic quantities.

This tells us that the current densities J and M can be considered as the sole sources in an

electromagnetic problem, the charge densities being fully defined by the currents. However,

in many strategies it is worth to consider charge densities as explicit sources. In that case,

we need to represent the current densities with functions whose divergence is mathematically

well-defined.

The validity of Maxwell Equations requires the field vectors to be single valued and bounded

functions, continuous and with continuous derivative: these assumptions are generally satisfied

as long as charge and current densities do not exhibit a singular behavior. Typically, discon-
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tinuous distributions of charges and currents occur in correspondence of interfaces between

media characterized by different electrical parameters ε and μ. The behavior of electromag-

netic fields across the interfaces is governed by the boundary conditions:

n̂× (E2 −E1) = Ms (3.4a)

n̂× (H2 −H1) = Js (3.4b)

n̂ · (ε2E2 − ε1E1) = ρes (3.4c)

n̂ · (μ2H2 − μ1H1) = ρms (3.4d)

(3.4e)

with the subscripts 1 and 2 indicating the two media along the interface S separating the

two media. The quantities Js an Ms are the electric and magnetic current linear densities

([ A/m] and [V/m] ) while ρes and ρms are the electric and magnetic charge surface densities

(
[
C/m2
]
and
[
Wb/m2

]
).

The particular case where one of the two media is a Perfect Electric Conductor, PEC, is

specifically addressed in this work. Inside a PEC, fields vanish and (3.4) simplify into:

n̂×E = 0 (3.5a)

n̂×H = Js (3.5b)

n̂ · (εE) = ρes (3.5c)

n̂ · (μH) = 0 (3.5d)

(3.5e)

valid in any point of the interface.

3.1.2. Potentials formulation

The solution of electromagnetic scattering problems is often simplified by the introduction

of additional functions, the vector and scalar potentials A and φe (electric) and F and φm

(magnetic). While electric and magnetic fields represent physical quantities, the potentials

are strictly mathematical tools which are derived by manipulations of the Maxwell Equations

(3.1).

We consider in this section the case of a homogeneous region. The linearity of the Maxwell

Equations allows to separate a generic electromagnetic problem in two parts, one involving

only electric sources, only magnetic sources the other. The fields present in the two cases are

identified by the subscripts A and F respectively; following a parallel procedure, we derive the
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necessary quantities which allow to express the total fields:

H = HA +HF (3.6a)

E = EA +EF (3.6b)

Due to the absence of electric or magnetic charge, the electric and magnetic flux densities DF

and BA are solenoidal and can be expressed as the curl of another vector F andA respectively,

the vector potentials. Through the constitutive relations (3.2), we can express the electric

and magnetic fields as functions of the vector potentials:

HA = +
1

μ
∇×A (3.7a)

EF = −1

ε
∇× F (3.7b)

A manipulation of Maxwell Equations leads to the relations:

∇× [EA + jωA] = 0 (3.8a)

∇× [HF + jωF] = 0 (3.8b)

The quantities between brackets are irrotational and can be expressed as the gradient of

another function φe and φm respectively, the scalar potentials. This choice allows to define

the vectors:

EA = −jωA−∇φe (3.9a)

HF = −jωF −∇φm (3.9b)

By combining (3.7) and (3.9) with the Maxwell Equations (3.1) and applying the assumption

of homogeneous medium (ε and μ are independent on the position vector), further calculations

yield the following equivalences:

∇2A+ k2A = −μJ +∇(∇ ·A+ jωεφe ) (3.10a)

∇2F + k2F = −εM+∇(∇ · F + jωμφm) (3.10b)

with k = ω
√
εμ.

In order to uniquely define A and F, both the divergence and the curl are required and can

be defined independently one from the other. In (3.7) the curls were defined; one possible

choice for the divergences is the Lorentz Gauge:

∇ ·A = −jωμεφe (3.11a)

∇ · F = −jωμεφm (3.11b)
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Thanks to this choice, (3.10) reduces to:

∇2A+ k2A = −μJ (3.12a)

∇2F + k2F = −εM (3.12b)

while taking the divergence of (3.9) and combining the Lorentz Gauge (3.3) yields:

∇2φe + k2φe = −1

ε
ρe (3.13a)

∇2φm + k2φm = − 1

μ
ρm (3.13b)

When combined, (3.7) and (3.9) allow the expression of the fields in terms of the “mixed”

potentials [45]:

E = EA +EF = −jωA−∇φe − 1

ε
∇× F (3.14a)

H = HA +HF = −jωF −∇φm +
1

μ
∇×A (3.14b)

or, equivalently, through (3.11) as functions of the sole vector potentials:

E = −jωA+
1

jωμε
∇(∇ ·A)− 1

ε
∇× F (3.15a)

H = −jωF +
1

jωμε
∇(∇ · F) +

1

μ
∇×A (3.15b)

3.1.3. Green’s Functions

The formulation of a wide range of electromagnetic problems involves second order partial

differential equations derived from the Maxwell Equations, expressing electromagnetic fields

as function of the impressed currents and charges. A technique typically used for the treat-

ment of these problems consists in finding a solution to the differential equations using an

impulsive source: the obtained solution is the Green’s Function (GF).

Being linearity one of the salient properties of Maxwell Equations, the complete character-

ization of the problem is derived by superposition of the effects of the single Dirac Deltas

constituting the actual source; this superposition is expressed by the convolution operator:

G (r)⊗ f (r) =

∫
V
dv′ G
(
r− r′
) · f (r′) (3.16)

f being a generic function defined within the domain V .

The notation G (r | r′) is identically used to indicate G (r− r′).
In the particular case where the differential equation is in the form of a scalar Helmholtz
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equation:

∇2G (r) + k2G (r) = −δ (r) (3.17)

the Green’s Function can be written:

G (r) =
exp (jk |r|)

4π |r| (3.18)

3.1.3.1. GF in homogeneous media

In general, different formulations of the GF are available for a given problem and their com-

plexity depends primarily on the characteristics of the media involved. In the assumption of

an homogeneous medium, where the sources are enclosed in a volume V , a manipulation of

the Maxwell Equations (3.1) allows to write [46]:

∇2E+ k2E = jωμ

[
J− 1

jωε
∇ (∇ · J)

]
(3.19)

Due to the linearity of the differential operator, we can take the component in the xi direction:

∇2Exi + k2Exi = jωμ

[
Jxi +

1

k2
∂

∂xi
(∇ · J)

]
(3.20)

Recalling the GF (3.18) solution of the Helmholtz equation (3.17), the electric field is obtained

as:

E (r) = −jωμ

∫
V
dV G
(
r | r′) [J (r′)+ 1

k2
∇′∇′ · J (r′)] (3.21)

Using the identity:∫
V
dV G
(
r | r′) [∇′∇′ · J (r′)] = ∫

V
dV
[∇ · ∇G

(
r | r′)]J (r′) (3.22)

the electric field can be expressed as explicit function of J:

E (r) = −jωμ

∫
V
dV

[
¯̄I+

1

k2
∇∇
]
G
(
r | r′) · J (r′) (3.23)

where we identify as the Green’s Function ¯̄GE,J the quantity:

¯̄GE,J (r) = −jωμ(̄̄I+
∇∇
k2

)G (r) (3.24)

Similar manipulations of the Maxwell Equations lead to the expression of the electric field

generated by an electric current

∇2E+ k2E = j∇×M (3.25)
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and consequently to the derivation of the relative GF:

¯̄GE,M (r) = −¯̄I×∇G (r) (3.26)

A similar procedure leads to the derivation of the GFs for the magnetic field:

¯̄GH,J (r) = ¯̄I×∇G (r) (3.27a)

¯̄GH,M (r) = −jωε(̄̄I +
∇∇
k2

)G (r) (3.27b)

The knowledge of the GFs allows the full characterization of the electromagnetic problem;

E = ¯̄GE,J ⊗ J+ ¯̄GE,M ⊗M (3.28a)

H = ¯̄GH,J ⊗ J+ ¯̄GH,M ⊗M (3.28b)

When fields are expressed through potentials (3.14), the associated GFs satisfying

A = μ
[
¯̄GA,J ⊗ J

]
φe =

1

ε
[Gφe,ρe ⊗ ρe] (3.29a)

F = ε
[
¯̄GF,M ⊗M

]
φe =

1

μ
[Gφm,ρm ⊗ ρm] (3.29b)

are:
¯̄GA,J (r) =

¯̄GF,M (r) = ¯̄IG (r) (3.30)

and

Gφe,ρe (r) = Gφm,ρm (r) = G (r) (3.31)

The two formulations of the GF here discussed are equivalent and lead to the same solution

of the electromagnetic problem. On the other hand, one should remark that the double

derivative appearing in ¯̄GE,J and ¯̄GH,M leads to a singularity of the type 1/r3 which is

known to show problems when numerically evaluated. The potential formulation instead

does not involve any differentiation of the GFs ¯̄GA,J and Gφe,ρe , offering therefore a milder

1/r singularity. Also important is the fact that ¯̄GE,J and ¯̄GH,M express a direct relation

between the electric field and the source, whereas ¯̄GA,J and Gφe,ρe are partial solutions which

require the definition of mathematical entities, the potentials, to be formulated and used for

the derivation of the electric field.

3.1.3.2. Inhomogeneous and stratified media

The theoretical foundations for the computation of fields in layered media was already de-

veloped in [47, 48], where a double spatial Fourier transformation was used to reduce the

Maxwell Equations to a one-dimensional differential equation solvable, for instance, using a

transmission line approach; the transformation from the spectral domain to the space domain
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is then performed via the well-known Sommerfeld integral [49]. Great effort has been directed

both to the analytical treatment of the integral and its numerical evaluation [50–53].

The different approaches lead to formulation of the GFs which, though involving integrals

and analytical series, maintain the same characteristics as the free-space ones in terms of

singularity. A relevant difference concerns instead the potential formulation, which is often

badly defined: the definition of the Lorentz Gauge is not evident and it is known for instance

that already in case of a planar stratified medium the scalar potential depends on the orien-

tation of the source. The situation becomes even worse with more complex media, such as

meta-materials.

Even if this work does not involve explicitly the analysis of inhomogeneous structures, these

remarks will be addressed during the illustration of one of the developed numerical method the

Magic Distance Inspired method, (discussed in detail in Chap. 5), as it offers an interesting

possibility of extension towards inhomogeneous structures.

3.1.4. The electrostatics problem

When the frequency approaches zero, ω → 0, the time-harmonic quantities involved in the

problem become constants, currents vanish and the Maxwell Equations (3.1) reduce to:

∇×E = 0 (3.32a)

∇×H = 0 (3.32b)

∇ ·D = ρe (3.32c)

∇ ·B = ρm (3.32d)

Because the electric and magnetic fields are irrotational, they can be expressed as the gradient

of a scalar function, the electrostatic potentials:

E = −∇φES
e (3.33a)

H = −∇φES
m (3.33b)

The boundary condition valid for a PEC, occupying a volume V with surface S = ∂V is also

expressed in terms of the potential as:

φES
e

∣∣
S
= U = const (3.34)

Moreover, in a similar fashion as in the electrodynamic case, and assuming an homogeneous

medium, a manipulation of the electrostatics Maxwell Equations allows to cast the differential

equations, in the form of Laplace equations:

∇2φES
e = −1

ε
ρe (3.35a)

∇2φES
m = − 1

μ
ρm (3.35b)
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which can be used, introducing impulse sources, to derive the electrostatics Green’s Functions:

φES
e (r) =

1

ε

∫
V
dv′ GES

φe,ρe(r | r′) · ρe(r′) (3.36a)

φES
m (r) =

1

μ

∫
V
dv′ GES

φm,ρm(r | r′) · ρm(r′) (3.36b)

where the GFs are given by:

GES
φe,ρe(r) = GES

φm,ρm(r) =
1

4π |r| (3.37)

3.2. Integral Equations

Scattering problems are a particular class of electromagnetic problems where currents are

induced on an object by an external source and are not known a priori; the knowledge of

those currents allows the derivation of the field re-radiated by the object and therefore the

complete electromagnetic characterization of the problem. The analysis of the radiation

characteristics of an antenna can be classified as a scattering problem, and its solution allows

the derivation of all the parameters which characterize the antenna, such as far fields, input

impedance, efficiency, etc.

Integral Equations (IE) [54, 55] can be used for the formulation of scattering problems

involving finite extent geometries. In an IE, the unknown appears under the integral sign

and the solution is typically obtained using numerical techniques, such as the Method of

Moments (MoM). In electromagnetics, an IE can be cast by combining one of the expressions

relating the fields and the currents with the Boundary Condition (BC) valid for the specific

material constituting the scatterer. In this way, the scattered fields, which are function of

the unknown currents (charges in electrostatics), are related to the impressed fields, which

represent the known term in the equation.

Different formulations of IEs are available depending on the nature of the scatterer, the

choice of the BC to enforce, or the formula relating the currents with the fields; among these,

most popular are the Electric Field IE (EFIE), enforcing the BC on the tangential electric

field, the Magnetic Field IE (MFIE), enforcing the BC on the tangential magnetic field,

the Combined Fields IE (CFIE, [56, 57]), combination of EFIE and MFIE, and the Mixed

Potential IE (MPIE, [58], [59, Chapter 3], [60–62]), a version of EFIE which involves vector

and scalar potentials.

Another distinction can be made depending on the region where the currents exist. In the

case of a penetrable scatterer, currents are distributed inside the object, the integrals are

three-dimensional and we have a Volume IE (VIE, [63–65]); if the scatterer is made of a PEC,

currents are distributed only on its surface and we have a Surface IE (SIE). As a remark,

homogenous penetrable scatterers can be also solved via SIE, through the application of the

Equivalence Principle. This formulation requires anyway the introduction of both equivalent
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ε0 , μ0 V

σ→∞

Etot = Einc + Esc

Htot = Hinc + Hsc

(a) (b)

S=∂V

Js = n̂ ×          Htot

Esc

Hsc

E = 0
H = 0

ε0 , μ0
ε0 , μ0

Figure 3.1.: The full wave problem: a metallic object in free space excited by an incident field. (a)
Physical and (b) equivalent problems.

electric and magnetic surface currents, even for non–magnetic bodies, whereas only equivalent

electric volume currents (polarization currents) appear in the VIE treatment of non-magnetic

bodies.

Concerning electrostatics, the equivalent of MPIE is the Electrostatic Potential IE, EPIE.

3.2.1. SIE for conducting bodies in free space

Let us consider (Fig. 3.1) the problem of a Perfect Electric Conductor in a homogeneous

medium, which we identify as free space, excited by an incident field Einc,Hinc. The total

fields Etot,Htot in any point of the space is the combination of the incident field and the

fields Esc,Hsc scattered by the object.

The scattered field is produced by the (unknown) currents induced on the object by the

incident field; by means of the Huygens Principle [66], the metallic body can be removed and

an equivalent problem can be constructed where equivalent electric and magnetic currents

Js,Ms are located on the surface of the scatterer and are radiating in free space:

Js =
[
n̂×Htot

]
S

(3.38a)

Ms =
[
Etot × n̂

]
S
= 0 (3.38b)

as stated by the Boundary Conditions (3.4).

In the equivalent problem, the scattered field can be derived using the Green’s Functions

for homogeneous media introduced in Par. 3.1.3; in particular, all these GFs are formulated
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in terms of the single Green’s Function G (r), defined as:

G (r) =
exp (jk |r|)

4π |r| (3.39)

As the surface currents depend on the total fields, which are unknown, it is necessary to

enforce the Boundary Conditions on the PEC to cast an Integral Equation. Solving the IE

for the surface currents allows a complete description of the electromagnetic problem.

The formulation of the problem as EFIE, MFIE or MPIE depends on the Boundary Con-

dition enforced and on the Green’s Function used. This work is essentially focused on the

solution of full-wave scattering problems via special implementations of SIE in the form of

EFIE and MPIE; the electrostatic problem (EPIE) is also partially involved in the illustration

of the developed methods. The analytical details of the IEs required for the discussion are

recalled in the present chapter.

3.2.2. The Electric Field Integral Equation (EFIE)

In an electromagnetic problem involving PEC objects, magnetic currents are absent and the

EFIE is cast by enforcing the tangential component of the total electric field to vanish on the

surface of the scatterer:

n̂×
∫
S
ds′ ¯̄GE,J

(
r | r′) · Js (r) = −n̂×Einc (r) (3.40)

The relation between the surface currents and the electric field is expressed by the dyadic

Green’s Function ¯̄GE,J, kernel of the integral equation:

¯̄GE,J (r) = −jωμ

(
¯̄I+

∇∇
k2

)
G (r) (3.41)

For the sake of convenience, we include the explicit formulation of the cartesian components

of ¯̄GE,J in spherical coordinates. These formulas will be required later in Chap. 5. Defining

the quantities:

G0 (r) = jωμ
exp (−jkr)

4πr
(3.42)

and

Gr (r) = 1 + 3

[
1

(kr)2
− 1

jkr

]
(3.43)
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the components of ¯̄GE,J are:

Gxx = G0

[
Gr

(
sin2 θ cos2 ϕ− 1

3

)
− 2

3

]
(3.44a)

Gxy = G0Gr

(
sin2 θ sinϕ cosϕ

)
(3.44b)

Gxz = G0Gr (sin θ cosϕ cosϕ) (3.44c)

Gyx = G0Gr

(
sin2 θ sin2 ϕ cosϕ

)
(3.44d)

Gyy = G0

[
Gr

(
sin2 θ sin2 ϕ− 1

3

)
− 2

3

]
(3.44e)

Gyz = G0Gr (sin θ cosϕ sinϕ) (3.44f)

Gzx = G0Gr (sin θ cosϕ cosϕ) (3.44g)

Gzy = G0Gr (sin θ cosϕ sinϕ) (3.44h)

Gzz = G0

[
Gr

(
cos2 θ − 1

3

)
− 2

3

]
(3.44i)

It is obvious that Green’s Functions for the electric field exhibit complex angular dependencies.

This fact will be of paramount relevance in the development of Chap. 5.

3.2.3. The Magnetic Field Integral Equation (MFIE)

The MFIE [67] valid for a three-dimensional PEC in homogeneous unbounded media is derived

by enforcing the Boundary Condition on a fictitious surface S+ at an infinitesimal distance

from the surface of the object: [
n̂ ·
(
Hinc +Hsc

)]
S+

= 0 (3.45)

The scattered field is expressed in terms of the surface electric current through the Green’s

Function ¯̄GH,J:
¯̄GH,J (r) =

¯̄I×∇G (r) (3.46)

and the MFIE is given by:

n̂ ·
∫
S
ds′ ¯̄GH,J

(
r | r′) · Js

(
r′
)
= −n̂ ·Hinc (r) (3.47)

The kernel of the integral ¯̄GH,J involves a derivation which results in a 1/r2 singularity. On

one hand, the MFIE offers advantages with respect to EFIE, one of the most remarkable

being the fact that when discretized with the Method of Moments (Sec. 3.3) it produces

a well-conditioned matrix, whereas the EFIE condition number grows larger reducing the

mesh electrical size [46]. The major limitation of MFIE remains anyway its inadequacy for
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the analysis of open structures or even thin sheets (Par. 3.2.6), an issue that prevents its

application to the common slot antenna problems which are one of the main focuses of this

work.

3.2.4. The Mixed Potential Integral Equation (MPIE)

The Electric Field Integral Equation can be transformed into the Mixed Potential IE by

resorting to the relations introduced in Par. 3.1.2. The electric field is expressed in terms of

potentials by:

E = −jωA−∇φe (3.48)

The vector and scalar potentials are expressed as functions of the surface current and charge

by the respective Green’s Functions (3.30) and (3.31); the Continuity Equation can eventually

be used to obtain a formulation including either both the currents and the charges or the

currents alone.

As no magnetic quantity is involved and currents and charges are distributed on surfaces, the

formalism can be simplified as:

{
¯̄GA,J → ¯̄GA = ¯̄IG

Gφe,ρe → GV = G
(3.49)

{
J → Js

ρe → ρs
(3.50)

Applying the PEC Boundary Condition, the MPIE are derived as:

n̂×

⎡
⎢⎢⎣

+jωμ

∫
S
ds′ ¯̄GA

(
r | r′) · Js

(
r′
)
+

− 1

jωε
∇
∫
S
ds′ GV

(
r | r′) · [∇′ · Js

(
r′
)]
⎤
⎥⎥⎦
r∈S

= n̂×Einc (r) |r∈S (3.51)

or equivalently showing explicitely the charge density:

n̂×

⎡
⎢⎢⎣
+jωμ

∫
S
ds′ ¯̄GA

(
r | r′) · Js

(
r′
)
+

+
1

ε
∇
∫
S
ds′ GV

(
r | r′) · ρs (r′)

⎤
⎥⎥⎦
r∈S

= n̂×Einc (r) |r∈S (3.52)
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3.2.5. The Electrostatic Potential Integral Equation (EPIE)

In the electrostatic problem, the objective of the IE method is the derivation of the unknown

surface charge density lying on the scatterer.

S=∂V

ε0 , μ0

U

V

σ→∞P

G

Figure 3.2.: The electrostatics problem: a metallic object in free space with an impressed voltage U .

The problem of a metallic object with surface S = ∂V lying in free space is reformulated

for electrostatics as sketched in Fig. 3.2, where the PEC is set to a potential U .

The Electrostatic Potential IE can be formulated starting from the MPIE:

n̂×
[
jωμ ¯̄GA ⊗ Js +

1

ε
∇ (GV ⊗ ρs)

]
S

= n̂×Einc
∣∣∣
S

(3.53)

When the MPIE is integrated along an arbitrary path � connecting the ground G with a

generic point P on the surface of the PEC, it becomes:

jωμ

∫ P

G
d� ¯̄GA ⊗ Js +

1

ε
[GV ⊗ ρs − 0] = U (3.54)

Letting the frequency tend to zero, ω → 0 and the EPIE finally writes:

1

ε
GES ⊗ ρs = U (3.55)

where the electrostatic Green’s Function GES, expressing the potential in r generated by an

infinitesimal charge in r′ is defined as:

GES(r) =
1

4π |r| (3.56)
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J1

J2

J1+J2

Figure 3.3.: Degeneration of a thin volume to a 2D geometry.

3.2.6. Open surfaces and slots

The IE formulated in the previous sections are valid for closed, three-dimensional metallic

bodies. Of particular interest in this work is the treatment of indefinitely thin structures,

such as sheets or shells, which are typically used to model the ground plane where slots are

etched.

The transformation from 3D to 2D does not require any modification of the EFIE as it has

been formulated: the condition (3.5a) remains valid as the volume collapses into the zero-

thickness sheet and the currents J1 and J2 are superimposed on the strip itself, as in Fig.

3.3. Therefore, it can be safely written:∮
∂V

dS ¯̄GE,J

(
r | r′) · Js

(
r′
)
=∫

S1

dS ¯̄GE,J

(
r | r′) · J1

(
r′
)
+

∫
S2

dS ¯̄GE,J

(
r | r′) · J2

(
r′
)
=∫

S
dS ¯̄GE,J

(
r | r′) · [J1

(
r′
)
+ J2

(
r′
)]

(3.57)

The MFIE on the other hand is based on (3.5b) which is not valid for infinitely thin geometries:

derived from the general (3.4b), the condition holds only when the magnetic field vanishes on

one side of the surface (which is the case of PEC volumes). A possible solution [46] consists

in excluding from the integration the surface portion δS surrounding the observation point;

the MFIE is then formulated as:

n̂ (r)×Hinc (r) =
Js (r)

2
− n̂×
∫
S−δS

dS ¯̄GH,J

(
r | r′) · Js

(
r′
)

(3.58)

With this choice, treatment [68] is also required when the surface is not planar.

An aperture on a infinite size metallic sheet can be formulated as an equivalent problem

where the sole magnetic equivalent currents are radiating in the free space [37]. On the

other hand, if the aperture is on a reasonably small metallic surface (like the MAST project

satellite platforms) it is frequently advantageous to keep the aperture as a mathematical hole

and model it with the electric currents circulating around it. The slight increase in the number

of unknowns is more than compensated by the simplicity of the formulation which requires

only a single type of GFs.
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3.3. The Method of Moments

As recalled in the previous sections, many electromagnetic problems can be described with

an Integral Equation (IE) derived by the Boundary Conditions (BC) valid for the specific ge-

ometry and material. When the integration limits are fixed, the unknown appears only inside

the integral and the known term is not identically zero, the IE is classified as “inhomogeneous

Fredholm equation of the first kind” [69]. A generic IE of this type would be:

I
[
v(r′)
]
=

∫
dr′ ¯̄G(r|r′) · v(r′) = f(r) (3.59)

Particular formulations of IE generally used for the solution of electromagnetic problems were

discussed in Sec. 3.2; the following treatment applies indistinctly to any of the formulation.

When a closed form solution is not available, the Method of Moments (MoM) can be applied

to solve numerically the IE. The procedure requires the expansion of the unknown v(r′) using
a suitable set of N Basis Functions (BFs) bj defined over a generic domain Bj :

v(r′) =
N∑
j=1

vjbj(r
′) (3.60)

The expansion leads to an equation containing N unknowns in the form:

N∑
j=1

vjI
[
bj(r

′)
]
= f(r) (3.61)

The required linear independent equations are constructed by defining an inner product:

〈t(r), f(r)〉 =
∫
T
dr t∗(r) · f(r) (3.62)

and a set of M (typically M = N) Test Functions (TFs) t, defined over a domain Ti. Forming

the inner product between (3.59) and each test function yields the conditions necessary to

solve the linear system:

[
ZMoM
]
[v] = [f ] ⇒ [v] =

[
ZMoM
]−1

[f ] (3.63)

The generic entry zij of the matrix ZMoM can be written as:

zij = 〈ti, I [bj ]〉 =
∫
Ti

dr

∫
Bj

dr′ t∗i (r) ·
[
¯̄G(r|r′) · bj(r

′)
]

(3.64)
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ΔR(r
)

1
0

0

L+

L−

m+

S+

S−
m−

b+

b−
c

W

r∈S−

r∈S+

Figure 3.4.: The rectangular domain rooftop. The two cells S+ and S− of dimensions L±×W share
an edge with mid-point c; the opposite edges have midpoints m±, which in turn are
respectively the root and the endpoint of the vectors b+ and b− representing the basis
functions.

3.3.1. Basis functions

The criterium which determines the choice of a basis function is its capability of representing

the unknown function within its domain. A benefit of a correct choice of the basis function is

also the mitigation of the singularities appearing in the kernel of the IE.

Typical basis functions are the pulse and the rooftop.

3.3.1.1. Pulse function

A pulse function with support A is written:

�(r) =
{
1 if r ∈ A

0 otherwise
(3.65)

3.3.1.2. Rectangular domain rooftop

The rectangular domain rooftop, is illustrated in Fig. 3.4. In general, the BF is not planar

and the orientation unit vector is defined as:⎧⎪⎪⎨
⎪⎪⎩
b̂+ =

c−m+

L+
, r ∈ S+

b̂− =
m− − c

L− , r ∈ S−
(3.66)
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The basis function is expressed as:


R(r) =

⎧⎪⎪⎨
⎪⎪⎩

(r−m+) · b̂+

L+
b̂+, r ∈ S+

(m− − r) · b̂−

L− b̂−, r ∈ S−
(3.67)

In the case where the BF is oriented along two generic reference system axis ±û and ±v̂,

(3.67) simplifies into:


R(r) =

⎧⎪⎪⎨
⎪⎪⎩

u−m+
u

L+
û, r ∈ S+

m−
v − v

L− v̂, r ∈ S−
(3.68)

The divergence of the rectangular domain BF, which will be required for the computation of

the MoM elements when solving the MPIE, is given in this last hypothesis by:

∇ · 
R(r) =

⎧⎪⎨
⎪⎩
+

1

L+
, r ∈ S+

− 1

L− , r ∈ S−
(3.69)

The formulation provided for the rooftop function, even more complicated than the functions

appearing in some textbook, has the advantage of being valid for generic oriented cell pairs,

a feature of particular relevance in the implementation of the MoM for 3D bodies.

3.3.1.3. Triangular domain rooftop

For the sake of completeness, we include the formulation of triangular domain rooftop func-

tions, also known as RWG [70], illustrated in (Fig. 3.5). Defining the vectors:

b+ (r) = v+ − r r ∈ S+ (3.70a)

b− (r) = r− v− r ∈ S− (3.70b)

the expression of the RWG function is written:


T (r) =
W

2A±b± (r) r ∈ S± (3.71)

A± being the area of the surface S±. The divergence of the triangular domain rooftop is:

∇ · 
T(r) = ± W

A± r ∈ S± (3.72)

Rooftops defined in rectangular and triangular domains can be advantageously simplified by

replacing them by dipoles having the same momentum.
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ΔT(r
)

1
0

0

v+

S+
S−

v−

b+

W

b−

r∈S+
r∈S−

Figure 3.5.: The triangular domain rooftop. The two cells S+ and S− share a common edge of length
W. The opposite corners v± are respectively the root and the endpoint of the vectors
b+ and b− representing the basis functions.

3.3.2. The test function

The choice of the TF determines where the BC is exactly satisfied and is therefore crucial for

an accurate approximation of the solution of the IE.

3.3.2.1. The Galerkin method

One of the most popular choices for the TF is the Galerkin method, [44,71] which consists in

using the Basis Functions themselves as Test Functions:

tj(r) = bj(r
′) (3.73)

With this technique, the BC is actually enforced throughout the whole solution domain (except

the case when the BF is a Dirac Delta) and the highest accuracy for the solution is achieved.

3.3.2.2. Point matching

The Point Matching or Collocation method consists in using as TF the simplest function, the

Dirac’s Delta:

ti(r) = t̂iδ(r − ri) (3.74)

With this choice, the BC is actually enforced only in the point ri ∈ Ti, rather than averaging

it on the entire domain Ti, and no control is directly wielded on the other points. Major

advantage of this technique lies in the computational effort, which is strongly reduced due to

the substitution of a 2D integral with a one-point calculation. Similarly, the Dirac Delta can

be used as BF, thus approximating the current with its value in the point r′j ∈ Bj .
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3.3.2.3. Razor test

With the razor test technique, the function f(r) is multiplied by:

n̂× d� (3.75)

where d� is a path on the domain Tm with endpoints P,Q.

The razor test function is particularly interesting when applied to the MPIE. Since

(n̂× f) · (n̂× d�) = (n̂× d�× n̂) · f = f · d� (3.76)

we have for metallic surfaces:

Q∫
P

Einc · d� = −
Q∫

P

Esc · d� (3.77)

When the scattered field is separated into its vector and scalar potential components, Esc =

−jωA−∇φe, (Par. 3.1.2), the previous equation reduces to:

Q∫
P

Einc · d� = jω

Q∫
P

A · d�+
Q∫

P

∇φe · d� = jω

Q∫
P

A · d�+ [φe(Q)− φe(P )] (3.78)

If in addition the right- and left-hand side integrals are evaluated using the trapezoidal rule

∫ b

a
f(x)dx ≈ f(a) + f(b)

2
(b− a) (3.79)

then the whole computation reduces to the evaluation of A and φe in the endpoints P,Q.

An eventual problem arises if the path d� changes direction within PQ (bent paths). In the

classical case where PQ can be split into two straight segments PR and RQ, we obtain:

∫ Q

P
Einc · d� = jω

[
A(P ) · PR+A(Q) · RQ)

]
+ [φe(Q)− φe(P )] (3.80)

Again, to implement this TF we only need the integral of the excitation electric field along

the path PQ and the discrete values of A and φe at both the endpoints P and Q.

3.3.2.4. Surface test

When using the surface test, we define a unit vector d� along the rim of the test surface Tm

and we test the function f(r) on the whole surface by multiplying it by a vectorial function

t, tangential to Tm in each internal point and additionally orthogonal to d� on the rim.

Like the razor test, the surface test becomes interesting when applied to the solution of the
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MPIE. In this particular case, we obtain:∫
S
ds Einc · t = jω

∫
S
ds A · t+

∫
S
ds ∇φe · t (3.81)

Since

∇φe · t = ∇ · (φet)− (∇ · t)φe (3.82)

then ∫
S
ds ∇ · (φet) =

∮
∂S

φetd� = 0 (3.83)

because of properties we imposed on t. Therefore∫
S
ds Einc · t = jω

∫
S
ds A · t+

∫
S
ds φe (∇ · t) (3.84)

If Tm is the combination of two rectangles Tp and Tq, having centers P and Q and with a

generic orientation, and t is the classical RWG function (which satisfies the hypothesis we

made on t), then the implementation of surface testing using the most approximate values

for the integral (the mean theorem) gives a similar result as the razor test:∫
S
ds Einc · t = jω [SpAt(P ) + SqAt(Q)] + [φe(Q)− φe(P )] (3.85)

3.3.2.5. The Nyström Method

In its original and rigorous formulation, the Nyström Method [72] allows the approximation

of integral equations of the second kind:

ϕ (x)− I [ϕ (x)] = f (x) (3.86)

where the unknown function ϕ appears also outside the integral and I is an integral function

with continuous kernel, which can be any of the convolution products appearing in the IE

previously illustrated:

I [ϕ (x)] =

∫
D
dy G (x|y)ϕ (y) (3.87)

We introduce now a quadrature rule which allows to write the approximated integral as:

IN [ϕ (x)] =

N∑
n=1

wnG (x|yn)ϕ (yn) (3.88)

Then, ϕ (x) solution of (3.86) is approximated by ϕN (x), solution of the linear system:

ϕN (x)− IN [ϕN (x)] = f (x) (3.89)
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The Nyström theorem [73] states that if the values ϕN (xm),m = 1 . . . N satisfy the linear

system:

ϕN (xm)−
N∑

n=1

wnG (xm|yn)ϕN (yn) = f (xm) , m = 1 . . . N (3.90)

then the equation

ϕN (x) = f (x) +

N∑
n=1

wnG (x|yn)ϕN (yn) (3.91)

is a solution of (3.89), approximating ϕ (x).

The application of quadrature methods such as Nyström is limited in principle to second-

kind IEs; we know anyway that the Boundary Condition for PEC (3.5) leads to an IE of the

first kind. These equations are known to violate one or more of the postulates of existence,

uniqueness and continuous dependence of the solution on the enforced quantities, which

identifies them as ill-posed problems.

The extension of the analysis so far illustrated to the electromagnetic problems formulated

via EFIE, MFIE or MPIE requires the introduction of a projection method, an operator which

basically consists in sampling the function ϕ, defined over the domain D, in a collection of

points internal to the domain, enabling an approximate solution of the equations.

Interpolation operators or even the simple collocation method previously discussed belong to

the class of projection methods.

Using the collocation method, we can formulate the following expression for the application

of the Nyström method to the MoM-SIE problems for the computation of the generic entry

of the interaction matrix:

zij =

∫
Ti

ds

∫
Bj

ds′ ti(r) ·
[
¯̄G(r|r′) · bj(r

′)
]

≈
M∑

m=1

N∑
n=1

wmwn t̂i(rm) ·
[
¯̄G(rm|r′n) · b̂j(r

′
n)
] (3.92)

Note that the weights have been distributed into the two sets wm and wn. The beauty of this

formulation lies in the intuitive association of the Nyström with the use of weighted impulse

basis and test functions in the MoM:

ti =

M∑
m=1

wmδ (r− rm) t̂i (3.93a)

bj =
N∑

n=1

wnδ
(
r′ − r′n

)
b̂j (3.93b)

The choice of quadrature points and weights is the key aspect of the method and inspired a

number of different formulations; a driving condition in that sense is the necessity of treating
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the eventual kernel singularities and led for instance to the so-called Local Corrected Nyström

(LCN) [74,75], where singular terms are separately evaluated using a modified algorithm.

In this thesis, we have developed a novel MoM formulation, derived from the Nyström strat-

egy, which allows the simultaneous computation of singular and non-singular terms with an

universal quadrature rule: the “Magic Distance Inspired” method, described in Chap. 5.

3.3.2.6. Resume

The different combinations of basis and test functions illustrated in this section are summa-

rized in Tab. 3.1. In the next chapters, when a MoM procedure is used to check the results

obtained with other strategies, the Galerkin formulation is always used. Also when new sim-

pler MoM versions needed to be calibrated in terms of complexity and accuracy, the Galerkin

MoM formulation is always used as benchmark with the choice of basis / test functions shown

in Tab. 3.2.

Table 3.1.: Method of Moments formulations

Basis Test Formulation

bj ti Generic MoM

bj tj = bj Galerkin

bj δ (r− ri) Point Matching

bj

∫
d� ·� Razor test

bj

∫
Si

ds � · ti Surface test

N∑
n=1

wnδ
(
r′ − r′n

)
b̂j

M∑
m=1

wmδ (r− rm) t̂i Nyström method

Table 3.2.: Choice of functions for Galerkin formulation

IE Basis Test

EFIE J Rooftop Rooftop

MPIE
J Rooftop Rooftop

ρ Pulse Pulse

EPIE ρ Pulse Pulse
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3.3.3. Galerkin-MoM formulation of IEs

The MoM in the Galerkin formulation can be used for the discretization of the Integral

Equations EPIE (3.55), EFIE (3.40) and MPIE, (3.51) or (3.52).

3.3.3.1. The EPIE

As the Green’s Function (3.56) does not include any derivative, finite domain zero-order

(pulse) functions � (r) (3.65) can be safely used as basis / test functions. The generic entry

zij of the MoM matrix can be expressed as:

zij =
1

ε

∫
Si

ds �i(r)

∫
Sj

ds′ �j(r
′)GES(r | r′) (3.94)

=
1

ε

∫
Si

ds

∫
Sj

ds′ GES(r | r′) (3.95)

3.3.3.2. The EFIE

The kernel of the integral is the Green’s Function ¯̄GE,J (3.41) which exhibits a r−3 singularity.

The discretization of the EFIE (3.40) results in matrices whose elements are given by double

surface (and hence 4D) integrals, where - at least in theory - singularity can be integrated.

Using as basis/test functions the rectangular domain RWG 
R (r) (3.67) we obtain:

zij =

∫
Si

ds

∫
Sj

ds′ 
Ri(r) ·
[
¯̄GE,J

(
r | r′) · 
Rj(r

′)
]

(3.96)

3.3.3.3. The MPIE

When applying the MoM to the MPIE (3.51) in a homogeneous environment, the differential

operator outside the second integral can be redistributed to the test function (with a change

of sign). Following this procedure, the generic entries of the MoM matrix, separated into their

vector and scalar potential components aij and vij , can be expressed as:

aij =
jωμ

4π

∫
Si

ds 
Ri(r)

∫
Sj

ds′ 
Rj(r
′)
exp (−jkR)

R
(3.97a)

vij =
(jωε)−1

4π
[∇ · 
Ri(r)]

[∇′ · 
Rj

] ∫
Si

ds

∫
Sj

ds′
exp (−jkR)

R
(3.97b)

with R = |r− r′|.

The zij term of the MoM matrix becomes then sum of four integrals I±i,±j associated to

the interaction between the S+/S− parts of the i-th and j-th 
. If the support of the rooftop
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is a rectangle, we can use (3.66) and (3.67) to derive the partial integral:

I±i,±j =
(−1i+j

) 1

L±
i

1

L±
j∫

T±
i

ds

∫
B±

j

ds′
[(

u−m±
i,u

)(
v −m±

i,v

)
û · v̂ − 1

k20

]
exp (−jkR)

R

(3.98)

whereas with triangular domain rooftops, we have:

I±i,±j =
Li

Ai

Lj

Aj∫
T±
i

ds

∫
B±

j

ds′
1

4

{
t±(r)b±(r′)(̂t · b̂)− 1

k20

[
1

L±
t

] [
1

L±
b

]}
exp (−jkR)

R

(3.99)

3.4. Implementation of MoM

The investigation of new original MoM formulations required at first having at our disposal a

robust home-made MoM implementation. This was the Galerkin strategy described in Tab.

3.2. This reference tool allows the control and manipulation of all the quantities involved in

the computation, that is, the entries of the reaction matrix in their vector and scalar parts

(MPIE) and the algorithm used for the numerical evaluation of the integrals. The generation

of typical outputs such as surface currents and radiated fields was also implemented, in order

to use the software, once validated, as reference against the simplified versions we formulated.

Three of the formulations of IE illustrated in this chapter have been implemented: EPIE for

the electrostatic problem, MPIE and EFIE for the full-wave case. Special attention has been

paid to the evaluation of the self term: while the electrostatic GF allows a closed form solution

of the integral, in the electrodynamic case the presence of the exponential term exp (−jkr) in
¯̄GA, GV (MPIE, (3.49)) or ¯̄GE,J (EFIE, (3.41)) requires either an approximated solution or

numerical integration. In the first case, assuming the size of the cells to be small in terms of

wavelength, the exponential can be expanded in Taylor series: the first term of the expansion

is exactly the electrostatic term and, like the higher-order terms, allows a closed form solution.

The numerical computation of the self term on the other hand cannot be directly performed,

as the singularity appearing in the GF leads to a divergent result or, in the best case, to a

rather inaccurate one. A standard technique [66] was successfully used to tackle this problem

for the MPIE GF: the singularity extraction

exp (−jkr)

4πr
=

exp (−jkr)− 1

4πr
+

1

4πr
(3.100)

The first term on the right hand side is not singular and can be (numerically) evaluated; the

second term is the static GF and is computed analytically, for instance [76].
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Our MoM-Galerkin software was intended to cover the specific range of application related

to the design of the MAST antenna system. This class of electromagnetic problems involves

the scattering of PEC objects in free space (the satellite), hence the formulation discussed

in Par. 3.3.3 constitutes the core of the algorithm. A peculiar characteristic is also the

exclusive presence of rectangular geometries: the cuboidal platform, rectangular (bent) slots,

eventually rectangular patches and PIFAs; this suggests that rectangular domain rooftops

Par. 3.3.1.2 (or rectangular pulses Par. 3.3.1.1 in electrostatics) can be used as basis functions.

MPIE self term

We consider a couple S of rectangular cells S+, S− with endpoints:

S+ = [ua, ub]× [va, vb] (3.101a)

S− = [ub, uc]× [va, vb] (3.101b)

which is associated to an û oriented basis/test function of amplitude:

b (u) =

⎧⎪⎨
⎪⎩

u− ua
ub − ua

u ∈ [ua, ub]

uc − u

uc − ub
u ∈ [ub, uc]

(3.102a)

db (u) = ∇ · b (u) =

⎧⎪⎪⎨
⎪⎪⎩

+
1

ub − ua
u ∈ [ua, ub]

− 1

uc − ub
u ∈ [ub, uc]

(3.102b)

Applying the singularity extraction, the vector potential integral is given by:∫
S
du dv

∫
S
du′ dv′ b (u) b

(
u′
) exp (−jkR)

R
=∫

S
du dv

∫
S
du′ dv′ b (u) b

(
u′
) exp (−jkR)− 1

R
+∫

S
du dv b (u)

{[
b (u)

∫
S
du′ dv′

1

R

]
+

[
db
(
u′
)
du′ dv′

∫
S
du′ dv′

u− u′

R

]} (3.103)

and the scalar potential integral is:∫
S
du dv

∫
S
du′ dv′ db (u) db

(
u′
) exp (−jkR)

R
=∫

S
du dv db (u)

∫
S
du′ dv′ db

(
u′
) exp (−jkR)− 1

R
+∫

S
dudv db (u)

∫
S
du′ dv′ db

(
u′
) 1
R

(3.104)
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Analytical formulas [76] are available for the evaluation of the integrals with kernel 1/R and

(u − u′)/R; note anyway that with this formulation a numerical evaluation is required for

each term [76].

The basis function can also be approximated in order to simplify the computation and the

analytical treatment of the self term. A possibility is replacing the rooftop of amplitude 1

with a pulse of amplitude 1/2: as a result, an equation in the form of (3.104) can be used

indistinctively for the vector and the scalar potential parts. The same procedure can be

applied to the EFIE self-term with the difference that the 1/R3 singularity is only mitigated

by the extraction; the accuracy of the computation is anyway not satisfying and is therefore

necessary to revert to the MPIE formulation.

The numerical evaluation of the integrals is performed using the Gauss-Legendre quadrature

rule. We found that when the structure is meshed with cells of size in the order of λ/10, 10×10

points grids are required for near terms (cells sharing an edge) and 5× 5 points grids for the

generic off-diagonal terms; with this choice, 54 = 625 computations are required for each term

(104 for the near terms). When evaluating the self term, the same point grid cannot be used

for the inner and outer integral, as they produce overlapping points which cause a division by

zero in the first right-hand side of (3.103) and (3.104). Grids of 20× 20× 21× 21 points are

therefore used for the computation of the self terms, for a total of ∼ 1.8 E04 calculations.

3.5. Comparison of the different IE formulations

After recalling the fundamental aspects of the most well-known formulations of IE and MoM,

we resume here those characteristics which, though not constituting any original conclusion,

have driven the choices about the strategy adopted in the following chapters.

In fact, in the frame of the improvement of the developed software SatAF, main objective of

this thesis, a number of well-known, useful considerations concerning the Green’s Function

associated with the different formulations of IE were fundamental for the choice of the

full-wave method to be combined with SatAF, according to the strategy adopted at the end

of Chap. 2. These considerations are resumed hereafter.

A comparison between the two formulations of the IE in electrodynamics, the EFIE and

MPIE, highlights the advantages and the weaknesses of the two.

The dyadic Green’s Function ¯̄GE,J, kernel of the EFIE, can or cannot include the effect of

the material environment surrounding our metallic sheets. Therefore, the complexity of the

dyadic GF goes from the closed-from analytical formulation for free space recalled in (3.41)

to quite involved expressions, like the combinations of Sommerfeld integrals and analytical

series found in the treatment of planar, cylindrical and spherical layered dielectric media.

In all cases, it is known that the double derivative contained in the EFIE GF produces a

singularity in the computation of the self term of order 1/r3 (hypersingularity). This means

that when discretizing the EFIE with a classical MoM procedure, a special treatment must
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be used for the computation of the self-term and a simple scheme like Point-matching, as

reminded in Par. 3.3.2.2, cannot be used. The strong singularity also prevents the use of

otherwise promising approaches like the Nyström method, resumed in Par. 3.3.2.5. It is

true that the space singularity problem can be avoided by solving the EFIE in the spectral

domain [49]; however, spectral approaches are inefficient for arbitrary or non-canonical

geometries. In practice, all commercially successful implementations of EFIE (FEKO [40],

WIPL-D [77]) remain in space domain and resort to the use of two-dimensional basis [70]

and a MoM-Galerkin approach.

In this context, a well-known successful strategy is to transform the EFIE into the

MPIE. The GF appearing in (3.52) exhibits only a mild source-observer singularity of 1/r

type; this simplifies the numerical evaluation of the self term and allows the use of simple

point-matching discretization (Par. 3.3.2.2).

Possible applications to SatAF

When analyzing antenna arrays allocated on small platforms, the electromagnetic problem

can be reduced to metallic surfaces in free space. In this environment, MPIE, or even EFIE,

appear as the most suitable formulations of the IE and can be combined with SatAF for the

local analysis of sub-sets of sources constituting the complete antenna system. If on one hand

the Galerkin formulation is well established as reliable, the demand of reduced computational

speed leads to the investigation of an alternative formulation where the bottle neck of the

algorithm, the computation of 4D integrals, is removed. An eventual price paid in terms of

accuracy of the solution (the surface currents) can be tolerated as long as it does not degrade

the quality of the predictions of the radiated fields, which is the primary target of the analysis

method under investigation.

It is a clear outcome of the well-known concepts reviewed in the present chapter that

the correct treatment of the singularity associated with the self term is the key aspect that

determines the possibility of simplifying (or avoiding) the evaluation of 4D integrals appearing

in the Galerkin formulation of MoM and therefore easing the computational effort required

by the algorithm.

3.6. Conclusions

In this chapter we have recalled, for the sake of completeness, the fundamental elements of

electromagnetism pertinent to the discussion of Integral Equation formulations and their

Method of Moments implementations.

After defining the vector and scalar potential, we derived the different Integral Equations:

the MFIE and the EFIE, its alternative formulation, the MPIE, and the electrostatic version

the EPIE. A review of the most popular choices for the MoM basis and test functions

was performed, with special attention paid to the Nyström method which will be used s
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inspiration for the MoM original formulation described in Chap. 5.

The uniformed notation used in this chapter will be used throughout all the mathematical

formulations performed in the next chapters.





4. Towards an improved version of SatAF

4.1. Introduction

The combination of Array Theory with elementary sources’ radiation patterns, implemented

in the software SatAF, is useful for a first-approach evaluation of the radiation characteristics

of an array of antennas allocated onboard small satellites. Even if the fundamental concept of

taking advantage of the Array Theory is valid for a first approach, the main weakness lies in

the fact that it considers the antenna elements as ideal sources and neglects the true influence

of the currents induced on the platform regions close to the antenna elements, which can

largely modify the radiation pattern. These assumptions are valid and lead to reliable results

only for a restricted class of problems; in particular, it was observed that slot antennas in

particular are a critical element causing the breakdown of the software. In order to extend

the range of applicability of SatAF, it is therefore required an evolution of the analysis method.

The improvement of the method primarily requires the treatment of platform scattering;

in this direction, two different strategies can be adopted. On one side are the methods

that approximate the phenomenon itself: to this category belong the methods based on

ray tracing, which span in increased complexity from the Physical Optics to the more

sophisticated Geometrical Theory of Diffraction and Uniform Theory of Diffraction.

Another approach consists in the use of classical, solid full-wave methods which completely

represent the scattering phenomenon, introducing at the same time approximations in the

formulation that relax the computational effort.

In this work, we selected the Electric Field Integral Equation (EFIE) (or its analogous,

the Mixed Potential IE, MPIE) for the formulation of the electromagnetic problem and the

Method of Moments (MoM) for the solution of the IE.

A first implementation of MoM in the canonical Galerkin formulation, based on the theoreti-

cal concepts recalled in the previous section, is first developed as reference and baseline for

the investigation on a simplified, alternative formulation, which will be illustrated in depth

in the following chapter, Chap. 5.

This chapter is dedicated to the illustration of an original, simplified method for the

analysis and design of slot antenna arrays, based on a Mixed Potential Integral Equation

formulation solved by Method of Moments (MoM-MPIE). Two aspects are addressed in

particular: the simplification of the model used for the excitation of the single slot antenna

and the exploitation of Array Theory, which is now improved by the inclusion of the induced

97
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currents allowed by the MoM, for the generation of the total radiation pattern.

Capitalizing the experience of SatAF, we investigate the actual possibility of replacing the

full-wave simulation of the entire antenna system, which (as discussed in Chap. 2), usually

consists of an array of replicas of a simple radiator in different positions and orientations,

with the combination of 3D Array Theory and a simplified Method of Moments.

Analyzing the simple radiator with MoM enables to control the accuracy in the represen-

tation of the second-order radiation mechanisms through the choice of the elements to be

included in the simulation model. As am example, in the case of a slot lying on a metallic

platform, the simulation can be performed including in the model either the whole structure

or parts of it, for instance a finite ground plane representing one of the faces which being a

2D geometry reduces the complexity of the model. In particular, we are interested in estab-

lishing the limit of applicability of this concept and finding the most useful and significant

compromise between simplification of the model and accuracy of the results.

4.2. Dealing with slots: the excitation problem

Low weight and low profile are key requirements for allocation of devices on satellites and

radiators such as patches, PIFAs and in particular slot antennas are often preferred. The

antenna system developed in the frame of the MAST project itself consists of an array of slot

antennas. In this section we introduce a novel model for the slot excitation, fully compatible

with the well-known Mixed Potential Integral Equation (MPIE) formulation of the problem

solved with Method of Moments (MoM).

An investigation on some of the most well-established excitation techniques for slot

antennas (among others: microstrip feed, coaxial feed) highlights a common phenomenon:

fields are coupled from the feeding network to the radiating element through a charge

accumulation located in proximity of the slot edges. Including in the model the charge

accumulation alone as source is expected to excite the same field as if the entire feeding

structure were present.

The choice of MPIE allows a simple representation of this phenomenon, fully compatible with

the MoM framework: the excitation field is assumed to be produced by two constant (and

opposite) charge distributions located in two cells on the two sides of the slot. An intuitive

justification for this choice is given hereafter.

The most obvious (although not the most sophisticated) way of exciting a slot antenna is

to connect the metallic areas near the long edges of the aperture and facing each other to

the extremities of a transmission line. Imagining that the slot ground plane is meshed with

rectangular cells, the opposite currents excited by the transmission line conductors spread

across the two cells where the conductors are connected and can be expanded with rooftops

(as defined in Par. 3.3.1.2). Taking the divergence of those currents on the respective cells
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Figure 4.1.: Current and charge model for the slot excitation.

yields two constant positive/negative charges associated with the cells themselves. The

concept is illustrated in Fig. 4.1, where the transmission line is represented by a coaxial

cable.

The opposite current densities are located very close, have opposite direction and similar,

if not identical, magnitude; therefore, they can be considered to cancel reciprocally and the

incident field, to be used as known value in the right-hand side of the Integral Equation

(3.52), is obtained using the scalar potential part of (3.97). Note that other formulations of

the Integral Equation different from MPIE (such as Electric Field Integral Equation, EFIE)

do not offer the same possibility as they don’t explicitly contain the contribution of charge

densities to the scattered electric field.

It is worth stressing the fact that with this model, the excitation is given by a part of a

generic entry of the MoM matrix and no extra coding is necessary in addition to the basic

MoM implementation.

As a further simplification, the charge densities do not contribute to far field radiation, which

is therefore produced by the sole surface currents induced on the scatter, which are just the

solution of the MoM. In fact, when the electric field generated by a current J (r) in free space

is decomposed into its vector and scalar potential components according to (3.14), using the

GFs in (3.49) we have for the vector potential:

EA (r) = −jωμ G (r)⊗ J (r)

= −jωμ
exp (−jkr)

4πr
⊗ J (r)

(4.1)
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while the scalar potential part can be expanded as:

EV (r) = +
1

jωε
(∇∇G (r))⊗ J (r)

= − 1

jωε

{
−k2
[(

1− 3

k2r2
+

3 j

kr

)
r̂r̂+

(
1

k2r2
+

j

kr

)
¯̄I

]
exp (−jkr)

4πr

}
⊗ J (r)

(4.2)

In the far field region k |r− r′| � 1, r′ ∈ S (the metallic plate), the terms 1/r, 1/r2 are

neglected and the scalar potential contribution becomes:

EV (r) = +jωμ

(
exp (−jkr)

4πr
r̂r̂

)
⊗ J (r)

= − [EA (r) · r̂] r̂
(4.3)

The far field produced by the charge has therefore the only effect of cancelling the radial

component of the field produced by the current. In our model the excitation consists exactly

of sole charges and does not require to be included in the computation of the far field.

Moreover the major benefit of the proposed method, we can highlight the extreme

simplification of the model, which does not require the design of any additional structure to

excite the slot and reduces the geometry to the very platform itself.

The excitation model has been integrated into an in-house implementation of MPIE - MoM

in the classical Galerkin formulation. The consistency of the model is proved in the next

section by comparing its predictions with the commercial software HFSS in a series of test

cases inspired by the actual design process followed in the MAST project.

4.2.1. Validation

The slot excitation model has been integrated into our MoM algorithm (Sec. 3.4) for the

solution of the MPIE in the Galerkin formulation. The consistency of the model has been

validated through the computation of the surface current Js and the far field in different test

cases and the comparison with the converged values obtained with the commercial software

HFSS.

For a complete benchmark of the model, different shapes of the slot have been explored,

starting from the canonical thin, rectangular slot to bent geometries, like the dog-bone or

the ”C-shaped” slot, which are actually used for practical antenna design. The slots are first

radiating on a ground plane, then on a metallic platform; also for the sake of completeness, a

configuration involving an array of four slots has been included in the benchmark. A working

frequency f = 2GHz (corresponding to a free space wavelength λ = 15 cm) has been used

through the campaign.
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Center-fed slot on ground plane

A canonical half-wavelength slot of 7.5 × 0.4 cm lies on a small ground plane of 10 cm side

and the excitation is located in the center of the slot. The current distribution, illustrated in

Fig. 4.2, is characterized by an accumulation of current around the tips of the slot and can

be recognized to be the typical distribution produced by a thin aperture of length λ/2. The

far field on the two orthogonal elevation planes is compared with the reference in Fig. 4.3

and shows an excellent agreement with the reference.
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Figure 4.2.: Center-fed slot, surface current on the ground plane (results generated with the in-house
MoM).
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Figure 4.3.: Center fed slot, radiation patterns: (a) ϕ = 0deg and (b) ϕ = 90 deg.

Offset-fed slot on ground plane

In a more realistic design, the feed is located with an offset of 2.1 cm from the center of

the slot, in order to match the antenna. The predictions of the surface current Fig. 4.4a

describes correctly the tip behavior at both ends of the slot. Radiated fields exhibit a degree

of accuracy almost identical to the center-fed case, Fig. 4.4b.



102 Chapter 4: Towards an improved version of SatAF

5

X[cm]
0

-5-5

0
Y[cm]

5

Norm Js [-]

0.2 0.4 0.6 0.8 10

(a)

-15

-10

-5

0

5
10

θ = 0◦

180◦

30◦

150◦

60◦

120◦

90◦90◦

120 ◦

60◦

150◦

30◦

ϕ = 0◦ϕ = 180◦

 

 
MoM
HFSS

(b)

Figure 4.4.: Offset-fed slot. (a) Current distribution (in-house MoM) and (b) radiation pattern on
ϕ = 0deg.

Dog-bone and C-shaped slots on ground plane

The excitation model was tested with the more complex slot shapes actually used during

the design of the MAST antenna system. Two examples of relevant interest, similar to the

final design, are the ”dog-bone” and the C-shaped slot. The feed and the characteristic

dimensions of the slots are adjusted in order to achieve a proper input matching. In all the

cases, the current distribution cannot be easily figured out and the predictions obtained with

our method are compared with HFSS, as illustrated in Fig. 4.5 and Fig. 4.6. The comparison

of the radiation patterns on the two main elevation planes are shown in Fig. 4.7 for the

dog-bone and Fig. 4.8 for the C-shaped slot and exhibit again an excellent accuracy.
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Figure 4.5.: Dog-bone slot, surface current on the slot ground plane. (a) MoM and (b) HFSS.
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Figure 4.6.: C-shaped slot, surface current on the slot ground plane. (a) MoM and (b) HFSS.
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Figure 4.7.: Dog-bone slot, radiation patterns: (a) ϕ = 0deg and (b) ϕ = 90 deg.
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Figure 4.8.: C-shaped slot, radiation patterns: (a) ϕ = 0deg and (b) ϕ = 90 deg.
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Slot array in sequential rotation on ground plane

This configuration is conceptually similar to the radiating element located on each face of

the satellite: four single-slots are arranged as a ring on a groundplane of size λ = 15 cm (Fig.

4.9a) and are fed with sequential rotation in order to generate a RHCP polarization. The

double dog-bone slots have been replaced by the simplified canonical slot just for the purpose

of reducing the mesh complexity and avoid an excessive computational load.

The radiation patterns on the main elevation cuts ϕ = 0, 45, 90 are shown in Fig. 4.9b-d;

again, a very high degree of accuracy is obtained.
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Figure 4.9.: Four slots in sequential rotation, (a) layout and surface currents, (b-d) radiation patterns
on ϕ = 0, 45, 90 deg planes.
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4.3. Combination with Array Theory

After having introduced the slot excitation model, which simplifies the computation of the

radiation pattern of a single element, we focus on the problem of an array of slots allocated

on a metallic platform.

In the last of the test configurations shown in Sec. 2.6, involving an array of slot pairs

allocated on a cubic platform, we investigated the potentialities of the combination of SatAF

and HFSS. In particular, the results of the HFSS simulation of one slot pair lying on a

ground plane representing the platform face was imported in SatAF as “basic element” and

manipulated to generate the total radiation pattern. This latter was finally compared against

the full-wave simulation of the entire structure.

Results were promising (Fig. 2.51 to Fig. 2.56) and motivated the attempt of developing an

analysis method tailored for space platform problems.

In this section we validate the first advance made in the direction of the improvement of

SatAF, showing that retaining the same approach used in Sec. 2.6 and just recalled, HFSS

can be seamlessly replaced with our implementation of MoM, which features in particular

the simplified slot excitation model illustrated in this chapter.

To demonstrate the validity of the solution “SatAF + MoM”, we refer to the aforementioned

test configuration, also recalled here in Fig. 4.10; as it was the case in Sec. 2.6, we use again

two different feeding schemes for the elements, named “Feed Scheme 1” and “Feed Scheme 2”.
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Figure 4.10.: The test case, layout.

The predictions of the new solution (SatAF + MoM) are compared in Fig. 4.11 through

Fig. 4.16 with the other previously generated curves representing:

� The combination of SatAF with HFSS (SatAF + HFSS).

� The combination of SatAF with MoM, with the slot excitation model (SatAF + MoM).

� The full-wave simulation of the entire structure, taken as reference (Full HFSS).
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Figure 4.11.: Feed Scheme 1: radiation patterns on ϕ = 0deg cut.
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Figure 4.12.: Feed Scheme 1: radiation patterns on ϕ = 90 deg cut.
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Figure 4.13.: Feed Scheme 1: radiation patterns on θ = 90 deg cut.
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Figure 4.14.: Feed Scheme 2: radiation patterns on ϕ = 0deg cut.
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Figure 4.15.: Feed Scheme 2: radiation patterns on ϕ = 90 deg cut.
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The agreement is very good for all the curves shown; this result is a logical consequence of

the almost perfect agreement observed for the single slots in the previous section.

Also important is to evaluate the accuracy achieved with respect to the measurements of

the POC satellite realized. As usual, the “basic element” which is in this case the customized

slot, is solved with MoM and imported in SatAF, where first the face-element and then

the complete array are built. The measurements available (Par. 2.4.5) are taken along

the two cut-planes “R” (Fig. 4.17) and “RL” (Fig. 4.18), involving the four RHCP faces

of the satellite the former, two R- and two L-HCP the latter: consequently, the quanti-

ties depicted are respectively the RHCP and “BestRL” (strongest of the two CP components).

The scope of this comparison is first to demonstrate the capability of the combination

of SatAF and MoM to provide significant results when complex geometries and slot shapes

are involved. In both cases the objective is well reached and even a substantial accuracy

improvement is observed in the RL measurement.
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Figure 4.17.: Feed Scheme 2: radiation patterns on θ = 90 deg cut.
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Figure 4.18.: Feed Scheme 2: radiation patterns on θ = 90 deg cut.

4.4. Conclusions

In this chapter we investigated the possibility of combining the basic version of the in-

house developed MATLAB software SatAF (implementing a particular formulation of 3D

Array Theory for the solution of platform distributed antenna arrays) with the canonical

implementation of the Mixed Potential Integral Equation, solved via Method of Moments

(MPIE-MoM) in the Galerkin formulation.

The analysis of slot antennas, by themselves of paramount interest in the context of space

application, was identified as one limitations of the original version of SatAF, because of the

impossibility of modeling non-canonical aperture shapes and of the inaccurate predictions

obtained.

Targeting in particular the analysis of slot antennas, we developed a novel, simplified

excitation model, perfectly compatible with the MPIE-MoM framework, which allows the

correct representation of the coupling mechanism (as it is typically performed via microstrip

line or coaxial cable) with the advantage of not requiring the inclusion in the simulation

model of any structure other than the very slot support (ground plane or metallic platform),

for a significant reduction of the model complexity and computational effort.

The excitation model has been validated first with single slots of different shapes of
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practical interest in antenna design (dog-bone or C-shaped slots). Secondly, the reliability of

the combination SatAF-MoM in the analysis of complex antenna systems has been proved

with the application of the method to the most significant test case proposed in Sec. 2.6 and,

most important, to the actual architecture realized in the frame of the MAST project.

In all the cases, the results have met the expectations.

In the following chapter, we perform a further advance in the reduction of the computational

effort. The canonical Galerkin-MoM formulation will be replaced by a novel, simplified MoM

formulation called the “Magic Distance Inspired” method. This method is easily implemented

in MATLAB and can be therefore be directly integrated with the original SatAF version, for

a stand-alone, compact and efficient software.





5. The Magic Distance Inspired method

5.1. Introduction

A very large class of useful antennas and electromagnetic scatterers can be reduced to

open metallic surfaces (metallic sheets) embedded in layered or stratified media. When

dealing with such geometries, the simplest integral equation that can be used for a full-wave

treatment is the Electric Field Integral Equation (EFIE, Par. 3.2.2). The EFIE only involves

tangential electric fields, which are always mathematically well-defined quantities, thanks

to the obvious physical meaning. On the other hand, it is known that a hyper-singularity

of 1/r3 kind is present in all the formulations of ¯̄GE,J (3.41) [78, 79], from the closed-form

analytical formulation valid for free-space to very involved expressions, like the combinations

of Sommerfeld integrals and analytical series found in the treatment of planar, cylindrical and

spherical layered dielectric media [61,80–84]. Even though the space singularity problem can

be avoided by solving the EFIE in the spectral domain [49], these approaches are inefficient

for arbitrary or non-canonical geometries and a more successful strategy is to transform the

EFIE into a Mixed Potential Integral Equation (MPIE, Par. 3.2.4), where the GFs ¯̄GA and

GV exhibit a much milder 1/r singularity [85].

Potentials are however somewhat artificial quantities that can be defined in several ways

and connected through different gauge equations (Coulomb, Lorentz...). The situation is

even worse for the GF associated to these potentials. While in free space, a quite well defined

approach is possible, relatively simple media like isotropic or stratified media already result

in a scalar potential GF whose value can depend on the orientation of the original dipole

source, a strange situation for a potential which is supposed to be created by a point charge.

Moreover, potentials are badly defined (or even impossible to define) in complex media

(anisotropic, gyromagnetic, chiral...) while, due to its physical meaning, the electric field

cannot be affected by any mathematical indetermination.

The obvious conclusion of the above reasoning is that an ideal IE implementation should

be based on fields rather than potentials, but avoiding the strong singularities associated to

the fields.

According with the general IE-MoM developments recalled in Chap. 3, a Galerkin for-

mulation using well behaving basis and test functions is required to compensate the strong

singularity of the fields.

Then, the diagonal elements (or self-terms) in the MoM matrix, where the singularity problem

113
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appears, are given by (3.92) with j = i:

zii =

∫
Si

ds

∫
Si

ds′ ti(r) ·
[
¯̄G(r|r′) · bi(r

′)
]

(5.1)

Here, ¯̄G is a generic GF, defined within a specific environment (homogeneous, stratified,

complex media, a combination of the precedent, etc.) since the singularity problem is

universal for all media. It is obvious that a four-fold integral should be able (at least

in theory) to compensate the 1/R3 field singularity [86, 87]. However, dealing with the

singularity needs quite sophisticated procedures that aims either to the extraction [88–90] or

the cancellation [91–95] of the strong singularity.

This makes the MoM implementation rather cumbersome and far away from the goals

targeted in this thesis.

At the other extremity of the complexity scale, we should consider Nyström methods (intro-

duced and discussed in Par. 3.3.2.5, which essentially consists in the application of a generic

quadrature rule for the numerical approximation of an integral. With this approach a generic

MoM element is simply given by:

zij =
M∑

m=1

N∑
n=1

wmwn
¯̄G(ri,m|r′j,n) (5.2)

As it was pointed out in Chap. 3, the Nyström family includes point-matching (Par. 3.3.2.2)

which can be considered for all practical aspects as a Nyström method, where a quadrature

of order M = 1 (the Mean Theorem of Calculus) is applied to the test domain.

The original Nyström scheme was introduced [72] for the case M = N = 1, which implies

point sources whose values are tested by point-matching. If the same point grid is used,

the equation (5.2) would obviously lead to infinite values for the self-terms when filling the

diagonal of the MoM matrix:

zii = SiSi t̂i · ¯̄G(ri,m|r′i,n) · b̂i (5.3)

since rim ≡ r′im.

A possibility to avoid singular situations in the self-terms is to use different quadrature

orders to perform the integrations in the basis and test functions. As it will be shown later in

this chapter with the Gauss-Legendre quadrature, a direct approach can lead to erratic results.

Another bold idea is to stick to the most simple case M = N = 1 but select different

localisations for the point-wise basis and test functions. This is the concept of “Magic

Distance”. When computing diagonal terms, the distance between the source and test points

RMD =
∣∣ri,m − r′i,n

∣∣ (5.4)
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is selected in such a way that it provides the exact value that could be obtained with a precise

evaluation of the four fold Galerkin integral:

zii =

∫
Si

ds

∫
Si

ds′ ti(r) ·
[
¯̄G
(
r|r′) · bi(r

′)
]

= SiSi t̂i · ¯̄G
(
ri,m|r′i,n

) · b̂i

= SiSi t̂i · ¯̄G (RMD) · b̂i

(5.5)

Also, all our numerical experiments will be performed assuming a free space environment

and therefore using free space Green’s Functions. However, this choice does not limit in any

sense the range of applicability of the method. In fact, the concept of magic distance depends

essentially on the singularity of the involved GFs and this singularity remains the same with

or without dielectrics.

The concept of “Magic Distance” is a very fruitful one, especially when combined with

the strategies underlying the multi-point implementations of the Nyström method. Together,

they provide novel MoM implementations which combine the simplicity of point-matching

with the accuracy of Galerkin. We call them “Magic Distance Inspired (MDI)” methods

and they are the subject of the present chapter.

5.2. On mesh and discretization

Two-dimensional metallic objects (metallic surfaces or sheets) are usually discretized using

flat triangles [70] or quadrangles/trapezoids [96, 97]. Curvilinear cells-domains and the use

of higher-order basis functions on them are obvious improvements in the path to further

sophistication.

As stated in the first chapters, the keyword in this thesis is simplicity. Therefore, the Magic

Distance concept will be introduced in the context of a rectangular mesh and most numerical

tests will be performed on the simplest rectangle, the square. Cartesian orthogonal meshes

are not only the ideal benchmark to test a proof-of-concept implementation: additionally,

they have interest ”per se” in many practical geometries, as those proposed by the European

Space Agency in the frame of the project MAST.

The generalization of the concepts developed in this thesis to quadrangular (trapezoidal) or

triangular meshes is quite straightforward by using homothetic and affine transformations that

mimic the well known transformation used in numerical integration when any quadrangular

shape (including the particular case of a triangle considered as a quadrangle with a zero-length

side) is reduced to a canonical unit square, where quadrature rules are easily applied. For

instance, the concept of Magic Distance on a square cell can be easily transposed to N-sides

polygons by generalizing the definition of the configuration in terms of apothem and radius

(Fig. 5.1) or, alternatively, by using homothetic changes of variables, exactly as done when
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Figure 5.1.: Example of transposition of the Magic Distance from rectangular to triangular mesh.
The vales of the normalized Magic Distance a/A, r/R can be related in the three figures
by simple geometrical considerations.

defining two-dimensional quadrature over non-canonical surfaces.

5.3. General formulation

The characteristic parameters which identify an implementation of the Nyström Method are

the sampling points and the weights. The objective of this work is to define two different

point grids and sets of weights (for the inner and outer integrals) which allow the most

accurate approximation of the MoM matrix in the EFIE formulation. The point grids and

therefore the formulation of the method shall be universal, in the sense that once the point

grid is fixed, it must allow the computation of all the terms of the matrix, including and

especially the self-term, which is the dominant element in the matrix. Key feature of the

method shall be an improved simplicity and computational speed with respect to the classic

implementation of MoM combined with typical integration rules.

In fact, when using quadrature rules like Gauss-Legendre (GL) [98], the computation of

the self term zii involving a singularity of any type 1/rn cannot be performed using the same

number of points M = N for the inner and outer integrals, as they produce identical grids and

therefore zii → ∞. Even using different number of points, the result is only fairly accurate

and only if a high number of points is used, making extremely cumbersome the definition of

a universal interaction grid to be used for all the elements (diagonal and off-diagonal) of the

MoM matrix.

Tab. 5.1 shows an example of the number of significant digits obtained when solving the

vector potential self-term integral (3.97) derived in Par. 3.3.3:

I =

∫
S
ds 
R(r)

∫
S
ds′ 
R(r

′)
1

|r− r′| (5.6)

where the kernel is the first-order Taylor approximation of the Green’s Function G (for which

an analytical solution is available, see Par. 5.3.1) and the integration domain is the unitary

surface S = 1× 1m.

The general structure of the Magic Distance algorithm starts with the choice of two particular
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Table 5.1.: Significant digits obtained using the GL algorithm for the self-term (5.6).

Number of points
Method (∗)

Operations
Result

Significant

M N 4× digits

20 21 Dir 176,400 7.02417... 2

30 31 Dir 864,900 7.02813... 2

40 41 Dir 2,689,600 7.02984... 2

5 6 SE 900 7.03486... 3

10 11 SE 12,100 7.03427... 3

20 21 SE 176,400 7.03397... 4

40 41 SE 2,689,600 7.03388... 5

Analytical 7.03384... -

(∗) Dir = Direct evaluation, SE = Singularity Extraction (Par. 5.3.1)

point-schemes, one for the inner/source integral and one for the outer/observation one. The

different point-schemes are identified by two aspects: the number of points, which directly

determines the numerical complexity and influences the accuracy of the method, and the

distribution of the points on the cell. In order to preserve the symmetrical properties of the

problem, the point arrangements have to maintain a geometrical regularity; this suggest to

ideally collect the points into symmetrical sub-sets associated with one or more parameters,

typically the distance from the center, which locate the position of all the points of the sub-set.

An example of sub-set is the Cross (+) shown in Fig. 5.2, which involves 4 points where the

only parameter is the distance from the center. Point-schemes are therefore reduced to small

numbers of collections of points and are uniquely identified by the parameters associated to

these collections. The choice of the configuration is then completed with the definition of

the weights wm and wn associated to the points or, more specifically, to collections of points

(it is logical that in sub-grids like the cross, all the points must be associated with the same

weight).

RMD

Figure 5.2.: The Cross point-scheme.
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The 4D MoM integral is therefore replaced by:

zij =

∫
Si

ds

∫
Sj

ds′ ti (r) ·
[
¯̄GE,J

(
r | r′) · bj

(
r′
)]

≈
M∑

m=1

N∑
n=1

wmwn t̂i ·
[
¯̄GE,J (ri,m|rj,n) · b̂j

] (5.7)

Remark that with this particular choice, the basis/test function appear explicitly only as

unit vectors, while their magnitude contribution is included in the weights.

The core of the method is the accurate approximation of the most influential terms in the

MoM matrix. In view of this, the parameters defining a point scheme and its weights become

the degrees of freedom which are used to match first the matrix self-term (zST ) and secondly,

for improved accuracy, the other terms of the matrix:

� The near terms zNT , which indicate cell pairs sharing a portion of their domain.

� The adjacent terms zAT , which indicate cell pairs only sharing an edge.

M∑
m=1

N∑
n=1

wmwn t̂i ·
[
¯̄GE,J (ri,m|rj,n) · b̂j

]
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zST

zNT

...

zAT

...

(5.8)

The point scheme which better fits the desired conditions can be obtained, except for a few

trivial cases, using an optimization algorithm. The cost function is built using weights to

prioritize the matching of the elements which influence the MoM matrix most. As a remark,

an attempt of directly optimizing a point grid to match the MoM matrix (or even its inverse)

with the smallest error does not succeed, probably due to the low correlation between the

optimization variables and the cost function, which makes a gradient-based algorithm fail in

finding the right direction to generate the forthcoming point.

It is important to highlight at this point the most relevant differences between the MDI

method and a generic quadrature rule. In fact, the definition of sample points and weights

in the MDI algorithm is performed with the specific intent of matching the self-term (and

eventually the near- or adjacent terms) using a reduced number of points, in the limit a single

source scheme; with such a coarse sampling the GL algorithm would be rather inaccurate

or even unable to perform the integration. On the other hand, no control is granted on

those terms of the MoM matrix where no condition (5.8) is imposed and which are anyway

assumed to have a minor influence on the solution of the system. In order to ensure the

physical meaningfulness of the method, special attention is paid to far-field terms, whose



Section 5.3: General formulation 119

correct evaluation is not granted per-se as with GL, as discussed in Par. 5.3.3.

A second remark concerns reciprocity. The Lorentz Reciprocity Theorem [56] states that

in a linear and isotropic (not necessarily homogeneous) medium, source and observation

points can be interchanged when calculating the electric (or magnetic) field. While most

implementations of MoM satisfy reciprocity and show a symmetric matrix, this is not

necessarily valid for the MDI method, due to the limited number of points used for replacing

the 4D integrals. A significative example is the case of two cells arranged as an ”L”, as shown

in Fig. 5.3: when computing the interaction with MoM, the value is identical regardless

which cell is the source or the observer; this is not the case with MDI method, as the relative

position of observation points (empty circles in Fig. 5.3) with respect to sources (full circles)

is clearly different depending which cell is the source and which is the observer.

Figure 5.3.: Source and observation roles are not interchangeable in the Magic Distance method.

Before entering in the details of the application of the method to particular problems, it

is worth to delve into the treatment of the self term, the definition of the weights and to

introduce the concept of asymptotic convergence.

5.3.1. The self term

The MDI method is based on the most accurate approximation of the self-term of the MoM

matrix zii and the precision this value is computed with is crucial for a correct result. Since

our problem allows the definition of potentials, it is preferable to compute the self-term in the

MPIE formulation, where the kernels of the vector (A) and scalar (V) potential integrals are

the Green’s Functions:

¯̄GA = ¯̄IG GV = G

G =
exp (−jkr)

4πr

(5.9)
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The electrostatic problem (Electric Potential IE, EPIE) allows a closed form solution; the

calculation of the EFIE integral can be reduced to the static part using different strategies:

� Taylor expansion: the exponential term in the GF is linearized assuming a small

distance source-observer:

exp (−jkr) = 1− jkr − 1

2
k2r2 + j

1

6
k3r3 +

1

24
k4r4 + ... (5.10)

This choice is valid when the electric size of the cell is significantly small. Closed form

solution is possible for each term of the series; in particular, when the expansion is

limited to the zero-order, the EFIE GF reduces to the EPIE one.

� Singularity Extraction (SE): the exponential function is re-written as:

exp (−jkr)

r
=

exp (−jkr)− 1

r
+

1

r
= GEXT (r) +G0(r) (5.11)

Note that the term 4π do not appear in the denominator.

This formulation is general applies to any type of source/observer cell.

With SE, the self term is decomposed into a non-singular part which is evaluated numeri-

cally, while the remaining expression is identical to the EPIE and can be solved analytically.

Recalling the expressions of the MoM matrix terms (3.97), we introduce for consistency the

following symbolism:

ai,i =
jωμ

4π
ISTA =

jωμ

4π

(
ISTA,EXT + ISTA,0

)
(5.12a)

vi,i =
(jωε)−1

4π
ISTV =

(jωε)−1

4π

(
ISTV,EXT + ISTV,0

)
(5.12b)

zi,i = ISTEXT + IST0 =
jωμ

4π
ISTA,EXT +

(jωε)−1

4π
ISTV,EXT+

jωμ

4π
ISTA,0 +

(jωε)−1

4π
ISTV,0

(5.12c)

and the same association is made for the near terms and it is indicated by �NT . The static

parts of the A and V integrals differ in the form of the basis/test function, which remains a

rooftop for A and becomes a pulse in V (due to the derivations). The analytical treatment

can be further simplified by approximating the rooftop in the vector potential integral with a

pulse function, allowing the solution of the A integral using the result of the V integral.
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In this work, we provide the closed form expression of the integrals of type:

IST0 =

∫
Si

ds ti

∫
Si

ds′ bi
1

|r− r′| (5.13a)

INT
0 =

∫
Si

ds ti

∫
Sj

ds′ bj
1

|r− r′| (5.13b)

when the basis/test functions are pulses (3.65), Si, Sj are overlapping (self term) or adjacent

cells; when the basis/test functions are rooftops (3.67) Si, Sj are completely overlapping cell

pairs (self term) or cell pairs sharing one cell.

Cells are supposed rectangular (single cell for pulse BF, a couple for RWG) with sides Dx,Dy;

we also define the dimension Dt = 2Dx and the diagonals Dρ =
√

D2
x +D2

y and Dρt =√
(2Dx)

2 +D2
y as depicted in (Fig. 5.4).

Dρ Dρt Dy

Dx

D t

Figure 5.4.: Cell pair: quantities used for the computation of the self-term.

5.3.1.1. Pulse functions

The analytical solution of (5.13) with pulse basis and test function is the exact value of the

self/near terms of the electrostatic MoM matrix; moreover, it is necessary for the computation

of the MPIE self term (the scalar potential part IV,0, or even for the vector potential part

when the rooftop is approximated with a pulse). The near term is not singular, yet its closed

form solution combined with the same techniques used for the self term is convenient for an

improved accuracy.

IST0 = 2DxDy

[
Dx ln

Dρ +Dy

Dx
+Dy ln

Dρ +Dx

Dy
)

]
− 2

3

(
D3

ρ −D3
x −D3

y

)
(5.14a)

INT
0 = DtDy

[
Dt log

(
1

2

Dρt +Dy

Dρ +Dy

)
+Dx log

(
Dρ +Dy

Dx

)
+

Dy log

(
Dρt +Dt

Dρ +Dx

)]
− 1

3
D3

ρt +
2

3
D3

ρ + 2D3
x −

1

3
D3

y

(5.14b)
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5.3.1.2. Rooftop functions

The analytical solution of (5.13a) when basis / test functions are rooftops is required for the

vector potential component IA,0 of the MPIE MoM matrix self term; also, the solution of

(5.13b) can be useful for improved accuracy in the computation of the near terms:

IST0 = D2
xDy

[
1

2
Dx ln

(
Dρ +Dy

Dx

)
+

2

3
Dy ln

(
Dρ +Dx

Dy

)]
− 2

15
D2

x (Dρ −Dx)+

− 1

3

(
D2

y +
1

15

D4
y

D2
x

)
(Dρ −Dy) +

1

90
DρD

2
y

(5.15a)

INT
0 =

1

6
D2

xDy

[
8 ln

(
Dρt +Dy

Dx

)
+ 5 ln

(
Dρ −Dy

Dx

)]
+

4

3
DxD

2
y ln

(
Dρt +Dt

Dρ +Dx

)
+

− 1

12

D4
y

Dx

[
ln

(
Dρt +Dt

Dy

)
+ 2 ln

(
Dρ −Dx

Dy

)]
+[

D3
x −D3

y

3
+

D2
x + 4D2

y

5
Dρ − 4

15

(
D2

x + 2D2
y

)
Dρt

]
+

+
1

90

D2
y

D2
x

[
DρtDρ (Dρt +Dρ)− 3DρD

2
y +D3

y

]

(5.15b)

Numerical tests show that the most accurate result is provided by extracting the

singularity, computing numerically the non-singular integral ISTA/V,EXT and using the

exact formula for the static part ISTA/V,0. Significant degradation is instead introduced

by any other approximation, including the reduction of the rooftop to a pulse function

for the vector potential integral. The computational cost of the numerical integration is

anyway affordable, since the calculation of the self term is a preliminary step of the MDI al-

gorithm to be executed once and does not occur in the iterative part where the matrix is filled.

It is interesting to highlight some properties of the solution of the static part integral IST0 ,

which will be addressed in the next sections. Once the exponential term is removed, the in-

tegrands of IA,0 and IV,0 are pure real functions and so are their solutions. The total integral

I0 is instead a pure imaginary number (see (3.15)) whose sign depends on the values of the

A,V components which are opposite sign and differently weighted.

It turns out that for the self term the integral I0 is always purely imaginary and positive;

moreover, the same applies to the complete integral IST .

In fact, if the static part is associated to the first term of the Taylor expansion of the expo-

nential, one recognizes that since the higher order terms are alternated in sign and decreasing

in magnitude, the total sign is determined by the zero-order term.
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5.3.2. The weights

The Nyström method envisages the use of weights associated to the sampling points. These

weights can either be fixed, or left as a degree of freedom in the optimization process. If weights

are fixed, a possibility is dividing the cell into sectors σm, σn associated to each observation /

source point respectively and integrating the TF/BF on that sector:

wm =

∫
σm

ds t(r)

wn =

∫
σn

ds b(r)

(5.16)

The choice of the sector rule, or any fixed values for the weights, proves to be meaningful for

the computation of the self term. When more matching conditions are requested, the methods

actually deviates form the association with a quadrature rule and follows different laws better

intercepted through optimization.

5.3.3. Asymptotic condition

The weights used with any generic quadrature rule are subject to a condition which is necessary

to ensure the correct evaluation of the integral in a trivial case. Typical example is the 1D

quadrature rule used to approximate the integral:

b∫
a

f(x)dx ≈
N∑

n=1

wnf(xn) (5.17)

The quadrature rule must apply to any function and in particular to the simplest one f(x) = 1,

for which the quadrature rule becomes an exact approximation. Applying (5.17) we obtain

that, according to the constraint, the weights must be subject to:

b∫
a

1 dx = (b− a)

N∑
n=1

wnf(xn) =
N∑

n=1

wn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇒
N∑

n=1

wn = (b− a) (5.18)

Since in the formulation of MDI the terms not included in the optimization are not controlled,

it is important to enforce a constraint on the weights when analyzing the interaction between

two cells in the far field.

We consider the interaction between two generic rectangular cells Si, Sj ∈ S of dimension

ai × bi, aj × bj and whose centers are ri0 and rj0. When |ri − rj| � max {ai, bi, aj , bj}, the
observation point ri is far from the source point rj and the corresponding entry in the MoM
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matrix zi,j can be approximated as:

zMoM
i,j ≈ Si

2

Sj

2
t̂i ·
[
¯̄GE,J (ri0|rj0) · b̂j

]
(5.19)

Following the same reasoning, the same term Ci,j computed using the Nyström Method is

approximated as:

zMDI
i,j ≈ t̂i(ri0) ·

[
¯̄GE,J(ri0|rj0) · b̂j(rj0)

] M∑
m=1

N∑
n=1

wmwn (5.20)

By comparing (5.19) and (5.20), it follows immediately the condition the weights must satisfy:

M∑
m=1

N∑
n=1

wmwn =
Si

2

Sj

2
(5.21)

5.3.4. Phase Correction

The Asymptotic Condition is used to ensure that the particular choice of points and weights

produces a physically meaningful result when the cells are widely spaced and the condition is

obtained through (5.19); anyway, when structures electrically large are analyzed, it is worth

to introduce a more accurate far-field approximation and thus an improved Asymptotic

Condition.

In order to verify first the validity of (5.19), we investigate the degree of accuracy obtained

when the 4D integral with kernel ¯̄GE,J, computed using the Gauss-Legendre method with

(M ×M) × (N ×N) points, is replaced first by a 2D integral, associated to N = 1 source

points (or equivalently M = 1 observation points) and secondly with the M = N = 1 point-

to-point (P2P) calculation of ¯̄GE,J, which is actually representing the Asymptotic Condition

as it is formulated in (5.19). Since the integrand is only dependent on the distance, we expect

that collapsing the cell into its center introduces an error on the two approximations which

is asymptotically decreasing with the distance between the cells.

As test case we consider two cells constituted by pairs of squares of size λ/10, located at

increasing distances (Fig. 5.5). Even when the spacing between the cells becomes very large,

in the order of the dozen of wavelengths, the error does not decrease below the threshold of

3% (2D) and 7% (P2P). The error reduces when cells are smaller, but still tends to a limit

value greater than zero.

We identified the reason for this behaviour in the effect of the phase delay associated to

the exponential exp (−jkr): similarly to Array Theory, where the path difference must be

accounted for, in this case the distance between the points into the cells can be averaged by

the distance between the centers everywhere in ¯̄GE,J with the exception of exp (−jkr). If
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λ/10
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2

0

1

X [ λ ]

Figure 5.5.: The test case used for the Phase Correction.

¯̄GE,J = ¯̄G
0

EJ exp (−jkR) , it is:∫
So

ds

∫
Ss

ds′ t (r) ·
[
¯̄GE,J

(
r | r′) · b (r′)]

=

∫
So

ds

∫
Ss

ds′ t (r) ·
[
¯̄G

0

E,J

(
r | r′) · b (r′)] exp (−jk

∣∣r− r′
∣∣)

≈
∫
So

ds t (r) ·
[
¯̄G

0

E,J

(
r, r′s
) · b̂] ∫

Ss

ds′ b
(
r′
)
exp (−jkR) (2D) (5.22)

≈ t̂ ·
[
¯̄G

0

E,J

(
ro, r

′
s

) · b̂] ∫
So

ds

∫
Ss

ds′ t (r) b
(
r′
)
exp (−jkR) (P2P) (5.23)

with R representing the projection of the vector (r− r′) on the unit vector r̂os which links the

center of the source and observation cells. The 2D and P2P approximations can be improved

by evaluating the terms:

I2D (r) =

∫
So

ds b
(
r′
)
exp (−jkR) (5.24)

IP2P =

∫
So

ds

∫
Ss

ds′ t (r) b
(
r′
)
exp (−jkR) (5.25)

The integrals can be solved analytically. With reference to Fig. 5.6, we define the unit vector

r̂os as:

r̂os =
(xo − xs) x̂+ (yo − ys) ŷ√
(xo − xs)

2 + (yo − ys)
2
= cosφx̂+ sinφŷ = αx̂+ βŷ (5.26)

and the distance between the centers of the cells:

Ros = α (xo − xs) + β (yo − ys) (5.27)
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ro

ros

r′s
αx̂

βŷ

r̂os

r′

r

R
So

Ss φ

Figure 5.6.: Formalism used for the derivation of the Phase Correction.

The solutions of the two integrals are in the form:

Ψ2D (r) = Ψ0
2D exp [−jk (αx+ βy)] exp (−jkRos) (5.28)

ΨP2P = Ψ0
P2P exp (−jkRos) (5.29)

and the terms Ψ0
2D, and Ψ0

P2P in the two cases valid when the segments associated with the

cell pairs are parallel ( ‖ ) or orthogonal (⊥ ):

Ψ0
2D = DxDy

1− cos (α kDx)

α2 k2D2
x / 2

sin (β kDy / 2)

β kDy / 2
(5.30)

Ψ0
P2P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(Dx Dy)

2 [1− cos (αkDx)]
2

α4 k4D4
x / 4

1− cos (β kDy)

β2 k2D2
y / 2

( ‖ )

(Dx Dy)
2 sin3 (α kDx/2)

α3 k3D3
x / 8

sin3 (βkDy/2)

β3 k3D3
y / 8

(⊥ )

(5.31)

Note the dependency of Ψ2D on r.

The benefit of the introduction of the Phase Correction is demonstrated by the curves

in Figs. 5.7 and 5.8 showing the relative error for increasing distances between the cells at

different values of φ (as defined in Fig. 5.6). All the cases highlight that without Phase

Correction the error on the integrals tends to a limit value in the order of a few percents,

around twice as much in IP2P than in I2D, whereas with the introduction of the corrective

terms (5.28) it approaches zero within a few wavelengths.

Therefore, this original treatment of Phase Correction is a simple but essential operation

to be implemented in all our operations.
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Figure 5.7.: Improvement in the computation of far-field terms given by the introduction of the Phase
Correction: φ = 0, 30 cases.
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Figure 5.8.: Improvement in the computation of far-field terms given by the introduction of the Phase
Correction: φ = 60, 90 cases.
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5.4. The electrostatic case: the EPIE

The primary objective of the MDI method is the analysis of full-wave problems; yet, for the

sake of clarity in the illustration of the method we prefer to discuss first the details of the

algorithm when this is applied to an electrostatic problem.

In electrostatics, the sources used in the MDI method are infinitesimal charges ρs which

produce in the observation points the potential V , which is a scalar quantity. When rectangu-

lar domain pulses are used as basis/test functions (Par. 3.2.5), the expression of the generic

entry of the MoM matrix is:

zij =
1

ε0

∫
Si

ds

∫
Sj

ds′ GES(r | r′) (5.32)

with GES being the Green’s Function:

GES(r | r′) = 1

4π |r− r′| (5.33)

The first step of the method consists in the most accurate computation of the self-, near- and

adjacent terms (and any other term one desires to include in the optimization). The integral

(5.32) can be solved analytically and the closed-form expression for the self term and the near

term were given in (5.14).

Secondly, the expressions of the same terms are formulated in the shape of MDI entries (5.8),

leaving the position of the points and eventually the weights dependent on the set of variables

ν used for the optimization: νwo and νws for the observer / source weights and νpo and νps
for the position of the observer / source points:

zMDI (ν) =
1

ε0

M∑
m=1

N∑
n=1

wm (νwo)wn (νws)G
ES [ri,m (νpo) |rj,n (νps)] (5.34)

By taking the appropriate i,j cells we obtain the terms zMDI
ST , zMDI

NT , zMDI
AT ..., respectively the

self-, near- and adjacent terms. By equating these terms to the analytical solutions (5.14) we

generate the linear system: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zMDI
ST (ν)= 1

ε0
IST0

zMDI
NT (ν)= 1

ε0
INT
0

zMDI
AT (ν)= 1

ε0
IAT
0

...

(5.35)

The linear system is then solved using classical optimization algorithms whose cost function

C (ν) is derived from the linear system and can include weight Ω to prioritize the matching



130 Chapter 5: The Magic Distance Inspired method

condition on specific terms:

C (ν) =

√
ΩST

(
zMDI
ST (ν)− IST0 /ε0

)2
+ΩNT

(
zMDI
NT (ν)− INT

0 /ε0
)2

+ ...

ΩST +ΩNT + ...
(5.36)

Care should be taken in constraining the variables ν within the cell domain; in fact, this is

not necessarily a strict requirement but preserves the consistency of a physical insight.

The discussion proceeds in the following section with the study of the most basic configu-

rations and their application to a real electrostatic problem. A preliminary evaluation of the

performance of the method is then assessed on the basis of the obtained results.

5.4.1. Configurations for the electrostatic problem

In this section, we illustrate the logical reasoning which leads to the identification of the

simplest and most accurate point schemes for a typical electrostatic problem. We begin the

discussion by focusing on the self term in an abstract environment, with the only assumption

of a regular mesh for the metallic object using rectangular cells of size Dx ·Dy, the center of

the i-th cell being ri0. Then, we proceed to the complete explanation of the algorithm by

introducing a realistic benchmark case, whose analysis with MDI is performed and compared

with the classical MoM. The obtained results are finally shown and discussed as preliminary

assessment on the validity of the method, which will then be extended to the full-wave

problem in Sec. 5.6.

Targeting simplicity, we try initially a N = 1 source scheme, placing the source point in

the middle of the cell. In this case, the single weight associated to the source-inner integral is

w1 = ab. We have then:

zMDI
ij ≈ DxDy

ε0

M∑
m=1

wm GES(rim|rj0) (5.37)

The weights associated to the observation points are constrained by the Asymptotic Condition

reformulated for electrostatics:
M∑

m=1

wm = DxDy (5.38)

In principle, it is possible to select also M = 1 observation point, placed in a generic point

ri∗ ∈ Si excluding the center of the cell to avoid the singularity. This choice produces for the
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generic term and the self-term respectively:

zij ≈ (DxDy)
2

ε0
GES(ri∗|rj0) (5.39)

zii ≈ (DxDy)
2

ε0
GES(ri∗|ri0) (5.40)

Focusing on the self term, one can recognize that the only parameter determining its value is

R = |ri,∗ − ri,0|, which corresponds to the distance of the observation point from the center

of the cell. If properly adjusted, this distance can produce an exact value for the self-term:

zMDI
ST =

(DxDy)
2

4πε0
· 1
R

=
1

4πε0
IST0 (5.41)

⇒ R =
1

IST
· (DxDy)

2 (5.42)

The integral IST has been analytically computed in Par. 5.3.1. By inserting the first value of

the (5.14), one obtains the R which exactly matches the self-term. If the case of a square cell

of unitary size Dx = Dy = 1m, the distance is

RMD = 0.336336866593418... ≈ 1/3 (5.43)

value which we call the “Magic Distance”.

If usingM = 1 observation point is enough for an accurate computation of the self-term, the

same cannot be expected for the off-diagonal terms of the MoM matrix. In fact, a grid with a

single point placed outside the center of the cell, is evidently asymmetric. With respect to the

rectangular mesh adopted, symmetrical grids can be generated using at least 4 observation

points which can be arranged as a “Cross” (+) or “Star” (×), as it is shown in Fig. 5.9.

Star

RS

Cross

RC

α

Figure 5.9.: The “Cross” (+) and “Star” (x) configurations
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The expression for the zij entry of the MoM matrix becomes then:

zMDI
ij =

DxDy

4πε0

4∑
m=1

DxDy

4

1

|rim − rj0| (5.44)

where rmi is defined in a different way depending on the grid used:

rim =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ri0

{
±d x̂

±d ŷ
(+)

ri0 ± d cosα x̂± d sinα ŷ (×)

(5.45)

The value of zMDI
ST only depends on the distance source-observation, therefore both grids

produce an identical representation of the self-term; the choice between the grids depends

then on the accuracy achieved on the other entries of the MoM matrix.

The problem used as benchmark in the following sections consists of a square metallic plate

of size 1m× 1m, lying on an infinite groundplane and set to a voltage U = 1V. The plate is

meshed with 10× 10 cells (Fig. 5.10), numbered following the x-oriented rows. The ordering

of the cells influences the shape of the MDI matrix; with this choice, cells 2 and 11 are near-

terms for cell 1 while cell 12 represents the diagonal term. The surface charge density ρs,

as well as the capacity C = Q/U , Q being the total charge on the plate, are computed and

compared with the implementation of the canonical MoM.

0.5

U = 1V

X [m]0

-0.5-0.5

0

0.5

Y [m]

Figure 5.10.: The test configuration used for MDI applied to the electrostatic problem.
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5.4.1.1. The cross configuration

The Magic Distance algorithm is run first with the only goal of matching the self term.

The approximated matrix computed using the method is compared with the classic MoM

one and the relative error on each term is shown in Fig. 5.11. The error on the self term

is practically zero while the peak, which falls on the first near-term corresponding to the

interaction between two adjacent cells, is around 6.5%. The Root Mean Square (RMS) error

on the matrix is around 1.5%, which propagates to 3.5% on the surface charge and is finally

reduced to 1.7% on the capacitance confirming the expectations. It is also interesting to

observe how the error decreases with the distance between the interacting cells, in agreement

with what discussed in Par. 5.3.3.
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Figure 5.11.: Cross configuration, relative error on the MoM matrix.

When the near-term is included in the optimization, 0 < ΩNT < ΩST in (5.36), only a

minor improvement is observed. On the other hand, if one tries to sacrifice accuracy on the

self-term for the near-term, no satisfying compromise is found and the reduced error on zMDI
NT

is paid with a major degradation on zMDI
ST ; also remarkable is that the optimal location of

the points moves towards the borders of the cell, even if no constraint is set on their position.

The conclusion is that a second set of points is necessary for a further improvement of the

method’s performance.

The configuration “Star” (×) shows characteristics similar to “Cross” with only a slightly
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higher error on the near-term and having no peculiar aspects is not further discussed to avoid

redundancies.

5.4.1.2. The Cross-Star configuration

It can be seen that already using a 4 points grid the accuracy in the computed surface

charge density is already satisfying. Anyway, in view of the application of the method to the

electrodynamics case we illustrate here the principle which allows a better approximation of

the first adjacent term, which here is the one affected by the highest error.

The idea consists in introducing beside the “Cross” a second set points, for instance the “Star”,

for a total of 8 observation points characterized by the distance from the center RC (+) and RS

(×), Fig. 5.9. These two degrees of freedom can now be optimized to produce a configuration

which minimizes the error on both the self- and the first near-term simultaneously; further

extending the reasoning, the diagonal near-term (DT, the one sharing only one corner) can

be also optimized. The zMDI terms are therefore expressed, assuming square cells of side

Dx = Dy = L, by the following:

zMDI
ST =

(DxDy)
2

4πε0
· 1
8

(
4

RC
+

4

RS

)
(5.46a)

zMDI
NT =

(DxDy)
2

4πε0
· 1
8

⎛
⎝ 1

L+RC
+

1

L−RC
+

2√
L+R2

C

+

2√(
L+RS/

√
2
)2

+R2
S/2

+
2√(

L−RS/
√
2
)2

+R2
S/2

⎞
⎠

(5.46b)

zMDI
DT =

(DxDy)
2

4πε0
· 1
8

(
2√

L2 + (L+RC)2
+

2√
L2 + (L−RC)2

+

1(√
2L+RS

) + 1(√
2L−RS

) + 2√
(L+RS/

√
2)2 + (L−RS/

√
2)2

⎞
⎠ (5.46c)

The weights associated with the two sets of points can be fixed or used as a third (one weight

is actually free, the other is forced by the Asymptotic Condition) optimization variable. In

the first case, they can either be set equal, wC = wS = L2/8, or defined by the sector rule:

wC =
L2

4
tan

π

8
(5.47a)

wS =
L2

4

(
1− tan

π

8

)
(5.47b)

In all the cases, a slight improvement is observed, with the errors on the near and diagonal

terms, ENT and EDT , reduced to a value around 4%. If the constraint on the position is
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removed and points are allowed to lie outside their cell, then a better agreement is obtained

(peak error 3% on the diagonal term). Both error matrices are shown in Fig. 5.12.
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Figure 5.12.: Relative error on the MDI matrix for the Cross-Star configuration with fixed weights:
(a) with position constraint and (b) with the constraint removed.

When the weight is included in the optimization, an interesting result is obtained. When

trying to match all the conditions with the sole “Cross” configuration, points were located on

the border of the cell, an average accuracy was achieved for the NT and DT, but the error

on the ST was elevated. When the “Star” is added, the optimal location for the “Cross” set

remains close to the border, while the “Star” points are concentrated near the source with a
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very little weight (around 1% of “Cross”). This way, the accuracy on the near- and diagonal

terms is preserved and the self term is corrected by the new set of points.

The error of the matrix generated using an optimized solution is shown in Fig. 5.13: as

expected, the error on the near term is clearly minimized below 1% and the peak falls on

the diagonal term. The RMS error on the matrix is also below 1%. The accuracy of the

surface charge density is determined by comparison with MoM and is shown in Fig. 5.14:

an excellent degree of matching is achieved, with RMS error halved (1.5%) and capacitance

practically exact (error smaller than 0.3% on a value of 45 pF).
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Figure 5.13.: Relative error on the MDI matrix for the Cross-Star configuration with optimized
weights, full matrix and particular.
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Figure 5.14.: Surface charge: comparison with MoM.
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5.5. Infinite Ground Plane

The original formulation of the Magic Distance Inspired method is open for application to

different formulations of Integral Equations; moreover, its capability of completely handling

the EFIE kernel and its hypersingularity without resorting to the definition of potentials

makes it a versatile solution for problems involving complex media, such as stratified layers;

in this environments, the formulation of the IE remains the same while the characteristics of

the stratification are included in the Green’s Function.

For the sake of simplicity, in the previous chapter we applied the MDI algorithm to the

electrostatic problem of a metallic surface in the free-space. In order to demonstrate that the

method is also suitable for more complex GFs, we introduce in the patch problem an Infinite

Ground Plane (IGP, Fig. 5.15).

n̂

h=1m
0.5

U = 1V

X [m]0

-0.5-0.5

0

0.5

Y [m]

Figure 5.15.: The test configuration including an Infinite Ground Plane.

The GF, formulated in the spatial domain, depends on the distance h of the source form

the ground plane:

GES
(
r | r′) = 1

4π

[
1

|r− r′| −
1

|r− r′ + 2hn̂|
]

(5.48)

The Method of Moments is used as reference for the results of MDI. In the MoM, the ground

plane is substituted by means of the image theorem with a second patch in z = −h; the

GF remains therefore the free-space one, two patches are included in the simulation model

and the number of unknowns is doubled. Despite the different formulation of the GFs, the

accuracy of the approximation is again very good (Fig. 5.16), even improved with respect to

the free-space problem, as well as the precision on the surface charge and the capacity (159 pF).



138 Chapter 5: The Magic Distance Inspired method

1 20 40 60 80 100
1

20

40

60

80

100
Columns

R
ow

s

0.2

2

1.4

1.6

1.2

1.8

1

Relative
error [%]

0.8

0.6

0.4

Figure 5.16.: Error on the MDI with Cross-Star point grid for the electrostatic case with infinite
ground plane.

5.5.1. Application to rectangular cells

The MDI algorithm has been applied in the previous section to square cells. In view of an

extension of the method to other types of mesh, we investigated the stability of the value

of the MD RMD found in (5.43) for square cells when the cell becomes a rectangle. As the

dependency of RMD on the cell aspect ratio is expressed by the quantity IST0 (5.14), we

reformulate IST0 (Dx,Dy) as IST0 (η, σ) with the variables η (cell aspect ration) and σ (cell

surface) are defined as:

⎧⎨
⎩η =

Dy

Dx

σ = Dx ·Dy
⇐⇒

⎧⎪⎨
⎪⎩
Dx =

√
σ

η

Dy =
√
η · σ

(5.49)

We obtain:

IST0 (η, σ) =

2

(
σ

η

)3/2 [
η ln
(√

1 + η2 + η2
)
+ η2 ln

(√
1 + η2 + 1

η2

)]
− 1

3

[(
1 + η2
)3/2 − η3 − 1

]
(5.50)
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We consider cells with a fixed surface σ = 1 and we compute (5.50) for different cell aspect

ratios, i.e. IST0 (η, 1). Normalizing with respect to the value for square cells IST0 (1, 1) we

derive the curve illustrated in Fig. 5.17.
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Figure 5.17.: Variation of the normalized four fold, self-term integral IST
0 for different cell aspect

ratios.

The variation within a range of aspect ratios of 1 : 2 is negligible (Err < 2.5%), while an

acceptable stability is observed up to aspect ratios in the order of 1 : 4.

We saw in (5.41) that RMD is directly and uniquely related to IST0 : therefore the stability

of the integral immediately translates into the validity of the Magic Distance for non-square

cells. The MDI method based on the value of RMD found for the square cell can be applied

to rectangular cells with moderate values of aspect ratios; the case of extreme values of aspect

ratio can be considered as an unusual mesh which is anyway often avoided also in canonical

MoM implementations.

5.5.2. Resume

The performance of the different point-schemes employed for the generation of the MDI reac-

tion matrix associated with the electrostatic problem are resumed in Tab. 5.2.
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Table 5.2.: Performance of the different point-schemes used in the electrostatic problem.

Scheme Weights Points
Peak RMS

Acceleration (∗)
Error % Error %

Cross Fixed 4 6.5 1.5 > 150

Star Fixed 4 7 1.7 > 150

Cross + Star Fixed 8 4 1 ∼ 80

Cross + Star Opt 8 < 1 < 1 ∼ 80

(∗) Acceleration represents the ratio between the number of evaluation points required when solving the 4D
integral with a 5 points GL quadrature (54 = 625) and the number of points used in MDI.

5.6. The full-wave problem: the EFIE

In the previous section we have demonstrated that the “Magic Distance Inspired” method

can be successfully employed to fill the MoM matrix associated to a generic electro-

static problem involving a metallic object in a homogeneous medium, also in presence of an

infinite ground plane. In this section we apply the same methodology to the full-wave problem.

Different possible formulations are available for the Integral Equation: among these, we

focus our interest in the Electric Field Integral Equation (EFIE) and the Mixed Potential

Integral Equation (MPIE). A detailed mathematical treatment of the two was described in

Par. 3.2.2 and Par. 3.2.4.

We show in the following sections that a straightforward application of MDI to the MPIE is

possible, while the characteristics of the EFIE Green’s Function only allow a less intuitive

insight of the method. Nevertheless, a successful implementation of MDI for full wave

problems is obtained featuring a very good accuracy with a strongly reduced number of

computations.

The full-wave problem presents several aspects that differ from the static case and need to

be treated additionally. The Green’s Function is now the dyadic ¯̄GE,J (3.41) which contains

terms in the order of 1/r2 and 1/r3 other than the 1/r present in electrostatics; the stronger

interaction between source and observation point is expected to make more difficult the

definition of a point grid which produces high accuracy on the self- term and on the adjacent

terms. Secondly, in the integral equation (3.40), the unknown and the known terms are

now vectorial quantities, Js and Einc; consequently, the source will be identified with an

infinitesimal dipole, in replacement of the charge used in electrostatics. Moreover, the entries
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of the MDI matrix depend not only on the distance source/observer but also on their relative

position. Finally, the use of the standard Galerkin method (Par. 3.3.2) and the choice of

RWG functions (3.67) makes the basis / test functions segment-associated: this introduces

a whole new set of relative orientation of source/observation cell pairs, which can generate

quasi-singularities or even singularities also for off-diagonal terms.

All the elements necessary to build the MDI algorithm were introduced in the previous

section: the computation of the self term (5.15), the possibilities for the choice of the weights

(5.16), the enforcement of the Asymptotic Condition (5.21) eventually including the Phase

Correction (5.68).

In the following sections, the optimal point schemes for the electrodynamic case are derived

and discussed. The investigation starts with an overview of the analytical properties of the

algorithm adapted to the full-wave problem; subsequently a benchmark case is introduced to

evaluate the performance of the specific configuration. In order to clarify the formalism used

in the following sections, we illustrate here extensively the benchmark model and the format

in which the results will be presented.

5.6.1. The benchmark model

The investigation on the different point schemes to be used by the Magic Distance method

requires after the treatment of the self- and near- terms, which can be conducted with

an analytical approach and is mainly oriented to the approximation of the MoM matrix,

a realistic test case to determine the overall performance of the method, its capability of

producing the most important electromagnetic quantities, such as currents and radiated

fields, and its accuracy on the predictions.

The MoM in its Galerkin formulation is known to be among the most solid and best

performing simulation tools; consequently, a method based on its approximation is expected

to be reliable as long as the approximation is accurate. The core of the MoM (and identically

of MDI) lies in the computation of the entries of the interaction matrix and those values

are dependent on the relative position of the cells. Once the basis/test functions are fixed

(rectangular domain rooftops in this work), then the same amount of information can be

extracted by simple geometries as well as complex ones; yet, being the solution of the method

based on the inverse of the interaction matrix, on which we have no direct control, it is

necessary to define an excitation, anyone, to generate the results. Also, as already discussed

(Sec. 5.3), the method will be tested using the free-space Green’s Function.

Based on these considerations, a perfectly meaningful and yet simple geometry to be used

as benchmark is a square metallic patch of one wavelength size. The patch is normal to ẑ

and is meshed with a grid of 10 × 10 cells of size λ/10, resulting in 180 internal segments,

90 aligned along x̂ and 90 along ŷ. The patch is illuminated by a plane wave with normal
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angle of incidence and the electric field is parallel to one of the patch edges (here x̂). The

benchmark structure is depicted in Fig. 5.18.
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X [cm
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Figure 5.18.: The benchmark structure for the full-wave problem.

The current distribution induced by the plane wave on the patch is known to tend to

infinite when approaching the patch edges which are parallel to the impinging electric field;

this makes the solution of the problem already challenging with this simple geometry.

The results will be presented in different formats: the error on the entries of the Z matrix

will be presented as a rectangular plot showing the first row of the matrix; this will ease

the reading and the comparison with other curves (also due to the size of the matrix itself,

180 × 180 and will contain all the necessary information (all the possible combination of

position source/observer). The values of the surface current will be shown as a 3D color-plot

and, for a better comparison with MoM, as a segment-by-segment rectangular plot. The

format of the rectangular plots basically depends on the fact that the basis/test functions

are segment-associated and on the numbering rule used for the segments; these are ordered

first by orientation (x̂, ŷ then ẑ) then by position, spanning consecutively the x, y and z

coordinate. An example of the correspondence between mesh and rectangular plot is shown

in Fig. 5.19.

5.6.2. Full-wave implementation of the MDI method

The application of the MDI method to the Electric Field Integral Equation follows quite

straightforwardly from the formulation for the electrostatic problem.

In view of this, we need to consider the Mixed Potential version combined with the Galerkin-

MoM formulation in the case of rectangular mesh and typical RWG basis/test functions, Par.

3.3.1. The four fold integral is separated into its vector and scalar potential parts, according
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Figure 5.19.: Correspondence between cell couples and rectangular plots.

to (3.97), both with kernel exp (−jkr) /r and weighted the former by a rooftop function, by

pulse functions (due to the derivatives) the latter. In the hypothesis of electrically small cells,

the exponential can be approximated with the first-order term of its Taylor expansion (5.10).

As sketched in Fig. 5.20, the scalar potential integral is exactly the combination of two static

self-term integrals (5.14a) plus two static near-term integrals (5.14b), taken with the proper

sign. The vector potential can also be reduced to a contribution in the form (5.14a) with the

further approximation of replacing the rooftop with a pulse (Fig. 5.20).

Summarizing, the procedure involves the computation of the electrostatic self-term for both

potentials, plus the near-term for the scalar potential. It was found in Par. 5.4.1 that a 8

points grid (a “Cross” and a “Star”) was necessary to achieve a good degree of accuracy for

both terms. It is therefore expected that the same condition holds for the electrodynamic

case in the MPIE formulation. On the other hand, the results of the next section, where

the electrostatic configurations are used to find the MD which approximates the 4D integral

with kernel ¯̄GE,J show that no physically meaningful value can be obtained, confirming the

expected increase in complexity associated with the EFIE.

5.6.3. Electrostatics configurations

The first logical step consists in applying to the EFIE the same point schemes successfully

used for the EPIE in Par. 3.2.5. These configurations, readapted to the segment-associated

rooftops, are illustrated in Fig. 5.21. Some important conclusions about these configurations

can be drawn from the mathematical analysis of the source-field interaction. The source is

an infinitesimal electric dipole parallel to the cell’s BF and, in the observation point, the

TF-oriented E-field component is taken. Let us also suppose the weights to be fixed according

to the Sector Rule (5.16). As previously stated, the matrix entry which is important to

approximate with the highest precision is the self term: in analogy with electrostatic, we first

attempt to derive analytically the optimal position of the points (the Magic Distance) which
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ḠA

Static self-term

GV

2×

Static
self-term

Static
near-term

Figure 5.20.: Intuitive adaptation of the electrostatic MDI to full-wave.
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Figure 5.21.: Cross and Star configurations for segment-associated BF.

produce an exact value (with exact we refer to the most accurate computation available).

Considering an x̂ oriented BF/dipole, its x̂ oriented component of the electric field was given

in Par. 3.2.2, (3.44):

EXX
TF =

jωμ

4π

exp (−jkr)

r

{[
1− 3

(
1

(kr)2
− 1

jkr

)](
sin2 θ cos2 φ− 1

3

)
− 2

3

}
(5.51)

(5.52)

In the hypothesis, generally verified, of electrically small cells, we can use the near-field formula

to compute the MDI value at the four points relative to the two configurations at the generic

distance R : kR � 1.

EXX
NF =

jωμ

4π

1

r3
(
1− 3 sin2 θ cos2 φ

)
(5.53)

For the “Cross” configuration (Fig. 5.21) we have:

EXX
TF =

jωμ

4π

1

r3

{
(−2) (P1,P3)

(+1) (P2,P4)
(5.54)

Applying the Sector Rule (5.16) for the weights we also obtain:

wn = A/2 n = 1 (5.55)

wm =

{
A/6 (P1,P3)

A/3 (P2,P4)
m = 1..4 (5.56)

with A representing the cell surface. Combining weights and field values, we obtain the result:

zMDI
ST =

jωμ

4π

1

r3
A

2

[
A

6
(−2) +

A

3
(+1) +

A

6
(−2) +

A

3
(+1)

]
= 0 (5.57)

Thus, the resulting approximation of the MoM self term is identically zero!
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The case of “Star” configuration (Fig. 5.21) can be treated in the same way and leads to

the expression of the near field:

EXX
TF =

jωμ

4π

1

r3

(
−1

2

)
(P1..P4) (5.58)

while the weights are:

wn = A/2 n = 1 (5.59)

wm = A/8 m = 1..4 (5.60)

The MDI term is then:

zMDI
ST =

jωμ

4π

1

r3
A

2

[
4

(
−1

2

)]
= −jωμ

4π

A2

32

1

r3
= −jC

1

r3
(5.61)

Due to the near-field approximation, the z term is purely imaginary and negative ( C > 0 is

the coefficient collecting all the other constants). Following the procedure, in order to derive

the Magic Distance we equal (5.61) to (5.15), again in the hypothesis that the cell is small

enough that the exponential term can be neglected and the 4D integral can be replaced by

IST0 :

RMD = 3

√
−j

1

ωε

A2

32π

1

IST0

(5.62)

Now, being Re
{
IST0
}
= 0 and Im

{
IST0
}
> 0 (see Par. 5.3.1), the value of RMD is the cubic

root of a negative number meaning RMD is a negative distance!

It appears therefore impossible to use a single degree of freedom (and therefore a unique

Magic Distance value) for the EFIE. So, more involved configurations will be explored in the

following sections.

5.6.4. Single-source configurations

In the previous section we demonstrated that simple point schemes like those used for

electrostatics, the “Cross” and “Star” configurations, cannot be directly applied to the

full-wave problem, as they result is identically zero fields or yield negative, nonphysical Magic

Distances. Targeting simplicity and computational speed as key features of the method, we

decided to take advantage of the results of the study conducted in the previous section and

investigate reduced point schemes, before trying configurations with increased number of

points. The idea of deriving of the Magic Distance only on the basis of geometrical or physical

considerations, rather than through an optimization is indeed attracting and deserves special

attention, provided it turns out to be capable to approximate the MoM matrix at least with

fair accuracy.

The performed study consists in an extensive investigation on the possible choices concerning
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the MDI method, which can be fixed using specific rules or left for optimization, and the

choice of the weights, again definable by a rule or used as optimization variable. Moreover,

in electrodynamics a correct approximation of the self-term is a necessary but definitely not

sufficient condition for the accurate representation of the MoM matrix, due to the different

cell superposition and orientation possibilities.

5.6.4.1. Two and four points configurations

We consider a pair of adjacent cells of size (Dx,Dy). Three possibilities were tried for the

computation of the MDs:

� fixed, in the barycenter of the sector associated with the point

� fixed, derived by enforcing the matching condition on the self term

� left for optimization

and for the weights:

� fixed, determined by the sector-rule

� included as variables in the optimization (still enforcing the Asymptotic Condition)

We also selected two point schemes for the study:

� a N = 1 source, M = 2 observation points placed along the segment associated to the

TF

� a N = 1 source, M = 4 observation points placed as “Cross” but with different distances

d1 and d2 along the axes

With N = 2 points, weights are automatically determined by symmetry considerations.

Barycenter and Sector rule

In the case of N = 2 points, sectors are the rectangles of sides (2Dx,Dy/2) and the MD is

immediately RMD = Dy/4. With four points, the sectors are triangles: since the barycenter

of a generic triangle with endpoints (xa, ya) , (xb, yb) , (xc, yc) is:

Pb =

(
xa + xb + xc

3
,
ya + yb + yc

3

)
(5.63)

we find the values of RMD associated with points P1...P4 as in Fig. 5.21:

RMD =

{
2Dx/3 (P1, P3)

Dy/3 (P2, P4)
(5.64)
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In both cases, the accuracy of this naive attempt is quite poor, but shows that also in the

full-wave problem the error asymptotically decreases with the distance.

Self-term matching and Sector rule

While the technique applied to the “Cross” configuration yields a negative distance, with

the simpler 2 points configuration it is possible to derive a physically meaningful value for the

MD when enforcing the matching condition on the self term. The procedure is the same as

discussed in Par. 5.6.3 for “Cross” and “Star” configurations and leads to the value for the

MD:

RMD = 3

√
+j

1

ωε

A2

16π

1

IST0

(5.65)

which, having IST0 only a positive imaginary part, yields a valid value for RMD. In fact,

generating the MDI matrix and comparing with MoM in the case of very small cells (λ/40),

confirms that the error on the self term is safely below 1%. It is then interesting to explore

up to which limit holds the hypothesis of near-field approximation made for the infinitesimal

dipole field and for the exponential term exp (−jkr). We observed that the error remains

acceptable for λ/20 cells (∼ 3%), then deviates reaching 16% for λ/10 cells. As a result, a

more accurate model for the self-term, either involving higher order Taylor expansion or the

numerical evaluation of the integral is definitely required.

A last remark is necessary on the value of the MD: when square cells are used, the

observation point falls outside the cell, regardless the frequency or the electric size of the cell.

While from a purely mathematical insight this does not create any conflict with the validity

of the solution, from an engineering point of view testing a quantity relative to a domain

outside the domain itself sounds inconsistent. When correcting the aspect ratio of the cell

Dy/Dx to 2 or more, the observation point comes back within the cell; anyway this artifice

is to no avail as the aspect ratio becomes the reciprocal for orthogonal segments.

Optimization and Sector rule

Concerning the 2 points case, the optimization algorithm confirms the expectations: when

cells are square, the optimal observation point lies on the border of the cell (inside which it

is constrained) and the error is relevant; when the cell aspect ratio is 2:1, the optimization

succeeds in minimizing the cost function and the error falls below 1%.

In agreement with expectations is also the output of the optimization algorithm for the

4 points case. If the point distance is fixed to a single variable d1 = d2 = d, then the

cost function cannot be minimized, meaning the self term cannot be matched with this

configuration. This result confirms the analysis discussed in Par. 5.6.3.

If two independent variables are used, the self term can be matched but still the off-diagonal

terms need improved accuracy.
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Figure 5.22.: Relative error associated to the “Cross” configuration with position and weights values
optimized.

Full optimization

As final attempt to reach a satisfactory precision with a 4 points scheme, we optimize the

position of the points and the weights (subject to the Asymptotic Condition), for a total of

three independent variables. A significant improvement in the overall accuracy is observed

(Fig. 5.22), with an error on the two near-terms reduced below 15%. Yet, other terms still

show a major deviation which requires more complex configurations to be suppressed. As a

remark, the optimization outputs a value for the weights which is near one for the points P2

and P4 and consequently close to zero for P1 and P3. This result actually seems to tend

exactly to the 2-point configuration; yet, removing the quasi-zero weighted points leaves the

error practically unchanged, with the exception of the self term which now is affected by an

error higher than 400%. As a conclusion, the points added have the only function of correcting

the self term, while they do not affect the off-diagonal terms. A similar behaviour was also

observed when using the 8 points configuration in electrostatics, Par. 5.4.1.

5.6.4.2. Six, eight and twelve points configurations

The four-points configurations were interesting cases of study, yet their performance cannot

be considered satisfying for an all-purpose simulation method. In this section, we perform

an investigation on point schemes featuring an increasing number of points, with the aim

of finding the best compromise between accuracy and computational requirements. The

performance of a point grid is evaluated by referring to the error on the MDI matrix with

respect to the MoM one; both the peak error on single terms and the RMS error are
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accounted for in the evaluation.

Once a significant accuracy on the matrix is achieved, the focus is moved to the inverse

matrix and the solution of the system, the surface current.

A 6 point configuration

A significant improvement in the accuracy is obtained by combining a “Star” configuration

with an additional couple of points lying along the segment joining the cell pair, for a total

of 6 points and 4 optimization variables. The optimized point grid and the error on the MDI

matrix are shown in Fig. 5.23 and Fig. 5.24 respectively.
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Figure 5.23.: Point scheme featuring 6 points.
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Figure 5.24.: Error on the MDI matrix obtained with a 6 points grid.
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The RMS value is halved (10 % against the 19% of the 4 points configuration); when used

to solve scattering problems like the benchmark (Par. 5.6.1) this is solution a good option at

least for a first-approach analysis.

An 8 point configuration

The accuracy in the representation of the MoM matrix can be increased by adding

observation points, avoiding on the other hand to compromise the effort of obtaining a fast

and simple method.

The configuration, illustrated in Fig. 5.25, consists of 2 sets of 4 points; each of them is a

“Star” and the positions of the points, spanning across the whole cell, are defined by d1x and

d1y and d2x and d2y. A further improvement is observed with this point grid: the RMS error

is again halved (5%) and the peak error, limited below 35%, affects only terms with a minor

influence on the matrix, as shown in Fig. 5.26.

d2x,d2y

d1x,d1y

Figure 5.25.: Point scheme featuring 2 sets of 4 points.
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Figure 5.26.: Double Star configuration, relative error.
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As a remark, the optimization outputs a particular position for one of the stars: points

are located very close to the diagonals of the double-cell. Anyway, if they are forced to lie on

the diagonal, thus removing a degree of freedom, the error critically increases.

Further reduction of the peak error, falling on the ”L” adjacent term (Fig. 5.19 in Par.

5.6.1) can be obtained by including the weights in the optimization. Anyway, the accuracy

on the MDI matrix obtained with the 8 points grid represents the limit above which the

reduction of the error is not worth the increase of points (at least for a cell size in the

order of λ/10, see Par. 5.6.7); moreover, even doubling the number of points, the error is

redistributed among the matrix entries, rather than decreased. On the other hand, the error

on the inverse matrix is closely related to the accuracy of the solution and, even though it

cannot be directly manipulated, can be taken as figure of merit; if correctly interpreted it

provides in fact an evaluation of the performance independent on the excitation but also

closely related to the solution.

The MoM matrix and its inverse have a similar shape: they are characterized by strong

diagonal elements and a dispersion of second-order terms associated (at least in the non

inverted matrix) to interaction between orthogonal, nearby elements. While in the direct

matrix the matching of the lesser order entries is ensured by the Asymptotic Condition (even

without Phase Correction), in the inverse matrix these entries play the role of a ”background

noise”. In fact, they do not contribute significantly to the solution, but affect strongly the

RMS error; therefore, the evaluation of the latter is more meaningful if lesser magnitude

elements are ”filtered” and not considered. In particular, setting to threshold 3% of the

maximum value generally provides a certain correlation between the RMS error on the

inverse matrix and on the current.

Concerning the previously illustrated configurations, the optimized 4 points grid produces a

RMS error exceeding 100%, the 6 points one ∼ 72% and the 8 points one 52%.

A 12 point configuration

The highest degree of accuracy in the inverse matrix and in the surface current, still with

a limited number of calculations, is obtained using 12 observation points. The configuration

is an evolution of those already discussed; it consists of three “Star” as is shown in Fig. 5.27

where the points and the respective sectors are highlighted. In this configuration, the weights

are associated to their sectors:

w1 =
D2

x

6
tan
(π
8

)

w2 =
DxDy

4
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6
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8

)
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1
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Figure 5.27.: The 12 point scheme consisting of three “Star” sets of points.

The error on the MDI matrix is shown in Fig. 5.28. Using fixed weights, the RMS error

on the inverse of ZMDI can be reduced around 25%; this result is almost not improved by

including the weights in the optimization (unlike for the previous configurations); on the

other hand, the cost function is minimized with more difficulty. This suggests that when

the number of variables increases the optimization algorithm loses efficiency; in these cases,

a choice based on physical insight could be preferred, even if at least in principle is not the

optimal solution.
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Figure 5.28.: Triple Star configuration, relative error.

This point scheme is suitable to show the accuracy of the predictions of the surface current

achievable with the Magic Distance method. The benchmark problem has been introduced in

details in Par. 5.6.1 and involves a metallic patch illuminated by a plane wave. The solution

is compared with the canonical implementation of MoM-MPIE (Galerkin formulation) in Fig.

5.29 (segment-wise comparison) and Fig. 5.30 (surface plots): the degree of accuracy is very

good, with an RMS error lower than 6%.
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Figure 5.29.: Comparison of the surface current predictions between the Magic Distance Inspired
method (Triple Star point grid) and the canonical MoM.
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Figure 5.30.: Surface currents on the metallic patch computed with (a) Magic Distance Inspired
method and (b) MoM.



Section 5.6: The full-wave problem: the EFIE 155

5.6.5. Multi-source configurations

The configurations so far illustrated, consisting of a single point for the inner integral,

produce very good results with 8 or 12 observation points. Replacing a 2D integral by a single

point may however seem an unsafe approximation, as all the information about the basis

function is practically lost. Moreover, in the case of non-planar cell couples, the direction of

the basis / test function is not well defined; therefore, in view of an extension of the MDI

algorithm to 3D problems, it is mandatory to remove points from the segments.

The driving strategy adopted for the study is similar to the one previously illustrated

for single-source configurations, with the additional constraint of completely separating

the source and observation associated sectors, in order to avoid singularities which make

the optimization algorithm fail. We identified different interesting point grids based on

combinations of subsets of points; the result can be summarized in the configuration that

represents the best trade-off between accuracy and number of points employed.

The configuration is composed by 4 sources and 4 observation points and is sketched in

Fig. 5.31.

d2x,d2y

d1

d1

Figure 5.31.: The configuration with 4 source points and 4 observation points.

5.6.6. The impact of phase correction

In Par. 5.3.4 we discussed the opportunity of introducing a phase correction term in the

numerical evaluation of the MoM entries, when one point is used for the inner integral. The

result was an improvement in the asymptotic behaviour of the error, decreasing from a steady

value of 3% to zero.

The Magic Distance Inspired algorithm cannot be classified as a generic quadrature rule:

in fact, while with algorithms like Gauss-Legendre the correct evaluation of far field terms is

intrinsically ensured, MDI requires the enforcement of the Asymptotic Condition to compute
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Figure 5.32.: Formalism used for the derivation of the Phase Correction for the MDI algorithm.

the far field terms.

The Phase Correction must be introduced in the frame of the Magic Distance method by

operating on the Asymptotic Condition, in particular on the approximation (5.19). The

correction is necessary not only if a single point is used as source or observation (equivalently

to the 2D cases) but with any M ×N grid (while the 4D GL integration does not require any

correction).

In order to derive the corrected version of the Asymptotic Condition for the term zij , with

reference to Fig. 5.32 we introduce the following quantities:

� Ri,j is the vector connecting the centers of the i-th and j-th cells.

� ri,m ∈ Si and rj,n ∈ Sj are the absolute positions of the m-th observation and n-th

source point.

� ρi,m and ρj,n are the positions of ri,m and rj,n with respect to the center of their cells.

� R is the distance between ri,m and rj,n, projected on Ri,j :

R = Ri,j + ρi,m · R̂i,j − ρj,n · R̂i,j = Ri,j +Rm,n (5.67)

� The Phase Correction ΨP2P , which is defined in (5.28) and (5.30): ΨP2P =

Ψ0
i,j exp (−jkRi,j), and depends (through αi,j and βi,j) only on the relative position

of the cells.

Using such formalism, the Asymptotic Condition (5.21) becomes:

M∑
m=1

N∑
n=1

wmwn exp (−jkRm,n) = Ψ0
i,j (5.68)
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Figure 5.33.: Layout of the test cases used for Phase Correction.

The last weight can be obtained as:

wM =

[
Ψ0

i,j −
M−1∑
m=1

N∑
n=1

wmwn exp (−jkRm,n)

]
·
[

N∑
n=1

wn exp (−jkRM,n)

]−1

(5.69)

The phase correction term is obtained by applying the far field approximation of the

exponential part of the GF, that is assuming parallel rays, condition which is hardly

valid for near terms. The MDI algorithm on the other hand is based on the computation

of near (self) terms, which are used to derive the optimal distances of the points. The

correct way of implementing this feature is therefore running the original MDI algorithm

and correcting the matrix terms relative to cells spaced more than a certain threshold distance.

In order to estimate the distance after which the Phase Correction actually improves the

approximation of the MoM matrix elements, we introduce two test cases: a long, thin strip in

the x- and y-direction. In analogy with Par. 5.3.4, these two geometries allow the observation

of the effect of the increased distance for different relative orientation between cells. The

layout of the two cases is shown in Fig. 5.33; while the x-oriented strip is clearly associated

with the φ = 0 case, note that in the y-oriented strip only the values associated to y-oriented

segments are considered, as they represent cell couples with increasing spacing in the φ = 90

case. The results will be presented as the error curves (with respect to MoM) relative to the

row of the MDI matrix associated to the first y-oriented segment (joining the first cell couple).

Three point schemes, discussed in Par. 5.6.4, have been used in the comparison, all including

a single source point and the following observation grids:

� 4 points “Cross”

� 8 points “Double Star”

� 12 points “Triple Star”

Also, in all the configurations the weights have been included in the optimization.
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Cross

The “Cross” configuration is known to be affected by a significant error (Fig. 5.22),

especially on the adjacent term in the φ = 90 direction. The comparison of the curves

obtained when including or not the Phase Correction are shown in Fig. 5.34.

In agreement with the expectation, the Phase Correction improves the far field accuracy

with an error asymptotically decreasing to zero. In the case of the x-oriented strip, the bene-

fits of the Phase Correction appear when the distance is around λ/2; more interesting, for the

y-oriented strip the improvement takes place in all the terms not included in the optimization.

Double Star

The best compromise between accuracy and number of points, the ”Double Cross” is

affected only by a modest error (Fig. 5.26), making this comparison the most significative

for a practical implementation of the Magic Distance Inspired method. The comparison of

the curves obtained when including or not the Phase Correction are shown in Fig. 5.35.

Expectations are again confirmed: the good performance of the MDI method is improved with

Phase Correction starting form a distance of 0.8λ in the φ = 0 case and 0.3λ in the φ = 90 case.

Triple Star

The accuracy of the MDI method with Phase Correction is almost independent on the

specific point grid employed; on the other hand, the improvement introduced with respect

to the basic MDI algorithm is related to the point scheme. To illustrate this behavior, we

apply here the Phase Correction to the most accurate (and expensive) scheme developed,

the ”Triple Star”. The comparison of the curves obtained when including or not the Phase

Correction are shown in Fig. 5.36. Note that the length of the strips have been increased for

a more complete illustration of the comparison.

While the curves relative to the Phase Correction version are practically unchanged, now

the basic algorithm exhibits an accuracy which is practically comparable with the corrected

version, with an asymptotic error well below 1%.

After the discussed results, we can conclude that Phase Correction is mandatory for grids

with reduced number of points; it is also recommended for an all-purpose implementation (8

points scheme) especially with geometries larger than one wavelength. When high accuracy

is requested, the basic version of the MDI algorithm with at least a 12 point grid can be

successfully employed.
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Figure 5.34.: Cross configuration: error on the MDI matrix, with and without Phase Correction: (a),
x-oriented strip and (b), y-oriented strip.
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Figure 5.35.: Double Star configuration: error on the MDI matrix, with and without Phase Correc-
tion: (a), x-oriented strip and (b), y-oriented strip.
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Figure 5.36.: Triple Star configuration: error on the MDI matrix, with and without Phase Correction:
(a), x-oriented strip and (b), y-oriented strip.



160 Chapter 5: The Magic Distance Inspired method

5.6.7. Application to small cells

The Magic Distance Inspired method was applied in the previous sections to benchmark

geometries which were meshed with cells of size in the order of λ/10, which is a standard

value in most discretizations. With regards to such a mesh, it was shown which point scheme

offered the best compromise between accuracy and computational speed. The obtained

results hold in general for a wide range of cell sizes, but a special remark must be made when

particularly small cells are used to mesh the geometry.

When the size of the cells drops below λ/20, the accuracy achieved even with the

point scheme which was indicated as the best performing (Star-observation, Cross-source

configuration, 4× 4 points, Fig. 5.31) suffers a significant degradation.

All the theoretical discussion on which the Magic Distance Inspired method is based is not

invalidated, and in fact not even affected, by the electrical size of the integration domain and

remans perfectly effective for any mesh used. On the contrary, the reason of this phenomenon

lies in the fact that when cells are smaller, the interaction between them is stronger and the

weights of the associated entries in the MoM matrix is higher. Those entries, which in the

case of a regular mesh were not included in the cost function as their influence on the MoM

matrix was negligible (and thus the error committed on them was affordable), assume with a

finer mesh a major computational role and require to be treated together with the near and

adjacent terms. Not controlling those terms results in general in a strong degradation of the

accuracy of the solution.

The increase of the number of influent entries translates in a higher number of conditions

to be satisfied through the minimization of the cost function; this calls immediately for a

higher number of degrees of freedom, introduced using grids with an increased number of

points. Also, from another point of view, the degree of accuracy achieved with previous point

schemes is not high enough to produce correct results for small cells.

An interesting solution, which we found to produce very accurate results up to mesh cells

of size λ/40, and also maintaining a reasonable precision up to cells one half of that size,

envisages the use of the triple star configuration, shown in Fig. 5.27, for the observation

points and the “Cross” for the source points.

The accuracy improvement can be observed by solving a problem similar to the benchmark

used so far, where the size of the square plate is reduced to 5× 5 cm for a cell size of 0.5 cm =

λ/30. When employing the Triple Star point-grid introduced in Par. 5.6.4, an error level

which was shown to produce good results generates instead a meaningless solution. The new

point grid produces on the other hand a highly accurate matrix, as shown in Fig. 5.37, with

a peak error below 5%; the surface current is now correctly predicted, as shown in Fig. 5.38.

Even if the increased accuracy comes at the price of a higher number of calculations (12×4 =

48 computations per term) the comparison with the Gauss-Legendre algorithm is still in favor

of MDI: using 5 points in GL requires a much higher number (54 = 625) of computations and

yet produces rather inaccurate results.
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Figure 5.37.: Error on the MoM matrix obtained with the 12× 4 point grid.
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Figure 5.38.: Solution of the benchmark problem (surface current on the patch) when the cell size is
λ/20. Results obtained with the 12× 4 point grid.
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5.7. Summary of the full-wave benchmarks

The performance of the different point-schemes illustrated in this section are resumed in Tab.

5.3.

Table 5.3.: Performance of the different MDI point schemes when solving the benchmark problem.

Scheme Weights Points
Peak RMS Error %

Acceleration (∗)
Error % Direct Inverse

Cross Opt 4 > 120 20 > 100 > 150

Line + Star Fixed 6 > 45 10 ∼ 70 > 100

Double Star Fixed 8 < 40 8 ∼ 50 ∼ 80

Double Star Opt 8 < 35 7.5 ∼ 40 ∼ 80

Triple Star Opt 12 < 30 < 6 ∼ 25 ∼ 50

Cross/Star Fixed 4/4 < 15 < 5 ∼ 20 ∼ 40

Triple Star/Cross Opt 12/4 < 5 < 2 ∼ 12 ∼ 13

(∗) Acceleration represents the ratio between the number of evaluation points required when solving the 4D
integral with a 5 points GL quadrature (54 = 625) and the number of points used in MDI.

5.8. Conclusions

In this chapter, the concept of “Magic Distance” has been introduced, with the goal of

providing a fast and simplified MoM implementation that can be used as improved input for

the SatAF software.

The Magic Distance concept bridges the gap between two strategies currently used to

discretize integrals equations: point-matching and Nyström . In its simplified form, the magic

distance is just the source-observer distance producing, for the self (diagonal) term, the

same result as the full Galerkin interaction between a basis and a test function. Therefore,

the use of Magic Distance guarantees to obtain an exact value for the self-terms in the

diagonal of the MoM matrix. Of course, due to evident physical arguments, replacing basis

and test functions by single source and observer points should provide also results that are

asymptotically exact when the distance between basis and test functions increase. Therefore,

good results should be expected from a crude and simple application of Magic Distance

concept and this is the case in electrostatic problems. Although precisions will ultimately
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depend on shapes and geometries, some representative benchmark cases show that an average

accuracy above 93 % for the surface charge density is possible in electrostatic problems.

For even better results, it is necessary to control also the accuracy obtained when computing

the near-diagonal MoM matrix elements. This is easily generalized by introducing multi-point

schemes with points arranged in crosses, stars and weights attributed to each point. This leads

to the so-called Magic Distance Inspired (MDI) algorithms where the involved source-observer

distances are fine-tuned by numerical optimization. For instance an electrostatic MDI al-

gorithm can provide a mean error in the charge distribution lower than 1% with only 8 points.

The situation is more critical in full-wave formulations, due to a series of factors mentioned

during the chapter:

� stronger singularities,

� vectorial character of sources and fields,

� need to use sources like dipoles whose fields have an angular dependency,

� worse condition number in MoM matrix.

However, it has been possible through extensive optimization and testing to end up with

some very efficient schemas like “Triple Star”, using 12 points and providing an average error

of 6% in the RMS values of the surface currents.

This is reasonable when these currents must be used to compute near field quantities like

input impedances and surely more than enough to compute the far field quantities which are

the goal of this thesis.





6. Improved SatAF-MDI results

In the previous chapters, we have illustrated different methods to accelerate the generation

of the MoM interaction matrix for the solution of electromagnetic scattering problems. As

the main theme of this thesis work is the analysis of radiating structures like those involved

in the MAST project, special attention has been paid to the class of problems involving

metallic bodies in free space excited by arrays of slot antennas.

The original contributions of this thesis work, i.e. the MATLAB tool SatAF, the excitation

model for slot antennas and the Magic Distance Inspired method can be finally combined

into a complete, stand-alone simulation software for the efficient analysis of antenna systems

allocated on small platforms.

In this chapter, we first resume in a final comparison the performance of the different

methods which were discussed as approximation of the canonical MoM, showing that MDI

actually offers the best compromise between acceleration, accuracy and range of applicability.

Secondly, the consistency of the proposed method will finally be proved by analyzing a

realistic antenna system inspired by the slot array allocated on the cubic platform designed

for MAST.

6.1. Final comparison of accelerated formulations of the MoM

In this section we compare the performance of the different numerical methods discussed in

the previous chapters:

� EFIE solved with MoM, Galerkin formulation (EFIE 4D)

� EFIE solved with MoM, Surface Test (EFIE 2D)

� MPIE solved with MoM, Surface Test (MPIE 2D)

� Magic Distance Inspired method (MDI)

� Magic Distance Inspired method with Phase Correction (MDIpc)

For the MD method, the 8 point grid “Double Star” has been used, with weights included in

the optimization process. More details about this point scheme can be found in Par. 5.6.4.

The accuracy in the representation of the MoM interaction matrix is adopted as figure of

165
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Figure 6.1.: Layout of the test cases: (a) y-oriented strip, (b) x-oriented strip, (c) square patch.

merit; the canonical implementation of MPIE with 4D integration of each reaction term of

the matrix (Galerkin formulation) is taken as reference. For a comprehensive comparison

between the methods, three geometries have been used as test cases:

� A two wavelengths long y-oriented strip, meshed with 40× 1 cells

� A four wavelengths long x-oriented strip, meshed with 2× 40 cells

� A square patch of size 1.5× 1.5λ meshed with 15× 15 cells

The geometries are sketched in Fig. 6.1.

2λ y-oriented strip

The result of the comparison is illustrated in Fig. 6.2. The 4D EFIE is in perfect agreement

with the reference, but comes at the price of the cumbersome 4D integration. The situation

is mitigated in the case of EFIE with surface test; anyway, none of the two formulations allow

the computation of self- and near-terms, a limitation restated several times in this thesis.

Similar considerations hold for the EFIE formulated with Surface Test: if the loss in
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Figure 6.2.: The y-oriented strip, error with respect to the MoM matrix.

accuracy is definitely convenient thanks to the reduction of the computational cost, the

issue concerning the computation of singular terms (and the significative error affecting

quasi-singular terms) weight negatively on the overall performance.

The 2D implementation of MPIE appears as an interesting solution. It allows the computa-

tion of all the matrix entries, it introduces only moderate error which, at least on the far-field

terms, could be strongly reduced by introducing the Phase Correction. On the other hand,

it is true that the same reduction could not be operated on the self term.

The Magic Distance Inspired method offers a very good accuracy, especially in the

computation of the self- and near-terms, allows the computation of the whole matrix and

outperforms the other methods in terms of computational time. When combined with the

Phase Correction for the computation of far field terms, its accuracy is excellent.

4λ x-oriented strip

A non-trivial example, this second test case highlights unexpected behaviors of the methods

(Fig. 6.3). Concerning the two EFIE version, the same considerations made for the y-strip

are valid.

The 2D MPIE on the other hand exhibits a very strong divergence from the reference

when terms become widely spaced. This surprisingly behavior is motivated by the following

observation: the reduction of the source integral to one point does not introduces a dramatic

error in the vector and scalar components of a matrix entry, on the contrary the accuracy is
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Figure 6.3.: The x-oriented strip, error with respect to the MoM matrix.

quite good (error in the order of 5%, as in the y-strip case). Unfortunately, when combining

the two components, in the cases where these have similar magnitude (which happens when

the cells are in the far field) and opposite phase the result suffers a strong inaccuracy. This

phenomenon is well highlighted in the case of the long, x-oriented strip; in the y-oriented one,

the particular geometry makes the scalar potential contribution to be identically zero by sym-

metry and therefore the final error is the one of the vector potential part, which is actually low.

It is clear that such an erratic behavior prevents the use of this technique for generic problems.

The Magic Distance Inspired method confirms instead the expectations; the peak error was

proved to be acceptable for a good accuracy in the solution and again the Phase Correction

rectifies the far field terms for an asymptotically zero error.

The square patch

In this last example we compare the two most interesting methods, the 2D MPIE and the

MDI with Phase Correction, in the more realistic case of a metallic patch. Fig. 6.4 illustrates

the result of the comparison. The Magic Distance method outperforms the MoM in almost

every matrix entry: when cells are parallel, the 2D MPIE suffers the divergence highlighted in

the x-strip case; on the other hand, the only flaw affecting MD concerns the few entries already

identified as minor contributors to the accuracy of the solution. MD establishes itself as most

performing solution specially with regard to the computational time, with 12 computation

per integral against the 100 required for the 2D MoM (Gauss-Legendre algorithm with 10

points).
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Figure 6.4.: The square patch, error with respect to the MoM matrix.

6.2. The MDI method applied to MAST

The canonical Galerkin implementation of the Method of Moments was used in Sec. 4.2.1

to solve a series of test configurations involving non-canonical shaped aperture antennas,

either in stand-alone geometries or forming antenna systems on small metallic platforms. In

particular, one of the tests concerned an array of 48 slot antennas arranged in a configuration

similar to the MAST antenna system, while the final comparison was made directly on the

measurements of the MAST architecture.

When the benchmark campaign involved an array, the MoM was used to solve a single

element of the array in a localized region, often a ground plane representing a face of the

platform. The computed radiated fields was then imported in SatAF which performed the

necessary treatment to generate, through Array Theory, the complete radiation pattern.

The slots were excited in all the cases using the original model introduced in Sec. 4.2.

The combination of SatAF and MoM proved to generate accurate and reliable results

through all the benchmark campaign in Sec. 4.2.1, offering an increased computational speed

thanks to the reduction of the model used for the full-wave simulation.

As final development of the SatAF based method and for a further reduction of the

computational effort, we replace the calculation of the 4D integrals of the MoM interaction

matrix with the Magic Distance Inspired method, according to the considerations discussed

in Chap. 5.
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With the validation illustrated in this section, we demonstrate the solidity of the combina-

tion of SatAF and MDI.

Double-C slot

Following the same thread as in the validation of the classical MoM, we address at first

a problem involving a single slot of non standard geometry: the first slot model designed

for MAST. The slot lies on a small ground plane of 10 cm side and the excitation is located

in the center of the aperture. Note that the excitation, originally a microstrip with a “T”

shaped termination, has been modeled using the charge accumulation method described in

Sec. 4.2. The current distribution is compared as usual with a complete full-wave software

(here HFSS) and is illustrated in Fig. 6.5: the current accumulation around the slot curves

suggests a correct representation of the electromagnetic phenomenon. The consistency of the

predictions is also endorsed by the comparison of the radiation patterns in the three principal

planes ϕ = 0, 45, 90 degrees, as in Fig. 6.6. Even if a slightly higher deviation is observed

with respect to the predictions produced with MoM, the agreement is very good, with a maxi-

mum deviation of 1.07 dB observed on the plane ϕ = 0 and an average deviation below 0.5 dB.
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Figure 6.5.: Double-C slot, surface current on the ground plane: (a) MDI, (b) HFSS.

MAST antenna system

The final benchmark is the realized MAST antenna system. The single MAST slot antenna

was first solved with MDI and the computed radiated fields were imported in SatAF to

generate the radiation pattern of the MAST array. In order to model the aperture with its

real dimensions, the mesh has been refined to cells of size 2mm. Such a small cell size required

the use of the most accurate MDI point grid (Par. 5.6.7).

The radiation pattern computed with SatAF (SatAF +MDI) is shown in comparison with

the field already computed in Sec. 4.2.1 with the SatAF + MoM combination and with

the measurements performed on the MAST POC in Fig. 6.7 and Fig. 6.8 for the “R” and

“RL” measurement cuts. A RMS error of 2.03 dB has been estimated on the “SatAF + MDI”

predictions, only a few fractions of dB higher than the value of 1.95 dB one observed for the

“SatAF + MoM” case.
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Figure 6.6.: Double-C slot, radiation patterns: (a) ϕ = 0, (b) ϕ = 45 and (c) ϕ = 90
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Figure 6.7.: MAST antenna system radiation pattern, comparison of MD with MoM and measure-
ments on “R” plane.
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Figure 6.8.: MAST antenna system radiation pattern, comparison of MD with MoM and measure-
ments on “RL” plane.







7. Conclusions and Perspectives

The last decade has been characterized by a growing interest on small spacecrafts. Con-

stellations of micro/nano satellites are recognized as an efficient solution for short missions

involving image acquisition, support and survey of maritime or automotive traffic (AIS and

GPS) and telecommunication. In typical scenarios, multi-functional antenna systems com-

posed by arrays of elementary sources are employed for data transmission and inter-satellite

communication. The integration of radiators with the satellite platform is a critical issue

critically affecting the performance of the antenna system and in particular its radiation

pattern. Further challenges are posed by the stringent accommodation requirements and

by the size of the spacecraft; when this size becomes comparable with the wavelength, the

coupling of the platform with the radiated fields becomes severe and cannot be ignored.

Despite the great academic and industrial interest of this subject, no systematic method-

ology has been developed and the design of satellite antenna systems producing specific

radiation patterns remains a challenge and a subject of intense research and study.

The ESA project MAST, requiring the design of an antenna system generating three

different radiation modes (omnidirectional, directive beam and TT&C mode) on a two-

wavelengths platform, represents a typical example of design of an antenna system for a

micro-satellite. Hence, it offered to our laboratory the possibility to develop a specific design

strategy, which led to the implementation of an in-house design software.

Inspired by MAST, we have developed the MATLAB simulation software SatAF, tailored

for the analysis and design of antenna systems allocated on small spacecrafts. Targeting the

accurate prediction of the radiation performance with reduced computational requirements

with respect to all-purpose commercial software, SatAF allows a modular approach to the

problem of arrays of identical radiators spatially distributed on (or around) the satellite body.

According to the characteristics of a specific design, the user can set the trade-off between

accuracy and speed first by identifying a subset of radiators and a part of the geometry to

include in the simulation model, then by selecting the model used to solve the structure.

Three options are considered for this model:

� A mathematical approximation of the radiating element, based on neglecting the

effects of the interaction between radiators and the platform. This solution allows the

maximum reduction of the simulation time and proved to be useful at least for a first

approach to the problem.

175
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� A canonical implementation of the Method of Moments in the MPIE - Galerkin

formulation. This solution allows the highest accuracy, comparable with any existing

commercial software, but with no advantage in terms of speed.

� The Magic Distance Inspired (MDI) method. In this original formulation of the

EFIE MoM, the evaluation of the four fold integrals required to fill the interaction matrix

is replaced with a point-to-point computation between reduced dimensions point grids,

with a reduction in terms of performed calculations of at least one order of magnitude,

only with a little price paid on the accuracy of the predictions.

The analysis of complex arrays constituted by replicas of the same element, typical of the

design of antenna systems of small spacecrafts, can therefore be reduced to localized simula-

tions involving a very reduced number of elements performed with any of the aforementioned

methods.

The developed software has been extensively used during the design process of the MAST

antenna system and its solidity has been demonstrated by the successful design and realization

of a prototype showing a good agreement between the measures and the predictions. In

addition, an exhaustive benchmark campaign, oriented to the validation of the implementation

of the method and the hypotheses it is based on, has been accomplished.

7.1. Thesis assessment

The main achievements of this thesis can be identified in the following topics:

� The successful design of the MAST antenna system and the development of the simu-

lation software SatAF

� The formulation of a novel, simplified excitation model for slot antennas integrated in

a canonical implementation of MPIE Galerkin MoM

� The implementation of a set of original formulations of the Method of Moments, inspired

by the Nyström method and called the “Magic Distance Inspired” methods. These

original achievements are now summarized here below.

The MAST antenna system and the SatAF software

The work performed in the frame of MAST produced a two-fold achievement.

On the side of technological design and realization, an antenna system capable of generating

three antenna modes was designed, built and measured, with a positive result in terms of

fulfillment of ESA specifications. In particular, the most challenging omnidirectional mode

has been obtained, tackling the problem of platform interference thanks to the successful

strategy adopted. The final antenna system is composed of an array of customized double

dog-bone slot antennas.

In parallel, we implemented in the MATLAB tool SatAF the adopted design strategy,
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consisting in the simplification of the antennas radiation mechanism to an equivalent source.

The result, basically an implementation of a weighted 3D Array Factor, was a valuable tool

for the fast prediction of the array radiation pattern, extensively used throughout the design

and finally validated by the comparison with measurements.

The slot excitation model

An implementation of SatAF with the Method of Moments was readily identified as a

convenient possibility to extend the scope of the basic version of the software, remove its

limitations and improve the accuracy.

Retaining the fundamental 3D array theory concept to reduce the simulation time, we

introduced in SatAF the possibility of interfacing it with external software, used to analyze

subsets of elements in a simplified geometry (replacing for instance the 3D platform with a

finite size ground plane). The computed radiated fields can be finally imported in SatAF

which provides the necessary manipulation to obtain the complete radiation pattern.

Targeting in particular the analysis of slot antennas, we developed a novel, simplified

excitation model, fully compatible with the developed MoM framework, which allows through

a charge accumulation mechanism the correct representation of typical feeding structures,

e.g. coaxial cable or microstrip.

The solidity of the combination of SatAF with the MoM, using the developed slot excitation

has been applied to the analysis of arrays of slot antennas and successfully validated against

commercial software.

The Magic Distance Inspired (MDI) method

EFIE works with physical quantities (currents, fields) and does not require the definition

of potentials or charges. MPIE exhibits a milder (1/r) singularity than EFIE (1/r3) and the

evaluation of the self term is straightforward.

The MDI approach conciliates the two advantages, targeting the computation of the EFIE

reaction matrix by replacing the computation of four fold integrals with an original formulation

of the Nyström method, where the choice of point grids and weights aims to the approximation

of the MoM self-terms.

A preliminary application of the method to electrostatic problems yields promising results,

with accelerations of at least one order of magnitude (depending on the point grid used). A

formal extension of MDI to the full-wave problem was found by analogy, using the concepts

behind the calculation of self terms with a MPIE strategy.

MDI was successfully applied to the EFIE, one of the most remarkable results being a 12× 1

point grid which produces a very good accuracy reducing the number of computations by a

factor of 50. A further enhancement of the method, the Phase Correction (PC) reduces the

error on the entries of the MoM matrix related to cell couples spaced more than λ/2.

Together with PC, MDI is shown to perform better than other MoM formulations and is an

excellent alternative to Galerkin.
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The reliability of the method in its combination with SatAF has been finally assessed through

the comparison of predictions relative to the MAST antenna system with the measurements

of the satellite mock-up itself.

7.2. Perspectives

This thesis has shown the potentialities of an approach like the combination SatAF-MDI to

replace brute force full-wave softwares. However, the developed MATLAB-based stand-alone

software remains at a proof-of-concept level and has been tested essentially with the specific

simple satellite platforms provided in the ESA project MAST.

So the obvious perspectives of this thesis should essentially aim at generalizing the

SatAF-MDI, enlarging both its theoretical and practical scopes.

On the theoretical side, potential improvements in the full-wave problems call for a more

rigorous treatment of the Magic Distance concept in EFIE formulations. The stronger

singularities and the intrinsic angular dependence of the dyadic Green’s function for the

field require a more in-depth treatment, possible leading to the replacement of the Magic

Distance by an equivalent Magic Circle or contour. The various point-wise implementations,

empirically demonstrated in this thesis would then be justified as discretizations of a

theoretical result.

By the same token the applicability of the MDI algorithms to other meshes than rectangular

or square (triangular, trapezoidal, curvilinear) should be rigorously proved, eventually

computing theoretical values for the correction or shape factors to be introduced.

Finally, MDI has proven successful in approximating the fundamental EFIE unknown, which

is the surface current density. Therefore no particular problem is expected when applying

MDI schemes to the prediction of other near-field quantities like input impedances. However,

an thorough and exhaustive benchmark campaign, eventually leading to further fine-tuning

of the existing MDI algorithms would be needed.

From a more practical point of view, a proof of the applicability of SatAF-MDI to more

complex antenna systems should be given. MDI should be tested in more complex environ-

ments like stratified media and with more complex radiators. The current benchmark (slot

antennas in a all-metallic platform) should be generalized to more involved structures both

in Space and ground applications. This would confirm the validity of the strategy developed

in this thesis beyond a specific small satellite configuration and would pave the way to a

complete new class of applications for SatAF-MDI.







A. MAST antenna system technical details

In this appendix pre provide the exhaustive technical documentation about the design of the

antenna system performed in the frame of the MAST project.

A.1. Slot antennas designs

Cavity-backed slot antennas

A back-cavity naturally allows canceling totally the problem of parasitic PPWG mode.

Moreover, using specific cavity modes combined with the slot resonance allowed to achieve

efficient resonant antennas using much thinner structures (a few millimeters), compared to

the classical reflector solution which requires a quarter-wavelength thickness (around 35mm

in S-band). However, this type of antennas suffers from very limited bandwidth (a few

percents) because they rely on strong resonances occurring in a small volume.

Further efforts were focused on designing an efficient, robust and well-performing radiating

structure based on the slot aperture principle which reaches the target radiation properties

with a reduced thickness.After many investigations on various configurations, we arrived at

two potential candidates with slightly different properties which are described hereafter.

The first antenna design is shown in Fig. A.1. It consists of a slot antenna fed by a 50�

T-shaped microstrip line and surrounded by vias to avoid the propagation of the unwanted

PPWG mode. The structure can be seen as some sort of cavity-backed slot antenna, but where

the vertical walls of the cavity are not completely closed, which seems to be more favorable

in terms of bandwidth than completely closed cavities.

Except for the substrate used for the feed, the cavity is filled with air. The considered

substrate for the feed is the space qualified Rogers RO4350B (details in Tab. A.1). The same

substrate has been used in all the illustrated structures.

Table A.1.: RO4350B substrate parameters.

Rogers RO4350B

Relative permittivity εr = 3.66

Dielectric losses tan δ = 0.0037

An open stub in parallel has been added in the feed line for matching purpose. The surface

181
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Figure A.1.: Description of the first antenna design.
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(a) (b)

Figure A.2.: Input reflection coefficient of the first antenna design. The markers m1 to m4 correspond
to the limits of the two bands of interest. The marker m5 is at 2.16GHz. The −10 dB
circle is shown in green in the Smith Chart.

occupied on the external side of the satellite wall is only the size of the slot, i.e., 86× 86mm.

With the chosen feeding configuration, BFNs can be implemented on the same substrate in a

seamless manner. After several fine tuning iterations, a trade-off could be achieved between

the total thickness (around 10mm), the efficiency, and the bandwidth.

The antenna has been simulated with Agilent ADS Momentum. In the simulation model,

both ground planes are infinite. The radiation pattern is a typical slot pattern. The input

reflection coefficient S11 of the antenna is shown in Fig. A.2. The antenna exhibits a 10 dB

return loss bandwidth of 18%, and a 15 dB return loss bandwidth of 15%. Although two

local minima can be seen on the S11 plot, the antenna supports a single resonance in this

band, as confirmed by the inspection of the input impedance just at the slot edge (without

the stub). This double minima behavior, which is beneficial for return loss bandwidth, is a

matching effect introduced by the stub and the TL section between the latter and the slot.

The high efficiency observed confirm that the unwanted PPWG mode is efficiently eliminated.

Indeed, in the simulation any power leakage through this mode is never radiated since the two

ground planes are infinite, and would therefore contribute to decrease the radiation efficiency.

It must be mentioned that the reported values of efficiency are rather optimistic because

conductor losses cannot be taken into account around the slot, since the latter is represented

in the simulation model by magnetic currents in an infinite perfect conductor. Nevertheless,

a verification performed with the 3D full-wave software CST Microwave Studio gave an ef-

ficiency always higher than 85% while validating the general behavior of the proposed antenna.

This antenna presents very satisfactory performance, with a single drawback coming from

its rather long size (Ls = 86mm), which can be a problem in an array configuration. In fact,

the slot sees an effective permittivity of around 1.2, which means that its first half-wavelength

resonance should occur at 1.6GHz . However, it is known from the literature that a back-

cavity, or equivalently vias with a reflector, tends to increase the resonance frequency of a slot

antenna. This explains why the observed (half-wavelength) resonance is around 2.16GHz.
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Figure A.3.: Description of the second antenna design.

A second slot antenna was designed with the goal of obtaining a more compact version

of the first example and is shown in Fig. A.3. Compared with the first model, the slot has

been separated in two thinner slots, and bent to decrease the occupied length. Now, the

surface occupied on the external side of the satellite wall is 18 × 61mm. The dimensions of

the via-cavity (a × b) has also been reduced in order to facilitate the combination of these

elements to form arrays. The dimensions of the proposed antenna have been obtained after

fine tuning of the geometry.

The antenna has been simulated in the same environment as the first example. Its input

reflection coefficient S11 is shown in Fig. A.4. The antenna exhibits a 10 dB return loss

bandwidth of 14%. The radiation pattern is a typical slot pattern. Some relevant parameters

of the antenna at the four frequencies which delimit the two bands of interest are reported in
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(a) (b)

Figure A.4.: Input reflection coefficient of the first antenna design. The markers m1 to m4 correspond
to the limits of the two bands of interest. The marker m5 is at 2.14GHz. The −10 dB
circle is shown in green in the Smith Chart.

Tab. A.2. The comments made on the efficiency for the first antenna model also apply here.

The return loss matching of this second antenna is not as good as for the first one, but its

Table A.2.: Performance of the first proposed antenna at the frequencies which delimit the bands of
interest (markers m1 to m4 in Fig. A.2) (S11: reflection coefficient, D: directivity, G:
gain, η: efficiency, GR: realized gain).

Freq [GHz] S11 [ dB] D [ dB] G [ dB] η [%] GR [ dB]

2.025 -11.5 5.4 4.8 89 4.5

2.120 -10.5 5.3 5.3 100 4.9

2.200 -11.6 5.3 5.3 98 5.0

2.300 -10.9 5.4 5.1 94 4.7

total length is significantly lower (60mm compared to 86mm), which is more favorable for

array configurations. For this reason, the second antenna was chosen for further investigations

and, by introducing some small variations and by fine tuning, it was possible to re-design the

element to achieve a better reflection loss results.

The layout of the final element is shown in Fig. A.5, while the measured input matching

parameter is depicted in Fig. A.6. The structure of the new optimized element is the same

as the previous one, with the differences that the number of vias has been halved, the air gap

to the reflector has increased from 10mm to 12mm and the feeding line is matched at 100�,

instead of 50�. On the other hand, the improvement on the performances of the measured

element is rather satisfactory; keeping the S11 parameter practically below -14dB within the

whole band of interest.
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Figure A.5.: Layout of the final slot single element.

m15
freq = 2.024 GHz
dB(S(2,2)) = -13.72
m16
freq = 2.301 GHz
dB(S(2,2)) = -26.15
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Figure A.6.: Input matching of the final slot single element.
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Figure A.7.: Layout of the face sub-array of four elements.

A.2. Array design

The best performing solution is composed of only 4 of these radiating elements arranged in a

2×2 squared configuration. It was found that the position which minimizes the low elevation

radiation was obtained by spacing the elements 64mm apart (almost λ/2 in free space)

and turning them on themselves such that they form a square. Furthermore, applying a

sequential rotation to the linear elements provides the circularly polarized radiation pattern.

When the sub-array is allocated on the face of a generic satellite wall of 250mm by 250mm

(the smallest proposed size of a generic satellite), the toll taken is only 7% of the total surface

of the satellite face, leaving significant free room for any other instrumental devices and/or

solar panels.

The Beam Feeding Network

Since the elements of a given face need to be fed in a sequential rotation phase sequence,

it was necessary to design a Beam Forming Network (BFN) to implement these phase delays.

The layout of the sub-array, including the BFN, is shown in Fig. A.7.

The simulated insertion losses and phase shifts of the sole BFN are shown in Fig. A.8.

It can be observed that the input reflection coefficient S11 is below −30 dB on the whole band

of frequencies. On the other hand, the insertion losses associated with the feeding network

are estimated around 1.5 dB. It can also be seen that the required phase shifts for sequential

rotation feeding have been achieved.

It is remarkable that the whole BFN remains within the internal space between the radiating

elements; thus, there is no need to make the antenna Printed Circuit Board (PCB) below

the elements bigger than the size taken by the elements themselves. The input reflection

coefficient for the face sub-array with its BFN is shown in Fig. A.9. Both frequency bands

are covered with a maximum vale of −12.3 dB.
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m2
ind Delta = 0.000
dep Delta = -89.476
Delta Mode ON

m1
freq = 2.160 GHz
phase(S(2,1)) = -34.065

m3
ind Delta = 0.000
dep Delta = 270.798
Delta Mode ON

m4
ind Delta = 0.000
dep Delta = -90.916
Delta Mode ON

Figure A.8.: Insertion losses and phase shifts of the Mode A sub-array BFN.

m2
freq = 2.300 GHz
dB(S(1,1)) = -11.371

m1
freq = 2.025 GHz
dB(S(1,1)) = -19.594

m3
freq = 2.120 GHz
dB(S(1,1)) = -12.430
m4
freq = 2.201 GHz
dB(S(1,1)) = -17.269
m5
freq = 2.110 GHz
dB(S(1,1)) = -12.343

Figure A.9.: Reflection coefficient of the 4-elements sub-array including the BFN.
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Figure A.10.: Sub-array used for Mode C: formalism used in Tab. A.3.

A.3. Directive and TT&C modes

Mode B (directive beam) and C (TT&C lobes) specifications require respectively a single

beam of 10 dBi minimum directivity and four lobes within a 60 deg cone. Circular polarization

is also requested.

According to the design strategy discussed in Sec. 2.1, we succeeded in generating the

Modes B and C simply re-using the same sub-array (face-element) designed for Mode A, for

a maximum reduction of the occupation of the satellite surface.

The phase shifts required to generate the desired lobe in Right-Hand Circular Polarization

were obtained using SatAF and are illustrated in Tab. A.3 (elements are named as in Fig.

A.10).

The directivity for Beam 1 and Beam 3 on a 2D azimuthal cut at φ = 45deg is shown in Fig.

Table A.3.: Input signal delay required for the lobes of Modes B and C.

B C1 C2 C3 C4

Element 1 0 deg 315 deg 45 deg 45 deg 315 deg

Element 2 90 deg 45 deg 45 deg 135 deg 135 deg

Element 3 180 deg 225 deg 135 deg 135 deg 225 deg

Element 4 270 deg 315 deg 315 deg 225 deg 225 deg

A.11. Both beams are within a 60 deg cone with their maximums pointing at θ = ±15 deg,

respectively. Thus, the −3 dB beam-width of each lobe is 30 deg as required. Moreover,

the CP axial ratio is below 3dB within the mentioned 60 deg cone. While Mode B feeding

network is identical to the one used for Mode A, a dedicated BFN, implementing the phase

delays necessary to tilt the beams, has been designed for Mode C. Two possibilities are
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(a) (b)

Figure A.11.: Mode C: (a) Directivity and (b) Axial Ratio of Beam 1 and Beam 3 (φ = 45 deg).
Markers: m1, θ = 13 deg, D = 11.05 dBi; m2, θ = 30 deg, D = 7.99 dBi; m3, θ =
−1 deg, D = 8.12 dBi; m4, θ = −30 deg, ARcp = 2.94 dB; m5, θ = 30 deg, ARcp =
2.98 dB.

available for the design. The first consists in using four distinct BFNs, one for each beam.

These four BFNs would be the same except for a mechanical rotation of 90 deg, and would be

stacked in a multilayered circuit configuration. Switching at the element level would allow to

connect each element to the desired BFN, and thus generate the four beams, one at a time.

Such BFNs can be straightforwardly derived from the previous design presented for Modes A

and B (see Fig. A.5) by simply adding the piece of line needed to achieve the ±45 deg phase

delays between the pairs of elements. The second strategy consists in designing a single BFN

(in a single layer) with four inputs and four outputs. Each input fed independently would

provide the required phase sequence as reported in Tab. A.3 to generate one of the beams.

The adopted solution is an intermediate case between the two aforementioned strategies.

Indeed, it consists of two distinct BFNs, each one having two inputs to achieve two opposite

tilted beams. A BFN is used to generate beams 1 and 3; a second identical BFN rotated of

90 deg and located in another layer generates beams 2 and 4. Switches are still required to

connect each element to one BFN or the other. The layout of the BFN is shown in Fig. A.12,

while the associated S-parameters are illustrated in Fig. A.13: return and insertion losses

are acceptable, while the required phase shift for the two beams are correctly produced. It is

worth noticing that the solution based on an hybrid coupler works only because the required

phase shift between element pairs is equal to 90 deg. With a different phase shift, another

coupler would be necessary, probably with a less good matching.

A.4. The Proof-Of-Concept

The complete antenna system consists of six faces sub-arrays illustrated in Fig. A.14a. For

the generation of the omnidirectional mode, the elements are connected to a 6-to-1 Wilkinson

power divider(Fig. A.14b). By using this type of divider, a similar matching between the

face antenna sub-arrays is ensured, while minimizing the mutual coupling between them. The
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Figure A.12.: The Beam Forming Network used for Mode C.

single sub-array is also used to generate Mode B and, fed through a different BFN (Fig.

A.14c), Mode C.

A complete view of the satellite is presented in Fig. A.14d. ı̈�¿

A.5. Measurement setup

The three antenna modes generated by the POC were measured in EPFL-LEMA anechoic

chamber. The setup is presented organized by antenna mode and measurements are shown

and commented in the next section.

Mode A

A total of five measurements were performed along three different cuts:

� Plane “R”: the satellite lies on a LHCP face (Fig. A.15a): the face sub-arrays on the

four lateral faces are RHCP. The cut is along the azimuth plane.

� Plane “RL”: the satellite lies on a RHCP face (similar to Fig. A.15a) but the lateral

faces sub-arrays are alternately R- and L-HCP polarized. The cut is along the azimuth

plane.

� Plane “V”: the satellite is fixed to a platform by its vertex (Fig. A.15b). The cut is

again along the azimuth plane and interests all the faces.

Mode B

Mode B pattern is produced by one of the face sub-arrays of Mode A. Therefore, only one

face sub-array of the POC, mounted on its satellite face, was measured in one of the two
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m1
Freq = 2.160 GHz
phase(S(1,3)) = 135

m2
ind Delta = 0.000
dep Delta = 270.866
Delta Mode ON

m3
ind Delta = 0.000
dep Delta = 89.192
Delta Mode ON

m4
ind Delta = 0.000
dep Delta = 0.113
Delta Mode ON

m5
Freq = 2.160 GHz

phase(S(2,3)) = 134.5

m6
ind Delta = 0.000
dep Delta = -89.2

Delta Mode ON
m7

ind Delta = 0.000
dep Delta = -90.151

Delta Mode ON

m8
ind Delta = 0.000

dep Delta = -179.2
Delta Mode ON

(a)

(d) (e)

(b) (c)

Figure A.13.: Beam Forming Network used for Mode C: (a) input refection and isolation, (b) and
(c) insertion losses for the two input ports, (d) and (e), phase shifts. Port 1 (b,d)
generates beam 1, port 2 (c,e) generates beam 3.
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(e)

(a)

(d)(c)

(b)

Figure A.14.: The realized components of the POC. (a), (b) top and bottom views of the manufac-
tured PCB showing respectively the four radiating elements sub-array and the BFN;
(c) the power combiner designed to combine the Mode A sub-array antennas; (d) Mode
C BFN integrated on the bottom side of the slots PCB and (e) MAST POC satellite
final assembly.
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(a) (b)

Figure A.15.: The measurement setup for (a) R and RL cuts and (b) V cut.

orthogonal elevation cuts (ϕ = 0), given the symmetry of the configuration.

Mode C

Also Mode C pattern is generated by the same sub-array as Mode B, differently fed. In

this case, since the four tracking lobes generated for Mode C point towards the vertices of the

face (±45,±135 deg), it was necessary mounting the satellite on the proper angle in order to

be able to measure two of the four lobes contained into one of the planes.

A.6. Measurements

A.6.1. Mode A

Design specifications state that Mode A radiation pattern shall have a minimum gain of

−3 dBi with a maximum ripple of 6 dB. This requirement was extended to the concept of

“coverage”, extensively used through this document and meaning the portion (in percentage)

of the 3D radiation pattern fulfilling the specifications.

The measured input matching of the whole Mode A system: six sub-array face antennas,

plus the correspondent BFN of each sub-array, plus the power combiner, are provided in Fig.

A.16. A maximum value of −12.9 dB was measured within the whole operation band. It is

also important to point out that, as previously mentioned, all the face sub-arrays which lay

on each face of the satellite have been connected via a power combiner (1 input to 6 outputs)

(see Fig. A.14c in Sec. A.4). The measured S-parameters of the power combiner are shown

in Fig. A.17: the reflection coefficient is lower than −16 dB within the whole band of interest,

while the S1n response was rather similar for all the outputs; also the phase difference between

the outputs is lower than 10 deg.
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dB

(S
(2

,2
))

m1
Freq = 2.160 GHz
dB(S(2,2)) = -15.142
m2
Freq = 2.301 GHz
dB(S(2,2)) = -16.992
m3
Freq = 2.224 GHz
dB(S(2,2)) = -12.929

Figure A.16.: Measured reflection coefficient of the entire Mode A system.

m6
freq = 2.150 GHz
phase(S(1,2)) = 85.702

m5
freq = 2.150 GHz
phase(S(1,4)) = 94.831

Figure A.17.: Measured reflection coefficient of the 6-to-1 power combined utilized to connect the 6
face sub-array antennas.
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Figure A.18.: Measured radiation pattern of Mode A, strongest R-/L-HCP component. “R” setup
(first row), “RL”, (second row) and “V”, (third row). The three frequencies correspond
to lower bound, center and upper bound of the operative band.

The measured radiation patterns on the three cuts R, RL and V, as described in Sec. A.5,

are presented hereafter in Fig. A.18. The diagrams on the left column show separately the

normalized gain for RHCP and LHCP components of the radiated fields, renamed CO- and X-

POL. As the specifications require the strongest of the two circular polarizations to be within

a range −6 dB from the maximum gain, on the right for better readability, it is shown the

strongest of the two polarization and the range where patterns are within the specifications.

The degree of coverage ranges from 70% up to 90% in all the patterns shown and can be

retained overall satisfying. This holds in particular not only at center frequency, but also in

the adjacent frequencies within the operation bandwidth dictated by the antenna reflection

coefficient.

A.6.2. Mode B

Regarding Mode B specifications, it was stated that a single directive beam of a minimum

directivity of 5 dB within a 60 deg cone should be achieved. The face sub-array employed to

obtain Mode A is also used for Mode B: the measured input matching is shown in Fig. A.19

and the radiation pattern on the elevation cut is depicted in Fig. A.20.
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Figure A.19.: Measured reflection coefficient of the face sub-array.

(a) (b) (c)

Figure A.20.: Measured radiation pattern of Mode B on the o, strongest R-/L-HCP component.
“R” setup (first row), “RL”, (second row) and “V”, (third row). The three frequencies
correspond to lower bound, center and upper bound of the operative band.

A.6.3. Mode C

One of the two main planes, containing two of the four tracking lobes, was measured. The

measured results of the first beam which points at −15 deg, approximately, at the three main

frequencies are presented in Fig. A.21, while the results of the second lobe pointing at around

+15deg are depicted in Fig. A.22. As occurred with the Mode B, the co-polar component be-

havior is satisfactorily similar to the simulation results, however the cross-polar measurement

shows a higher than expected value. The negative impact of this component is something

which could be refined.

It can also be pointed out that, mainly due to the fact of re-using the same elements arrange-

ment, the beamwidth of the lobes turned out to be not as narrow as desired. Although the

(a) (b) (c)

Figure A.21.: Measured first tracking lobe at (a) 2.075GHz, (b) 2.15GHz, (c) 2.225GHz.
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(d) (e) (f)

Figure A.22.: Measured second tracking lobe at (a) 2.075GHz, (b) 2.15GHz, (c) 2.225GHz.

maximum of the lobe is found at around ±15 ∼ 20 deg, it would have been desired to obtain a

more directive beam. This could be an aspect to be refined and improved in a future version

of the antenna system. ı̈�¿

A.7. Final assessment

The Proof-Of-Concept architecture that was selected in the course of the project has been

successfully realized and characterized through the planned measurement campaign. The

outcome is that performance generally confirms simulations predictions and satisfies project

specifications, even though some aspects, typical of realization processes, have been identified

as responsible for perturbations.

Comments and issues can be summarized by antenna mode:

� Mode A: the measurements performed show that coverage ranges around 70-90 % on all

the plane cuts, while a comparison between measurements and predicted results high-

lights an overall similar behavior. The fact that some of the measurements were expressly

performed on critical planes, and the presence of a modest cross-polarization (absent in

simulations), should justify the deviations that sometimes occur in the comparisons.

� Mode B: The co-polar field component matches rather well the expected results and the

specifications; on the contrary, the cross-polar field component measurement turned out

to be higher than desired, resulting into an aspect to be eventually refined in a future

design.

� Mode C: again, the co-polar component behavior is satisfactorily similar to the simula-

tion results, however the cross-polar measurement shows a higher than expected value.

The negative impact of this component is something which could be refined.

The compliance matrix is shown in Tab. A.4.
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Table A.4.: Specifications matrix of the measured elements for the different modes.

Mode Frequency Return loss Polarization Gain G [ dB]

A Omnidirectional

S-band

2025 − 2300

MHz

� −12.9 dB

RHCP

or

LHCP

−6 � G � 0

∼ 75% Coverage (∗)

B
Directional

(60 deg cone)
� −13.6 dB

TBM (∗∗)
Gain Ripple < 3 dB

C

RF-Tracking

(4 lobes within

a 60 deg cone)

� −12.1 dB
TBM (∗∗)

Gain Ripple < 1 dB

(∗) Coverage is defined as the percentage of 3D space fulfilling the specifications.
(∗∗) TBM = To be Measured. It is important to note that, by the time the measurements were realized, no
measurement of gain could be performed due to unavailability of a proper third antenna for the three-antenna-
method.





B. SatAF source code

We include in this appendix the SatAF source code for the treatment of the rotations and

translations related to the 3D Array Theory on the basis of the mathematical formulation

illustrated in Par. 2.3.2

1 function f 0 = RotSigma Handle(func,Pts0,TransfSigma,TypeFunc)
2

3 % Author:
4 %
5 % Gabriele Rosati, EPFL−LEMA, November. 2009
6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 % Let Sigma 1 be a "local" coordinate system function of a "global"
10 % coordinate system Sigma 0, with Sigma 1 = TransfSigma * Sigma 0
11

12 % [ x1 ] [ x1 x0 x1 y0 x1 z0 ] [ x0 ]
13 % [ y1 ] = [ y1 x0 y1 y0 y1 z0 ] * [ y0 ]
14 % [ z1 ] [ z1 x0 z1 y0 z1 z0 ] [ z0 ]
15

16 % [ P1 ] = [ TransfSigma ] * [ P0 ]
17 % [ P1 ]' = [ P0 ]' * [ TransfSigma ]'
18

19 % Evaluates the function "func", passed as an handle and with
20 % components along ˆtheta1, ˆphi1 in every point [theta0,phi0]
21 % and returns its components along ˆtheta0, ˆphi0
22

23 % The function func can be either:
24 % TypeFunc = 'rDep'
25 % func(r,theta1,phi1) = [ func r , func theta1 , func phi1 ]
26 % TypeFunc = 'rInd'
27 % func(theta1,phi1) = [ func theta1 , func phi1 ]
28

29 % THE FUNCTION IS EVALUATED IN SIGMA 0 − This case is useful when
30 % the function is available as an handle. The plot volume is defined
31 % in terms of Sigma 0
32

33 switch TypeFunc
34 case 'rInd'
35 theta0 = Pts0{1};
36 phi0 = Pts0{2};
37 case 'rDep'

201
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38 r = Pts0{1};
39 theta0 = Pts0{2};
40 phi0 = Pts0{3};
41 end
42

43 for i=1:3
44 TransfSigma(i,:) = TransfSigma(i,:) ./ norm(TransfSigma(i,:));
45 end
46

47 % Sigma1 Coord Cart = { [x1] ; [y1] ; [z1] }(theta0,phi0) =
48 % = [TransfSigma] * { [x0] ; [y0] ; [z0] } =
49 % = [TransfSigma] * {coord s2c(theta0,phi0)}
50 Sigma1 Coord Cart = MatCell Mult(TransfSigma, coord s2c(theta0,phi0));
51 x1 = Sigma1 Coord Cart{1,1};
52 y1 = Sigma1 Coord Cart{2,1};
53 z1 = Sigma1 Coord Cart{3,1};
54

55 % [theta1 phi1](theta0,phi0)
56 Sigma1 Coord Sph = coord c2s(x1, y1, z1);
57 theta1 = Sigma1 Coord Sph{1,1};
58 phi1 = Sigma1 Coord Sph{2,1};
59

60 % The function is passed as an handle (or a cell of handles)
61 switch TypeFunc
62 case 'rInd'
63 if length(func) == 2
64 f theta1 = func{1}(theta1,phi1);
65 f phi1 = func{2}(theta1,phi1);
66 else
67 f = func(theta1,phi1);
68 f theta1 = f{1};
69 f phi1 = f{2};
70 end
71 case 'rDep'
72 if length(func) == 3
73 f r = func{1}(r,theta1,phi1);
74 f theta1 = func{2}(r,theta1,phi1);
75 f phi1 = func{2}(r,theta1,phi1);
76 else
77 f = func(r,theta1,phi1);
78 if iscell(f)
79 f r = f{1};
80 f theta1 = f{2};
81 f phi1 = f{3};
82 else
83 f r = f(1,:);
84 f theta1 = f(2,:);
85 f phi1 = f(3,:);
86 end
87 end
88 end
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89

90 % { [theta0 x0] [phi0 x0] }
91 % Sph0 Sigma0 = { [theta0 y0] [phi0 y0] }
92 % { [theta0 z0] [phi0 z0] }
93 % Sigma0 spherical versors decomposed along Sigma0 cartesian versors
94 Sph0 Sigma0 = vers c2s(theta0,phi0);
95 vers theta0 = Sph0 Sigma0(:,1);
96 vers phi0 = Sph0 Sigma0(:,2);
97

98 % { [theta1 x1] [phi1 x1] }
99 % Sph1 Sigma1 = { [theta1 y1] [phi1 y1] }

100 % { [theta1 z1] [phi1 z1] }
101 % Sigma1 spherical versors decomposed along Sigma1 cartesian versors
102 Sph1 Sigma1 = vers c2s(theta1,phi1);
103

104 % { Sph1 Sigma0 } = [TransfSigma] * { Sph1 Sigma1 }
105 % Sigma1 spherical versors (same as Sph1 Sigma1) but decomposed along
106 % Sigma0 cartesian versors
107 % { [theta1 x0] [phi1 x0] } [ ]' { [theta1 x1] [phi1 x1] }
108 % { [theta1 y0] [phi1 y0] } = [TransfSigma] * { [theta1 y1] [phi1 y1] }
109 % { [theta1 z0] [phi1 z0] } [ ] { [theta1 z1] [phi1 z1] }
110 Sph1 Sigma0 = MatCell Mult(TransfSigma',Sph1 Sigma1);
111 vers theta1 = Sph1 Sigma0(:,1);
112 vers phi1 = Sph1 Sigma0(:,2);
113

114

115 % The cell "f sigma1" contains the Sigma1 components of function "func",
116 % both decomposed along Sigma1 cartesian components
117 % { f theta1 * [ theta1 x1 ] + f phi1 * [ phi1 x1 ] }
118 % f sigma1 = { f theta1 * [ theta1 y1 ] + f phi1 * [ phi1 y1 ] }
119 % { f theta1 * [ theta1 z1 ] + f phi1 * [ phi1 z1 ] }
120 f sigma1 = CellCell Sum(MatCell ElemProd(f theta1,vers theta1) , ...
121 MatCell ElemProd(f phi1 ,vers phi1 ) );
122

123 % The final theta0 and phi0 components of function "func"
124 % The scalar product is performed by "CellCell Mult" function
125 % f theta0 = vector[f sigma1] * versor[theta0]
126 % f phi0 = vector[f sigma1] * versor[phi0]
127 f theta0 = CellCell Mult(f sigma1',vers theta0);
128 f phi0 = CellCell Mult(f sigma1',vers phi0);
129

130 switch TypeFunc
131 case 'rInd'
132 f 0 = { f theta0 , f phi0 };
133 case 'rDep'
134 f 0 = { f r , f theta0 , f phi0 };
135 end
136

137

138 function CartC = coord s2c(theta,phi)
139 % { [x] ; [y] ; [z] } = [coord s2c]( [theta] [phi] )
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140 CartC{1,1} = sin(theta).*cos(phi);
141 CartC{2,1} = sin(theta).*sin(phi);
142 CartC{3,1} = cos(theta);
143

144 function SphC = coord c2s(x,y,z)
145 % [ [theta] ; [phi] } = [coord c2s]([x] [y] [z])
146 SphC{1,1} = atan2(sqrt(x.ˆ2 + y.ˆ2) , z);
147 SphC{2,1} = atan2(y , x);
148

149 function SphV = vers c2s(theta, phi)
150 % [ ] [ [ˆtheta x] [ˆphi x] ]
151 % [ vers c2s ] = [ [ˆtheta y] [ˆphi y] ]
152 % [ ] [ [ˆtheta z] [ˆphi z] ]
153 SphV{1,1} = cos(theta).*cos(phi);
154 SphV{2,1} = cos(theta).*sin(phi);
155 SphV{3,1} = −sin(theta);
156 SphV{1,2} = −sin(phi);
157 SphV{2,2} = cos(phi);
158 SphV{3,2} = 0;

1 function VectField sph0 = ...
2 RotSigma Table(TransfSigma,VectField,OutMeshgrid,varargin)
3

4 % Author:
5 %
6 % Gabriele Rosati, EPFL−LEMA, November. 2009
7

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 % %
12 % Let Sigma 1 be a "local" coordinate system, function of an "global" %
13 % coordinate system Sigma 0, with Sigma 1 = TransfSigma * Sigma 0. %
14 % %
15 % The function interpolates the values of the vectorial field %
16 % vec field(theta1,phi1), passed as a TABLE and with components along %
17 % ˆtheta1 and ˆphi1, in every point [theta0 phi0] and returns its %
18 % components along ˆtheta0, ˆphi0. %
19 % %
20 % THE VECTORIAL FIELD IS EVALUATED IN SIGMA 1 cs − %
21 % This case is useful when data is available as a table. %
22 % %
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24

25 % TransfSigma is the 3x3 matrix: Sigma 0 = TransfSigma * Sigma 1
26 %
27 % The coordinates theta,phi can be passed as:
28 % NxM MESHGRID − 2 elements: they are [theta phi] meshgrid and
29 % VectField's elements have the same size as them.
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30 % 3xN VECTOR − 1 element : it is a [r theta phi] points array and VectField
31 % is 3xN matrix [ˆr ; ˆtheta ; ˆphi].
32 %
33 % VectField is a 2x1 cell whose elements are the components of VectField along
34 % ˆtheta1 , ˆphi1. It has the same form as [theta, phiÂ¨].
35 %
36 % OutMeshgrid is a cell containing the meshgrids in Sigma0 cs where
37 % the vectorial field is to be evaluated. If left empty, the output mesh has
38 % the same form as the input one.
39 %
40 % VectField sph0 is a 2x1 cell whose elements are ˆtheta0 , ˆphi0 components
41 % of VectField, sorted according to Sigma0
42 %
43 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44

45 global tol
46 tol = 1e−12;
47 OverSampling Factor = 1.2; % Controls how much the known values are replied
48 % beyond the 0,2pi limits.
49

50 if nargin == 5 % [theta phi] are meshgrid
51 size in = size(varargin{1});
52 Npts in = prod(size in);
53 if isempty(OutMeshgrid)
54 theta0 out = varargin{1}; phi0 out = varargin{2};
55 else
56 theta0 out = OutMeshgrid{1}; phi0 out = OutMeshgrid{2};
57 end
58 size out = size(phi0 out);
59

60 % VecField is a 2x1 cell and contains ˆtheta1 , ˆphi1
61 % components in meshgrid form
62 % It is transformed to a 3xN matrix [ˆr ; ˆtheta ; ˆphi]
63 [sph1 coord,f theta1,f phi1] = ...
64 Mesh2Array(ones(size in),varargin {1},varargin {2} ,...
65 VectField{1},VectField{2} );
66 f sph1 = [zeros(1,Npts in) ; f theta1 ; f phi1];
67

68 else % [theta phi] is a 3xN [r theta phi] points array
69 f sph1 = VectField;
70 size out(1) = length(find(varargin{1} == varargin{1}(2,1)));
71 size out(2) = size(varargin{1},2)/size out(1);
72 end
73

74 % Redundant points (0,phi) and (pi,phi) are removed
75 ind 0phi = find(sph1 coord(2,:) < tol);
76 if length(ind 0phi) > 1
77 sph1 coord(:,ind 0phi(2:end)) = [];
78 f sph1(:,ind 0phi(2:end)) = [];
79 end
80
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81 ind piphi = find(abs(sph1 coord(2,:) − pi) < tol);
82 if length(ind piphi) > 1
83 sph1 coord(:,ind piphi(2:end)) = [];
84 f sph1(:,ind piphi(2:end)) = [];
85 end
86

87 % Normalization and inversion of TransfSigma
88 for i=1:3
89 TransfSigma(i,:) = TransfSigma(i,:) / norm(TransfSigma(i,:));
90 end
91 TransfSigma = TransfSigma';
92

93 % cart1 coord = [Pts x1 ; Pts y1 ; Pts z1 ](theta1,phi1)
94 cart1 coord = Sph2Cart Coord(sph1 coord);
95

96 % cart0 coord = [Pts x0 ; Pts y0 ; Pts z0 ](theta1,phi1) =
97 % = [TransfSigma] * [Pts x1 ; Pts y1 ; Pts z1 ] =
98 % [TransfSigma] * cart1 coord
99 cart0 coord = TransfSigma * cart1 coord;

100

101 % sph0 coord = [Pts r0 ; Pts theta0 ; Pts phi0]
102 [¬, theta0,phi0] = Cart2Sph Coord(cart0 coord,tol);
103 phi0(phi0<0) = phi0(phi0<0) +2*pi;
104

105 % { [ r x0] [theta0 x0] [phi0 x0] }
106 % sph0 vers cart0 = { [ r x0] [theta0 y0] [phi0 y0] }
107 % { [ r x0] [theta0 z0] [phi0 z0] }
108 % sph0 vers cart0 = Sigma0 spherical versors decomposed
109 % along Sigma0 cartesian versors
110 f cart1 = Sph2Cart Vect(f sph1,sph1 coord);
111 f cart0 = TransfSigma * f cart1;
112 f sph0 = Cart2Sph Vect(f cart0,theta0,phi0);
113

114 os.lim th = pi/10;
115 os.lim ph = pi/10;
116 os.nphi = size(theta0 out,2)−1;
117 VectField sph0 = {zeros(size out) zeros(size out)};
118 start = true;
119 while start | | any(any(isnan(VectField sph0{1}))) | | ...
120 any(any(isnan(VectField sph0{2})))
121 start = false;
122 [¬, theta0 int,phi0 int,f sph0 int] = OverSample(theta0,phi0,f sph0,os);
123 os.lim th = os.lim th * OverSampling Factor;
124 os.lim ph = os.lim ph * OverSampling Factor;
125

126 for i=1:2
127 Fr = ...

TriScatteredInterp(theta0 int',phi0 int',real(f sph0 int(i+1,:))');
128 Vr = Fr(theta0 out,phi0 out);
129 Fi = ...

TriScatteredInterp(theta0 int',phi0 int',imag(f sph0 int(i+1,:))');
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130 Vi = Fi(theta0 out,phi0 out);
131

132 VectField sph0{i} = (Vr + 1i*Vi);
133 end
134 end
135

136 end
137

138

139 function [r0 tot,theta0 tot,phi0 tot,f sph0 tot] = ...
OverSample(theta0,phi0,f sph0,os)

140

141 % 00) Generates points (0,:) from (0,0)
142 % pi0) Generates points (pi,:) from (pi,0)
143 % t1) Duplicates points from 0 < theta0 < lim rep.th
144 % to pi < theta0 < pi+lim rep.th
145 % t2) Duplicates points from pi−lim rep.th < theta0 < pi
146 % to −lim rep.th < theta0 < 0
147 % p1) Duplicates points from 0 < phi0 < os.lim ph
148 % to pi < phi0 < pi+os.lim ph
149 % p2) Duplicates points from pi−os.lim ph < phi0 < pi
150 % to −os.lim ph < phi0 < 0
151

152 global tol
153

154 [var sort , f sph0] = TrueSort([theta0 ; phi0 ] , [1 2] , f sph0);
155 theta0 = var sort(1,:); phi0 = var sort(2,:);
156 cond red = abs(diff(theta0)) < tol & abs(diff(phi0)) < tol;
157 theta0(cond red) = [];
158 phi0(cond red) = [];
159 f sph0(:,cond red) = [];
160

161 % Add points from (0,0) to (0,phi)
162 cond 00 = find(abs(theta0)<tol & abs(phi0)<tol);
163 switch length(cond 00)
164 case 1
165 ft 00 = f sph0(2,cond 00);
166 fp 00 = f sph0(3,cond 00);
167 theta0 add 00 = zeros(1,os.nphi);
168 phi0 add 00 = 2*pi*(1/os.nphi:1/os.nphi:1);
169 f sph0 add 00 = [ ones(1,os.nphi) ; ...
170 ft 00*cos(phi0 add 00) + fp 00*sin(phi0 add 00) ; ...
171 −ft 00*sin(phi0 add 00) + fp 00*cos(phi0 add 00) ];
172 case 0
173 theta0 add 00 = [];
174 phi0 add 00 = [];
175 f sph0 add 00 = [];
176 end
177

178 % Add points from (pi,0) to (pi,phi)
179 cond pi0 = find(abs(theta0−pi)<tol & abs(phi0)<tol);
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180 switch length(cond pi0)
181 case 1
182 ft pi0 = f sph0(2,cond pi0);
183 fp pi0 = f sph0(3,cond pi0);
184 theta0 add pi0 = pi*ones(1,os.nphi);
185 phi0 add pi0 = 2*pi*(1/os.nphi:1/os.nphi:1);
186 f sph0 add pi0 = [ ones(1,os.nphi) ; ...
187 ft pi0*cos(phi0 add pi0) − fp pi0*sin(phi0 add pi0) ; ...
188 ft pi0*sin(phi0 add pi0) + fp pi0*cos(phi0 add pi0) ];
189 case 0
190 theta0 add pi0 = [];
191 phi0 add pi0 = [];
192 f sph0 add pi0 = [];
193 end
194

195 theta0 add t = [ theta0 theta0 add 00 theta0 add pi0 ];
196 phi0 add t = [ phi0 phi0 add 00 phi0 add pi0 ];
197 f sph0 add t = [ f sph0 f sph0 add 00 f sph0 add pi0 ];
198

199 % Duplicating points from 0 < theta0 ≤ os.lim th
200 % to pi < theta0 ≤ pi+os.lim th
201 ind t1 = find(tol < theta0 add t & theta0 add t ≤ os.lim th);
202 theta0 add t1 = −theta0 add t(ind t1);
203 phi0 add t1 = pi + phi0 add t(ind t1);
204 phi0 add t1(phi0 add t1 ≥ 2*pi) = phi0 add t1(phi0 add t1 ≥ 2*pi) − 2*pi;
205 f sph0 add t1 = −f sph0 add t(:,ind t1);
206

207 % Duplicating points from pi−os.lim th < theta0 < pi
208 % to −lim rep−th < theta0 < 0
209 ind t2 = find(pi−os.lim th ≤ theta0 add t & theta0 add t < pi);
210 theta0 add t2 = 2*pi − theta0 add t(ind t2);
211 phi0 add t2 = pi + phi0 add t(ind t2);
212 phi0 add t2(phi0 add t2 ≥ 2*pi) = phi0 add t2(phi0 add t2 ≥ 2*pi) − 2*pi;
213 f sph0 add t2 = −f sph0 add t(:,ind t2);
214

215 theta0 add t = [theta0 add t theta0 add t1 theta0 add t2 ];
216 phi0 add t = [phi0 add t phi0 add t1 phi0 add t2 ];
217 f sph0 add t = [f sph0 add t f sph0 add t1 f sph0 add t2 ];
218

219 % Adding points for phi<0 and phi≥2pi
220 ind p1 = find(tol < phi0 add t & phi0 add t ≤ os.lim ph);
221 theta0 add p1 = theta0 add t(ind p1);
222 phi0 add p1 = phi0 add t(ind p1) + 2*pi;
223 f sph0 add p1 = f sph0 add t(:,ind p1);
224

225 ind p2 = find(2*pi−os.lim ph ≤ phi0 add t & phi0 add t < 2*pi);
226 theta0 add p2 = theta0 add t(ind p2);
227 phi0 add p2 = phi0 add t(ind p2) − 2*pi;
228 f sph0 add p2 = f sph0 add t(:,ind p2);
229

230 % Concatenate vectors
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231 theta0 tot = [ theta0 add t theta0 add p1 theta0 add p2 ];
232 phi0 tot = [ phi0 add t phi0 add p1 phi0 add p2 ];
233 f sph0 tot = [ f sph0 add t f sph0 add p1 f sph0 add p2 ];
234

235 r0 tot = ones(size(theta0 tot));
236

237 end
238

239

240 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
241

242 % Footnotes
243 % −−−−−−−−−−−−
244

245 % [ x0 ] [ x0 x1 x0 y1 x0 z1 ] [ x1 ]
246 % [ y0 ] = [ y0 x1 y0 y1 y0 z1 ] * [ y1 ]
247 % [ z0 ] [ z0 x1 z0 y1 z0 z1 ] [ z1 ]
248

249 % [ P0 ] = [ TransfSigma ] * [ P1 ]
250 % It is also: [P0]' = [P1]' * [ TransfSigma ]'
251

252 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
253

254 % Functions f theta0, f phi0 are mapped according to Sigma 1:
255 % f(p,q) corresponds to f applied to the point
256 % (theta1(any,p),phi(q,any)).
257 %
258 % The theta0,phi0 meshgrid points instead are not ordered and
259 % represent the new coordinate system Sigma0.
260 % In this way, plotting f versus Sigma0 makes the function
261 % "appear" rotated, while what is rotated is only the
262 % coordinate system. This makes impossible plotting the pattern
263 % generated by two elements differently rotated: the f matrix
264 % will contain the proper ˆtheta,ˆphi components but its ordering
265 % is "frozen" to Sigma 1, so the pattern obtained is the one
266 % generated by two elements with the same orientation.
267 % The arrange function tries to map f function according to Sigma 0
268 % coord system. This is done by defining a new, ordered meshgrid
269 % (theta0,phi0 is not ordered) and by coherently reordering f .
270 % The value of f will in general not be available in every point
271 % of the ordered meshgrid, so an approximation the available values
272 % is required. If instead the coordinate system is rotated of an
273 % angle included in the function table, then Sigma 0 points will all
274 % be available.
275 % After this process, the field generated by two elements differently
276 % oriented can be summed.
277 % An alternative could be not defining a new grid, but keeping the
278 % theta0,phi0 one. However, when adding two plots, values of f will
279 % be availables in different points.
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zuela, Small Satellites for Earth Observation: Selected Contributions. Springer Sci-

ence+Business Media B.V., 2008.

[3] D. J. Barnhart, T. Vladimirova, and M. N. Sweeting, “Very-small-satellite design for

distributed space missions,” Journal of Spacecraft and Rockets, vol. 44, pp. 1294–1306,

Nov. 2007.

[4] J. Padilla, G. Rosati, A. Ivanov, F. Bongard, S. Vaccaro, and J. Mosig, “Multi-functional

miniaturized slot antenna system for small satellites,” in EuCAP 2011, Proceedings of

the 5th European Conference on Antennas and Propagation, Apr. 2011, pp. 2170 –2174.

[5] G. Marrocco, L. Mattioni, A. Potenza, F. Milani, A. Giacomini, and M. Sabbadini,

“Distributed multi-function antenna system for micro- and nano-satellites,” in EuCAP

2010, Proceedings of the 4th European Conference on Antennas and Propagation, Apr.

2010, pp. 1 –4.

[6] J. Mueller, H. Goldberg, and L. Alkalai, “Micro-inspector spacecraft testbed: Breadboard

subsystem demonstrations,” in Space Technology and Applications International Forum-

STAIF 2007, ser. American Institute of Physics Conference Series, M. El-Genik, Ed., vol.

880, Jan. 2007, pp. 742–759.

[7] F. C. Bruhn, P. Rathsman, and L. Stenmark, “Nanospace-1: Spacecraft design using

advanced modular architecture (AMA),” AIAA Journal of Spacecraft and Rockets, 2005.

[8] N. Raj, “Satellites built by universities,” 2008.

[9] O. Montenbruck, M. Markgraf, S. Santandrea, and J. Naudet, “GPS orbit determina-

tion for micro-satellites - the PROBA-2 flight experience,” in AIAA/AAS Astrodynamics

Specialist Conference, 2010.

[10] R. Sandau, H. Roeser, and A. Valenzuela, Small Satellite Missions for Earth Observation.

Springer, 2008.

[11] M. Cutter, “A small satellite hyperspectral mission,” in Small Satellites, Systems and

Services, ser. ESA Special Publication, B. Warmbein, Ed., vol. 571, Nov. 2004.

211



212 Bibliography

[12] “http://www.esa.int/specials/education/sem4dlpr4cf/0.html.”

[13] K. Wincza, M. Osys, L. Dudzifiski, and P. Kabacik, “Lightweight low gain microstrip

antennas for use in minisatellites,” in 15th International Conference on Microwaves,

Radar and Wireless Communications, MIKON-2004., vol. 1, May 2004, pp. 314 – 317

Vol.1.

[14] E. Arnieri, L. Boccia, G. Amendola, and G. Di Massa, “A compact high gain antenna for

small satellite applications,” IEEE Transactions on Antennas and Propagation, vol. 55,

no. 2, pp. 277 –282, Feb. 2007.

[15] L. Alminde, M. Bisgaard, N. Melville, and J. Schaefer, “The SSETI-Express mission:

from idea to launch in one and a half year,” in Proceedings of 2nd International Con-

ference on Recent Advances in Space Technologies (RAST), 2005, Jun. 2005, pp. 100 –

105.

[16] “http://www.esa.int/specials/sseti/express/sem1az708be/0.html.”

[17] H. Zebker, T. Farr, R. Salazar, and T. Dixon, “Mapping the world’s topography using

radar interferometry: the TOPSAT mission,” Proceedings of the IEEE, vol. 82, no. 12,

pp. 1774 –1786, Dec. 1994.

[18] J. Lohn, “Advanced antenna design for a NASA small satellite mission,” in 22nd Annual

AIAA/USS conference on small satellites, 2008.

[19] D. Speer, G. Jackson, and D. Raphael, “Flight computer design for the Space Technology

5 (ST-5) mission,” in Journal of Spacecraft and Rockets, vol. 1, Nov. 2002, pp. 255–269.

[20] “http://www.utias-sfl.net/nanosatellites/aissat-1/.”

[21] “http://swisscube.epfl.ch/.”

[22] G. Rosati, “Miniaturised multi-functional antenna systems for micro/nano satellites -

Technical Note 01,” LEMA-EPFL, Lausanne, Switzerland, Tech. Rep., Apr. 2009.

[23] ——, “Miniaturised multi-functional antenna systems for micro/nano satellites - Baseline

Design Review,” Tech. Rep.

[24] ——, “Miniaturised multi-functional antenna systems for micro/nano satellites - Prelim-

inary Design Review,” LEMA-EPFL, Lausanne, Switzerland, Tech. Rep., Nov. 2009.

[25] ——, “Miniaturised multi-functional antenna systems for micro/nano satellites - Critical

Design Review,” LEMA-EPFL, Lausanne, Switzerland, Tech. Rep., Jun. 2010.

[26] ——, “Miniaturised multi-functional antenna systems for micro/nano satellites - Final

Review,” LEMA-EPFL, Lausanne, Switzerland, Tech. Rep., Dec. 2010.



Bibliography 213

[27] G. Rosati and J. Mosig, “An efficient analysis & design methodology for slot antennas on

microsatellites,” in 15th International Symposium on Antenna Technology and Applied

Electromagnetics (ANTEM), Jun. 2012, pp. 1 –7.

[28] ——, “Simplified point-wise schemes for integral equations in electromagnetics,” in 12th

Meditarranean Microwave Symposium, Sep. 2012.

[29] ——, “An alternate point-wise scheme for electric field integral equations,” Accepted for

publication in International Journal of RF and Microwave Computer Aided Engineering,

2013.

[30] A. Dastranj, A. Imani, and M. Naser-Moghaddasi, “Printed wide-slot antenna for wide-

band applications,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 10,

pp. 3097 –3102, Oct. 2008.

[31] J. Guterman, Y. Rahmat-Samii, A. Moreira, and C. Peixeiro, “Quasi-omnidirectional

dual-band back-to-back e-shaped patch antenna for laptop applications,” Electronics Let-

ters, vol. 42, no. 15, pp. 845 – 847, Jul. 2006.

[32] S.-M. Deng, “A study on the special characteristic of near isotropic or ball-like radiation

pattern,” in Antennas and Propagation Society International Symposium, 2005 IEEE,

vol. 2A, Jul. 2005, pp. 284 – 287.

[33] M. Hanqing and W. Dakui, “A wideband E-plane omnidirectional antenna,” in 7th In-

ternational Symposium on Antennas, Propagation EM Theory, 2006. ISAPE ’06., Oct.

2006, pp. 1 –2.

[34] P. Kabacik, M. Kulig, P. Gorski, and M. Jagoda, “The omnidirectional coverage of

low-profile ttc antennas onboard minispacecraft,” in Antennas and Propagation Society

International Symposium, 2005 IEEE, vol. 2B, Jul. 2005, pp. 222 – 225.

[35] K. Muchalski, M. Jagoda, M. Tomasiak, P. Gorski, A. Akonom, M. Kulig, W. Barecki,

and P. Kabacik, “Optimizing TT&C antenna placement on minisatellites,” in 15th In-

ternational Conference on Microwaves, Radar and Wireless Communications, MIKON-

2004., vol. 2, May 2004, pp. 489 – 492.

[36] T. Maleszka, P. Gorski, and P. Kabacik, “On omnidirectional coverage with minimum

number of circularly polarized patch antennas placed on minisatellites,” in Antennas and

Propagation Society International Symposium, 2007 IEEE, Jun. 2007, pp. 3037 –3040.

[37] C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley & Sons Inc., 1996.

[38] Ansoft HFSS - http://www.ansoft.com/products/, Ansoft Corporation.

[39] CST Microwave Studio - http://www.cst.com/Content/Products/MWS/Overview.aspx,

Computer Simulation Technology.



214 Bibliography

[40] FEKO - http://www.feko.info/, FEKO. Comprehensive electromagnetic simulation soft-

ware.

[41] Advanced Design System Momentum Simulator - http://home.agilent.com/, Agilent

Technologies.

[42] S. Vaccaro, “Solant: study and development of planar antennas integrating solar cells -

Thesis Nr. 2689,” Ph.D. dissertation, EPFL-LEMA, 2002.

[43] C. Balanis, Engineering Electromagnetics. John Wiley & Sons, 1989.

[44] R. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.

[45] J. Wang, Generalized moment methods in electromagnetics: formulation and computer

solution of integral equations. J. Wiley, 1991.

[46] W. Gibson, The Method of Moments in Electromagnetics. CRC PressINC, 2008.

[47] L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. Wiley, 1994.

[48] R. Collin, Field Theory of Guided Waves. Wiley, 1990.

[49] K. Michalski and J. Mosig, “Multilayered media Green’s functions in integral equation

formulations,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 508

–519, Mar. 1997.

[50] M. Aksun and G. Dural, “Clarification of issues on the closed-form Green’s functions in

stratified media,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, pp.

3644 – 3653, Nov. 2005.

[51] V. Kourkoulos and A. Cangellaris, “Accurate approximation of Green’s functions in pla-

nar stratified media in terms of a finite sum of spherical and cylindrical waves,” IEEE

Transactions on Antennas and Propagation, vol. 54, no. 5, pp. 1568 –1576, May 2006.

[52] A. Polimeridis, T. Yioultsis, and T. Tsiboukis, “A robust method for the computation of

Green’s functions in stratified media,” IEEE Transactions on Antennas and Propagation,

vol. 55, no. 7, pp. 1963 –1969, Jul. 2007.

[53] K. Michalski, “Extrapolation methods for Sommerfeld integral tails,” IEEE Transactions

on Antennas and Propagation, vol. 46, no. 10, pp. 1405 –1418, Oct. 1998.

[54] J. Mosig, Numerical Techniques for Microwave and Millimeter-Wave Passive Structures.

Wiley, 1989.

[55] ——, Integral-equation techniques for three-dimensional microstrip structures. Review

of Radio Science, R. Stone, Ed. Oxford: URSI-Oxford Science Publications, 1998.



Bibliography 215

[56] A. Peterson, S. Ray, and Mittra, Computational methods for electromagnetics. IEEE

Press, 1998.

[57] P. Yla-Oijala and M. Taskinen, “Calculation of CFIE impedance matrix elements with

RWG and n×RWG functions,” IEEE Transactions on Antennas and Propagation, vol. 51,

no. 8, pp. 1837 – 1846, Aug. 2003.

[58] J. Mosig and F. Gardiol, “General integral equation formulation for microstrip antennas

and scatterers,” IEEE Proceedings on Microwaves, Antennas and Propagation, vol. 132,

no. 7, pp. 424 –432, Dec. 1985.

[59] J. Mosig, “Arbitrarily shaped microstrip structures and their analysis with a mixed po-

tential integral equation,” IEEE Transactions on Microwave Theory and Techniques,

vol. 36, no. 2, pp. 314 –323, Feb. 1988.

[60] M. Cloud and D. Nyquist, “A note on the mixed potential representation of electric fields

in layered media,” IEEE Transactions on Microwave Theory and Techniques, vol. 37,

no. 7, pp. 1150 –1152, Jul. 1989.

[61] G. Vandenbosch and A. Van de Capelle, “Mixed-potential integral expression formulation

of the electric field in a stratified dielectric medium-application to the case of a probe

current source,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 7, pp.

806 –817, Jul. 1992.

[62] J. Sercu, N. Fache, F. Libbrecht, and P. Lagasse, “Mixed potential integral equation

technique for hybrid microstrip-slotline multilayered circuits using a mixed rectangular-

triangular mesh,” IEEE Transactions on Microwave Theory and Techniques, vol. 43,

no. 5, pp. 1162 –1172, May 1995.

[63] M. Sancer, K. Sertel, J. Volakis, and P. Van Alstine, “On volume integral equations,”

IEEE Transactions on Antennas and Propagation, vol. 54, no. 5, pp. 1488 –1495, May

2006.

[64] B. Usner, K. Sertel, M. Carr, and J. Volakis, “Generalized volume-surface integral equa-

tion for modeling inhomogeneities within high contrast composite structures,” IEEE

Transactions on Antennas and Propagation, vol. 54, no. 1, pp. 68 – 75, Jan. 2006.

[65] S. Makarov, S. Kulkarni, A. Marut, and L. Kempel, “Method of moments solution for a

printed patch/slot antenna on a thin finite dielectric substrate using the volume integral

equation,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 4, pp. 1174 –

1184, Apr. 2006.

[66] W. Chew, Waves and fields in inhomogeneous media. IEEE Press, 1999.

[67] R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use

of vector triangle basis functions,” Microwave and Optical Technology Letters, vol. 14,

no. 1, pp. 9–14, 1997.



216 Bibliography

[68] N. Morita, N. Kumagai, and J. Mautz, Integral Equation Methods for Electromagnetics.

Artech House, 1990.

[69] M. Sadiku, Numerical Techniques in Electromagnetics, Second Edition. CRC PressINC,

2001.

[70] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary

shape,” IEEE Transactions on Antennas and Propagation, vol. 30, no. 3, pp. 409 – 418,

May 1982.

[71] W. Chew, Fast and Efficient Algorithms in Computational Electromagnetics. Artech

House, 2001.

[72] E. Nyström , “Uber die praktische auflösung von integralgleichungen mit anwendungen

auf randwertaufgaben,” Acta Mathematica, vol. 54, pp. 185–204, 1930.

[73] R. Kress, Linear Integral Systems. Springer-Verlag GmbH, 1999.

[74] S. Gedney, “On deriving a locally corrected Nyström scheme from a quadrature sampled

moment method,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 9, pp.

2402 – 2412, Sep. 2003.

[75] L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Nu-

merical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström

discretization,” Journal of Computational Physics, vol. 146, no. 2, pp. 627 – 663, 1998.

[76] D. Wilton, S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C. Butler, “Potential

integrals for uniform and linear source distributions on polygonal and polyhedral do-

mains,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 3, pp. 276 – 281,

Mar. 1984.

[77] WIPL-D. Electromagnetic modeling of composite metallic and dielectric structures -

http://www.wipl-d.com/.

[78] M. S. Tong and W. C. Chew, “Superhyper singularity treatment for solving 3d electric

field integral equations,” Microw. Opt. Tech. Lett, vol. 49, no. 6, pp. 1383–1388, Mar.

2007.

[79] ——, “On the near-interaction elements in integral equation solvers for electromagnetic

scattering by three-dimensional thin objects,” IEEE Transactions on Antennas and Prop-

agation, vol. 57, no. 8, pp. 2500 –2506, Aug. 2009.

[80] M. Yuan, T. Sarkar, and M. Salazar-Palma, “A direct discrete complex image method

from the closed-form Green’s functions in multilayered media,” IEEE Transactions on

Microwave Theory and Techniques, vol. 54, no. 3, pp. 1025 – 1032, Mar. 2006.



Bibliography 217

[81] R. R. Boix, F. Mesa, and F. Medina, “Application of total least squares to the deriva-

tion of closed-form Green’s functions for planar layered media,” IEEE Transactions on

Microwave Theory and Techniques, vol. 55, no. 2, pp. 268 –280, Feb. 2007.

[82] K. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of

arbitrary shape in layered media. I. Theory,” IEEE Transactions on Antennas and Prop-

agation, vol. 38, no. 3, pp. 335 –344, Mar. 1990.

[83] A. Polimeridis, T. Yioultsis, and T. Tsiboukis, “Fast numerical computation of Green’s

functions for unbounded planar stratified media with a finite-difference technique and

gaussian spectral rules,” IEEE Transactions on Microwave Theory and Techniques,

vol. 55, no. 1, pp. 100 –107, Jan. 2007.

[84] F. Demuynck, G. Vandenbosch, and A. Van de Capelle, “Analytical treatment of the

Green’s function singularities in a stratified dielectric medium,” in 23rd European Mi-

crowave Conference, Sep. 1993, pp. 1000 –1001.

[85] A. Polimeridis and T. Yioultsis, “On the direct evaluation of weakly singular integrals in

Galerkin mixed potential integral equation formulations,” IEEE Transactions on Anten-

nas and Propagation, vol. 56, no. 9, pp. 3011 –3019, Sep. 2008.

[86] L. Gray, J. Glaeser, and T. Kaplan, “Direct evaluation of hypersingular Galerkin surface

integrals,” SIAM Journal on Scientific Computing, vol. 25, no. 5, pp. 1534–1556, 2004.

[87] L. Gray, A. Salvadori, A. Phan, and V. Mantic, “Direct evaluation of hypersingular

Galerkin surface integrals II,” Electronic Journal of Boundary Elements, vol. 4, no. 3,

2007.

[88] R. Graglia, “On the numerical integration of the linear shape functions times the 3-D

Green’s function or its gradient on a plane triangle,” IEEE Transactions on Antennas

and Propagation, vol. 41, no. 10, pp. 1448 –1455, Oct. 1993.

[89] T. Eibert and V. Hansen, “On the calculation of potential integrals for linear source

distributions on triangular domains,” IEEE Transactions on Antennas and Propagation,

vol. 43, no. 12, pp. 1499 –1502, Dec. 1995.

[90] A. Tzoulis and T. F. Eibert, “Review of singular potential integrals for method of mo-

ments solutions of surface integral equations,” Advances in Radio Science, vol. 2, pp.

93–99, 2004.

[91] C. Schwab and W. Wendland, “On numerical cubatures of singular surface integrals in

boundary element methods,” Numerische Mathematik, vol. 62, pp. 343–369, 1992.

[92] Ismatullah and T. Eibert, “Adaptive singularity cancellation for efficient treatment of

near-singular and near-hypersingular integrals in surface integral equation formulations,”

IEEE Transactions on Antennas and Propagation, vol. 56, no. 1, pp. 274 –278, Jan. 2008.



218 Bibliography

[93] S. Chakraborty and V. Jandhyala, “Evaluation of Green’s function integrals in conducting

media,” in Antennas and Propagation Society International Symposium, 2003. IEEE,

vol. 3, Jun. 2003, pp. 320 – 323.

[94] H.-X. Zhou, W. Hong, and G. Hua, “An accurate approach for the calculation of MoM

matrix elements,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 4, pp.

1185 – 1191, Apr. 2006.

[95] P. Fink, D. Wilton, and M. Khayat, “Simple and efficient numerical evaluation of near-

hypersingular integrals,” in Antennas and Propagation Society International Symposium,

2007 IEEE, Jun. 2007, pp. 4849 –4852.

[96] M. E. Cabot Barja, “Characterization techniques for antennas with highly convoluted

topologies - Thesis Nr. 3152,” Ph.D. dissertation, EPFL-LEMA, 2004.

[97] J. M. Rius, J. M. G. Arbesu, J. R. Mosig, and E. C. et al., “Conclusions and results of

the fractalcoms project: Exploring the limits of fractal electrodynamics for the future

telecommunication technologies,” in ACTAS del 27TH ESA Antenna Technology Work-

shop on Innovative Periodic Antennas: Electromagnetic Bandgap, Left-Handed Materi-

als, Fractal and Frequency Selective Surfaces, 2004, pp. 229 – 233.

[98] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind. Cam-

bridge University Press, 1997.







Gabriele Rosati

Contact
Information

15, Rue du Villars Mobile: +41 76 251 44 19
CH-1024, Ecublens, Switzerland E-mail: gabriele.rosati@epfl.ch

Bio Sketch Date - place of birth: June 16, 1981 - Prato, Italy
Gender: Male
Marital status: Single
Citizenhsip: Italian

Research
Interests

Numerical methods for Electromagnetics, with emphasis on Integral Equations and Method
of Moments. Analysis and design of antenna systems for space applications and printed
microwave circuits.

Professional
& Academic
Experiences

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Laboratory of Electromagnetics and Acoustics (LEMA)

Ph.D. Degree in Electrical Engineering Jan. 2009–Jan. 2013

- Research in numerical methods for electromagnetics.

- Development and implementation of accelerated formulations of the Method of Moments.

- Design of a multi-functional antenna systems for micro-satellites.

- Participation in the ESA project MAST.

- Contribution to project proposals for the European Space Agency (ESA) (MASSA, MILAS,
MAST-X)

- Teaching assistance and students supervision.

TNO Defence Security & Safety, The Hague, Netherlands

Department of Antennas and Propagation

Research internship Oct. 2002–Apr. 2003

- Electromagnetic Band-Gap technology.

- Substrate Integrated Wavegides.

Education Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Laboratory of Electromagnetics and Acoustics (LEMA)

Ph.D. Degree in Electrical Engineering, Jan. 2013.

• Thesis Title: Numerical Analysis and Design of a Antenna Systems for Micro/Nano
Satellites.

• Advisor: Prof. Juan R. Mosig.

• Areas of study: numerical methods for electromagnetic problems, Integral Equations,
Method of Moments; implementation and development of simulation software. Multi-
functional, 3D antenna arrays, omni-directional radiation in circular polarization. Space
applications.

Università dgli Studi di Firenze, Florence, Italy

Master Degree in Electronic Engineering, Dec. 2007.

Score: Summa cum laude
Specialization: Electromagnetism, integrated high-frequency circuit design, signal process-
ing.

• Thesis Title: Design of an EBG-based feed for a cylindrical reflector antenna using PCB
technology.

• Advisor: Prof. Angelo Freni.

• Area of study: planar stratified media, Electronic Band Gap technology, Substrate Inte-
grated Waveguides, measurements and calibration techniques.

i



Advanced
Training &
Graduate
Courses

From the European School of Antennas (ESoA)

- Advanced Computational EM
for Antenna Analysis. EPFL, Lausanne, Switzerland. Oct. 2010

- Advanced Mathematics for Antenna Analysis. Dubrovnik, Croatia. May. 2010

From the Antenna Center of Excellence (ACE)

- Phased Arrays and Reflectarrays. TNO, The Hague, Netherlands. May. 2007

From the EPFL PhD program (EDOC)

- Integral Equations in Electromagnetics, Prof. Juan R. mosig. 2011

- Optimization and Simulation, Prof. Michel Bierlaire. 2009

- Advanced topics in Electromagnetic Compatibility, Prof. Farhad Rachidi-Haeri. 2008

- Advanced microwaves for wireless communications, Prof. Anja K. Skrivervik. 2007

Teaching
Experience

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Teaching assistant for the courses of Radiation and Antennas and Electromagnetics (Exercise
Sessions, Bachelor Level).

In charge of the LEMA introductory seminars for the students of first year of Bachelor
(Laboratoires Répartis).
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