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Basic linear eigenmode spectra for electrostatic Langmuir waves and drift-kinetic slab ion temperature

gradient modes are examined in a series of scenarios. Collisions are modeled via a Lenard-Bernstein

collision operator which fundamentally alters the linear spectrum even for infinitesimal collisionality

[Ng et al., Phys. Rev. Lett. 83, 1974 (1999)]. A comparison between different discretization schemes

reveals that a Hermite representation is superior for accurately resolving the spectra compared to a

finite differences scheme using an equidistant velocity grid. Additionally, it is shown analytically that

any even power of velocity space hyperdiffusion also produces a Case-Van Kampen spectrum which,

in the limit of zero hyperdiffusivity, matches the collisionless Landau solutions. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4792163]

I. INTRODUCTION

First predicted analytically1 and later observed experi-

mentally,2 collisionless Landau damping is one of the most

well known phenomena in plasma physics. The Landau solu-

tions, all of which are damped for electrostatic Langmuir

waves, arise after a Laplace transform with respect to time of

the linearized governing equations and dominate the solution

for large times. The advantage of such an approach is that it

naturally includes the initial condition which is necessary

when solving differential equations. However, Van Kampen

searched for solutions with a time dependence of expðixtÞ
and discovered a continuum of singular solutions that are

marginally stable.3 It was demonstrated that the interplay of

these modes leads to a damping of all moments of the distri-

bution function, e.g., the electrostatic potential, given a

smooth initial condition. An important conceptual point in

the collisionless case that resolves this apparent contradic-

tion is that the Landau approach applies to the electrostatic

potential and not to the distribution function. Indeed, only

moments of the distribution function with respect to velocity

are damped but not the distribution function itself. Subse-

quent studies added collisions as a natural extension of the

mathematical model. Using a simplified collision term of a

Fokker-Planck type, Lenard and Bernstein found that the

results of Landau do not change qualitatively in the presence

of collisions,4 i.e., the Landau solutions change continuously

with the collision frequency. Later, however, a similar inves-

tigation was conducted also for the Case-Van Kampen spec-

trum, and it was found numerically5 as well as analytically6

that collisions alter the Van Kampen spectrum completely;

the continuum of marginally stable modes vanishes, and

instead the spectrum consists of countably infinitely many

eigenvalues that converge to the collisionless Landau solu-

tions when the collision frequency tends to zero, i.e., colli-

sions represent a singular perturbation of the system.

In this work we reexamine, analytically and numeri-

cally, several examples of basic kinetic eigenvalue problems,

providing new insights into various aspects of the eigenmode

spectra. The cause for the qualitative change of the spectrum

that comes with introducing collisions is traced back to the

second-order velocity derivative of the distribution function. In

fact, this term alone is sufficient for reproducing the observed

results. This we verify numerically and additionally show ana-

lytically that any even power of velocity space hyperdiffusion

alters the spectrum in the same way, which is noteworthy con-

sidering that such terms are used extensively in computer sim-

ulations. Although the latter is performed mainly for numerical

reasons, our analysis suggests that they capture more physical

effects than might be expected at first sight.

For the collisional slab drift-kinetic model with ion tem-

perature and density gradients, we shall focus our study on

numerical approaches and compare different numerical

schemes. We find that a truncated Hermite representation of

the distribution function is in many ways superior to a finite

differences approach on an equidistant velocity grid although

the latter finds a wide application in numerical simulations.

One of the main motivations for this work was also the

correct interpretation of the Case-Van Kampen-type spectral

analyses, e.g., those performed with GENE,7 which has

become an important task considering the various applica-

tions of linear eigenvalue computations.8–11 The results of

this study are also expected to provide insights into the non-

linear effect of turbulence which is driven by the unstable

linear eigenmodes studied here. Microturbulence and the

associated transport in fusion plasmas frequently retain sig-

natures of the underlying linear eigenmode spectra.12–16

Moreover, it has been shown recently that the interaction of

unstable and stable eigenmodes at comparable scales facili-

tates turbulent saturation by providing an energy sink at the

same scales as the energy drive.10,17–19 Thus, a careful study

of both the unstable and stable parts of the linear eigenmode

spectra is expected to lay the foundation for a deeper under-

standing of the saturation mechanisms which determine the

level of heat transport in fusion plasmas.

The reminder of this paper is organized as follows. In

Sec. II, we reproduce some known results, but in a mathe-

matically more consistent way, by formulating the problem
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of plasma oscillations in the language of operator theory.

This will illustrate the origin of the Van Kampen continuum

and give a sufficient condition for its existence. Sec. III deals

with the numerical implementation of the collisionless and

collisional cases. We study the applicability of two different

numerical schemes: finite differences on an equidistant grid

in velocity space and a truncated Hermite representation. In

Sec. IV we investigate analytically whether a diffusion term

alone is sufficient to reproduce the qualitative change of the

Case-Van Kampen spectrum observed numerically. The

computation is generalized to an arbitrary even derivative

with respect to velocity and conducted in a similar way as in

Ref. 6. It is also noted that the solution of the initial value

problem via a Laplace transform in time yields the same

dispersion relation, i.e., collisional Case-Van Kampen and

Landau solutions are the same when considering such dissi-

pation terms. In Sec. V, the obtained results are summarized.

II. MATHEMATICAL PROPERTIES OF THE LANGMUIR
WAVE MODEL

The starting point of our investigation is the model of

one-dimensional collisionless electrostatic Langmuir waves

with immobile ions distributed homogeneously in space. The

dynamics are governed by the linearized Vlasov equation for

the electron distribution function g(z, v, t) combined with the

Poisson equation. Space and time quantities are normalized to

the Debye length, kD, and the electron plasma frequency, xpe,

defined as kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0kBT0=ðn0e2Þ

p
and xpe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=ðmee0Þ

p
,

respectively. The thermal velocity we set as vth ¼ kDxpe.

Using these units, we redefine further g! gn0=vth;
E! kBT0E=ðekDÞ; z! zkD; t! t=xpe, and v! vvth, where

E denotes the electric field. The full distribution function is

split into an equilibrium part f0ðvÞ and a small perturbation

g1ðz; v; tÞ that is to be computed. Linearizing the Vlasov equa-

tion yields

@g1

@t
þ v

@g1

@z
� Eðz; tÞ @f0

@v
¼ 0;

@E

@z
¼ �

ðþ1
�1

g1ðz; v; tÞdv: (1)

We shall also assume that the distribution is periodic in

space with period L. Hence, it suffices to consider only the

interval z 2 ½0; L�. Such a treatment suggests the use of a

Fourier series representation in space defined by

f̂ ðkÞ :¼ 1

L

ðL
0

f ðzÞe�ikzdz) f ðzÞ ¼
X

k

f̂ ðkÞeikz; (2)

where k takes discrete values given by k ¼ n2p=L and

n 2N0. In what follows, we search for functions of the form

ĝ1ðk; v; tÞ ¼ f ðk; v;xÞe�ixt, where f ðk; v;xÞ is determined by

the equation

xf ðk; v;xÞ ¼ kvf ðk; v;xÞ � 1

k

@f0

@v

ðþ1
�1

f ðk; v0;xÞdv0: (3)

This system can be viewed as an eigenvalue equation with x
as an eigenvalue and the right-hand side as a linear operator

A in velocity space acting on f, i.e.,

ðAf ÞðvÞ :¼ kvf ðvÞ þ wðvÞ
ðþ1
�1

f ðv0Þdv0; (4)

where wðvÞ ¼ �ð1=kÞð@f0=@vÞ. For a proper eigenvalue

equation one has to specify also the domain of definition of

the operator A. An important observation is that the first part

on the right-hand side of Eq. (4) is, up to the multiplicative

factor k, the position operator from quantum mechanics for

which one usually uses the Schwartz space S as the func-

tional domain. We recall that S is the space of all C1 func-

tions which, as well as all their derivatives, decrease faster

than any polynomial for large absolute values of the argu-

ment. In the explicit examples that shall be discussed in this

paper, wðvÞ has the form of a Gauss function multiplied by

some polynomial, i.e., wðvÞ 2 S and, therefore, the right-

hand side of Eq. (4) is well defined for all f 2 S.

A : S � L2ðR; ð1þ x2ÞdxÞ ! S � L2ðR; ð1þ x2ÞdxÞ; (5)

where L2ðR; ð1þ x2ÞdxÞ ¼: H is the functional space of all

functions over the real numbers that are square integrable

with respect to the measure ð1þ x2Þdx. It is immediately

clear that H is a Hilbert space with respect to the scalar

product

hf ; giH :¼
ðþ1
�1

f ðvÞð1þ v2ÞgðvÞdv; (6)

where f stands for the complex conjugate of f. This turns A
into a densely defined operator, i.e., A is defined on a func-

tional space that is dense in a Hilbert space. In order to estab-

lish the connection to the physical problem one should

elaborate on the physical relevance of the functional space

H. A reasonable condition is to demand that the particle den-

sity is always finite, i.e.,
Ðþ1
�1 gðz; v; tÞdv <1 for all t 2 R

and z 2 ½0; L�. Since the one particle distribution function is

per definition non-negative and the smallness condition

jg1j � f0 applies for all v 2 R, it follows also that

g1ðz; v; tÞ 2 L1ðRÞ with respect to v. Further, the perturba-

tion g1ðz; v; tÞ should have no singularities as a function of z
and v. From this and the previous considerations follows im-

mediately that f ðk; v;xÞ 2 L1ðRÞ with respect to v. Since all

velocity moments of the distribution function have to be fi-

nite, it holds that limv!61 vnf ðk; v;xÞ ! 0 for all n 2N0,

which together with the absence of singularities means that

f ðk;v;xÞ 2 L2ðR;dxÞ, i.e., f ðk;v;xÞ 2 L1ðR;dxÞ\L2ðR;dxÞ.
The space H that we used is dense in L1ðR;dxÞ\L2ðR;dxÞ.
The operator A consists of two parts A0 and A1 defined as

ðA0f ÞðvÞ :¼ kvf ðvÞ; ðA1f ÞðvÞ :¼ wðvÞ
ðþ1
�1

f ðv0Þdv0: (7)

A0 is essentially the position operator known from quantum

mechanics which is self-adjoint on S. It is also well known

that the position operator has only an essential spectrum that

consists of the whole real axis. An important point is that A1

022108-2 Bratanov et al. Phys. Plasmas 20, 022108 (2013)
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is bounded on H; kA1kH �
ffiffiffi
p
p
kwkH <1, which together

with the fact that its range is finite dimensional implies that

A1 is compact on H. According to a theorem of Weyl (p.

113, Corollary 2 in Ref. 20), in this case the essential spec-

trum of A is the same as that of A0, i.e., ressðAÞ ¼ ressðA1Þ.
From this follows that every real number belongs to the spec-

trum of A, which is the result of Van Kampen.3 However,

the theorem of Weyl does not exclude the possibility that

there exist also complex values of x that belong to the spec-

trum of A. One way to determine this is to find the resolvent

operator of A� x. After a simple computation, one finds

that it is given by

RAðxÞ ¼
1

kv� x
� wðvÞ

kv� x
1

1þ p:v:
ðþ1
�1

wðv0Þ
kv0 � x

dv0
� �

� p:v:
ðþ1
�1

dv00

kv00 � x
; ð8Þ

where the first term should be understood as a multiplication

operator and the second one as an integral operator with p:v:
denoting the principal value of the integral (this form of the

resolvent operator has been given independently in Ref. 21

where a similar problem is discussed. However, the model of

magnetized plasma presented there deviates considerably

from the one studied here). Having the above form, one can

easily verify that RAðxÞðA� xÞ ¼ ðA� xÞRAðxÞ ¼ id on

H, which can be viewed as the definition of the resolvent op-

erator and that RAðxÞ is bounded on H when both =ðxÞ 6¼ 0

and 1þ p:v:
Ðþ1
�1

wðv0Þ
kv�x dv 6¼ 0 (here id and = denote the iden-

tity operator and the imaginary part of a complex number,

respectively). It is clear that RAðxÞ has poles at every real

number. This gives again the continuous spectrum discov-

ered by Van Kampen. However, RAðxÞ has poles also for

frequencies which satisfy the relation

1þ p:v:
ðþ1
�1

wðvÞ
kv� x0

dv ¼ 0: (9)

These solutions we shall call the discrete part of the Case-Van

Kampen spectrum. We note here that, in the drift-kinetic sys-

tem discussed in Sec. III, the discrete part of the collisionless

Case-Van Kampen spectrum is connected to the unstable drift

waves that arise in the case with background gradients. Thus,

the mathematical foundation for a broader class of eigenmo-

des is already observed even in the simple electrostatic Lang-

muir wave system. For wðvÞ a real valued function, the

solutions of Eq. (9) are either real or appear in complex conju-

gate pairs. Considering the definition of the Landau contour,

one should note that all unstable (=ðxÞ > 0) Landau solutions

coincide with the unstable Case-Van Kampen solutions.

The eigenfunctions f
ðVÞ
x of A have the form f

ðVÞ
x ¼ � wðvÞ

kv�x

þ kdðkv� xÞ
�
1þ p:v:

Ðþ1
�1

wðv0Þ
kv0�x dv0

�
and are also given in

Ref. 3. For x real, f
ðVÞ
x ðvÞ are distributions and belong neither

to L2 nor L1. Therefore, in strict mathematical terms, real fre-

quencies belong to the spectrum of A but are not eigenvalues.

If =ðx0Þ 6¼ 0, then f
ðVÞ
x0
2 H, i.e., the discrete part of the spec-

trum of A that does not lie on the real axis consists of mathe-

matical eigenvalues. Using the explicit form of the

eigenfunctions f
ðVÞ
x ðvÞ, one can verify that in contrast to the

statement in Ref. 22, eigenfunctions corresponding to differ-

ent frequencies are not orthogonal with respect to the scalar

product

hf ; gif0 ¼
ðþ1
�1

f ðvÞgðvÞ
f0ðvÞ

dv; (10)

but, instead, for Langmuir waves we have

hf ðVÞx1
; f ðVÞx2
if0 ¼ �

1

k2
ifx1 6¼ x2: (11)

According to the classical paper of Case,23 one should expect

“a continuum of solutions for all real � such that not simulta-

neously gð�iÞ ¼ 0 ¼ kð�iÞ,” where gðvÞ denotes our wðvÞ;
� ¼ x=k and kð�iÞ is the left-hand side of Eq. (9). This, how-

ever, cannot be a condition for the existence of the continu-

ous part of the spectrum because, as the theorem of Weyl

shows, the addition of a compact operator A1 to the self-

adjoint A0 does not change its continuous spectrum. The op-

erator A inherits the continuous part of its spectrum on the

real axis from A0 and since gðvÞ is present only in A1, no

condition involving gðvÞ can influence the existence of the

continuum as long as kgðvÞkH <1 which is fulfilled for ev-

ery physically reasonable equilibrium distribution function.

For real discrete �i, the condition given in Ref. 23 reads

gð�iÞ ¼ kð�iÞ ¼ 0. However, as we see from Eq. (8), it is not

necessary that gð�iÞ ¼ 0. To summarize, as long as A1 is

compact, there is a continuum of eigenvalues that covers the

whole real axis. The discrete set of complex solutions satis-

fies the condition given by Eq. (9).

III. NUMERICAL SCHEMES FOR DISCRETIZED
SYSTEMS

While one can extract some analytical results in the col-

lisionless case, including collisions into the model makes it

mathematically much more difficult. For obtaining results in

this case, it is therefore necessary to approach the problem

numerically which is the goal of this section. We also study

a different model where background temperature and density

gradients are taken into account. A numerical study, how-

ever, introduces the important question of which is the most

appropriate discretization scheme to use. Here we compare

the results obtained with a finite difference scheme on an

equidistant velocity grid versus those achieved via a Hermite

representation of the distribution function and conclude that

the latter is in many aspects superior to the first.

A. Collisionless Langmuir waves

First, we consider an equidistant grid of N points on the

velocity axis that covers the interval ½�vmax; vmax�. All func-

tions of velocity turn into vectors in RN and the operator in

Eq. (4) becomes a matrix, M, the eigenvalues of which
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represent the Case-Van Kampen spectrum. The details of the

numerical representation we use here are discussed in Ref.

24. In the discretized system, one can easily solve for the

time evolution of the distribution function, ~FðtÞ, which is

given by ~FðtÞ ¼ e�iMt � ~Fðt ¼ 0Þ and for smooth initial con-

ditions leads to an oscillatory behavior of the perturbation in

velocity space that gets more and more rapid with time. This

is the well-known linear phase mixing which results in an ex-

ponential decay of all moments of the perturbation. Solving

numerically for the eigenvalues of the matrix M, one con-

cludes that they all lie on the real axis but are not equidistant

and accumulate at the points corresponding to the real part

of the two least damped Landau solutions. This leads to the

question if all Case-Van Kampen eigenmodes are equally

important for the numerical description of the system. The

eigenvectors of M form a complete basis in RN and can be

used as such to decompose any initial condition ~F0. When a

Maxwellian initial condition is decomposed on the basis of

linear eigenmodes, one observes that the modes having fre-

quencies clustered near the real part of the frequency of the

least damped Landau solutions possess the largest coeffi-

cients. However, if one constructs a reduced initial condition

composed of only this subset of modes, the corresponding

initial value computation does not reproduce the exponential

decay associated with Landau damping. This suggests that

the interplay of all modes with non-negligible coefficients is

essential for obtaining the damping.

B. Collisionless slab ion temperature gradient (ITG)
modes

As a natural next step, we extend our study to a drift-

kinetic slab ITG model.25,26 Electrons are assumed to be adi-

abatic and only the ~E � ~B drift is taken into account. We

consider only electrostatic perturbations in a strong homoge-

neous magnetic field in the z direction, ~B ¼ B~ez, and pre-

sume a plasma in a local thermal equilibrium where

temperature and density vary in the x direction. The thermal

ion velocity is defined in this case as vth;i :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTiðx0Þ=mi

p
,

where x0 stands for a reference position along x, m is the par-

ticle mass, and the subscript i stands for the ion particle spe-

cies. We consider only one ion species with the charge þe.

The time scales in this model are given by the gyrofrequency

xg ¼ eB=mi. One also defines the thermal ion gyroradius

qi ¼ vth;i=xg. After integrating the drift-kinetic equation

over v?, the resulting distribution function gð~r; vjj; tÞ ¼:
f0iðx; vjjÞ þ g1ið~r ; vjj; tÞ is normalized over n0iðx0Þ=vth;i and

the electron potential u over kBTiðx0Þ=e. For the temperature

and density we adopt T ! T=Tðx0Þ and n0i ! n0i=n0iðx0Þ.
The linearized equations describing the system in this case

read

1

q	

@g1i

@t
þ vjj

@g1i

@z
� @u
@y

@f0i

@vjj
� @u
@z

@f0i

@x
¼ 0; (12a)

u ¼ s
TeðxÞ
n0iðxÞ

ðþ1
�1

g1ið~r; vjj; tÞdvjj; (12b)

where q	 ¼ qi=R, s ¼ Teðx0Þ=Tiðx0Þ and f0i and g1i denote

the equilibrium and perturbed ion distribution functions,

respectively. Eq. (12b) represents the adiabatic response of

the electrons and couples the electrostatic potential to the

perturbed ion distribution function. Note that x only appears

as a parameter in Eqs. (12a) and (12b) and the equations are

thus local in this direction. Without loss of generality one

may thus reduce the study to the reference position x ¼ x0

which is equivalent to setting kx ¼ 0. In Eqs. (12a) and (12b)

we have normalized x and y with respect to the microscopic

scale qi and z with respect to the macroscopic scale R which

characterizes the variation of temperature and density in the

x direction. For the temperature and density gradients we use

the local approximation

1

Ti

dTi

dx
¼: � 1

LT
¼ const;

1

n0i

dn0i

dx
¼: � 1

Ld
¼ const: (13)

LT and Ld we shall refer to as gradient lengths which are nor-

malized over R. After a Fourier transformation with respect

to y and z, using the assumption that the perturbation of the

ion distribution function is proportional to e�ixt, one arrives

at the eigenvalue equation

x
q	

f1i¼ kjjvjjf1i�saðvjjÞf0iðvjjÞ
ðþ1
�1

f1iðx;ky;kjj;v
0

jj;xÞdv
0

jj; (14)

where aðvjjÞ ¼ ky=ð2LTÞ� ky=Ld � kjjvjj � kyv2
jj=ð2LTÞ, f0iðvjjÞ

¼ expð�v2
jj=2Þ=

ffiffiffiffiffiffi
2p
p

, and g1iðky; kjj; vjj; tÞ ¼: f1iðky; kjj;
vjj;xÞe�ixt. The discretization procedure is the same as for

Langmuir waves. The spectra that the corresponding matrix

produces are shown in Fig. 1 where the blue asterisks and

green crosses denote the continuous and the discrete part of

the Case-Van Kampen spectrum, respectively. The latter is

defined by Eq. (9). Because of the numerical discretization

scheme the asterisks are contained on a finite interval in the

x-plane that corresponds to the interval ½�vmax; vmax� in ve-

locity space. Those discrete eigenvalues that stand out from

the continuum part are computed directly by the numerical

eigenvalue solver together with the blue asterisks. For the

green crosses that are embedded into the continuum we used

approximate solutions of Eq. (9). For comparison, the colli-

sionless Landau solutions are also plotted (red circles). They

solve the analytical dispersion relation

1þ 1

s
þ ky

2k2
jjq	LT

xþZ
xffiffiffi

2
p

kjjq	

 !
� ky

2
ffiffiffi
2
p

k3
jjq

2
	LT

x2

 

þ xffiffiffi
2
p

kjjq	
þ kyffiffiffi

2
p

kjjLn

� ky

2
ffiffiffi
2
p

kjjLT

!
¼ 0 (15)

that arises after applying a Laplace transform with respect to

time on Eq. (14). Z denotes the plasma dispersion function as

defined in Ref. 27.

It is evident that the Case-Van Kampen spectra of drift-

kinetic slab ITG and Langmuir waves display a great deal of

similarity. In both cases one observes the kinetic modes on

the real axis that result from the first part of the linear opera-

tor. For some parameters there are also (possibly complex)

eigenvalues present that result from the second part of the
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resolvent operator in Eq. (8) and that we call the discrete

Case-Van Kampen spectrum. To this set belongs also the

isolated mode on the right which is very close to one of the

Landau solutions. The latter is due to the fact that for

j<ðxÞj 
 j=ðxÞj, the plasma distribution function equals

nearly the principle value integral for the corresponding

complex frequency. We shall refer to this mode as an ion

acoustic mode. This association is also mathematically

motivated. It is well known that ion sound waves due to den-

sity gradients have frequencies that are proportional to

ky=ðkjjLdÞ. Using the drift-kinetic Landau dispersion relation,

one can derive a differential equation that governs the move-

ment of the Landau solutions in the complex frequency plane

with respect to any of the parameters. For 1=LT ¼ 0 it is

immediately seen that the frequency of solutions with negli-

gible damping/growth rate also scales as ky with the propor-

tionality constant of 1=ðkjjLdÞ.
In Fig. 1, one can also follow the movement of the

eigenvalues and the Landau solutions in the complex plane

resulting from varying the gradient lengths. Correspond-

ingly, not only the position but also the number of existing

discrete eigenvalues change. For one set of parameters given

by the condition k2
y=k2
jj ¼ 4ð1þ sÞL2

TLd=ðs2ðLd � 2LTÞÞ, one

of the discrete eigenvalues on the real axis coincides with

one of the Landau solutions that by further increment of the

temperature gradient becomes the instability. For ky ¼ 10kjj
and Ld ¼ 10 this is realized for LT ¼ 2:5 and shown in Fig.

1(b). This condition also means that for given gradient

lengths, there are always ky and kjj values such that the ratio

ky=kjj fulfills the upper condition, and there is an undamped

Landau solution with the same frequency as one of the dis-

crete Case-Van Kampen eigenvalues. In conclusion, despite

the singular nature of the collisionless Case-Van Kampen

modes with real frequency, the discrete Case-Van Kampen

spectrum shows an interesting connection to that part of the

Landau solutions that has a clear physical interpretation,

namely, the instability and the drift wave.

It is noteworthy that the discrete Case-Van Kampen

eigenvalues have the same dispersion relation (Eq. (9)) as

the nonlinear undamped Bernstein-Greene-Kruskal modes

when the amplitude of the latter tends to zero.28

C. Comparison between different discretization
schemes for the collisional case

Up to now, we discussed only collisionless systems.

One could argue that such a model is a good approximation

of hot fusion plasmas since the collision frequency in such

plasmas is small. However, it has been shown numerically5

and later proved analytically6 that for any non-zero collision

frequency, collisions are important even for a correct qualita-

tive description of the system (at least, if collisions are

modeled via the Lenard-Bernstein collision operator first

introduced in Ref. 4). In that case, the Case-Van Kampen

spectrum becomes fully discrete, and it is the same as the

corresponding Landau solutions.

Ng et al.5 use a Hermite representation in order to com-

pute the Case-Van Kampen spectrum. Our first goal is to

investigate if the same result can be obtained by using finite

differences on an equidistant grid in velocity space which is

the most common one used in numerical studies, e.g., in

GENE. Later, we will also determine which part of the

Lenard-Bernstein collision operator is responsible for the

qualitative change of the Case-Van Kampen spectrum. In

FIG. 1. Evolution of the discrete colli-

sionless Case-Van Kampen eigenmodes

(green crosses) and the collisionless

Landau solutions (red circles) with

respect to the temperature and density

gradient lengths. For large gradients the

ion acoustic mode emerges which is

almost marginally stable and practically

coincides with one of the discrete Case-

Van Kampen eigenmodes. The unstable

discrete Case-Van Kampen modes

match the unstable Landau solutions

and the blue asterisks represent the con-

tinuum part of the Van Kampen spec-

trum. ky ¼ 0:3, kjj ¼ 0:03.

022108-5 Bratanov et al. Phys. Plasmas 20, 022108 (2013)

Downloaded 14 Feb 2013 to 128.178.125.186. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



this part we shall focus on the drift-kinetic slab ITG model,

since it is more relevant for our future work. However, the

statements that we are going to make about the usefulness of

different discretization schemes apply in the same manner

also to Langmuir waves. Modifying Eq. (14) by a Lenard-

Bernstein collision operator formulated in the parallel veloc-

ity direction leads to

x
q	

f1i ¼ kjjvjjf1i � saðvjjÞf0iðvjjÞ
ðþ1
�1

f1ið:::; v
0

jj; :::Þdv
0

jj

þi
�

q	
f1i þ vjj

@f1i

@vjj
þ @

2f1i

@v2
jj

 !
; (16)

where � denotes the collision frequency normalized over the

gyro-frequency xg. Derivatives are modeled numerically by

centered finite difference schemes defined as

@f1i

@vjj
! 1

2Dvjj
ðXþ1�X�1Þ �~F;

@2f1i

@v2
jj
! 1

Dv2
jj
ðXþ1�2IþX�1Þ �~F;

(17)

where X�1 ¼ XT
þ1 and the elements of the matrix Xþ1 are

given by ðXþ1Þi;j ¼ diþ1;j. For the Hermite representation,

the expansion f1iðky; kjj; vjj;xÞ ¼
P1

n¼0 anðky; kjj;xÞHn

ðvjj=
ffiffiffi
2
p
Þe�v2

jj=2
is used where HnðxÞ ¼ ð�1Þnð2nn!

ffiffiffi
p
p
Þ�1=2

ex2

dne�x2

=dxn. With these definitions, the function

Hnðvjj=
ffiffiffi
2
p
Þe�v2

jj=2
is an eigenfunction of the collision oper-

ator in Eq. (16) with the eigenvalue �n, and the integral

of f1iðky; kjj; vjj;xÞ over vjj reduces to
ffiffiffi
2
p ffiffiffi

p4
p

a0ðky; kjj;xÞ.
The eigenfrequencies x in the Hermite representation are

given by a recurrence relation for the coefficients an that

reads

x
kjjq	

an ¼
skyffiffiffi
2
p

LTkjj
d2nan�2 þ ð

ffiffiffi
n
p
þ sd1nÞan�1

þ sky

Ldkjj
d0n �

in�

kjjq	

� �
an þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

anþ1 (18)

and is derived in the same way as the analogous recurrence

relation in Ref. 5. The collisional Landau solutions that arise

in our slab ITG model are determined by the dispersion

relation

1þ 1

s
þ ky

2q	k
2
jjLT

xþ i
ky

2q	k
2
jjLT

�

þ iexp
q2
	k

2
jj

�2

 !
� �

q	kjj

� �2q2
	k

2
jj=�

2�2ix=��1

� c
q2
	k

2
jj

�2
� i

x
�
;
q2
	k

2
jj

�2

 !
� ky

2q2
	k

3
jjLT

x2 þ x
q	kjj

 

þ ky

kjj

1

Ld
� 1

2LT

� �
þ i

ky

2q2
	k

3
jjLT

�x

!
¼ 0; (19)

where c denotes the incomplete gamma function as defined

in Ref. 29.

The upper part of the spectra that one obtains this way

for different collision frequencies is shown in Fig. 2 where

the Case-Van Kampen modes (blue crosses) have been com-

puted numerically with different discretization schemes and

the Landau modes are the solutions of Eq. (15) (collisionless

case, red circles) and Eq. (19) (collisional case, black

FIG. 2. Collisional Van Kampen spec-

trum (blue crosses) for two collision fre-

quencies and different discretization

schemes; red circles: collisionless Lan-

dau solutions; black diamonds: corre-

sponding collisional Landau solutions;

ky ¼ 0:3; kjj ¼ 0:03. The number of

velocity grid points used equals 128 and

is the same as the number of polyno-

mials in the truncated Hermite scheme.
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diamonds). For a view on the whole spectra one can consult

Ref. 24 where also the question of numerical convergence is

discussed. Here, relatively large gradient lengths have been

chosen such that there are only damped solutions. By

increasing the temperature gradient, the left one of the two

isolated modes becomes unstable and the right one moves

further to the right while its damping rate decreases. An

increase of the density gradient makes the right mode practi-

cally marginally stable and increases its frequency even fur-

ther such that it becomes the ion acoustic mode. Performing

the limit � ! 0, smaller structures in velocity space develop,

which requires that the resolution in velocity space increases

in order that the spectrum converges. In case of the finite dif-

ference approach, the form of the converged spectrum can be

obtained by increasing the number of points on the interval

½�vmax; vmax� while keeping the collision frequency fixed.

With this discretization scheme, it is observed that for small

collision frequency only two of the Case-Van Kampen

modes agree with the corresponding Landau solutions. Even

a velocity resolution of nearly 32 000 points could not pro-

duce more pairs of Case-Van Kampen modes which lie in

the vicinity the Landau solutions. Another issue concerning

the finite difference scheme is the fact that it produces a large

number of numerical, i.e., non-physical, modes that have a

rather small damping rate. For some values of the parame-

ters, a subset of those numerical modes can be less damped

even than the least damped Landau solutions. An initial

value computation in this case shows, however, that the elec-

tric field still decreases with the rate of the least damped

Landau solution, i.e., the interplay of those modes is such

that they do not change the expected behavior of physical

quantities like the electric field or the electrostatic potential.

This is also the main reason for calling those modes non-

physical.

In Ref. 24 we observed numerical recurrence in the ini-

tial value simulation for both collisionless Langmuir waves

and slab ITG modes. Recurrence also manifests itself clearly

when using a collision operator of a Krook-type. However,

with the Lenard-Bernstein collision operator the recurrence

is eliminated, which represents another advantage since such

a non-physical phenomenon is undesirable for computer

simulations.

Figures 2(b) and 2(d) display again the Case-Van

Kampen spectrum for collisional slab ITG modes, but this

time obtained via the Hermite representation where the

number of Hermite polynomials used equals the number of

velocity points in Figures 2(a) and 2(c). The Hermite repre-

sentation was introduced already in Ref. 30 for the study of

experimental measurements of ion distribution functions

which also motivated the theoretical studies that followed. In

contrast to matching backward and forward recurrence rela-

tions for every eigenvalue in the case of small collision fre-

quency as performed by Ng et al.,5 we simply truncate the

series at some finite order. This leads to a simple matrix

eigenvalue equation which is readily solved numerically and

yields good results for the less damped eigenmodes.

The comparison with the corresponding collisional Lan-

dau solutions shows a very good agreement in the upper part

of the complex x-plane where there is a matching of many

Landau solutions with Case-Van Kampen eigenvalues. Non-

physical modes exist in this case only under the matched sol-

utions which is not critical since these modes are strongly

damped. The level at which the matching stops and only the

numerical modes are present shifts upwards when collision

frequency decreases and above a certain value of N (nearly

100) is practically not influenced by N any more. This

implies that there exists a lower limit on the collision fre-

quency below which it is impossible to properly resolve the

eigenvalue spectrum with standard numerical methods.

Fig. 2 illustrates that, first, for a fixed collision frequency,

the Hermite representation produces more matchings of Lan-

dau modes than the finite differences and, second, increasing

� leads to a much greater improvement in the Hermite case

than in the case of the finite difference scheme on an equidis-

tant velocity grid. Note also that for a certain set of parame-

ters, some of the non-physical modes can move so close to

the real axis that there are no matchings any more and the

whole Case-Van Kampen spectrum consists of numerical

modes some of which are less damped than the least damped

Landau solutions. An initial value computation in this case

however still leads to electric field and electrostatic potential

that decay with the damping rate of the least damped Landau

solution and again no prominent numerical recurrence is

observed.

The next step in our investigation is to determine which

term in the collision operator is responsible for the qualita-

tive change observed in the spectrum. As discussed more

thoroughly in Ref. 24, the unexpected change comes from

the second derivative of f1i with respect to the parallel veloc-

ity. By leaving only this part of the collision operator and

removing the other two, one obtains with the velocity discre-

tization the same type of spectrum as shown in Figures 2(a)

and 2(c). The same applies also to any derivative of an even

power of the distribution function with respect to velocity.

We shall elaborate on this and specify our statements in a

more mathematical fashion in Sec. IV. While the velocity

discretization appears to be rather robust regarding differ-

ent collision operators, this is not the case with the Her-

mite representation since its advantage in the case of the

Lenard-Bernstein operator, CL, is that the functions bnðvjjÞ
:¼Hnðvjj=

ffiffiffi
2
p
Þe�v2

jj=2
used as a functional basis are the eigen-

functions of this operator, i.e., ðCLbnÞðvjjÞ¼�nbnðvjjÞ. A

substitution of CL in this case with a second derivative with

respect to vjj alone yields entirely different and non-physical

results. This can be easily deduced from the equations since

now the Hermite functions are not eigenfunctions of the op-

erator but instead @nbm=@vn
jj /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ:::ðmþnÞ

p
bmþn which

corresponds to a matrix the spectrum of which is r¼f0g
and not f�ngn2N0

as for CL. Therefore, in the Hermite repre-

sentation one should not use hyperdiffusion-like terms as a

simple dissipation source. A possible analogue would be

�ð�CLÞn;n2N, as suggested by Parker.31

IV. ROLE OF HYPERDIFFUSION TERMS

Next, we investigate analytically the effect of

hyperdiffusion-like terms in the linearized system of equa-

tions in both the case of Langmuir waves and slab ITG
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modes. A similar problem has been discussed in Ref. 6

where the analysis is performed for the Lenard-Bernstein

collision operator which can be formulated in one dimension.

In numerical computations, one often makes use of a so-

called hyperdiffusion term which is proportional to the 4th

derivative of the particle distribution function with respect to

velocity. Such a term is also called numerical dissipation,

and for this purpose one can use any even derivative of the

distribution function in velocity space.32

A. Langmuir waves

For a better understanding of the problem, we first con-

sider one-dimensional electrostatic Langmuir waves and use

the same notation as in Refs. 5 and 6 according to which

X :¼ x=ð
ffiffiffi
2
p

kÞ, u :¼ v=
ffiffiffi
2
p

. This will facilitate comparison

with the results obtained there. Thus, the linearized Boltz-

mann equation reads

ugðuÞ � XgðuÞ � gðuÞ
ðþ1
�1

gðu0Þdu0 ¼ ie in
@ng

@un

� �
; (20)

where gðuÞ ¼ �aue�u2

=
ffiffiffi
p
p

with a ¼ 1=k2 2 Rþ, the term

on the right-hand side in the brackets produces dissipation

for every even number n, and e is some small positive param-

eter which we shall refer to as collision frequency. g(u)

denotes here the same quantity as f ðk; v;xÞ in Eq. (3) where

for the ease of notation we have suppressed the arguments k
and x. In order to solve this equation, we perform a Fourier

transform with respect to velocity

GðpÞ :¼ 1ffiffiffiffiffiffi
2p
p

ðþ1
�1

gðuÞeipudu) gðuÞ ¼ 1ffiffiffiffiffiffi
2p
p

ðþ1
�1

GðpÞe�ipudp:

(21)

With this definition, Eq. (20) becomes

dG

dp
þ ðepn � iXÞGðpÞ ¼ a

2
Gð0Þpe�p2=4: (22)

We have written the equation as an ordinary differential

equation because there are only derivatives with respect to p
and the other variables can be regarded as parameters. The

solution of the above equation is

GðpÞ ¼ a
2

Gð0Þexp � e
nþ 1

pnþ1 þ iXp

� �

�
ðp
a

x exp
e

nþ 1
xnþ1 � x2=4� iXx

� �
dx

þC exp � e
nþ 1

pnþ1 þ iXp

� �
; (23)

where a and C are some constants. At this point, it might

look surprising that the general solution of an ordinary first-

order differential equation depends on two constants instead

of only one. However, one should note that the two constants

are not independent from each other. We shall see that

demanding that G(p) is absolutely integrable determines

both constants. This condition also assures that g(u) is a con-

tinuous function. Actually, our analysis will show that G(p)

is even a Schwartz function which automatically implies the

same for g(u). Since n is even, the second term in the solu-

tion diverges as expð�pnþ1Þ when p! �1. Thus, C has to

be zero in order that the inverse Fourier transform of G(p)

exists. This, however, is not a sufficient condition. It is also

necessary that the first term in Eq. (23) goes to zero rapidly

enough when p! �1. This can be achieved by demanding

that a ¼ �1. This choice is unique because there is only

one function that solves Eq. (22) and does not belong to the

kernel of the operator. With the above values for the con-

stants a and C G(p) goes to zero rapidly enough for p! �1
such that it is absolutely integrable for large negative values

of the argument. Next, we focus on the case p! þ1. This

limit is slightly more problematic because the integral in Eq.

(23) diverges when p! þ1. On the other hand, the absolute

value of the prefactor in front of the integral goes rapidly to

zero when p increases. In order to clarify this limit, we esti-

mate jGðpÞj from above as follows:

jGðpÞj ¼ a
2
jGð0Þjexp � e

nþ 1
pnþ1 �=ðXÞp

� �

�
�����
ðp
�1

x exp
e

nþ 1
xnþ1 � x2

4
� iXx

� �
dx

�����
� a

2
jGð0Þjexp � e

nþ 1
pnþ1 �=ðXÞp

� �

�
ðp
�1

jxjexp
e

nþ 1
xnþ1 � x2

4
þ=ðXÞx

� �
dx ¼: f ðpÞ:

(24)

The function f(p) is positive definite, and we are interested in

its behavior for p!1. By taking its derivative one finds

that

df

dp
ðpÞ ¼

�
�epn � =ðXÞ

	
f ðpÞ þ a

2
jGð0Þj � jpje�p2=4: (25)

Here, X is merely a parameter and can therefore be neglected

in the prefactor in front of the first term in Eq. (25) for large

values of p, and the second term tends rapidly to zero when

its argument increases. This gives the relation

lim
p!1

df

dp
ðpÞ ¼ �e lim

p!1
pnf ðpÞ: (26)

Since f(p) is positive definite, df ðpÞ=dp < 0 for large p, i.e.,

f(p) decreases monotonically with p when p! þ1. In this

case there are only two options for the behavior of f(p) at

large p: it can tend to some positive constant or to zero. First,

assume that limp!1 f ðpÞ ¼ const > 0. Then the limit in Eq.

(26) equals �1 which contradicts the assumption we made

and also the fact that f(p) is positive definite. Therefore, f(p)

must go to zero for p!1. In order to satisfy the positive
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definiteness of f(p), its derivative also should go to zero for

large p which means that f(p) tends faster to zero than pn

tends to infinity. Since f(p) is an upper bound for jGðpÞj and

n � 2, it is clear that for large values of the argument jGðpÞj
should decrease fast enough such that it is integrable. The

integrand in the first term is also a continuous function. Since

integration is a continuous operation, the integral is also con-

tinuous. Thus, jGðpÞj is a continuous function which

decreases rapidly enough for p! 61 such that it can be

integrated, i.e.,
Ðþ1
�1 jGðpÞjdp <1, which means that the

solution

GðpÞ ¼ a
2

Gð0Þexp � e
nþ 1

pnþ1 þ iXp

� �

�
ðp
�1

x exp
e

nþ 1
xnþ1 � x2

4
� iXx

� �
dx (27)

has a Fourier transform, i.e., the Fourier analysis is

consistent.

The next step is to find the dispersion relation which

arises from the self-consistency condition for p¼ 0. This

yields

1� a
2

ð0
�1

x exp
e

nþ 1
xnþ1 � x2

4
� iXx

� �
dx ¼ 0: (28)

To the best of our knowledge, the above integral cannot be

expressed in a closed form by using only elementary func-

tions or the well-known special functions and is, therefore,

rather inconvenient to work with. For this reason we make

an expansion of the integrand in Eq. (28). Since e is propor-

tional to the collision frequency, writing the exponential of

exnþ1=ðnþ 1Þ as a series will help us determine the asymp-

totic behavior of the dispersion relation when the collision

frequency tends to zero. At this point, one might be tempted

to exchange summation and integration since all the integrals

that emerge this way exist. However, such a term by term

integration cannot be justified mathematically in this case.

Since we are interested only in the asymptotic behavior

e! 0, we apply the method of Borel summation, a simple

description of which is given in Ref. 33 and the references

therein. For that reason expðexnþ1=ðnþ 1ÞÞ is represented as

exp
e

nþ 1
xnþ1

� �
¼ 1þ e

nþ 1
xnþ1

þ
ðe
0

x2ðnþ1Þ

ðnþ 1Þ2
ðe� tÞexp

t

nþ 1
xnþ1

� �
dt :

(29)

Further calculations will be facilitated by the relation

ð0
�1

xre�x2=4�iXxdx ¼ ir
dr

dXr

ð0
�1

e�x2=4�iXxdx ¼ �irþ1 drZðXÞ
dXr

(30)

which applies to all r 2N0, where Z is the plasma dispersion

function defined in Ref. 27. The above expression can be

easily verified by induction when one takes into account that

ZðXÞ ¼ i
ffiffiffi
p
p

e�X2ð1þ erf ðiXÞÞ and Z0ðXÞ¼�2ð1þXZðXÞÞ.
Now, we estimate the difference, D, between the exact inte-

gral in Eq. (28) and its approximation achieved by taking

only the first two terms on the right-hand side of Eq. (29)

into account. A straightforward computation yields

D¼
�����
ð0
�1

e�x2=4�iXx x2ðnþ1Þ

ðnþ 1Þ2
x

ðe
0

ðe� tÞetxnþ1=ðnþ1Þ dt dx

�����
�
ð0
�1

�����e�x2=4�iXx

����� x2ðnþ1Þ

ðnþ 1Þ2
jxj
ðe
0

ðe� tÞetxnþ1=ðnþ1Þ dt dx:

(31)

For n even and x 2 ð�1; 0� one can estimate the integral

over t from above as

ðe
0

ðe� tÞexp
t

nþ 1
xnþ1

� �
dt �

ðe
0

ðe� tÞdt ¼ 1

2
e2: (32)

This leads to an upper bound for D given by

D � e2

2ðnþ 1Þ2
ð0
�1

jxjx2ðnþ1Þe�x2=4þ=ðXÞxdx ¼: e2CnðXÞ;

(33)

where CnðXÞ is a constant that depends on n and X but not on

e and is finite for every finite X. Although CnðXÞ ! 1 for

=ðXÞ ! �1, setting a maximal damping rate above which

modes are of no physical importance gives us a global upper

bound for Cn that is independent of X in that part of the com-

plex plane. Therefore, by replacing the integral in Eq. (28)

with �2ð1þXZðXÞÞþ inþ1 e
nþ1

dnþ2

dXnþ2 ZðXÞ, one only introduces

an error of the order of e2, i.e., the dispersion relation reads

1þ aþ aXZðXÞ þ inþ1 e
nþ 1

a
dnþ1

dXnþ1
ðXZðXÞÞ þ Oðe2Þ ¼ 0:

(34)

From the above expression it is clear that in the limit e! 0,

one recovers the well known Landau dispersion relation for

a collisionless plasma. For the sake of completeness we also

compute the first order contribution. Its exact form, however,

depends on n. For a standard hyperdiffusion term (n¼ 4) the

dispersion relation up to first order in e is

1þ aþ aXZðXÞ þ ia
e
5
½ð�32X5 þ 224X3 � 264XÞ

þð�32X6 þ 240X4 � 360X2 þ 60ÞZðXÞ� þ Oðe2Þ ¼ 0:

(35)

The analysis in this part regarded so far only the Case-Van

Kampen spectrum, i.e., we searched for solutions with a time

dependence of e�ixt. On the other hand, one could solve the

initial value problem by using a Laplace transform with
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respect to time. For a Lenard-Bernstein collision operator,

this results in the same dispersion relation as the one derived

in Ref. 6. It is straightforward to analyze the linearized Vla-

sov equation with hyperdiffusion-like terms using such a

Laplace transform. In this case, we found the same disper-

sion relation as in Eq. (28), i.e., the Case-Van Kampen spec-

trum coincides with the Landau solutions also when the

dissipation term is of the form �ieð�in@ng=@unÞ, which is

consistent with the results of our numerical analysis.

B. Slab ITG modes

In the following, we study the effect of hyperdiffusion

terms on slab ITG modes which is slightly more complicated

than for Langmuir waves, but the main idea remains the

same. The linearized Vlasov equation is given in Eq. (14). In

order to make the notation more convenient, we redefine the

quantities there as follows:

X :¼ xffiffiffi
2
p

kjjq	
; j :¼ kyffiffiffi

2
p

kjj
; u :¼

vjjffiffiffi
2
p ;

gðuÞ :¼ f1;ið:::; vjj; :::Þ and g0ðuÞ :¼
ffiffiffi
2
p

f0;iðvjjÞ; (36)

where after the local approximation for the gradients, the

equilibrium ion distribution function is a function only of the

parallel velocity and is given by e
�v2
jj=2
=
ffiffiffiffiffiffi
2p
p

. With this new

notation and after adding a hyperdiffusion-like term Eq. (14)

becomes

Xg¼ ugþ sffiffiffi
p
p j

LT
u2þuþ j

Ld
� j

2LT

� �
e�u2

ðþ1
�1

gðu0Þdu0

� ie in@
ng

@un

� �
: (37)

After Fourier transforming Eq. (37) with respect to u, one

arrives at a first-order ordinary differential equation which reads

dG

dp
ðpÞþðepn� iXÞGðpÞ¼ sGð0Þ ij

4LT
p2þ1

2
p� ij

Ld

� �
e�p2=4

(38)

and is of the same type as Eq. (22). The differential operator

on the left-hand side of Eq. (38) is the same as that in Eq.

(22) and, therefore, has the same kernel. The only difference

is the right-hand side. However, this difference is only quan-

titative and not qualitative because in both cases the right-

hand side is a Schwartz function. The general solution of the

above differential equation reads

GðpÞ¼Cexp � e
nþ1

pnþ1þ iXp

� �

þsGð0Þexp � e
nþ1

pnþ1þ iXp

� �

�
ðp
a

ij
4LT

x2þ1

2
x� ij

Ld

� �
exp

e
nþ1

xnþ1�x2

4
� iXx

� �
dx;

(39)

where C and a are arbitrary constants that are fixed by

demanding that G(p) should have a Fourier transform. This

leads to C¼ 0 and a ¼ �1 as for electrostatic Langmuir

waves. Derivation of the dispersion relation requires setting

p¼ 0. The resulting integral is again rather sophisticated

and, to the best of our knowledge, cannot be expressed in a

closed form using elementary functions or the well-known

special functions. Therefore, we proceed as before and apply

the method of Borel summation to the infinite series that the

integrand can be represented as. After completely analogous

calculations one derives the dispersion relation up to order e
which reads

1þ 1

s
þ j

LT
Xþ ZðXÞ j

LT
X2þXþ j

Ln
� j

2LT

� �

þ inþ1 e
nþ 1

dnþ1

dXnþ1

j
LT

Xþ ZðXÞ j
LT

X2þXþ j
Ln
� j

2LT

� �
 �
þOðe2Þ ¼ 0:

(40)

By taking the limit e! 0, one arrives at the Landau disper-

sion relation for collisionless slab ITG modes.

As a last point we note that solving the initial value

problem via a Laplace transform in time leads again to the

same solutions as those composing the Case-Van Kampen

spectrum.

In conclusion, velocity space hyperdiffusion effectively

captures some important physical properties of the genuine

collision operator as also the Lenard-Bernstein operator does.

However, in contrast to the latter, hyperdiffusion in velocity

space conserves not only particle number, but it implies mo-

mentum (for n > 2 also energy) conservation, too.

V. SUMMARY

We have investigated the linearized problem of electro-

static plasma oscillations numerically and analytically. In the

collisionless case, we showed that formulating the problem in

the language of operator theory provides an elegant explana-

tion of the continuous and discrete parts of the Case-Van

Kampen spectrum. Additionally a sufficient condition for the

existence of the former was given. For the slab ITG modes,

the discrete part of the collisionless spectrum is related to pos-

sible instabilities and drift waves that arise in the presence of

background gradients. A numerical investigation of collision-

less Langmuir waves and slab ITG modes showed that Case-

Van Kampen modes tend to gather above the least damped

Landau solutions but, nevertheless, all the modes are needed

in order to reproduce the effect of Landau damping.

The collisional system was treated first numerically

using different discretization schemes. A finite difference

scheme on an equidistant velocity grid, which is quite com-

mon in numerical studies, yielded a large number of non-

physical modes with small damping rates. In extreme cases,

some of those artificial modes are less damped even than the

least damped Landau solutions which could potentially make

the analysis more difficult if the latter are unknown. Note

that such numerical modes do not influence the temporal
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evolution of moments of the distribution function, e.g., of

the electrostatic potential. However, discretization via

expansion of the perturbation into a basis of Hermite polyno-

mials multiplied by a Gauss function leads to a spectrum

with more identifiable Landau solutions. Moreover, all non-

physical modes present in this case are more strongly

damped than the physical Landau solutions. In contrast to

the finite difference scheme, the Hermite representation pro-

duces spectra wherein all modes with small damping rates

have a straightforward physical interpretation. This may

prove beneficial for the analysis of numerical simulations of

nonlinear models. In this sense, a truncated Hermite repre-

sentation is superior to a finite difference scheme on an equi-

distant velocity space grid.

From our numerical analysis, it became apparent that

the qualitative change of the eigenvalue spectrum for any in-

finitesimal collision frequency is due only to the second de-

rivative of the perturbation with respect to velocity. This we

then investigated also analytically and showed that any even

power of velocity space hyperdiffusion leads to Case-Van

Kampen eigenvalues that match the collisionless Landau sol-

utions when the hyperdiffusivity tends to zero. Although

such hyperdiffusion terms are used primarily for purely nu-

merical reasons, our analysis shows that they correctly repro-

duce important physical effects, e.g., Landau damping.
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