
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-P. Hubaux, président du jury
Prof. M. Grossglauser, directeur de thèse

Prof. D. R. Figueiredo, rapporteur
Prof. P. Thiran, rapporteur

Prof. D. F. Towsley, rapporteur

Privacy and Dynamics of Social Networks

THÈSE NO 5663 (2013)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 15 mars 2013

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE POUR LES COMMUNICATIONS INFORMATIQUES ET LEURS APPLICATIONS 4

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2013

PAR

Pedram Pedarsani

To my lovely wife, Noushin,

my parents, Nahid and Mohammadreza,

and my brother, Ramtin,

for all their love and support.

Abstract

Over the past decade, investigations in different fields have focused on studying and under-
standing real networks, ranging from biological to social to technological. These networks,
called complex networks, exhibit common topological features, such as a heavy-tailed degree
distribution and the small world effect. In this thesis we address two interesting aspects of
complex, and more specifically, social networks: (1) users’ privacy, and the vulnerability of a
network to user identification, and (2) dynamics, or the evolution of the network over time.

For this purpose, we base our contributions on a central tool in the study of graphs and
complex networks: graph sampling. We conjecture that each observed network can be treated
as a sample from an underlying network. Using this, a sampling process can be viewed as a
way to observe dynamic networks, and to model the similarity of two correlated graphs by
assuming that the graphs are samples from an underlying generator graph.

We take the thesis in two directions. For the first, we focus on the privacy problem in
social networks. There have been hot debates on the extent to which the release of anonymized
information to the public can leak personally identifiable information (PII). Recent works have
shown methods that are able to infer true user identities, under certain conditions and by
relying on side information. Our approach to this problem relies on the graph structure,
where we investigate the feasibility of de-anonymizing an unlabeled social network by using
the structural similarity to an auxiliary network. We propose a model where the two partially
overlapping networks of interest are considered samples of an underlying graph.

Using such a model, first, we propose a theoretical framework for the de-anonymization
problem, we obtain minimal conditions under which de-anonymization is feasible, and we
establish a threshold on the similarity of the two networks above which anonymity could be
lost. Then, we propose a novel algorithm based on a Bayesian framework, which is capable
of matching two graphs of thousands of nodes - with no side information other than network
structures. Our method has several potential applications, e.g., inferring user identities in
an anonymized network by using a similar public network, cross-referencing dictionaries of
different languages, correlating data from different domains, etc. We also introduce a novel
privacy-preserving mechanism for social recommender systems, where users can receive accu-
rate recommendations while hiding their profiles from an untrusted recommender server.

For the second direction of this work, we focus on models for network growth, more specif-
ically where the number of edges grows faster than the number of nodes, a property known
as densification. The densification phenomenon has been recently observed in various real
networks, and we argue that it can be explained simply through the way we observe (sample)
networks. We introduce a process of sampling the edges of a fixed graph, which results in
the super-linear growth of edges versus nodes, and show that densification arises if and only
if the graph has a power-law degree distribution.

v

vi

Keywords. network dynamics, network privacy, random graphs, graph sampling, graph
matching, social networks, recommender systems, de-anonymization, densification

Résumé

Au cours de la dernière décennie, les recherches dans différents domaines ont porté sur l’étude
et la compréhension des réseaux réelles, de biologique à sociaux à technologiques. Ces réseaux,
appelés réseaux complexes, présentent des caractéristiques topologiques communes, comme
une distribution des degrés à queue lourde et l’effet petit monde. Dans cette thèse, nous
abordons deux aspects intéressants de ces réseaux, et plus particulièrement les réseaux so-
ciaux: (1) la vie privée des utilisateurs, et la vulnérabilité d’un réseau à l’identification des
utilisateurs, et (2) la dynamique, ou l’évolution du réseau au fil du temps.

Pour ce faire, nous basons nos contributions sur un outil central dans l’étude des graphes
et des réseaux complexes: l’échantillonnage des graphes. Nous conjecturons que chaque in-
stantané d’un réseau peut être considéré comme un échantillon d’un réseau sous-jacent. Avec
cela, un processus d’échantillonnage peut être considéré comme un moyen d’observer des
réseaux dynamiques, et de modéliser la similarité de deux graphes corrélés en supposant que
les graphes sont des échantillons provenant d’un graphe sous-jacent qui les génère.

Cette thèse contient deux parties. Dans une première partie, nous nous concentrons sur le
problème de la vie privée dans les réseaux sociaux. Plusieurs études ont montré que la diffusion
public d’informations anonymes peut divulguer des informations personnelles identifiables
(PII). Des recherches récentes ont développé plusieures méthodes afin de déduire l’identité
des utilisateurs en utilisant des informations auxiliaires. Notre approche à ce problème repose
sur la structure du graphe, où nous étudions la possibilité de préserver l’anonymat dans un
réseau sociale en utilisant la similarité structurelle à un réseau auxiliaire. Nous proposons un
modèle où les deux réseaux se recouvrant partiellement sont considérés comme des échantillons
d’un graphe sous-jacent.

En utilisant un tel modèle, nous proposons d’abord un cadre théorique pour le prob-
lème de de-anonymisation. Nous obtenons des conditions minimales dans lesquelles la de-
anonymisation est possible, et nous établissons un seuil sur la similitude des deux réseaux
au-dessus duquel l’anonymat pourrait être perdue. Ensuite, nous proposons un nouvel algo-
rithme reposant sur un cadre bayésien, qui est capable d’apparier deux graphes de milliers
de nœuds - sans aucune autre information que les structures des réseaux. Notre méthode a
plusieurs applications potentielles, par exemple, révéler les identités des utilisateurs dans un
réseau anonyme en utilisant un réseau public similaire, le recoupement des dictionnaires de
langues différentes, ou la corrélation des données provenant de différents domaines. En outre,
nous introduisons un nouveau mécanisme pour préserver la vie privée dans les systèmes de
recommandation, où les utilisateurs peuvent recevoir des recommandations précises, tout en
cachant leurs profils aux serveurs de recommandation non sécurisés.

Dans une deuxième partie, nous nous concentrons sur les modèles de croissance du réseau,
plus spécifiquement, où le nombre d’arêtes augmente plus rapidement que le nombre de nœuds,
une propriété appelée densification. Le phénomène de densification a été récemment observé

vii

viii

dans divers réseaux réels, et nous croyons que cela peut s’expliquer simplement par la façon
dont nous observons les réseaux. Nous introduisons un processus qui consiste à prélever un
échantillon des arêtes d’un graphe fixe, ce qui entrâıne la croissance super-linéaire des arêtes
contre des nœuds, et nous montrons que la densification est présent si et seulement si le graphe
a une distribution des degrés en loi de puissance.

Mots Clés. dynamique de réseaux, protection de la vie privée, graphes aléatoires, echan-
tillonnage de graphes, couplage des graphes, réseaux sociaux, systèmes de recommandation,
de-anonymisation, densification

Acknowledgments

First and foremost, I offer my sincerest gratitude to my supervisor, Prof. Matthias Gross-
glauser, who has supported me throughout my thesis with his patience and knowledge whilst
allowing me the room to work in my own way. I attribute the level of my PhD degree to his
wisdom and effort, and without his guidance and persistent help this dissertation would not
have been possible. Matthias is one of the smartest and most brilliant guys that I have met
in my whole life. There are several occasions in one’s PhD career that research work seems
to have reached a dead-end. However, Matthias always came up with a bright idea and a
new thought on how to proceed the research in the correct direction. He has thought me how
to be an effective, patient, and confident researcher. Beyond his valuable technical advice on
research problems, Matthias is such a nice, caring, and understanding supervisor and mentor.
I am really thankful to him for all his support and care.

I would like to express my deepest appreciation to Prof. Daniel R. Figueiredo, who his
continuous help and advise during this period played a major role on the fulfillment of this
thesis. I had the chance of working with Daniel during the early and the late phases of my
PhD. Daniel’s approach to formulating sophisticated research problems in a simple way and
his methodological thinking to problem solving is unique. I was very lucky to collaborate
with him during my PhD, which helped me improve my analytical thinking, my writing style
and my approach to new challenging problems. Our long fruitful discussions on Skype and
also in person are something that I will really miss once I leave EPFL.

I am highly indebted to my committee members for having accepted to assess my thesis,
taking the time to read it through, and for all their valuable comments and encouraging words:
Prof. Daniel R. Figueiredo, Prof. Patrick Thiran and Prof. Don Towsley. I would also like to
thank Prof. Jean-Pierre Hubaux for his interest in the work and being the president of the
jury.

I would like to thank my collaborators Daniel R. Figueiredo, George Theodorakopoulos,
Jean-Pierre Hubaux, Reza Shokri and Lyudmila Yartseva. I am also thankful to the lab’s staff
for their support and enthusiasm. Thanks to Holly Cogliati for all her advice and reviews
in English, to Danielle Alvarez, Angela Devenoge, and Patricia Hjelt for the administrative
support, and to Marc-André Luthi and Yves Lopes for the IT support. I am also grateful to
all my colleagues and friends in LCA3/4 for making the lab such a lively environment and
from whom I learned a lot during our meetings and discussions. My special thanks goes to
Prof. Patrick Thiran for his support and feedback during several phases of my PhD work. I
also gratefully thank EPFL’s postmaster, Martin Ouwehand. His assistance with providing
us with the anonymized EPFL e-mail dataset to be used in some core parts of this work and
in harvesting and interpreting this dataset was invaluable. I further acknowledge financial
support for this project from the Swiss National Science Foundation (SNSF).

Being far from my home country for more than 7 years of Master and PhD studies, I

ix

x

believe my true friends’ support was most crucial for making me feel at home, and their
professional and emotional help was always accompanying me during my graduate life. My
special thanks go to Vahid Majidzadeh and Mahdi Cheraghchi, two of my best most supportive
and thoughtful friends who I will miss my whole life. I would also like to express my great
gratitude to all my friends who accepted me in their group from the early days of my stay
in Switzerland, and with whom I spent countless memorable moments: Reza Shokri, Mahdi
Jafari, Hossein Afshari, Amir and Atefeh, Ali and Faezeh, Soheil and Sara, Farzin and Laleh,
Nima and Marjan, Vafa and Mona, Naser and Sanaz, Daniel and Sahar, Azad and Azin, and
all others.

Above all, I devote my foremost gratitude to my parents and my brother Ramtin, who
filled my life with joy and happiness. Without their love, support, and patience none of my
achievements would have been possible. I thank my parents for all their love, moral support,
and all they went through until I reached this point, and my brother - whom I miss so much
- for being not just a brother, but a true caring and supportive friend.

Words can hardly express how indebted and thankful I am to my lovely wife, Noushin.
Her entering in my life since 2008 was a turning point in my professional and personal life,
and her support and encouragement has been most influential at every stage of my work. I
deeply thank Noushin for all her care, patience, understanding and unwavering love which
were undeniably the bedrock upon which the past five years of my life have been built.

Contents

1 Introduction 1
1.1 Privacy in Social Networks . 1

1.1.1 Approximate Graph Matching . 3
1.2 Dynamics of Social Networks . 3
1.3 Edge Sampling . 4
1.4 Contributions . 6

1.5 Thesis Outline . 7

I Models for Matching Large Networks 9

2 Network De-Anonymization 11
2.1 Network De-Anonymization: a Matching Problem 11

2.2 Related Work . 12

3 A Theoretical Framework 15
3.1 Problem Definition . 16
3.2 Conditions for Perfect Matching . 18

3.2.1 Allowing a Fraction of Node Mismatches 22
3.2.2 Different sampling rates . 23

3.3 On the Similarity of Real Networks . 25
3.4 Discussion and Summary . 28
3.A Appendix . 30

4 An Iterative Bayesian Method for Graph Matching 31
4.1 Problem Definition . 32

4.2 General Method for Graph Matching . 33
4.2.1 Pair-Wise Posteriors . 33
4.2.2 Anchor Mismatch . 36
4.2.3 Models for Sampled Degree and Distance 37

4.3 Matching algorithm . 39
4.3.1 Complexity of the Matching Algorithm 41
4.3.2 Normalization of Posteriors . 42

4.4 Experiments . 42
4.4.1 Matching Two Sampled Graphs from EPFL E-mail Network 43

xi

xii CONTENTS

4.4.2 Matching Two Snapshots from EPFL E-mail Network 45
4.4.3 Estimation of Parameters and Priors . 46
4.4.4 Matching on Random Graphs . 47

4.5 Summary . 48
4.A Appendix . 49

II Evolution of Social Networks 51

5 Network Densification 53

5.1 Introduction . 53
5.2 Motivation . 55
5.3 Model . 56

5.3.1 Densification Regimes and the Value of Cutoff 59
5.4 Conditions for Power-Law Densification . 60

5.4.1 Necessary Condition for Power-Law Densification 61

5.4.2 Sufficient Condition for Power-Law Densification 62
5.5 Numerical Evaluations . 64

5.5.1 Observation Models . 68

5.6 Real Data Experiments and Variations of the Model 70
5.6.1 Simple Accumulation Model . 72
5.6.2 Simple Modulation Model . 73

5.7 Related Work . 77
5.8 Summary . 77
5.A Appendix . 78

III Preserving Privacy in Recommender Systems 81

6 Preserving Privacy in Collaborative Filtering 83
6.1 Introduction . 83

6.2 Problem Statement . 85
6.2.1 Definitions and Notations . 85
6.2.2 Problem Definition . 85

6.3 Proposed Method . 86
6.3.1 Sketch of the Solution . 86
6.3.2 The Model . 87
6.3.3 Profile Aggregation . 89

6.4 Evaluation Metrics . 91
6.4.1 Privacy Measurement . 91
6.4.2 Recommendation Accuracy . 92

6.5 Experimental Results . 93
6.6 Related Work . 94
6.7 Summary . 96

Conclusion 99

Bibliography 103

CONTENTS xiii

Index 111

Curriculum Vitæ 113

1 Introduction

Over the past decade, the study of real-world networks has gained particular attention in the
research community. The empirical study of various types of networks, ranging from social to
technological to biological, has led to a unifying theme of study known as complex networks.
Surprisingly, many of these networks exhibit common topological features, such as heavy-
tailed degree distribution, high clustering, community structure, and the small-world effect1.
These features incite the scientific community to seek models to explain the properties and
dynamics of such networks. Surveys in this area include the works of Albert and Barabasi
[6], Newman [84], and Boccaletti [15], and some prominent works include those of Watts and
Strogatz [106], Willinger et al. [68], and Kleinberg [51]. Thanks to the accessibility of high
computational power and due to the growing availability of large-scale network data, it is
now feasible to investigate and analyze large networks, and to propose models and methods
in order to address different characteristics and challenges inherent to such networks.

Among various types of complex networks, social networks have gained particular attention
in the research community due to their massive popularity, rapid growth and commercial
potential. The emergence of immense social networks with millions of users, such as Facebook,
Twitter, Flickr, and Linkedin, has led to a new era in which human communication is not
restricted to one-to-one interactions. Instead, information sharing and communications flow
are accomplished via a dynamic network of user relationships.

1.1 Privacy in Social Networks

With the rapid growth of social networks, the sharing of sensitive information about users
and their relations in the networks has become an accelerating trend. There are many reasons
social network data are shared between organizations or even released into the public domain
by network owners and social network operators. First, this information is very valuable for
scientific purposes: the modest number of publicly available datasets has led to a broad vari-
ety of research projects and results. For example (and without any claim to exhaustiveness),
promising research directions in this area include probabilistic modeling of network proper-
ties and dynamics (as cited above), real-data measurement and analysis [75, 74, 53, 22], and
developing scalable algorithms to navigate and infer data from large-scale networks [58, 63].
Obviously, this requires great care in order to avoid the accidental release of sensitive in-
formation about individual users. As AOL’s public relations disaster a few years ago [1]
illustrates, simply anonymizing user identities is not sufficient to prevent an attacker from
identifying individual users through other means. Second, online social networks are increas-
ingly integrated with other services on the web, which requires a certain amount of sharing
between organizations (e.g., Facebook third-party applications and Facebook connect func-
tion on third-party websites). Third, it has been recognized that social network information

1A network is considered a small world if it exhibits a high clustering coefficient and short pair-wise distances.

1

2 Chapter 1. Introduction

has a strong potential for marketing purposes (e.g., for churn prediction [97] or for targeted
advertisement [46]). In all of these areas lurks the risk of accidental or deliberate violations
of user privacy.

Users, often willingly, share personal identifying information about themselves, without a
clue of who can access this information. In information systems, privacy in general refers to
the ability of the users to control the spread of their personally identifiable information (PII).
PII refers to the information that can be used either by itself or in combination with other
PIIs to uniquely identify an individual, such as name, birth date, contact information, social
security number, driver’s license number, etc. Obviously, a näıve release of network data
including users’ PII is a privacy violation and should be avoided. Hence, network operators
generally apply privacy-preserving measures before releasing network data. In the context of
social networks, several works address this privacy issue [39, 54, 23], propose mechanisms to
preserve users’ privacy [112, 40, 44, 76], and suggest the vulnerability of social networks to
different attacks [52, 109].

Anonymity refers to the state of an individual’s personally identifiable information be-
ing publicly unknown2. Using this notion, a well-established privacy-preserving method is
anonymization, where user identities are replaced with random unique identifiers. Anonymiza-
tion is assumed to be equivalent to hiding PII for an individual user, and thus known as a
privacy-preserving technique. However, recent works [81, 79, 78] have shown that a large-scale
re-identification of social networks is possible even if the data is anonymized, and that corre-
lating side information from different domains can be used for the identification of individuals
[82]. This motivates a novel research direction, where re-identification is done without access
to users’ specific attributes, rather through the use of side information about the user. Such
information spans from the local structure of social networks, to web browsing history, to
search histories, etc.

Recent works have shown methods that are able to infer the true user identities under
certain conditions, by relying on side information [81, 7, 109]. This process is called de-
anonymization. Basically, an attacker relies on some side information obtained from other
(e.g., publicly available) sources, in order to reveal the identities of users in an anonymized
network. This is indeed a privacy breach, as revealing the identities exposes personal infor-
mation about the users.

Several works have recently looked into network de-anonymization and investigated the
success or failure of different existing or proposed de-anonymization techniques on real-
network data. Most of the works in this area focus on proposing algorithms and methods for
de-anonymizing networks, tested on various real datasets of online networks [71, 80]. Works in
this category propose algorithms for either de-anonymizing specific users in publicly available
network data [7], or de-anonymizing a fraction of all users in a network [109]. A major chal-
lenge in all these scenarios is scalability. Recently, algorithms applicable for de-anonymizing
a large proportion of users in large networks have been introduced [81, 80]. These algorithms
rely on a seed set of already revealed node pairs and use the initial seeds to propagate among
all nodes and infer all user identities.

In this thesis, our approach to the privacy problem in social networks is from an adversary’s
point of view: We look at the de-anonymization of (almost) all users of an anonymized
network, by using no side information other than the structural similarity to a known labeled

2In many cases anonymity has been assumed to be equivalent to privacy. A formal definition of different
privacy notions can be found in [90].

1.2. Dynamics of Social Networks 3

network. As shown in the following chapters, this is equivalent to matching the nodes of
two similar (correlated) graphs by relying only on graph structures. We refer to this as
approximate graph matching, a concept which has been used in other fields such as pattern
recognition and image processing as well.

As a complementary work, we also investigate the privacy problem in social recommender
systems. This is further elaborated in the end of this chapter, and also Chapter 6.

1.1.1 Approximate Graph Matching

We comment on the notion of approximate graph matching used in this thesis. Mapping the
vertices between two structurally similar graphs is known as approximate graph matching3,
which has applications in computer vision, databases, and social networks, among others. For
example, in computer vision, a picture can be represented compactly by a graph describing a
set of image segments and their relative positions to each other. This graph can then be used
to find qualitatively similar pictures in a database, where each picture is also represented
as such a segment graph [108, 107]. In the social networks domain, suppose two graphs,
one labelled the other unlabelled, represent similar but not identical social networks. One
important problem is to de-anonymize the unlabelled graph by mapping the nodes of the two
graphs, a real threat to user’s privacy [81].

Approximate graph matching is a generalization of the classic graph isomorphism problem.
In this problem two graphs G1,2 are given and the goal is to identify a bijection of their vertex
sets V1,2 under which the two edge sets E1,2 are equal. This bijection is unique iff the graph
is asymmetric4. It is known from the theory of random graphs that the class of asymmetric
graphs is large [17]5, which suggests that reasonably dense graphs tend to be asymmetric. But
the problem of identifying the isomorphic bijection is NP [33] in general, and therefore (almost
certainly) cannot be computed in polynomial time. Thus, approximate graph matching is at
least as hard as the graph isomorphism problem, which might suggest that there is little hope
in correctly matching large similar graphs.

In the context of social networks privacy, we show that a de-anonymization problem can
be expressed as an approximate graph matching problem, with the goal being to match the
nodes of two structurally similar (but not identical) large graphs, and thus to re-identify the
nodes of the anonymized graph. This is a NP hard problem, and we elaborate on our approach
further below.

1.2 Dynamics of Social Networks

Various works model the behavior of social networks and their underlying properties. Some
significant advances in this field include Kleinberg’s works on navigability, link prediction,
group formation, and on anonymity in social networks [51, 69, 8, 7], the works of Leskovec
et al. on densification, on the evolution of real graphs, and on the patterns of influence
in recommendation networks [66, 64, 60, 57, 61, 67], Newman’s work on the structure of

3The term graph matching in the literature also sometimes refers to the problem of selecting a set of edges
of a single graph that have no common vertices.

4A graph is asymmetric if it has no trivial symmetric, i.e., the size of its automorphism group is 1
5In the sense that the threshold function for asymmetry in the G(n, p) random graph model is only p =

log(n)/n, which is the same threshold for the graph to be connected [17, 47].

4 Chapter 1. Introduction

growing social networks [48], the studies of online social networks by Kumar et al. [9, 50],
and Barabasi’s works on scale-free networks and preferential attachment model [12, 10, 50].

Most of the works on complex networks focus on static scenarios. Recently, the investi-
gation of the dynamics of social networks and their growth over time has gained attention as
well. With the increasing availability of network data, data mining and analysis has become
a promising direction to investigate the dynamics of such networks [36, 75], and to answer
questions such as: How does a social network evolve over time? How does the network struc-
ture change? What can we say about the dynamics of edges and nodes of the social graph?
Answers to these questions shed light on the evolution of social and, in general, complex net-
works, and they help us understand the network dynamics over time. Besides investigating
network features by using real data, another direction of work is the development of plausible
mathematical models that can explain or capture the observed properties. Several models
have been proposed to capture social networks evolution [59, 86, 35, 55, 29].

Our contribution to this rich body of work includes a novel explanation for the densification
phenomenon in complex networks. Densification is a phenomenon recently observed in the
evolution of social networks by Leskovec et al. in [66, 64]. They investigated several complex
and social networks, and observed that as the network evolves over time, the number of edges
grows faster than the number of nodes, and consequently the average degree increases over
time. They propose a growth model called the forest fire model that explains densification as
a result of network growth, and the tendency of newly arrived nodes to generate more links to
the existing nodes. Densification is a surprising phenomenon: Traditionally, in the study of
the evolution of networks, the average degree was assumed to be fixed, and independent of the
network size, whereas this recent finding suggests that a node is likely to generate more links
when it arrives later in the process. In other words, the average number of connections of an
individual increases as the size of the global network increases! This being counter-intuitive,
we seek an alternative explanation for densification. We elaborate on our contribution in the
end of this chapter.

1.3 Edge Sampling

Graph sampling is a mathematically tractable yet efficient method for social networks analysis.
Taking samples of a large graph is an established method for acquiring a representive of the
graph. In many real scenarios, the graph is huge, and many known algorithms for computing
interesting graph measures (such as shortest path, centrality, betweenness, degree distribution,
and clustering coefficient) are impractical for large graphs. Hence, the need to use graph
sampling in practical scenarios, in order to estimate the properties of the original graph based
on the samples.

Different sampling methods are proposed in the literature, and their performance in es-
timating various parameters of the original graph are evaluated [62, 105, 96, 95]. Some of
these methods include sampling from the edges, sampling nodes, frontier sampling, and graph
traversal techniques such as random walks, breadth-first search, and depth-first search. The
choice of the sampling technique heavily depends on the application. For instance, as shown
in [105], neither of the state-of-the-art graph sampling algorithms estimate well both clus-
tering coefficient and degree distribution. Moreover, they show that the efficiency of each
method also depends on the social network dataset. Recently, and with the growth of social
networks, researchers have adopted the traditional sampling methods and proposed sampling

1.3. Edge Sampling 5

algorithms for unbiased sampling of online social networks [104, 34].
In this thesis, we use graph sampling as a way to model an observed instance of a net-

work. Note that in this work we do not intend to estimate properties of the original graph
from the sampled graph. Instead, we suggest that an observed graph can be a sample of a
fixed underlying graph. In other words, we assume that there exists a hidden fixed network
of all possibly existing connections in the background, and each graph that we observe is
just a sample of this underlying graph. The intuition behind our approach is that in many
social networks, e.g., online social networks, e-mail networks, recommendation networks, etc.,
usually only a portion of the whole network is observable, obtained either through crawling
techniques from the web, or as publicly available data. This can be treated as a sample of an
underlying hidden network.

More specifically, we introduce a simple model called edge sampling : Assuming we have
a fixed underlying graph, to obtain the sampled graph, we sample each edge with some fixed
probability independent of all other edges. Doing this, each sampling of the underlying graph
yields one realization of the sampled graph.

We use the edge sampling model introduced above in the two core parts of this thesis,
namely the privacy and dynamics of social networks, as follows:

Structural Similarity We use the sampling procedure as a way to model the structural
similarity between two graphs. As described above (and further elaborated in the con-
tributions section), our de-anonymization problem can be expressed as the problem of
matching two structurally similar graphs. To model the notion of similarity, we as-
sume the two graphs are edge-sampled from an underlying graph, where the sampling
probability s (for each edge) controls the structural similarity, or the correlation, of the
two graphs: For s = 1, the two graphs are identical and equal to the underlying graph,
whereas for smaller s, the graphs overlap, and the amount of overlap depends on s. As
s goes to zero, the edge overlap diminishes as well. In the case of a social network, the
underlying graph corresponds to the true relationships between individuals, and the two
sampled graphs correspond to incomplete manifestations of the underlying graph (e.g.,
observable interactions between people, such as phone calls and e-mails), or observations
of the same network at different points in time.

Network Evolution We use the edge sampling model as a way to observe dynamic networks
and to model network growth. The intuition behind this choice of sampling method is
the following: We argue that in many empirical studies of complex networks, it is the
links (or edges) that are observed directly, and the nodes (or vertices) are only revealed
indirectly through the observation of links. For example, most studies of e-mail networks
are based on a log of e-mail messages. An e-mail message exchanged between two e-mail
addresses a and b is taken as evidence of a social link (a, b). At the same time, this
message reveals the nodes a and b if these nodes were not already known. We believe
that the direct observation of edges, which at the same time gradually reveals the nodes,
is a feature of empirical studies of complex networks. The whole social communications
graph is not totally revealed, and what we observe is just a sample of an underlying
hidden graph.

Using this intuition, we argue that network growth is at least partially explained by the
gradual observation of nodes and links that exist permanently “in the background”. In
other words, there exists a fixed underlying network that is often not directly observable.

6 Chapter 1. Introduction

For example, this network might represent the people in a large organization, and the
social and professional ties that bind them. An edge of this network can be observed
only once this edge “fires” (is sampled), e.g., a message is sent over this edge. We believe
that in many situations, it is reasonable to assume that such a hidden network exists,
which changes on a time-scale much longer than the sampling process. The network
growth can then be modeled as a direct consequence of the edge sampling process, i.e.,
each snapshot of the network corresponds to a graph sampled from the underlying graph
and a different edge-sampling probability.

We further elaborate on the use of the sampling model in the corresponding chapters.

1.4 Contributions

In this thesis, we address two fundamental issues in the analysis of social and complex net-
works: (1) privacy, and (2) dynamics. We make the following contributions:

De-Anonymizing Social Networks We investigate the problem of de-anonymizing the
users of a social network and show that anonymization is not sufficient to keep the
network private. Our contributions are two-fold:

1. We answer the following question: Can we assume that a sufficiently sparse network
is inherently anonymous, in the sense that even with unlimited computational
power, de-anonymization is impossible? We consider the scenario where an attacker
has access to (1) the target network, an unlabeled graph of social network users,
and (2) an auxiliary labeled graph of the same users, where the user relationships
(edges) are correlated, but not equal, with the other graph. We ascertain the
conditions under which we can establish a perfect matching between the nodes
of the two graphs, thus de-anonymize the unlabeled graph. Our approach is to
introduce a random graph model for this version of the de-anonymization problem;
this model is parameterized by the expected node degree and a similarity parameter
that controls the correlation between the two graphs over the same vertex set.
We find on these parameters simple conditions that delineate the boundary of
privacy, and we show that the mean node degree need grow only slightly faster
than log n with network size n for nodes to be identifiable. Our results have policy
implications on sharing anonymized network information [89].

2. We consider the same settings as above and propose an efficient and scalable al-
gorithm to find the correct matching between the nodes. Although approximate
graph matching for small networks has received considerable attention in the liter-
ature, heuristics for large-scale matching have appeared only recently and require
an initial seed set of known pairs of corresponding nodes. We present a new graph
matching algorithm that relies on a probabilistic model of the two graphs to be
matched. This allows us to develop a clean Bayesian framework and to express
graph matching as a bipartite matching problem. We construct an algorithm that
builds the map incrementally and without any initial seed set. Our method is the
first to express approximate graph matching of large graphs in a statistical frame-
work and can be used to de-anonymize social networks, as well as several other
graph matching applications [88].

1.5. Thesis Outline 7

Dynamics of Social Networks We provide a novel explanation for a recently observed
phenomenon in the evolution of social and complex networks: Network densification
occurs when the number of edges grows faster than the number of nodes as the network
evolves over time. In our approach, we use an interesting observation of how real network
data is gathered and used: the indirect observation of nodes through edges. Leveraging
on this, we propose a new model called edge sampling to explain how densification
arises. Our model is innovative, as we consider a fixed underlying graph and a process
that discovers this graph by probabilistically sampling its edges. We also show that
there is a direct relationship between densification and the underlying graph possessing
a heavy-tailed degree distribution. In other words, that almost all real graphs densify,
because they have a skewed degree distribution. Our theoretical findings are supported
by numerical evaluations of the model, together with performance evaluation on real
data. Our results show that densification can be explained as an observation bias,
rather than being a real network property, and that edge sampling is indeed a plausible
alternative explanation for densification [87].

Privacy-Preserving Social Recommender Systems We propose a novel method for pri-
vacy preservation in collaborative filtering recommendation systems. We address the
problem of protecting the users’ privacy in the presence of an untrusted central server,
where the server has access to user profiles. To avoid privacy violation, we propose a
mechanism where users store an offline profile locally, hidden from the server, and an
online profile on the server from which the server generates the recommendations. In
our mechanism, the online profiles of different users are frequently synchronized with
their offline versions in an independent and distributed way. Using a graph theoretic
approach, we develop a model where over time each user randomly contacts other users
and modifies his own offline profile through a process known as aggregation. To evaluate
the privacy of the system, we apply our model to the Netflix prize dataset to investi-
gate the privacy-accuracy tradeoff for different aggregation types. We show that such
a mechanism leads to a high level of privacy through a proper choice of aggregation
functions but has a marginal negative effect on the accuracy of the recommendation
system [101].

1.5 Thesis Outline

The thesis has three parts.
Part I, which contains the main body of this work, is devoted to the de-anonymization

of social networks. In Chapter 2 we explain the de-anonymization problem, express de-
anonymization as a graph matching problem, and survey the related work in the subject. In
Chapter 3 we present our theoretical approach to the matching problem, introduce the model
for generating two similar graphs, and - via a rigorous proof - derive the conditions on the
network parameters under which de-anonymization is feasible. In Chapter 4 we propose an
iterative Bayesian method for the efficient matching of large sparse graphs, and thus network
de-anonymization.

In Part II (Chapter 5) we introduce our innovative model to explain network evolution,
and more specifically, network densification. Finally, in Part III (Chapter 6) we propose a
novel privacy-preserving algorithm for collaborative filtering social recommender systems.

Part I

Models for Matching Large

Networks

9

2 Network De-Anonymization

The emergence of online social networks such as Facebook, Twitter, MySpace and Linkedin
with hundreds of millions of users implies that an unprecedented amount of user data is now
in the hands of the providers of such services. Not surprisingly, the fair use of this information,
the appropriate notions of privacy and security, and the technical and legal tools to control
its sharing and dissemination have become controversial and hotly debated problems in the
scientific community and beyond. A major issue that arises as a result of the popularity
of online social networks is users’ privacy. Many online, and almost all offline networks
(e.g, phone calls, e-mail networks, etc.) provide their users with some privacy measures.
More specifically, the access to users’ identities and their relationships is restricted to prevent
attackers from fetching sensitive information about network users.

In order to protect users’ privacy and preserve their personally identifiable information,
network owners anonymize the network by replacing users’ identities with random unique
identifiers, before releasing the data for research or marketing purposes. However, recently
it has been shown that even anonymized users could be re-identified through relying on
auxiliary information obtained from an external source. It is clear that the availability of side
information (e.g., class labels for users such as from demographic information, or richer link
information such as directed interactions, time stamps) can further aide an attacker for the
re-identification of users. This motivates us to explore the anonymity of social networks and
to investigate the robustness of anonymized network data to de-anonymization attacks.

In the current chapter and also Chapters 3 and 4, we highlight our approach and contribu-
tions to the network de-anonymization problem. We investigate a realistic scenario where we
assume that the only exposed information is the structure of an anonymized social network,
and our goal is to de-anonymize all users in the network by using auxiliary information, and
yet only structural information, from some other publicly available social graph. We elaborate
on this in the next section.

2.1 Network De-Anonymization: a Matching Problem

The following important observation is behind our approach: In most real cases, although
nodes are anonymized in the released data of social networks, the structure of the graph is
preserved. Network owners and operators usually anonymize users’ data while preserving the
relationships between anonymous users, in order that the fully anonymized graph can still be
used for research or application purposes. This is equivalent to having access to an unlabeled
graph. Furthermore, we assume that an attacker has access to a similar but labeled network,
in which user identities are known. Such a network can be obtained for example from public
data (e.g., through mining a public social network on the web), or inferred from other sources.
This type of attack is also considered in [81].

To give a concrete example, we ask whether it would be safe for an academic institution

11

12 Chapter 2. Network De-Anonymization

to release a database of anonymized e-mail or call logs, if an attacker has available to him a
correlated but highly incomplete set of likely social links between the staff and students of
that institution (e.g., by mining the public website of groups, departments, and so on). Could
an attacker use this incomplete side information to reverse-engineer the anonymized identities
in the database, and therefore the communication pattern of this university? More generally,
most of us have many different online identities, and the social links in these different domains
are probably not completely identical, but correlated.

Here, we assume that the attacker only has the graph structure for the re-identification of
nodes. We can then summarize our de-anonymization problem as finding the correct mapping
between the nodes of two structurally similar graphs without relying on node identities, which
we call approximate graph matching.

In this dissertation, we explore the problem of approximate graph matching explained
above. Although we explain the problem for the specific case of network de-anonymization,
our results in this thesis can be applied in general to any kind of approximate graph matching
problem, in which we intend to match the nodes of two similar graphs by using only their
structures. In order to model the similarity of two networks, we use the notion of graph
sampling introduced in Chapter 1 to develop a model of similar or correlated graphs. We
elaborate on this in Chapters 3 and 4.

Our contributions fall into two categories, which include the core part of the thesis in the
next two chapters:

1. Theoretical aspect of graph matching : We assess the feasibility of graph matching by
using only network structures, and we establish fundamental conditions (depending on
graph structures) for matching to be feasible in theory (Chapter 3).

2. Algorithmic aspect of graph matching : We propose a clean statistical framework, to-
gether with an iterative algorithm for matching two large correlated sparse graphs
(Chapter 4).

2.2 Related Work

We briefly summarize the related work in network de-anonymization and approximate graph
matching. The works can be categorized as follows:

1. Research works relevant to network modeling with direct application for de-anonymizing
users in social networks.

2. Research works in the area of graph isomorphism and approximate graph matching,
mostly from applications in machine learning and pattern recognition problems.

In the first category, in [81], Narayanan et al. propose a novel algorithm, based purely on
network topology, for de-anonymizing social networks. Their work is closest to our work in
problem settings, where they use structural information to de-anonymize very large graphs.
Their method uses the cosine similarity between nodes and introduces a propagation algorithm
to match all nodes. In a similar work [79], Narayanan et al. introduce a new simulated
annealing-based weighted graph matching algorithm for the seeding step of de-anonymization;
they also show how to combine de-anonymization with link prediction. In addition to the
graph structures, both approaches above depend on the extraction of a small subset of correctly

2.2. Related Work 13

mapped nodes, used as seeds for mapping the remaining nodes. Furthermore, their method
requires backtracking and revisiting the mapped nodes, through visual inspection or manual
interventions.

Also in [80] and [78], Narayanan et al. present de-anonymization methodologies for sparse
micro-data to de-anonymize movie viewing records in the Netflix Prize dataset and to identify
authors based on their writing style through comparison with a corpus of texts of known
authorship.

Backstrom et al. introduce active and passive attacks for the de-anonymization of social
networks [7]. They show how target users can be identified in a very large network by
identifying a neighborhood subgraph around the user using only network structure. They
investigate the effectiveness of these attacks both theoretically and empirically. A limitation
of active attacks is the necessity of creating fake (dummy) nodes in the social network before
its release (which is of course a strong limitation in practice), while passive attacks are capable
of re-identifying only a limited number of users, but without the need for fake nodes. Thus,
the method works best for the de-anonymization of specific users within the network, or a
small fraction of all users. A similar attack model is analyzed in [43], where an attacker is
allowed to issue queries that reveal a k-hop subgraph around a target node; they analyze the
privacy risk to the identity of the target node and to the presence of specific links, both using
random graph models and real data.

Wondracek et al. [109] introduce a de-anonymization technique based on group member-
ship information of individuals in social networks. They show that information about the
group memberships of a user is often sufficient to uniquely identify this user, or at least to
significantly reduce the set of possible candidates and to assess the feasibility of the attack
both theoretically and empirically.

In the second category, mainly in the area of pattern recognition and machine learning,
several techniques have been proposed for exact and approximate graph matching. In [85],
Cordella et al. propose a so-called VF algorithm as a solution for exact subgraph matching,
or subgraph isomorphism, exhibiting less complexity compared to the famous Ullmann back-
tracking algorithm [103]. In [102], Tian and Patel suggest an approximate graph matching
tool (TALE) through a novel indexing method that incorporates graph structural information
in a hybrid index structure. Some other methods, proposed for approximate graph matching
and used mainly for matching patterns or images, include random walks on graphs [38], using
EM algorithm and singular value decomposition [70], and the Bayesian edit-distance criterion
[99, 77]. Hancock et al. study graph matching in pattern recognition area in several works
[31, 41, 110, 30]. Although in some of these works the structural information for matching
graphs is used, the approximate matching problem in such cases is generally defined as node
mismatches or inconsistencies of node attributes. Also, because of the complexity of ma-
trix manipulation and computation of complex probability distributions, such methods are
generally not feasible for application to large networks.

Another recent body of work mostly in the pattern recognition, addresses approximate
graph matching in the same sense as considered in this thesis. However, some of the ap-
proaches rely on label dependent features of nodes and/or edges when defining a similarity
measure between two nodes, which is also usually some heuristic function of their features
(i.e., labels and graph properties). A global cost function measuring the quality of the map-
ping is then maximized using sophisticated optimization and linear programming methods
[26, 92, 19, 111]. Such approach is in sharp contrasts with ours, where the similarity measure
is label independent and is derived over a well-defined probabilistic model and therefore has

14 Chapter 2. Network De-Anonymization

a rigorous meaning (see Chapter 4).
Some of the works in the second category specifically focus on a Bayesian approach to

graph matching [107, 108, 93, 13]. In most of these approaches, the goal is to match a source
graph to one of the multiple correlated target graphs, thus differing from our approach to
match all users of two correlated networks.

Our contribution to this existing body of work is (i) to introduce a mathematically
tractable, parsimonious model for the problem of matching two similar graphs and to derive
asymptotic bounds in terms of fundamental parameters for network anonymity, independently
of specific algorithms, and (ii) to propose a novel algorithm for graph matching - based on a
Bayesian framework for computing the likelihood of matching for two graphs - that iteratively
maps nodes using only structural properties of the graphs and without any prior information
of any previously mapped nodes.

3 A Theoretical Framework

In this chapter, we pursue a theoretical approach to the matching problem, and formulate the
vulnerability of a network to de-anonymization as a function of its structural similarity with
an auxiliary network.

There still lacks a thorough understanding of the conditions under which de-anonymization
is feasible. We want to be able to ascertain when a network’s anonymity can be guaranteed,
given the side information and computational resources available to an attacker. In this work,
we make a step in this direction.

To the best of our knowledge, ours is the first work to pursue a theoretical treatment
of global network de-anonymization problem, and in particular, to consider its feasibility for
large networks. Our contributions in this chapter are three-fold: (1) We explore fundamental
limits for de-anonymization regardless of the specific algorithm employed, and investigate the
relationship between network parameters and the possibility of guaranteeing anonymity in
such networks. (2) We introduce a mathematically tractable model that captures the notion
of correlated networks, and uses the idea of graph sampling to control the structural similarity
of two graphs. This model is based on random graphs, and can be viewed as a generalization
of the classical automorphism group problem for random graphs [17, chapter 9]. Finally,
(3) we prove that a surprisingly simple and mild condition on the scaling of the expected
degree with the number of nodes is sufficient for de-anonymization to be feasible, with strong
implications on privacy.

Our results for approximate graph matching not only exhibit the risk of a privacy breach
in the release of even the most basic information about real networks (i.e., only anonymized
users and their links), but can have useful applications as well. If matching is feasible, we
can combine several “noisy” public (anonymized) versions of social networks obtained from
different sources into a more precise, combined network. In another scenario, suppose we have
the call graph between all the phone numbers in an organization, and the graph of e-mail
exchanges between e-mail addresses in this same organization. We could then establish the
correspondence between phone numbers and e-mail addresses solely through the structure of
the two social networks (which we expect to be similar but not exactly equal).

We should emphasize that this chapter only addresses the feasibility of de-anonymization.
This amounts to establishing that there exists a cost function over the two graphs, such that
minimizing this function finds the correct matching with high probability. We do not address
the computational complexity of this process. We defer the algorithmic aspect of the matching
problem, i.e., how to find this correct mapping, to Chapter 4.

The remainder of this chapter is organized as follows. In Section 3.1, we formally define the
de-anonymization problem, introduce a mathematical model for approximate graph matching,
and define the error measure used in the matching problem. Section 3.2 is the core of this
chapter where we prove that in our model, perfect matching is feasible under mild conditions
on the expected degree of the graphs and on their similarity. In Section 3.3 we discuss

15

16 Chapter 3. A Theoretical Framework

numerical experiments using social network data to justify the assumptions in our model.
Finally, in Section 3.4 we conclude with a discussion of the implications of the result.

3.1 Problem Definition

We define the problem of matching the vertex sets of two graphs. To model the structural
similarity of the two graphs, we use the idea of edge sampling introduced in Chapter 1.
Furthermore, we assume that the underlying graph is a realization of the class of random
graphs G(n, p), and call our model G(n, p; s) model, where s corresponds to the edge sampling
probability. The G(n, p; s) random graph model generates two similar graphs G1 and G2 (we
use the notation G1,2 to refer to either of the two) over the same vertex set. As mentioned
before, the goal is to match the vertices of two unlabeled graphs whose edge sets are correlated
but not necessarily equal. The basis for our model is its parsimony and symmetric structure,
ingredients for its mathematical tractability.

To elaborate on this, let G = (V,E) be a generator graph with vertex set V and edge
set E. We assume here that G is an Erdös-Rényi random graph G(n, p) with n nodes, where
every edge exists with identical probability p, independently of all the other edges. For a fixed
realization of G = G(n, p), we generate two graphs G1,2 = (V,E1,2) by sampling the vertex
set E twice. More precisely, each edge e ∈ E is in the edge set of E1,2 with probability s,
independently of everything else. As a result, the sample graphs G1,2 are themselves Erdös-
Rényi random graph G(n, ps), but their edge sets are correlated, in that the existence of an
edge in E1 implies that the existence of this edge in E2 is more likely than unconditionally
(provided p < 1 and s > 0) (see Fig. 3.1). The G(n, p) model has been widely used in the
study of complex and social networks [16, 49, 83, 5], which makes it a plausible candidate for
the study of the approximate matching problem.

Our goal is to determine whether it is possible to find the correct mapping between the
nodes of G1 and G2, assuming we only see unlabeled versions of these two graphs (and without
access to the generator G). This is equivalent to the assumption that the two graphs have
different vertex label sets that contain no information about the graphs, such as random labels
allocated in an anonymization procedure. Using this model, our problem can be viewed as
the generalization of the classic automorphism group problem in random graphs. We discuss
this and also the effect of the choice of other graph models at the end of Section 3.2 and also
in Section 3.4.

We formally define the graph matching problem as follows. We assume that G1,2 are only
available in unlabeled form (or equivalently, with two arbitrary and unknown sets of labels).
Let π denote a permutation on V , i.e., one way of mapping vertices from G1 onto G2. The
number of such permutations is n!. The identity permutation, denoted by π0, is the correct
mapping between the nodes of G1 and G2. We seek an error (cost) function over the set of
permutations, which succeeds if it is uniquely minimized by π0.

Therefore, to solve the matching problem, we are interested in showing the following:

Among all possible permutations between the two vertex sets, the identity permutation π0
is the unique permutation that minimizes a cost function, giving the node matching between
the two graphs.

The cost function should measure to what extent the structures of graphs G1 and G2

resemble each other under a given permutation. The structural difference can be viewed as
the difference between the corresponding edge sets. This idea has also been investigated in

3.1. Problem Definition 17

Figure 3.1: Sampling process applied to the underlying graph G, resulting in the two sampled
graphs G1 and G2 to be matched.

the field of pattern recognition where the edge-consistency of two graph patterns (in matching
a data graph to a model graph) is used to obtain the correspondence errors [77, 70].

We introduce the cost function as the error measure for edge-inconsistency, considering
only the structures of two graphs G1(V,E1) and G2(V,E2). The matching error ∆ can be
generally defined as

∆π =
∑

e∈E1

1{π(e)/∈E2} +
∑

e∈E2

1{π−1(e)/∈E1}, (3.1)

where 1{A} denotes the indicator function. In other words, permutation π defines a mapping
between the nodes of G1 and G2, and ∆ counts the number of edges that exist in one graph
with the corresponding edges not existing in the other graph under matching π. This is a
simple cost function that can be assumed for such a setting when comparing the structures
of two graphs. Although this cost function not necessarily optimal (depending on the graph
model) nor computationally efficient, it lends itself to probabilistic analysis. It is now suf-
ficient to find the condition on the network parameters n, p and s, under which, among all
possible mappings, the identity mapping π0 minimizes the cost function. This condition is
indeed a threshold on sampling probability as a function of n and p, as we would expect
the matching to be easier for highly overlapping graphs (in the sense that the threshold for
overlap will be lower), and vice versa. Specifically, we prove below that if the sampling prob-
ability s exceeds some threshold, as n grows large, the identity permutation π0 minimizes
the error function (3.1). In other words, for s larger than this threshold, if we enumerate all
permutations and assume n! possible mappings for the two graphs, the only permutation that
gives the minimum error will be the correct mapping between the nodes.

We reiterate that in this chapter we do not address the algorithmic aspects of de-anonymization,
including the computational complexity of enumerating all mappings and computing their er-
ror. Instead, we next show conditions on the model parameters such that minimizing the
error function is almost surely equivalent to identifying the correct mapping using only the
structures of the two sampled graphs, i.e., we show that de-anonymization is feasible, and it
is not possible to guarantee anonymity.

18 Chapter 3. A Theoretical Framework

3.2 Conditions for Perfect Matching

Following the model introduced in Section 3.1, we state the main theorem of this chapter,
followed by its proof.

Theorem 3.2.1 For the G(n, p; s) matching problem with s = ω(1/n) and p → 0, if

ps · s2 = 8
log n

n
+ ω(n−1), (3.2)

then the identity permutation π0 minimizes the error criterion (3.1) a.a.s1, yielding perfect
matching of the vertex sets of G1 and G2.

2

Proof We denote by ∆0 the error induced by the identity permutation and ∆π the error
induced by the permutation π. Figure 3.2 depicts two possible mappings between the same
G1 and G2 shown in Figure 3.1 corresponding to the identity mapping π0 and a permutation
π2 (in which all nodes are fixed except two) respectively, together with their error.

To show the result, we define Πk on V as the set of all permutations that fix n−k nodes and
permute k nodes, calling them an order-k permutation. The number of such permutations,
referred to as “rencontre numbers”, is as follows [98]:

|Πk| = R(n, n− k) =

(
n

k

)
· (!k), (3.3)

where !k is the subfactorial of k, denoting the number of permutations of k objects in which
no object appears in its natural place (i.e., its position in the non-permuted objects list). It
is easily verified that R(n, n− k) can be upper-bounded as follows:

|Πk| =

(
n

k

)
· (!k) ≤

(
n

k

)
·
(
k!

2

)
≤ nk. (3.4)

The random variables introduced below are indexed by n, which we omit unless required
by the context. We define

Sk =
∑

π∈Πk

1{∆π<∆0}.

Sk counts the number of order-k permutations for which the number of matching errors is
less than that of the identity permutation. Thus, S =

∑n
k=2 Sk is the total number of false

matches. The expected number of errors can be computed as:

E [S] =

n∑

k=2

E [Sk] =

n∑

k=2

∑

π∈Πk

E
[
1{∆π<∆0}

]

=

n∑

k=2

∑

π∈Πk

P {∆π − ∆0 < 0} , (3.5)

where the expectation is over G(n, p; s).

1a.a.s: asymptotically almost surely, i.e., with probability going to 1 as the number of nodes n goes to
infinity. In general, asymptotic refers to the behavior for n → ∞.

2We use the standard asymptotic notation (o, O, ω, Ω, and θ).

3.2. Conditions for Perfect Matching 19

Figure 3.2: The identity permutation π0 versus a permutation π2 ∈ Π2 that mismatches k = 2
vertices for mapping G1 to G2. The error in each case corresponds to the number of edges in
one graph with the mapped edge not existing in the other graph. Thus, ∆0 = 8 and ∆π2 = 10,
where ∆0 is the edge difference as a result of the sampling process, and ∆π2 is induced by
both the sampling process and the wrong mapping of two nodes in π2.

S counts the total number of non-identity permutations that minimize the error, and we
need to show that with high probability no such permutations exist. By the First Moment
Method (following Markov’s inequality), since S is a non-negative integer-valued random
variable, to show that P {S = 0} → 1, it suffices to show that E[S] → 0.

Using this method and substituting (3.4) in (3.5), it is then sufficient to show that

E [S] ≤
n∑

k=2

nk max
π∈Πk

P {∆π − ∆0 < 0} → 0. (3.6)

We bound the error probability for a fixed order-k permutation π, i.e., we bound the
probability term in (3.6). For permutation π, let Vπ be the set of vertices for which v 6= π(v),
and let Eπ = Vπ × V , i.e., the set of possible edges between one or two vertices mismatched
under π. Note that every edge satisfying e 6= π(e) is in Eπ. The inverse is not true, because
transpositions in π (a pair (u, v) such that π(u) = v and π(v) = u) induce invariant edges.
The cardinality ek of Eπ is

ek = |Eπ| =

(
k
2

)
+ k(n− k),

where the first term is the number of unordered node pairs both in Vπ, and the second term
is the number of unordered node pairs with one node in Vπ.

20 Chapter 3. A Theoretical Framework

As every edge e in the complement of Eπ (i.e., in (V × V)−Eπ) is by definition invariant
under π, they contribute equally to ∆0 and ∆π. Therefore, we can write ∆π−∆0 = Xπ −Yπ,
where

Xπ =
∑

e∈Eπ

|1{e∈E1
π}

− 1{π(e)∈E2
π}
|,

Yπ =
∑

e∈Eπ

|1{e∈E1
π}

− 1{e∈E2
π}
|, (3.7)

with E1,2
π = Eπ ∩ E(G1,2), i.e., the set of edges in G1,2 incident to at least one mismatched

vertex. Here, Yπ is the number of errors for the identity permutation within the set Eπ, i.e.,
the number of sampling errors within Eπ. Note that Xπ and Yπ are not independent, because
they are functions of the same random sets E1,2

π .
Yπ counts the number of edges in Eπ that are sampled in only one of G1,2, i.e., the number

of sampling errors under the identity permutation. The probability for each possible edge to
be in E(G) and exactly one of G1,2 is 2ps(1 − s). Thus Yπ is binomial with probability
2ps(1 − s).

For Xπ, we need to proceed more carefully. Assume π has φ ≥ 0 transpositions. First,
note that each transposition in π induces one invariant edge e = π(e) = π−1(e) in Eπ (such
an edge contributes to Xπ with probability 2ps(1 − s)).

The remaining ek − φ edges are not invariant under π. Each pair of such edges (e, π(e))
contributes 1 to Xπ if e ∈ G1 and π(e) 6∈ G2 or vice versa (cf. (3.7)). The probability for
exactly one of two different edges in Eπ to be sampled is 2ps(1 − ps). Note that the terms
in (3.7) are dependent, because conditioned on |1{e∈E1

π}
− 1{π(e)∈E2

π}
| = 1, at least one of e

or π(e) is present in the generator G. Thus, the conditional probability of an adjacent pair
(either (π−1(e), e) or (π(e), π(π(e))) contributing 1 to (3.7) is s(1 − ps). We conservatively
ignore this positive correlation and stochastically lower-bound Xπ by assuming that each pair
of edges (e, π(e)) contributes an i.i.d. Bernoulli with parameter 2ps(1 − ps) to (3.7).

Thus, Xπ is stochastically lower-bounded by the sum of two independent binomials
Bi (ek − φ, 2ps(1 − ps)) +Bi (φ, 2ps(1 − s)), where φ is the number of transpositions in π. By
definition, a transposition can occur only between two vertices that are both in Vπ. Hence,
φ ≤ ⌊k/2⌋ ≤ k/2.

Thus, we have

Xπ

(stoch.)

≥ Bi (ek − ⌊k/2⌋, 2ps(1 − ps)) (3.8)

Yπ ∼ Bi (ek, 2ps(1 − s)) . (3.9)

We upper-bound the probability of the event {Xπ − Yπ < 0} using the the lemma in
Appendix 3.A, which holds regardless of dependence between Xπ and Yπ.

Let λπ and λ0 denote the means of the lower-bound for Xπ, and Yπ, respectively, with
values,

λπ = 2ps(1 − ps)(ek − k/2) (3.10)

λ0 = 2psek(1 − s). (3.11)

Since 0 ≤ s ≤ 1, 2 ≤ k ≤ n, and ek ≃ k(n − k/2), to satisfy λπ > λ0 we need to have,

2ps(1 − ps)(k(n− k/2) − k/2) > 2psk(n − k/2)(1 − s)

=⇒ s >
(
1−ps
1−p

) 1

2n− k
, (3.12)

3.2. Conditions for Perfect Matching 21

which will be satisfied for s = ω(1/n) and p → 0.
Thus, using Lemma 3.A.1, we obtain,

P {Xπ − Yπ < 0} ≤ 2 exp


− 1

8

(λπ − λ0)
2

λπ︸ ︷︷ ︸
f(n,p,k)


 . (3.13)

Since ps → 0, substituting (3.10) and (3.11) in (3.13) yields:

f(n, p, k) =
1

8

(2ps ((ek − k/2) − (ek − eks)))2

2ps (ek − k/2)

=
ps

4

((k/2) ((2n− k)s− 1))2

(k/2) (2n− k − 1)

For s = ω(1/n) we have (2n− k)s = ω(1). Thus,

f(n, p, k) ≃ ps

4

(k/2) ((2n− k)s)2

(2n − k)

≃ ps

4
s2 k (n− k/2) . (3.14)

Using (3.4), (3.6), (3.13) and (3.14), we have,

E [S] ≤ 2
n∑

k=2

nk · exp(−f(n, p, k))

(a)≃ 2

n∑

k=2

nk exp

(
−k

(
n− k

2

)
ps

4
· s2
)

(b)

≤ 2

∞∑

k=2

exp
(
k
(

log n− nps

8
· s2
))

, (3.15)

where (a) is derived using (3.14), and (b) uses k ≤ n. The geometric series goes to zero if the
first term goes to zero, which is implied by the condition in the statement of the theorem.
This completes the proof. �

A more direct approach to prove the result would be to try to condition on a property of
the underlying graph G and/or of G1,2 that is both asymptotically almost sure, and for which
one could show that uniformly over all permutations π, the number of errors is higher than
for the identity π0. It is difficult to identify such a property that would make the second part
of the problem tractable. Instead, we show the result using a method commonly employed in
the random graph literature [17, 47], which allows us to analyze a fixed permutation π over
the full probability space G(n, p; s).

A remarkable aspect of our result is that for fixed similarity parameter s, the condition
is ps = 8c log n/n for some c(s) > 1. As expected, c(s) = 1/s2 is monotonically decreasing
in (0, 1), and c(1) = 1. Thus, for an overall edge sampling probability ps of a bit larger than
8 log n/n, with high probability the identity permutation minimizes the error function and
yields the correct mapping. Note that the threshold for the connectivity of G1,2 = G(n, ps)

22 Chapter 3. A Theoretical Framework

(and for the disappearance of isolated vertices) is ps = log n/n [17, 47]. It is obvious that it is
impossible to perfectly match a pair of graphs G1,2 when at least one of them possesses more
than one isolated vertex (as these necessarily give rise to multiple permutations with equal
error counts). Therefore, ps = log n/n is a lower bound for zero-error graph matching using
any technique (i.e., any cost function). Our bound for G(n, p; s) matching is therefore tight,
up to a constant function of s.

For the case of s = 1, the approximate graph matching problem is equivalent to the
classical automorphism group problem for random graphs [17]. Specifically, it is known that
G(n, p) is asymmetric (has an automorphism group of size one) for p = log n/n + ω(1). This
suggests that the constant c(s) in our result can be improved upon through more refined
bounding techniques. Indeed, we use relatively loose bounds in several places: in particular,
we underestimate the mean of Xπ quite significantly by ignoring the positive correlation
(within each cycle of π) in the terms of (3.7); also, we assume the worst-case dependence
between Xπ and Yπ in (3.27), even though they are in reality positively correlated through
the generator G. These bounds are sufficient to show the asymptotic result to within a
constant, but more precise techniques akin to those used to show the classical automorphism
result may allow to go further. Another obvious extension of our work would employ other
generator graph structures such as random regular graphs, small world models, or scale free
graphs.

In the following, we further strengthen our results for G(n, p), allowing a small node
mismatch to occur. We show that allowing a small error in matching nodes contributes to a
lower threshold for sampling probability.

3.2.1 Allowing a Fraction of Node Mismatches

In this section, we address the same problem, with the new assumption of letting an ǫ-fraction
of nodes to be mismatched, where epsilon is an arbitrary positive constant less than 1. We
show that tolerating this small error in matching the two graphs, a looser bound (or lower
threshold) for the sampling probability will be achieved, but that the bound is not different
in order from the previous bound. In the following, we show that in this case, it is sufficient
for the overall sampling probability ps to be above the threshold of 8 log n/n by ω(n−2), so
that the identity permutation yields the best matching.

Corollary 3.2.1 For the G(n, p; s) matching problem with s = ω(1/n) and p → 0, if

ps · s2 = 8
log n

n
+ ω(n−2),

then the identity permutation π0 minimizes the error criterion (3.1) a.a.s., if we allow an
ǫ-fraction of the nodes to be mismatched, where ǫ is an arbitrary constant between zero and 1.

Proof We now tolerate an ǫ-fraction mismatch in the nodes. Thus, for an order-k per-
mutation πk which permutes k nodes, we have k/n < ǫ. So for the permutations contributing
to the matching error, k should be larger than ǫn. This requires the same analysis as above,

3.2. Conditions for Perfect Matching 23

with the only difference that in the sum in (3.15), k starts from ǫn, which yields:

E [S] ≤
n∑

k=ǫn

(n)kP {Xπ −X0 < 0}

≤ 2
n∑

k=ǫn

nk exp

(
−k

(
n− k

2

)
ps

4
· s2
)

≤ 2
∞∑

k=ǫn

exp
(
k
(

log n− nps

8
· s2
))

=⇒ exp

(
ǫn2

8

(
8 log n

n
− ps s2

))
→ 0 (3.16)

The term above goes to zero if the condition of the corollary holds. �

Note that the result does not depend on ǫ, and holds regardless of the fraction of nodes
chosen. The above result is worth considering when compared with Theorem 3.2.1. Here we
show that allowing a positive fraction of nodes to be mismatched, the threshold for matching
becomes a bit lower (ω(n−2) rather than ω(n−1)). However, this improvement is not significant
as it does not change the dominant factor (8 log n/n).

3.2.2 Different sampling rates

Hereby, we generalize the sampling model, allowing G1 and G2 to be edge-sampled with
different sampling rates s1 and s2. We would call this a G(n, p; s1, s2) model. This would
cover more realistic graphs, e.g., as in observing G1 and G2 from an underlying graph over
different time spans (both being sampled from the same graph), resulting in one graph being
denser than the other (different average degrees). We show that we can still find the conditions
for perfect matching, and we derive a more general result that depends on both sampling
probabilities.

Theorem 3.2.2 For the G(n, p; s1, s2) matching problem with s1s2
s1+s2

= ω(1/n) and p → 0, if

p

(
s1 + s2

2

) (
2s1s2
s1 + s2

)2

= 8
log n

n
+ ω(n−1), (3.17)

then the identity permutation π0 minimizes the error criterion a.a.s, yielding perfect matching
of the vertex sets of G1 and G2.

Proof The proof is very similar to the proof of (3.2.1). The only difference arises when
estimating the random variables Xπ and Yπ, since the probability of the possible edges would
now depend on s1 in G1, and s2 in G2, respectively.

More specifically, the probability for each possible edge to be in E(G) and exactly one of
G1,2 would be ps1(1−s2)+ps2(1−s1). Thus Yπ is binomial with probability p(s1+s2−2s1s2).
For Xπ, we should again consider the transposition, assuming φ ≥ 0 transpositions exist.
Each transposition in π induces one invariant edge e = π(e) = π−1(e) in Eπ, and such an
edge contributes to Xπ with probability ps1(1 − s2) + ps2(1 − s1) in this case. As before, the
remaining ek − φ edges contribute to Xπ, now with probability ps1(1 − ps2) + ps2(1 − ps1),
and we ignore the positive correlation of the edges.

Thus, Xπ is stochastically lower-bounded by the sum of two independent binomials

24 Chapter 3. A Theoretical Framework

Bi (ek − φ, p(s1 + s2 − 2ps1s2))+Bi (φ, p(s1 + s2 − 2s1s2)), where φ is the number of trans-
positions in π. We lower-bound φ by k/2 and have,

Xπ

(stoch.)

≥ Bi (ek − ⌊k/2⌋, p(s1 + s2 − 2ps1s2)) (3.18)

Yπ ∼ Bi (ek, p(s1 + s2 − 2s1s2)) . (3.19)

The means of the lower-bound for Xπ, and Yπ, are as follows:

λπ = p(s1 + s2 − 2ps1s2)(ek − k/2) (3.20)

λ0 = p(s1 + s2 − 2s1s2)ek. (3.21)

We will now use Lemma (3.A.1). Since 0 ≤ s1, s2 ≤ 1, 2 ≤ k ≤ n, and ek ≃ k(n − k/2), to
satisfy λπ > λ0, it is sufficient to have,

p(s1 + s2 − 2ps1s2)(k(n − k/2) − k/2) > p(s1 + s2 − 2s1s2)k(n − k/2)

=⇒ s1s2
s1 + s2

>
1

2 ((2n − k)(1 − p) + p)
, (3.22)

which will be satisfied for s1s2
s1+s2

= ω(1/n) and p → 0.
Thus, using Lemma (3.A.1), we obtain,

P {Xπ − Yπ ≤ 0} ≤ 2 exp


− 1

8

(λπ − λ0)
2

λπ︸ ︷︷ ︸
f(n,p,k)


 . (3.23)

where,

f(n, p, k) =
1

8

(p ((s1 + s2)(ek − k/2 − ek) + 2s1s2ek))2

p(s1 + s2)(ek − k/2)

=
p(s1 + s2)

8
·

(
(k/2)

(
(2n − k)

(
2s1s2
s1 + s2

)
− 1

))2

(k/2) (2n− k − 1)

For s1s2
s1+s2

= ω(1/n), we have (2n − k)
(

s1s2
s1+s2

)
= ω(1). Thus,

f(n, p, k) ≃ p(s1 + s2)

8

(k/2)

(
(2n− k)

(
2s1s2
s1 + s2

))2

(2n− k)

≃ p

(
s1 + s2

2

) (
s1s2

s1 + s2

)2

k (n− k/2) . (3.24)

Finally, using (3.4), (3.6), and (3.24), we have,

E [S] ≤ 2
n∑

k=2

nk · exp(−f(n, p, k))

(a)≃ 2

n∑

k=2

nk exp

(
−k

(
n− k

2

)
p

(
s1 + s2

2

) (
s1s2

s1 + s2

)2
)

(b)

≤ 2

∞∑

k=2

exp

(
k

(
log n− np(s1 + s2)

4
·
(

s1s2
s1 + s2

)2
))

, (3.25)

3.3. On the Similarity of Real Networks 25

where (a) is derived using (3.24), and (b) uses k ≤ n. The geometric series goes to zero if the
first term goes to zero, which is implied by the condition in the statement of the theorem.
This completes the proof. �

The above result establishes the condition for the average sampling rate of the two graphs,
i.e., p(s1 + s2)/2, so that perfect matching is feasible. Note that for s1 = s2 = s, the same
result as in (3.2.1) holds.

3.3 On the Similarity of Real Networks

To be mathematically tractable and parsimonious, our model inevitably embodies several
strong assumptions: (i) the underlying graph is a G = G(n, p) random graph, and the edge
sets of the “visible” graphs G1,2 are sampled (ii) independently and (iii) with identical prob-
ability s from G. Despite these assumptions, we believe that our model and our result on
anonymity conditions have implications for real networks and scenarios. Although we are
unable to explore the validity of our assumptions in full generality, we wish at least to pro-
vide some evidence to justify them. First, it is fairly clear that the underlying graph of a
social network would possess a structure very different from a G(n, p), as demonstrated in
many studies illustrating fascinating properties such as skewed degree distributions and the
small-world effect. However, we conjecture that de-anonymizing two networks sampled from
a random graph is harder than more “structured” networks. A random graph is in some sense
“maximally uniform”, and we therefore believe that for other, more realistic hidden graphs G,
de-anonymization might in fact be possible under even weaker conditions. This is of course
a promising and fascinating area for further research. Second, we consider de-anonymization
successful if the error function ∆(.) has a unique minimum at π0. We argue that this function
is not too sensitive to a non-uniform sampling process over the edge set (i.e., assuming each
edge e is sampled with its own sampling rate s(e)), provided the sampling process is similar in
both graphs, and uncorrelated across edges. This is because the impact of this non-uniformity
on X0 and Xπ above would cancel out to a certain extent. On the other hand, if the sampling
process to obtain the two samples G1 and G2 were very different, then this could make de-
anonymization much harder. For example, if the sampling rate over some subset of vertices
were atypically large in G1 compared to the rest, but atypically large for a different subset
in G2, then these two high-rate subsets would be likely to be falsely matched. Therefore, it
appears that de-anonymization would be quite sensitive to such differences in the sampling
process for G1 and G2.

While we have not quantified the above argument, it did lead us to explore the stability of
the sampling process through some numerical experiments. In order to motivate and illustrate
the concept of similarity between networks, and also verify the assumption of independence
in sampling the edges, we present an example of a real social network: an e-mail graph, in
which nodes represent e-mail addresses and edges represent message exchanges. The network
evolves in time through the observation of new messages that are exchanged.

We consider a dataset of e-mail messages collected at the mail server of EPFL. The
dataset includes logs of e-mail exchanges among users on a weekly basis for a period of 75
weeks. In our dataset, the e-mail exchanges among EPFL users is considered (i.e., internal
EPFL network). The dataset includes snapshots of the network aggregated by week, such
that timestamps are in the timescale of weeks (i.e., all messages sent in a particular week have
the same timestamp). Using such dataset, we construct the e-mail network of each week for

26 Chapter 3. A Theoretical Framework

2
4

6
8

10
12

14
16

1
2

4
6

8
10

12
14

16

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

τ (weeks)t (weeks)

E
st

im
at

ed
 O

ve
rla

p

Figure 3.3: Estimated average edge overlap among overlapped nodes for EPFL internal net-
work, as a function of window size and distance.

the internal EPFL network.

Having introduced the above, we investigate the similarity between different snapshots
of the network, each being a sample of an underlying hidden e-mail network. Note that in
order to map real data to our sampling model, the existence of a hidden underlying graph
(including all possible e-mail exchanges over all times) is inevitable - to which we do not have
access. However, measuring the amount of edge overlap between different snapshots gives us
an estimate of the similarity degree between different network samples, or whether the graphs
are the outcome of similar sampling processes. Also, since two network snapshots do not
contain the same number of nodes necessarily, we estimate the edge overlap as the proportion
of edges among overlapped nodes that exist in both graphs.

To accomplish the above, we need to pick two networks to be compared. We randomly
choose a starting timestamp ts (week number) in the entire dataset, and construct the first
graph starting from ts accumulated over a window size of τ weeks. For the second graph,
we build it starting from timestamp ts + τ + t− 1, again accumulated over a window size of
τ , where t denotes the time distance between the two graphs (in weeks). In other words, τ
corresponds to the density of the graph (the larger it is, the denser the graph will be), and t
implies the time distance between different samples. As an example, τ = 1, t = 1 corresponds
to the e-mail network of two consecutive snapshots (each consisting of e-mail exchanges over
a one-week period), whereas τ = 2, t = 3 corresponds to two graphs, each consisting of e-mail
exchanges over a period of τ = 2 weeks, with a time distance of t = 3 weeks. Finally, for
each value of τ and t, we repeat the random choice of the networks 30 times and compute the
average.

Figure 3.3 depicts the estimated average edge overlap as a function of the windows size
and time distance. It can be observed that the estimated edge overlap is quite significant, and
it also exhibits a small increase as τ increases and t decreases, which matches intuition since
it is expected that two larger and denser networks have more overlap, and as the samples
are farther apart the overlap decreases. However, this change is small over a wide span of
the density and distance values. Thus, the graph similarity is fairly robust over different
densities and distances. The experiment shows that two graphs sampled from a hidden
underlying graph (a hidden overall e-mail network in this case) are similar in structure (even

3.3. On the Similarity of Real Networks 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p−val

P
(p

−
va

lu
e

≤
pv

al
)

random adjacent edge pairs
random edge pairs in the entire graph

Figure 3.4: The CDF of the p-values of the Pearson’s Chi-Square test for independence, for
1) random adjacent edge pairs (top curve), 2) random edge pairs in the entire graph (bottom
curve). Using α = 0.05, the test verifies the statistical equivalence of edge pairs in the EPFL
dataset.

if the sampling processes are non-uniform), with the sampling process being quite stable over
different intervals.

Finally, we verify the assumption of independent edge sampling in our model, through
looking at the correlation among the edges. In general, the emergence of an edge might
correlate with the existence of other edges. In order to investigate how far the independence
assumption is from reality, we examine edge correlation in the EPFL internal network. To
do so, we choose a random pair of edges from the final accumulated graph (i.e., τ = 75),
and examine their joint appearance in 75 weekly snapshots. We use the Chi-Square test for
independence to determine whether there is a significant relationship between the appearance
of the two edges. We assume a null hypothesis that two randomly chosen edges e1 and
e2 appear independently, and use the Pearson χ2 test to decide whether we should reject
the null hypothesis, separately for each set of 75 edge pair appearances. For each random
pair of edges (e1, e2), we compute the χ2 test statistics of each sample set of 75 weeks as

X2 =
∑

i,j
(Oi,j−Ei,j)2

Ei,j
, i, j = 0, 1, where i denotes the existence (1) or non-existence (0) mode

of e1 (similarly j = 0, 1 for e2), Oi,j is the observed frequency count of e1 at mode i and e2
at mode j, and Ei,j = ni ∗ nj/n, ni being the total number of sampled observations of e1 at
mode i (similarly nj for e2 at mode j) and n being the total number of samples (75). The p-
value is calculated as P

{
X2 ≤ χ2(1)

}
, where χ2(1) is a Chi-Square random variable with one

degree of freedom, as the number of bins for each categorial variable equals 2. We derive the
p-value of the test and reject the independence hypothesis if the p-value is smaller than the
significance level (α = 0.05 in our tests). Repeating this for a large number of random edge
pairs (800 in our experiments), we find that 93% of the edge pairs are statistically independent
(p-value > α = 0.05).

To strengthen our test even further, we do the same experiment above, by choosing random
pairs of adjacent edges - i.e., edges incident to the same node - thinking that such edges
might express a high correlation. We find that even in this case, most edge pairs (72%) are
statistically independent. Figure 3.4 depicts the CDF of p-values found for each selected pair

28 Chapter 3. A Theoretical Framework

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p−val

P
(p

−
va

lu
e

≤
pv

al
)

random chain of three edges
random triple edges in the entire graph

Figure 3.5: The CDF of the p-values of the Pearson’s Chi-Square test for independence, for 1)
random chain of three edges (top curve), 2) random triple edges in the entire graph (bottom
curve). Using α = 0.05, the test verifies the statistical equivalence of triple edges in the EPFL
dataset.

over 75 weeks, for both experiments. The plot clearly shows that in most cases, p-value is
greater than α, as mentioned above.

Finally, we repeat the above experiments for triple edges , i.e. choosing three random
edges in the accumulated graph, the null hypothesis being that three randomly chosen edges
e1, e2 and e3 appear independently. Again, we consider two cases, one where the edges are
chosen randomly in the entire graph, and the other further correlated version where the edges
are sampled from the set of 3-chains in the graph, i.e. paths of length 3. Figure 3.5 depicts
the CDF of the p-values for each selected triple over 75 weeks, for both experiments, repeated
1000 times. It is observed that 81% of the random triple edges are independent. Further, for
the correlated chain of edges, we observe that 50% of the random 3-chains are statistically
indistinguishable. Further experiments show that as the number of randomly chosen edges
increases, there will be a higher dependence for their joint appearance, as expected.

Our results suggest that the independence assumption clearly does not hold generally, but
many small sets of edges do behave independently. To what extent the i.i.d. assumption built
into our model is realistic, in the sense that it would correctly predict the boundary of privacy
in real networks, is a subject of further investigation.

3.4 Discussion and Summary

In this chapter, we considered the privacy issue in social networks and investigated the possi-
bility of de-anonymization from a mathematical perspective. We defined the problem in the
context of approximate graph matching, with the goal of finding the correct mapping between
the node sets of two structurally similar graphs. Using ideas from graph sampling in modeling
evolution of networks, we proposed a probabilistic model to derive two sampled versions of an
underlying graph as “noisy” versions of the networks to be matched. Elaborating our model
for the case of random graphs, we proved that using the simplest matching criterion based

3.4. Discussion and Summary 29

only on network topology, a perfect matching between the nodes can be established with high
probability as the network size grows large, under simple conditions for the sampling process.
More specifically, we proved that a surprisingly mild condition on the scaling of the expected
degree with the number of nodes is sufficient for de-anonymization to be feasible. For this, we
expressed lower bounds for the sampling probability, or more intuitively, the extent of overlap
in the edges of two graphs, so that it yields perfect matching.

Two conditions in our theorem are s = ω(1/n) and ps → 0. How these parameters relate
to real networks is of course a crucial and interesting question. Social networks tend to be
sparse (p → 0), and a reasonable assumption may be to assume a fixed average node degree
(p = c/n), as the number of contacts is usually the result of local interactions that should not
be influenced by the rest of the network3. The scaling of s is more debatable, as it depends
on the nature of the two networks. If G1 and G2 capture the social interactions between a set
of people using different methods (e.g., e-mail and phone calls), then it would make sense to
postulate a constant s independent of the size of the network, as the choice of method (i.e.,
generating a link) would be a purely local one, and therefore not influenced by the rest of the
network. However, more cross-domain data should be studied to verify this.

Our result shows that given a specific cost function ∆(.), a pair of correlated graphs can be
perfectly matched under certain conditions. An interesting question would be the converse:
can we find conditions such that no cost function could give a match? In the G(n, p; s) model,
it is straightforward to show such a converse of the form ps = o(log n/n), as alluded to before.
In this case, G1 and G2 would have isolated vertices a.a.s., and obviously no method would
be able to determine the correct matching among these. More precise converses, as well as
variations of our model (e.g., assuming other generator graphs G) are the topic of future work.

Our work implies the feasibility of de-anonymization of a target network by using the
structural similarity of a known auxiliary network, and raises privacy concerns about sharing
the simplest topological information of users with partners and third-party applications. One
consequence of our work might be guidelines on how to release or share only sampled versions
of networks, by enforcing the sparsity constraint to guarantee anonymity. This would be
promising provided such a thinned-out network would still provide enough information for
the task at hand.

In the future, we intend to generalize our approach to a broader class of graphs. As dis-
cussed above, we conjecture that in some sense, a random graph as the generator G may be
more difficult than a more “structured” graph. On the other hand, the i.i.d. sampling process
in our model is an idealistic assumption, and the impact of relaxing it should be explored.
Finally, and perhaps most importantly, while this work proves the existence of the perfect
matching using the proposed error function, the algorithmic complexity of searching in such
a vast space should be explored, which is addressed in the following chapter.

Publication [89]

Pedram Pedarsani and Matthias Grossglauser. On the Privacy of Anonymized Net-
works. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’11, pages 1235–1243, 2011.

3Note however that recent work on network densification [65] observes a dependence of the form p = cnα−2,
for some α > 1, i.e., an average degree that grows as nα−1 with the size of the network. While the underlying
causes of densification are still being debated [87], it is still the case that p → 0. Note that for fixed s, a
network densifying in this way would always be non-anonymous, as nα−2 = ω(logn/n).

30 Chapter 3. A Theoretical Framework

3.A Appendix

Lemma 3.A.1 Let X1 and X2 be two binomial random variables with means λ1 and λ2,
where λ2 > λ1. Then,

P {X2 −X1 < 0} ≤ 2 exp

(
−1

8

(λ2 − λ1)
2

λ2

)
. (3.26)

Proof Let X1 and X2 be two binomial random variables with means λ1 and λ2. The
probability of the event {X2 −X1 < 0} can be upper-bounded as follows:

P {X2 −X1 < 0} ≤ P {X1 > x} + P {X2 < x} , (3.27)

for any x.
We now find an upper-bound for the right-hand side of (3.27). We use the Chernoff

bounds for the binomial random variables X1 and X2 using the following theorem [47]:

If X ∈ Bi (n, p) and λ = np, then,

P {X > λ + t} ≤ exp

(
− t2

2 (λ + t/3)

)
, t ≥ 0; (3.28)

P {X < λ− t} ≤ exp

(
− t2

2λ

)
, t ≥ 0. (3.29)

We upper-bound P {X1 > x} and P {X2 < x} using (3.28) and (3.29) (for two arbitrary
positive values of t1 and t2 respectively). We set x = (λ1 + λ2)/2 , and thus t1 = t2 =
(λ2 − λ1)/2. Using λ2 > λ1 allows to bound the two exponents as follows:

P {X1 > x} ≤ exp

(
−1

8

(λ2 − λ1)2

λ1 + (λ2 − λ1)/6

)

≤ exp

(
−1

8

(λ2 − λ1)
2

λ2

)
, (3.30)

and

P {X2 < x} ≤ exp

(
−1

8

(λ2 − λ1)
2

λ2

)
. (3.31)

This completes the proof. �

4 An Iterative Bayesian Method for
Graph Matching

This chapter explores the algorithmic aspect of the approximate graph matching problem
described in Chapter 3. We demonstrated that by only using the structures of two similar
networks, it is possible to infer the correct mapping between the nodes, under mild conditions
on their similarity and the graph parameters. Our proof assumed an adversary with infinite
computational power, who enumerates all possible n! mappings, computes a cost function for
each mapping, and reports back the mapping with minimum cost as the correct mapping. We
showed that for a random graph model with large number of nodes, this mapping with high
probability corresponds to the correct mapping.

However, although the approach above proves the feasibility of matching two similar
graphs, in practice we need methods for finding this correct mapping efficiently. In other
words, so far, we have shown that network anonymity cannot guarantee privacy. However,
we still have not demonstrated a method for building the actual mapping between the nodes
of the two graphs. Notice that even if the structures of the graphs are exactly the same,
the matching problem is still intractable in practice, as it is similar to the classical graph
isomorphism problem.

The graph isomorphism problem is NP, and matching two similar but not necessarily iden-
tical graphs is at least as hard. This suggests that we have no hope of matching large graphs.
Fortunately, it turns out that many realistic graphs have features that help graph matching.
For example, in pioneering work [81], Narayanan and Shmatikov devise a graph matching al-
gorithm that succeeds in de-anonymizing a social network with millions of nodes, based on an
initial seed set of mapped nodes. Essentially, such methods exploit label-independent features
of nodes that make these nodes easy to identify in both graphs. Such features include the
node degree, the clustering coefficient, or the volume (number of edges) in a neighborhood
around the node.

The algorithm in [81] starts from an initial seed set of mapped node pairs, which may
be obtained manually or through heuristics (e.g., identifying cliques in both graphs). The
algorithm then attempts to identify pairs of unmapped nodes that are neighbors of several
seed nodes; among these pairs, it chooses the one that is best according to a heuristic, and
adds it to the seed set. The algorithm then proceeds iteratively until the whole network is
matched, or the process dies out. This requires (i) a seed set of sufficient size1, and (ii) a
sufficiently dense graph for the process to percolate.

In this work, we propose an algorithm for approximate graph matching that relies on a
rigorous statistical model to infer the node map. The main advantages of this algorithm are
the following:

1Note that in their algorithm, if the seed nodes are all at distance ≥ 3 of each other, the process cannot
start, as there is no candidate node that has more than one mapped neighbor.

31

32 Chapter 4. An Iterative Bayesian Method for Graph Matching

• Starting from scratch: The algorithm does not require an initial seed set of mapped
node pairs as input. The same statistical framework is used to build the map from start
to finish.

• Sparse graphs: Our approach is particularly well suited to match sparse graphs. The
algorithm is able to progress even if the mapped nodes are far from each other.

• Confidence metric: Our method maintains an estimate of the posterior probability
of every mapped node pair. While this is used by the algorithm to build the map, it
is also a very useful output for some applications, as it essentially provides a level of
confidence for each mapped pair.

Our statistical framework and associated inference algorithm is based on the observation
that in many real networks, some nodes possess features that make them stand out from the
majority of other nodes; these nodes are much easier to map correctly than an average node.
This suggests an incremental mapping process, where we first try to map the easiest nodes.
Each node has some fingerprint capturing label-independent metrics of interest. The matching
relies on a cost function over fingerprints. Of course, errors are always possible, given that
the two graphs are similar, but not identical. We deal with this by matching several node
pairs at once through a maximum bipartite matching, rather than matching one node pair at
a time. This is because the former takes into account the costs between all possible pairs in
the set. Each iteration of the algorithm matches a set of nodes, whose size doubles in each
iteration.

The second key contribution concerns the choice of fingerprint and the cost function used
in the bipartite matching. We develop a probabilistic generative model for the two graphs
that we are trying to match. This allows us to embed the matching problem into a clean
Bayesian framework, which leads to a cost function over node pairs which can be interpreted
as the logarithm of the posterior probability of a correct match given the fingerprints of the
two nodes.

This chapter is organized as follows. In Section 4.1, we formally define the problem.
Section 4.2 describes the Bayesian framework underlying our matching algorithm, which is
developed in Section 4.3. Section 4.4 reports experimental results over a social network mined
from e-mail exchanges. Section 4.5 contains a short conclusion.

4.1 Problem Definition

We use a similar problem setting as in Chapter 3. We consider the problem of matching
the vertex sets of two graphs. Let G1 = (V1, E1) and G2 = (V2, E2) denote two graphs with
the same number of nodes, |V1| = |V2| = n, but different edge sets. Let π : V1 → V2 be a
mapping that establishes a one-to-one correspondence between nodes of G1 and G2. Assume
there exists a correct mapping π0 between u1 ∈ V1 and u2 ∈ V2. The problem we consider is
determining π0 using as input only G1,2 and no other labeling information.

Finding the correct mapping strongly depends on its relationship to the structure of G1,2.
For example, the correct mapping cannot be attained if one of the edge sets has no (or very
few) edges, since no structural information remains to be explored. Moreover, the problem
is hard even if the two graphs are structurally the same, since this reduces to finding an
isomorphism between the two graphs, a well-known NP problem.

4.2. General Method for Graph Matching 33

For ease of notation, and without loss of generality, we assume from now on that V1 =
V2 = V , and that the true mapping is given by the identity. However, it is important to note
that this notational assumption is not visible to the matching algorithm.

4.2 General Method for Graph Matching

As shown in Chapter 3, conceptually, matching two graphs can be cast as minimizing a cost
function over all n! possible matchings π of the vertex sets of the two graphs G1,2 [89]. As
the computational cost is prohibitive for graphs of non-trivial size, we seek a method to
reduce the search space for π. We achieve this by building π in log2 n phases. In each phase
τ = 0, . . . , log2 n− 1, we double the number of mapped nodes, which we refer to as anchors,
from the previous phase, until we have mapped every node. We let Sτ denote the set of
anchors produced at the end of phase τ . As will become clear, this map is not necessarily
monotonically increasing, in that Sτ ⊂ Sτ+1 need not be true: a node pair can be an anchor
in one phase, but be unmapped at a later phase.

We reduce the complexity of the problem by summarizing the structure of the two graphs
G1,2 as a set of (label-independent) attributes for each node. Then we rely on these node
attributes to match 2τ nodes in each phase τ , used as anchors for the next phase, where
this matching is only a function of the attributes. We call the set of attributes of a node its
fingerprint, and rely on a cost function over pairs of fingerprints to compute the matching.
The matching algorithm is described in detail in the next section; in this section, we define
the node fingerprints, and the probabilistic model that yields the cost function over pairs of
fingerprints, and its Bayesian interpretation.

To model the similarity of two graphs G1,2, we use the graph sampling idea introduced
in Chapter 1, and used in Chapter 2. The ultimate goal is to obtain a measure of similarity
between two node fingerprints. We assume that the observable graphs G1,2 are obtained
through a sampling process on a (fixed) generator graph G = (V,E). The choice of G is
arbitrary, and we make no assumption on the structure of G. As shown later, the only
information used from G are its degree and distance distributions. Our Bayesian framework
is general, independent of the choice of the sampling process. However, we still need to choose
a sampling process in order to rigorously measure the similarity of node fingerprints. We again
consider the edge sampling process introduced in Chapter 1 to generate G1 and G2 from the
fixed graph G, with sampling probabilities s1 and s2 respectively. We elaborate further on
this choice in Section 4.2.3.

In the following, we first formalize the computation of the probability of two nodes be-
ing a correct map, and describe one step of this iterative procedure assuming some nodes
have already been mapped. We present the complete iterative algorithm that incrementally
increases the set of mapped nodes in Section 4.3. As later discussed, the first phase of the
algorithm requires no knowledge of any anchor nodes.

4.2.1 Pair-Wise Posteriors

Consider the two observed graphs G1 and G2 and two nodes u1 ∈ V1 and u2 ∈ V2 with their
fingerprints

Fu1 = [X11,X12, . . . ,X1,ℓ,X1,ℓ+1, . . . ,X1,ℓ+m]

Fu2 = [X21,X22, . . . ,X2,ℓ,X2,ℓ+1 . . . ,X2,ℓ+m] , (4.1)

34 Chapter 4. An Iterative Bayesian Method for Graph Matching

where each component provides structural evidence for the similarity of u1 and u2. More
specifically, the components 1, . . . , ℓ are absolute attributes, in that they depend only on the
graphs G1 and G2, respectively. They may include local graph statistics around node u1,2,
such as the node degree, the clustering coefficient, or the density of some neighborhood. For
example, suppose X11 and X21 represent the degrees of nodes u1 and u2. If the two degrees
are quite similar, this is stronger evidence that u1 and u2 are referring to the same underlying
node u ∈ G; if they differ, u1,2 should most likely not be matched.

A key idea in our method is to rely on anchor nodes from the previous phase to obtain
additional node attributes for the current phase. In this way, the matching of nodes in
later phases can build on nodes matched earlier. The components ℓ + 1, . . . ,m, with m =
|Sτ−1| = 2τ−1 are relative attributes, which depend both on G1,2 and the anchors Sτ−1 from
the previous phase. They may include different distance metrics between u1,2 and each anchor,
such as hop distance or resistor distance. If two nodes u1,2 have similar distances from a set of
anchors, this is strong evidence that they match, provided the anchors themselves are matched
correctly. Finally, we denote by Xi = (X1i,X2i) a pair of corresponding attributes in G1 and
G2.

We now turn to the fingerprint cost function for such a pair of nodes u1,2. Recall that the
matching algorithm has no information about the meaning of a node label u1 and u2. We
model this by assuming that the matching algorithm is looking at two randomly chosen nodes
U1,2, which are independent uniform random variables over [1, n]. It can only rely on the
fingerprints of the two nodes U1,2 to decide whether in fact U1 = U2 (match) or not. In other
words, U1,2 are endowed with a uniform prior distribution2. The cost is then the logarithm
of the probability of U1 = U2 given the two fingerprints, i.e., the posterior probability, which
we write as

r(u1, u2) = P [U1 = U2|Fu1 , Fu2] . (4.2)

Note that in the absence of any node attributes, the probability that two random labels in
G1 and G2, respectively, correspond to the same node in G is given by 1/n. Thus, the prior
P [U1 = U2] = 1/n.

Using Bayes’ rule and the observation above, we can rewrite (4.2) to obtain:

r(u1, u2) =
P [Fu1 , Fu2 |U1 = U2] 1/n

P [Fu1 , Fu2 |U1 = U2] 1/n + P [Fu1 , Fu2 |U1 6= U2] (1 − 1/n)
. (4.3)

Of course, different node attributes may be correlated in complicated ways, depending on the
underlying generator G. For example, a high-degree node would have, on average, smaller
distances to other nodes in the graph than a low-degree node. However, in large sparse
graphs, these correlations can be expected to be quite weak. We therefore assume that pairs
of corresponding attributes of two nodes U1 and U2 are conditionally independent, given
either U1 = U2 or U1 6= U2. In other words, we assume that P [X1, . . . ,Xℓ+m|U1 = U2] =∏ℓ+m

i=1 P [Xi|U1 = U2] and that P [X1, . . . ,Xℓ+m|U1 6= U2] =
∏ℓ+m

i=1 P [Xi|U1 6= U2], where Xi

is a pair of corresponding node attributes. For the latter case U1 6= U2, this is because the
attributes stem from two random, but different nodes in G; for the case U1 = U2, this embodies
the assumption that the edge sampling process acts on each attribute pair independently (but
the attributes within the pair are - possibly strongly - correlated in this case).

2Of course, other priors are possible, e.g., if additional side information about nodes is available, such as
from additional node attributes.

4.2. General Method for Graph Matching 35

We hereby provide a more in-depth discussion for the validity of our assumption. As will
become clear later, the absolute attribute we use is node degree, and the relative attributes are
the distances to anchors. The assumption states that if we know that the two nodes are the
same or different, then the degree and all distance pairs of attributes are independent. The
intuition behind this assumption is that (i) a pair of degree and pair of distance attributes can
be assumed independent as they are fundamentally different structural characteristics, and
(ii) two or more pairs of distance attributes can be assumed independent as the anchors are
chosen from the whole node set of the graph, and based only on their priors. This assumption
is reasonable especially for large networks.

The notion of pair is important here. We do not claim that individual attributes of two
different nodes are independent, which would certainly not be accurate for the case U1 = U2.
However, different pairs are conditionally independent. Finally, we also do not assume that
attribute pairs are independent (not conditionally), which is also not accurate for the following
reason.

Assume edge sampling parameter s = 1 such that G1 and G2 are identical. In this case,
if we know that X1k 6= X2k for some k, then we can conclude that u1i 6= u2j, and therefore
X1k′ 6= X2k′ for some other k′ is very likely. If we see that X1k = X2k for some k, then
u1i = u2j is very likely, and thus X1k′ = X2k′ for some other k′ is also very likely. This
implies that the different attributes are strongly correlated when considered unconditionally,
as knowledge of what happens with attribute k has a decisive influence on what happens with
another attribute k′. Thus, we only assume conditional independence, which as discussed
above, is relatively reasonable.

Under this assumption, we can factor the evidence in (4.3) and obtain

r(u1, u2) =
1/n

∏ℓ+m
i=1 P [Xi|U1 = U2]

1/n
∏ℓ+m

i=1 P [Xi|U1 = U2] + (1 − 1/n)
∏ℓ+m

i=1 P [Xi|U1 6= U2]
. (4.4)

where Xi = (X1i,X2i) is a pair of corresponding attributes.
In order to apply equation (4.4) we need to determine P [Xi|U1 = U2] and P [Xi|U1 6= U2]

for all i = 1, . . . , ℓ + m. Note that this probability depends on the sampling process, as the
sampling process transforms attributes of G. Let pi(y) denote the probability distribution
associated with attribute i in the fixed graph G, thus, pi(y) = P [Yi = y], for some node
u ∈ V . Similarly, let qi(x, y) denote the probability function of attribute i after the sampling
process has been applied to G given that the same attribute has value y in G, thus, qi(x, y) =
P [X1i = x|Yi = y], for some u ∈ V . Using these two models together with the fact that G1

and G2 are independent samples from the sampling process and by applying the law of total
probability, we obtain

P [Xi|U1 = U2] =
∑

y

qi(x1i, y)qi(x2i, y)pi(y). (4.5)

Likewise, for the case u1 and u2 do not correspond to the same node in G, we have,

P [Xi|U1 6= U2] =

(
∑

y

qi(x1i, y)pi(y)

)(
∑

y

qi(x2i, y)pi(y)

)
. (4.6)

Finally, using the Bayesian framework above ((4.4)), together with the models for how
the sampling process transforms given attributes (qi(x, y), and using (4.5) and (4.6)), we can
precisely compute the probability that a given pair of nodes is correctly mapped given their
fingerprints (the posterior probability).

36 Chapter 4. An Iterative Bayesian Method for Graph Matching

4.2.2 Anchor Mismatch

The approach above allows for the set of anchor nodes mapped in the previous phase to
be used to compute the posterior probability for the unmapped nodes. However, anchors
are subject to matching errors. If we do not take this into account, we may overestimate
the posterior probabilities. Therefore, we refine our probabilistic model to account for the
possibility of false matches among anchor pairs.

Recall that Xℓ+1, . . . ,Xℓ+m depend on the anchor pairs. For example, Xℓ+i is the distance
from u1 and u2 to the i-th anchor pair w1i and w2i, respectively.

Let Mi be an indicator random variable taking value 1 if anchor pair ℓ+i has been correctly
mapped and 0 otherwise. We now revisit (4.5), and assume that if Mi = 0, the distribution of
the corresponding attribute pair is as if U1 6= U2. In other words, we assume that the distance
pair from a node (u1 = u2 or u1 6= u2) to two different anchors is independent, in analogy to
the assumption on the distance pair from two different nodes u1 6= u2 to a correctly matched
anchor pair. Thus, we have

P [Xℓ+i|U1 = U2,Mi = 0] =

(
∑

y

qℓ+i(x1(ℓ+i), y)pℓ+i(y)

)(
∑

y

qℓ+i(x2(ℓ+i), y)pℓ+i(y)

)
(4.7)

Note that this is the same as the conditional probability given that U1 6= U2 (see (4.6)). We
also assume that a correctly or incorrectly mapped anchor does not change the conditional
probability when U1 6= U2. Thus,

P [Xℓ+i|U1 6= U2,Mi] = P [Xℓ+i|U1 6= U2] (4.8)

as in (4.6).
In order to compute the overall pairwise posterior, we redefine the probability function of

equation (4.2) to also depend on anchors being correctly mapped. Thus,

r(u1, u2) = P [U1 = U2|X1, . . . ,Xℓ+m,M1, . . . ,Mm] (4.9)

= P [U1 = U2|X1, . . . ,Xℓ, (Xℓ+1,M1), . . . , (Xℓ+m,Mm)] .

As before, we apply Bayes’ rule together with conditional independence between attributes
pairs to obtain

r(u1, u2) =
A

A + B
(4.10)

where,

A = 1/n
ℓ∏

i=1

P [Xi|U1 = U2]
ℓ+m∏

i=ℓ+1
s.t. Mi=1

P [Xi|U1 = U2], (4.11)

and

B = (1 − 1/n)
ℓ∏

i=1

P [Xi|U1 6= U2]
ℓ+m∏

i=ℓ+1
s.t. Mi=1

P [Xi|U1 6= U2]. (4.12)

Note that all the factors, where Mi = 0, appear both in the numerator and denominator (in
A and B) and therefore cancel out. Moreover, equation (4.10) is for a given vector of Mi

values.

4.2. General Method for Graph Matching 37

Notice that Mi, i = 1, . . . ,m are not observable random variables, since we do not know
if an anchor was correctly or incorrectly mapped. Therefore, we marginalize all variables Mi

to obtain

P [U1 = U2|X1, . . . ,Xℓ+m] =
∑

b=(0,1)m

m∏

i=1

(P [Mi = bi])

· P [U1 = U2|X1, . . . ,Xℓ+m,M1, . . . ,Mm], (4.13)

where b is a bit vector of size m, bi corresponds to the i-th bit in the vector, and the sum is
over all bit vectors of size m. Note that the sum is over an exponentially large set, which is
prohibitive. Fortunately, a crude sampling-based estimator of (4.13) does sufficiently well for
our purposes (See Appendix 4.A).

Finally, we require the prior on Mi in (4.13). Fortunately, this can be obtained as a
byproduct of the previous phase: for an anchor pair (w1i, w2i) matched in the previous phase,
we equate its posterior r(wi1, wi2) with the prior P [Mi = 1] in the new phase, as this is
the probability that anchors w1i and w2i were correctly mapped. We discuss this procedure
in more detail in Section 4.3. Figure 4.1 depicts the Bayesian network of our problem for-
mulation, indicating absolute and relative attributes. Note that relative attributes depend
on anchor nodes and that the number of relative attributes depends on the phase of the
algorithm, as described in Section 4.3.

U1 = U2 (X1(ℓ+ i), X2(ℓ+ i)) Mi

1 ≤ i ≤ m

m = 2τ−1

(X1i, X2i)

1 ≤ i ≤ ℓ

ℓ

Figure 4.1: Bayesian network for the probability of a correct match between a pair of nodes
at phase τ .

4.2.3 Models for Sampled Degree and Distance

In order to apply the above methodology we must specify node attributes used in their
fingerprints as well as probabilistic models that characterize such attributes. From now on,
we will use the node degree as the only absolute attribute, and hop distances from the node
to anchors as the relative attributes. Thus, X1 = (X11,X21) is the degree pair of nodes u1,2,
and X1+i = (X1(1+i),X2(1+i)),i > 0 is the distance pair to anchor pair i3. Having established
the attributes to be used in the fingerprint of nodes, we now need probabilistic models that
represent both degree and distances in G (the generator graph) as well as in G1,2 (the observed
graphs). Note that these models are used directly in equations (4.5) and (4.6).

We consider the edge sampling process introduced in 1 to generate G1 and G2 from a fixed
graph G. Note that the sole parameter s controls the amount of structure from G appearing
in the sampled graph and that s2 is the edge overlap probability (i.e., an edge of G appearing
in both G1 and G2).

3More precisely, with (w1i, w2i) the i-th anchor pair, X1(1+i) is the hop distance in G1 to w1i (and analo-
gously for X2(1+i)).

38 Chapter 4. An Iterative Bayesian Method for Graph Matching

Under the edge sampling process, we can now determine a model for degree and distance
on the sampled graph given their values in the original graph G. Recall that qi(x, y) denotes
the probability that attribute i has value x in the sampled graph, given that it has value y
in the original graph G. Let i = 1 denote the node degree. As the edge sampling process
samples each edge independently with probability s, q1(x, y) follows a binomial distribution
with parameter s and y, i.e.,

q1(x, y) = Bi (x, y, s) =

(
y

x

)
sx(1 − s)y−x

Finally, note that p1(y) denotes the degree distribution of G, i.e., the probability of sampling
a degree y from G. We comment on the choice of the underlying degree distribution in
Section 4.4.

The model for distances under edge sampling requires a more careful treatment as this
has not been studied in the literature. Consider two adjacent nodes u and v in G. We will
assume that the distance between u and v after sampling follows a geometric distribution.
In particular, let Zu,v denote a geometric random variable with parameter α for the distance
between nodes u and v after sampling. We provide an intuitive argument for this model. In
a well-connected graph G, (i) paths of different lengths 1, 2, 3, . . . tend to exist between two
adjacent nodes, and (ii) sampling is likely to preserve a path of length ℓ between two nodes
with the same probability α for all path lengths. Note that the number of paths of length ℓ
between two nodes is likely to increase with ℓ. Thus, although a longer path is more likely
to be destroyed by the edge sampling process, the larger number of paths might offset this
probability.

Using the above assumption, a distance one would be preserved in the sampled graph with
probability α, a distance two would emerge between two adjacent nodes in G with probability
α(1 − α), and so forth. Thus, the sampled distance Zu,v between two adjacent nodes u and
v in G has a probability distribution of the form P [Zu,v = ℓ] = α(1 − α)(ℓ−1), ℓ = 1, 2,
which is a geometric distribution with parameter α. The same argument can now be extended
to nodes at any distances. Let u and v have a shortest path of length y in G with the path
(u = u0, u1, . . . , ui, ui+1, . . . , uy = v). Thus, their distance after sampling can be written as
Zu,v = Zu0,u1 + · · ·+Zui,ui+1 + · · ·+Zuy−1,uy , where the random variable Zui,ui+1 denotes the
distance after sampling for each adjacent pair in the path. We now make an assumption that
Zi,i+1 are independent for all i. Thus, we have the sum of independent geometric random
variables with parameter α, which can be expressed as a negative binomial random variable
with parameters y and α, denoted by NBi ().

Let X1i for i > 1 denote the distance from node u to an anchor node i − 1 in G1. Then
qi(x, y) is the probability of observing distance x between a node and the (i − 1)-th anchor
node in the sampled graph, given that their distance in the underlying graph is y. Thus, we
have

qi(x, y) = NBi (x, y, α) =

(
x− 1

y − 1

)
αy(1 − α)(x−y), x ≥ y, j = 1, 2. (4.14)

We set the parameter α = s, where s is the sampling probability of the edge sampling process.
As described above, edge sampling tends to preserve paths of different lengths with the same
probability, thus using the probability of preserving a single edge (s) as α could be a reasonable
assumption. Finally, pi(y) for i > 1 corresponds to the distance distribution of G, i.e., the
probability that two given nodes are at distance y in G. We comment on the choice of the
underlying distance distribution in Section 4.4.

4.3. Matching algorithm 39

Note that we investigated the assumption of the geometric distance distribution for ad-
jacent nodes, and negative binomial distribution for larger distances after sampling, via ex-
periments on real data. We did several experiments on an e-mail network dataset, as we
will introduce in Section 4.4. Our findings suggest that this assumption holds for real social
networks, and that paths of different lengths exist between adjacent nodes and the choice of
s for the geometric parameter is indeed reasonable.

4.3 Matching algorithm

The matching algorithm receives as input two graphs G1 and G2, with the same number
of nodes and models for distance and degree as described in Section 4.2.3. The output of
the algorithm is a matching π between all nodes such that π(u1) = u2 where u1 ∈ V1 and
u2 ∈ V2. The algorithm is iterative and at each phase it considers a set of candidate nodes to
be matched, denoted by

V τ
1 = {u11, u12, . . . , u1nτ }, u1i ∈ V1

V τ
2 = {u21, u22, . . . , u2nτ }, u2i ∈ V2

where nτ is the size of the candidate set in the τ -th phase, τ = 0, 1, . . . , log2 n− 1, and more
specifically, nτ = 2τ+1. In particular, in phase τ , the set of candidate nodes are simply the
nτ nodes with the largest degrees in their respective graph, thus d(uki) ≥ d(ukj), i ≤ j, where
d(u) is the degree of node u.

We elaborate on one phase of the algorithm. At phase τ , we consider a set of m = 2τ−1

anchors (previously mapped node pairs) Sτ−1 = {(w11, w21), . . . , (w1m, w2m)}. Note that
we set m = 0 in the first phase (τ = 0), and the algorithm requires no prior knowledge
of anchor nodes. For each of the n2

τ node pairs (u1i, u2j) in the candidate set, we use the
Bayesian framework described in Section 4.2 to compute their matching posterior r(u1i, u2j)
by using their fingerprints. In particular, as discussed in Section 4.2.3, we use as evidence
the degree pair (d(u1i), d(u2j)) and m distance pairs (x(u1i, w1k), x(u2j , w2k)), k = 1, . . . ,m,
where x(u, v) is the distance between nodes u and v in their respective graph.

Assuming that pair-wise matchings of nodes are independent, the posterior terms r(u1i, u2j)
can be factorized, and the probability of a particular mapping π is given by the product of
all pair-wise posteriors under that mapping, i.e.,

Pπ(V τ
1 , V

τ
2) =

nτ∏

i

r(u1i, π(u1i)), (4.15)

We seek the most likely mapping π∗ = arg maxπ Pπ(V τ
1 , V

τ
2), i.e., the mapping that maximizes

the product in (4.15) in the τ -th phase. Taking the logarithm of each posterior term r(u1i, u2j),
the problem reduces to maximizing the sum of log-posteriors for all node pairs:

π∗ = arg max
π

nτ∑

i

log r(u1i, π(u1i))

This problem can then be solved by using the Hungarian algorithm for maximum weighted
bipartite matching [33].

Finally, the matching results from phase τ are used to construct the set of anchor node
pairs Sτ (the nodes that were mapped with highest posteriors) for the next phase, where

40 Chapter 4. An Iterative Bayesian Method for Graph Matching

|Sτ | = 2τ . In other words, half of the mapped node pairs are considered as anchors for the
next phase τ + 1. This increases the size of the fingerprint of each node in the candidate set
with more distance attributes. As nτ = 2τ+1, the size of the candidate set of nodes is also
doubled in subsequent phases.

The intuition for choosing half of mapped pairs as anchors is that matching errors tend
to increase in the ordered (high-to-low posterior) sequence of mapped pairs. In particular, it
is not even guaranteed that a candidate node u1i ∈ V τ

1 has a correct match in V τ
2 , and this

gives rise to more uncertainty in matching pairs with low posteriors. Thus, we use only the
top half of matching pairs as anchors of the next phase, aiming to increase the confidence of
the matching. A detailed description of the matching algorithm follows:

1. Input: two graphs G1 and G2, with node sets V1 and V2, both of size n, and models for
degree and distance.

2. Sort the nodes in each graph by degree in descending order. Let V ′
1 and V ′

2 be the list
of nodes in descending order by degree.

3. Set τ = 0 and m = 0. Set the anchor set as Sτ−1 = ∅.

4. Set the size of the candidate set to be mapped as nτ = 2τ+1. If nτ > n, set nτ = n.

5. Denote the candidate sets as V τ
1 = V ′

1(1 : nτ) and V τ
2 = V ′

2(1 : nτ), as the list of the
first nτ nodes in V ′

1 and V ′
2 , respectively.

6. For each node u1i ∈ V τ
1 and u2j ∈ V τ

2 , compute a fingerprint vector as

Fu1i = [du1i , x(u1i, w11), . . . , x(u1i, w1m)]

Fu2j =
[
du2j , x(u2j , w21), . . . , x(u2i, w2m)

]
,

where i, j = 1, . . . , nτ and (w1k, w2k) ∈ Sτ−1, k = 1, . . . ,m.

7. For each pair of nodes (u1i, u2j) ∈ V τ
1 ×V τ

2 , compute the matching posterior r(u1i, u2j),
i.e., P [u1i = u2j |Fu1i , Fu2j], using (4.13). Construct the complete weighted bipartite
graph G(V τ

1 , V
τ
2 , E), where E includes n2

τ edges between all node pairs (u1i, u2j) ∈
V τ
1 × V τ

2 , with the edge weights equal to r(u1i, u2j).

8. Solve the maximum weighted bipartite matching using the Hungarian algorithm [33].
The output is the matching π of size nτ with the maximum sum of the log-posteriors.

9. Sort the matched pairs (u, π(u)) in descending order of their matching posterior. Let
Sτ be the set of nτ/2 = 2τ node pairs with highest posteriors. Set m = |Sτ |.

10. If nτ = n, stop. Else, increment τ . Go to step 4.

Note that the algorithm starts with the two highest degree nodes in each graph (nτ = 2),
computes node fingerprints based only on their degrees, and matches them using the bipartite
matching. Next, half of the matched nodes (i.e., one node), are considered as anchors, and
the size of the candidate set is doubled to nτ = 4. Thus, at the second phase, four nodes
are matched by using the distance to one anchor from the previous round, and their degrees.
Again, half of the matched nodes (i.e., 2 nodes), are considered as anchors for the next round,
and the size of the candidate set is increased to nτ = 8. This process continues, and at each

4.3. Matching algorithm 41

phase, nτ nodes are matched using nτ/4 anchors, until all nodes are mapped. Notice that
the matched nodes at each phase, though being considered as anchors for the next phase, are
themselves still in the candidate sets V τ

1 and V τ
2 . This allows for a node to change its mapping

during the execution of the algorithm. This is useful because a node wrongly mapped in an
early phase might be correctly mapped in a subsequent phase when more evidence (in terms
of distance to anchors) is available.

4.3.1 Complexity of the Matching Algorithm

We comment on the complexity of the different steps of the algorithm, and how we derive the
overall complexity.

• Steps 1, 3, 4, and 5 are computed in constant time, and sorting nodes in step 2 can be
done in O(n log n).

• We precompute all distance pairs of attributes x(u1i, w1l) and x(u2j , w2l), which neces-
sitates the computation of all pair-wise distances in the two graphs. In real graphs the
number of edges is usually given by k = O(n log n). A shortest path algorithm over
all node pairs is O(n(k + n log n)), which in this case would be O(n2 log n). Using this
precomputation, step 6 would take O(n) time, due to the growing size of anchor set
with n (in the last iteration).

• It is shown in Appendix 4.A that (4.13) can be computed in O(m), where m is the size
of the anchor set. At each phase, we need to compute the posteriors for n2

τ node pairs.
Considering nτ = O(n) in the last phase of the algorithm, and since the number of
anchors grows up to nτ/4, the construction of the bipartite graph in step 7 is of O(n3).

• The Hungarian algorithm for maximum weighted bipartite matching works in O(n(k +
n log n)), where k is the number of edges in the bipartite graph. Thus, for the complete
bipartite graph with k = n2, the time complexity of the algorithm in step 8 is O(n3).

• Based on the above, the overall complexity of each phase is dominated by steps 7 and 8.
The total number of iterations is log2 n. Thus, the overall complexity of the matching
algorithm is O(n3 log n).

In order to further reduce the complexity, we should reduce the number of edges in the
bipartite graph. We consider the following idea: Instead of computing all O(n2) edge weights
for all node pairs in the bipartite graph, we do a precomputation and consider a fixed set of
only n log n edges, and compute the weights only for these edges as possible mappings in the
bipartite graph over all iterations. To do this, we run the first phase of the algorithm over all
n2 node pairs once, using only the degrees as evidence (thus yielding a complexity of n2 to
build the bipartite graph), and then take the n log n edges with highest weights as the edges
that can be present in the bipartite graph during all phases. This reduces the number of edges
in the bipartite graph to n log n as opposed to n2 in the last phase. Thus, the complexity in
step 7 becomes O(n2 log n) which is the cost of building the bipartite graph, the complexity
of step 8 becomes also O(n2 log n), and the complexity of the algorithm becomes O(n2 log2 n),
due to there being log2 n phases.

The intuition behind this choice is as follows. Notice that node degrees are well-behaved
under the sampling process, i.e., the sampled degree is a binomial with parameter s. Thus,

42 Chapter 4. An Iterative Bayesian Method for Graph Matching

our candidate set of edges contains the n log n node pairs (instead of all n2 pairs) with the
most similar degrees, so that there is a higher probability that correctly mapped pairs exist
within this set. Due to the skewed degree distribution of real networks, we conjecture that
this method yields similar matching error, enabling us to apply the algorithm to larger graphs.

Finally, there have been some works in the literature on reducing the complexity of maxi-
mum weighted bipartite matching problem [25, 32, 37]. More specifically, [25] shows that the
maximum weight matching can be done in O(k

√
n logW), where k is the number of edges in

the bipartite graph, and W is the maximum weight, if all weights are normalized to integers.
Applying them to our method and using the technique above would reduce the complexity
further to O(n

√
n log2 n logW).

4.3.2 Normalization of Posteriors

In practice, we consider a slightly modified version of matching posteriors derived above,
where the posteriors are normalized. At each phase, after computing a posterior r(u1i, u2j),
we normalize it by the square root of the sum of the posteriors for all pairs such that u1i ∈ V1

and u2j ∈ V2. In other words,

r′(u1i, u2j) =
r(u1i, u2j)√∑

∀u2k∈V2
r(u1i, u2k)

∑
∀u1k∈V1

r(u1k, u2j)
,

and r′(u1i, u2j) are the weights used in the bipartite matching and anchor selection (steps 8
and 9 of algorithm). The intuition behind this normalization is the following. Recall that
we assume independence for pair-wise matching of node pairs, which allows us to map the
approximate graph matching into the weighted bipartite matching problem. However, this
assumption leads to an overestimation of the joint node pairs posterior. Intuitively, the joint
posterior of several pairs is likely to be smaller than the product of the posterior of the pairs.
The normalization procedure compensates this effect by reducing the value for the posteriors.
Furthermore, experimental results show that this normalization yields significantly better
results in matching all node pairs.

As one example, consider the following scenario. At each iteration, for a certain node u1i,
it is possible that its correct mapping is not present in V τ

2 , although it might have a relatively
high posterior probability of being mapped to some other node in V τ

2 , due to the posteriors’
boost as a result of independence assumption. Normalizing by the sum of the probabilities
over all nodes in V2 would give a lower posterior probability to such a node and could avoid
its being mapped to a node in V τ

2 that could be correctly mapped to another node in V τ
1 .

As another example, assume two nodes u1i and u1j in V τ
1 , u1i with high posteriors to a large

number of nodes in V τ
2 (due to the independence assumption), and u1j with low posteriors

to most nodes and a high posterior to only a few nodes in V τ
2 . Intuitively, u1j is more

distinguishable than u1i, though without normalization, a wrong mapping would be more
likely. Note that both arguments hold for nodes in V τ

2 as well, due to the symmetry of the
problem. We compensate for these issues by using the normalization factor introduced above.

4.4 Experiments

We assess the performance of our algorithm using real data and two different scenarios. First,
we consider a real graph G and use the edge sampling model with probabilities s1 and s2 to

4.4. Experiments 43

Figure 4.2: Matching error vs. number of mapped nodes for different edge overlaps (7 real-
izations) using EPFL E-mail network as the underlying graph.

instantiate G1 and G2, which are then matched. Next, we consider two similar graphs G1

and G2 from real data, which are then matched. Note that sampling was not used in the
latter and parameters will have to be estimated using G1 and G2 directly. To measure the
performance we define the matching error as the number of incorrectly mapped nodes divided
by the total number of nodes.

4.4.1 Matching Two Sampled Graphs from EPFL E-mail Network

We consider a dataset of e-mail messages collected at the mail server of EPFL. The dataset
includes logs of e-mail exchanges among users on a weekly basis and we consider only ex-
changes among EPFL users (i.e., internal EPFL network). We construct the e-mail network
(graph) by associating each user to a node and placing an edge between two nodes if there is
at least one reciprocal e-mail exchange between the two users. We consider a period of five
consecutive weeks and only nodes that appeared in every week, yielding a graph with 2024
nodes and 25603 edges.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap s2

A
ve

ra
ge

 m
at

ch
in

g
er

ro
r

Average matching error vs. edge overlap (20 realizations of EPFL graph)

Figure 4.3: Average matching error as a function of edge overlap: curve corresponds to two
sampled graphs from a real EPFL E-mail Network (error averaged over 20 realizations).

Using the graph generated as the underlying graph G, we apply edge sampling to obtain
G1 and G2. For simplicity, we assume s1 = s2 = s and present our results for different values

44 Chapter 4. An Iterative Bayesian Method for Graph Matching

of s2, which corresponds to the probability that an edge in G appears in both G1 and G2

(edge overlap). For each s, we repeat the sampling process to obtain different realizations of
G1 and G2. To compute the posteriors, we use the empirical degree and distance distributions
of G for pi(y). Moreover, as we know s, the conditional distribution qi(x, y) is computed using
the degree and distance models presented in Section 4.2.3.

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

Likelihood r

F
ra

ct
io

n
of

 n
od

e
pa

irs
 w

ith
 li

ke
lih

oo
d

>
=

 r
Empirical CCDF for Likelihoods

all n2 node pairs

n mapped node pairs

Figure 4.4: CCDF for likelihoods of matched vs. all node pairs.

Figure 4.2 depicts the matching error as the algorithm progresses. Each plot corresponds
to a fixed value of s2 and each curve corresponds to one realization of G1 and G2. The results
indicate that the performance of the algorithm at the end (after all nodes are matched) is
consistently poor and good for small and large values of s2 (s2 = 0.49, s2 = 0.81), respectively.
The curves also indicate an interesting aspect of the approach: although the error might be
high during the first iterations (due to incorrect anchors), the algorithm reconsiders such
pairs as it progresses and achieves a smaller error at the end. To some extent, our approach
does not depend on correctly identifying initial anchors and is therefore robust to initial
errors. Figure 4.3 shows the average final matching error (over 20 realizations) versus the
edge overlap s2. As shown, the error is relatively large for small overlap s2 = 0.49 since the
structure of G is significantly destroyed. However, the error drops sharply when we increase
s2, reaching 6% for s2 = 0.81. We also observe the larger confidence intervals for mid-range
s2, indicating that in such regimes the matching error strongly depends on the realization.

Finally, we show how well our Bayesian method differentiates between the matching pos-
terior of mapped nodes and the matching posterior of all pairs of nodes in the candidate set.
Figure 4.4 depicts the CCDF of posteriors r(u1i, u2j) for (a) all n2 pairs of nodes in V1 × V2

(bottom curve), and (b) all n pairs of nodes mapped through bipartite matching (top curve).
The posteriors are those of the last phase of the algorithm, when it finishes.

The clear distinction between these two plots demonstrates the superiority of our method:
Most node pairs have very small posteriors, whereas a small subset of nodes exhibit higher
posteriors, among which are the ones that are matched. For instance, 60% of the mapped
node pairs have a posterior greater than 0.8, whereas the probability of such posterior over
all nodes is slightly above 0.001! In other words, the posteriors derived through our Bayesian

4.4. Experiments 45

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Edge Overlap

M
at

ch
in

g
er

ro
r

Matching error vs. edge overlap

O=0.25

O=0.33 O=0.43

O=0.54

O=0.66

O=0.82

Figure 4.5: Matching error as a function of edge overlap: curve corresponds to two real EPFL
E-mail Networks generated with overlapping time windows.

method establish a plausible metric for the probability of two nodes being a correct match.
This is the key reason why the maximum bipartite matching resolves the matching problem
with minimal error.

4.4.2 Matching Two Snapshots from EPFL E-mail Network

We now attempt to match two real snapshots G1 and G2 without considering any fixed
underlying graph G. We construct G1 by considering the set of common nodes over a window
of 10 weeks and all edges among them. The graph G2 is constructed in the same manner
by also considering a period of 10 weeks but with a time shift of t weeks relative to G1. For
example, t = 3 means that G1 and G2 overlap 7 weeks, thus giving O = 7/(10 + 3) = 54%
time overlap. Note that time overlap translates to edge overlap. In particular, we estimate
the parameters s1 and s2 based on the number of edges in G1, G2, and their intersection. We
also compute the empirical degree and distance distributions for the (unknown) underlying
graph by superposing the distributions in G1 and G2 (see Section 4.4.3 for more details).
Finally, we apply our algorithm to match G1 and G2.

Figure 4.5 depicts the matching error as a function of edge overlap between G1 and G2.
Each point in the curve corresponds to a different time overlap O, as indicated. Note that for
small edge overlap (equivalently, small O), the error is large, as there is little common structure
between the graphs. However, the error rate drops sharply as the edge overlap increases: for
75% and 82% overlap (O = 54%, O = 66%), the error is 13% and 6%, respectively, and for
90% overlap (O = 82%), remarkably almost all nodes are correctly matched.

We now construct G1 by considering the set of common nodes over a window of 20 weeks
and all edges among them. The graph G2 is constructed in the same manner by also con-
sidering a period of 20 weeks but with a time shift of t weeks relative to G1. We repeat
this experiment for different time overlaps as in the previous experiments, each exhibiting a
different edge overlap.

Figure 4.6 depicts the matching error as a function of edge overlap between G1 and G2.

46 Chapter 4. An Iterative Bayesian Method for Graph Matching

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Edge Overlap

M
at

ch
in

g
E

rr
or

Matching error vs. edge overlap

O = 0.38

O = 0.67 O = 0.82

O = 0.54

O = 0.60

O = 0.43

O = 0.48

Figure 4.6: Matching error as a function of edge overlap: curve corresponds to two real EPFL
E-mail Networks generated with overlapping time windows.

Again, we observe an interesting behavior: for small overlap the error is large, and it drops
significantly after some threshold. The result is remarkable in the sense that for less than
70% edge overlap (O = 48%), we can already match around 50% of the nodes, and for a 75%
edge overlap (O = 60% only), the error rate drops to as low as 4%!

Further experiments suggest that this phase transition behavior is universal in our method,
and indicates that even if the overlap is not too large, we can still achieve considerably low
matching errors between two graphs given a minimum amount of overlap (as low as 75% in
this experiment). The experiments above indicate the applicability of our method for real
data even when the underlying graph is not known.

4.4.3 Estimation of Parameters and Priors

As explained in Section 4.4.2, applying the matching algorithm requires computing the pos-
teriors which in turn requires the estimation of (i) the prior degree and distance distributions
of the underlying graph, and (ii) the sampling parameters s1 and s2. When directly using
the edge sampling model (as in Section 4.4.1), these parameters are known. However, for
real graphs, e.g., two snapshots of a network as in Section 4.4.2, we need to estimate these
parameters.

We estimate the underlying degree and distance distributions (pi(y)), considering the
distributions over the superposition of G1 and G2. In other words, we use the empirical degree
(or distance) distribution of G1 and G2, and compute the underlying degree (or distance)
distribution through aggregating the two distributions. This is indeed a crude approximation.
However, our experiments show that the algorithm works quite well under this assumption.

For the sampling parameters, we can write e1 = es1 and e2 = es2, where e, e1 and e2 are
the expected number of edges in G, G1 and G2 respectively. Also, eI = es1s2 corresponds to
the expected number of edges in the intersection of edges of G1 and G2. Estimating e1, e2
and eI as the actual number of edges in G1, G2, and their intersection (assuming the number
of edges in the intersection is known), we can estimate s1 and s2 using the equations above.

4.4. Experiments 47

Note that for an accurate estimation, we require knowledge of the number of edges common
to both graphs, eI .

Although in practice we can have an estimation of the ratio s1/s2 = e1/e2, the number of
common edges eI might still be unknown; thus the need to estimate s1 (or s2) in a different
way, and to compute the other value using the ratio above. One idea is to arbitrarily pick
a large value (e.g., > 0.85) for s1 (or s2), independent of the graph structures. We did
experiments on both sampled graphs and real graphs of two snapshots. Our findings suggest
that for the choice of a large similarity parameter s, although it might not accurately match
the real s, we still obtain a matching error comparable to the error if the real s was used. For
instance, if the real s is 0.8, and we insert s = 0.9, the change in the matching error would be
less than 15-20%. Also, when matching two snapshots of a network, the interesting observation
is that the error might even decrease when we do not use the actual s! One explanation is that
we make the assumption that the superposition of G1 and G2 corresponds to the underlying
graph, whereas this might be a crude assumption. In short, we believe that for similarity
parameters larger than some threshold, our algorithm behaves quite well independent of the
choice of this parameter. Of course in case the two graphs are too dissimilar, the matching
algorithm fails to find a mapping with small error, as also shown in Sections 4.4.1 and 4.4.2,
and this is independent of the choice of the actual s (which is small), or a large s.

Using the estimations above, the matching algorithm can be applied to real networks for
matching structurally similar graphs. The applications could vary: matching dictionaries
of different languages, de-anonymizing a social network using a correlated publicly available
network, matching users’ data e.g., e-mail and phone data within a company, etc.

4.4.4 Matching on Random Graphs

The above experiments demonstrate the performance of our algorithm using real social net-
works which in turn exhibit (1) a heavy-tailed degree distribution, and (2) a high clustering
coefficient. In this section, we discuss the performance of the algorithm on random graphs
where nodes are much more similar to one another, and intuitively much harder to match.

We consider as the underlying fixed graph G a realization of the Erdös-Rényi random graph
G(n, p), where n is the number of nodes and each edge is present in the graph independently
and with probability p. Such graph is usually sparse and statistically uniform (i.e., nodes
tend to “look” similar). This model also yields a binomial, rather than a heavy-tailed, degree
distribution for the nodes, and average clustering coefficient of p which is very low compared
to social networks of the same size. We then apply the edge sampling process to G in order
to obtain G1 and G2 and then run our matching algorithm.

For s = 0.999 (i.e., very close to 1) we observed via experiments that our algorithm
perfectly matches the nodes of G1,2, yielding zero error in all experiments. This remarkable
result shows that when the graphs are sufficiently similar, our algorithm is very effective
even for large sparse random graphs. On the downside, for s = 0.95 (i.e., away from 1),
our algorithm cannot match the nodes yielding error rates of over 50%. The problem is that
distance is a fragile feature in G(n, p): an edge that is not sampled by the edge sampling
process leads to a significant increase in the distance between the two originally neighbor
nodes. Thus, even a small amount of missing edges significantly modifies distances for many
node in G(n, p). Since G1,2 are generated independently, distance correlations between pairs
of nodes in the two graphs are also destroyed.

In extend the G(n, p) model to cope with its distance fragility by introducing clustering

48 Chapter 4. An Iterative Bayesian Method for Graph Matching

(i.e., triangles). In particular, for each pair of nodes u, v ∈ V (G) (where G is a realization
of G(n, p)) at distance 2, we create an edge (u, v) with probability q. We call this model
q-transitive G(n, p) or G(n, p, q). Put it simply, G(n, p, q) models a sparse graph with a
non-skewed degree distribution and clustering coefficient controlled by the parameter q.

Figure 4.7 shows the performance of the matching algorithm as a function of the clustering
coefficient (controlled by q) when applied to two edge sampled graphs with s = 0.9 from an
underlying G(n, p, q). The parameter n = 2000 and p is chosen such that the average degree
remains constant (i.e., 50) in all experiments. Note that each choice of q results in a different
clustering coefficient, denoted by C. The results are averaged over different realizations of
G(n, p, q). As can be seen in the Figure 4.7(a), the matching error is a function of the clustering
coefficient, and decreases from a high value of 98% when C ≃ 0.06 to almost zero when C
reaches 0.15. This remarkable result indicates that when distances are relatively preserved
in G1,2, our algorithm can correctly match nodes even when the graphs are sparse and do
not exhibit a heavy-tailed degree distribution. For comparison, the EPFL e-mail network has
a clustering coefficient of 0.17, and so do many other social networks. However, these also
exhibit a heavy-tailed degree distribution which facilitates matching nodes.

Figure 4.7(b) shows the empirical CCDF of the posterior probability for all matched pairs
for different values of C. Note that for lower clustering, the posteriors are very small (e.g.,
for C = 0.06, only 10% of the matched node pairs have a posterior greater than 0.1) which
correlates with the fact that the matching error was very high. However, the posteriors
become significantly larger for higher clustering coefficients (e.g., for C = 0.15, almost all
matched node pairs have a posterior greater than 0.1), again correlating with the fact that
the matching error was very low. Thus, the empirical CCDF of the posteriors can indeed be
used as a criteria to assess the quality of the matching produced by the algorithm.

4.5 Summary

We proposed a Bayesian method for approximate graph matching where the two graphs are
independent outcomes of some sampling process. Based on this approach we devise an iter-
ative algorithm where evidence used to compute the posterior of a correct match increases
over the iterations by using previously mapped nodes. Using degree and distances as node
attributes and assuming an edge sampling model, we apply our algorithm to real data. Our
results indicate that accurate matching (less than 10% error) is feasible under reasonable edge
overlap (greater than 75%).

Publication [88]

Pedram Pedarsani, Daniel R. Figueiredo and Matthias Grossglauser. A Bayesian Method
for Matching Two Similar Graphs without Side Information. Submitted to the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’13,
Chicago, USA.

4.A. Appendix 49

4.A Appendix

Sampling Method for Computing Posteriors

We comment on the sampling method proposed in Section 4.2.2 to compute the matching
posteriors. We hereby restate the pairwise matching posterior:

P [U1 = U2|X1, . . . ,Xℓ+m] =

∑

b=(0,1)m

m∏

i=1

(P [Mi = bi]) · P [U1 = U2|X1, . . . ,Xℓ+m,M1, . . . ,Mm]. (4.16)

The sum is over 2m possible choices of the bit vectors of size m. To marginalize out the
latent vector M , we use a basic Monte Carlo estimator, by generating realizations of M accord-
ing to P [M = b] =

∏
i P (Mi = bi), then computing samples P [U1 = U2|X1, . . . ,Xℓ+m,M = b].

This gives an estimate of the expectation of the random variable P [U1 = U2|X1, . . . ,Xℓ+m,M].
More precisely, notice that P (M = b) =

∏m
i=1 (P [Mi = bi]) corresponds to the probability

of the vector of indicators [M1, ...,Mm], and the second term in the sum is a function of this
vector. Thus, we can rewrite (4.16) as,

P [U1 = U2|X1, . . . ,Xℓ+m] =
∑

b=(0,1)m

P [M = m]P [U1 = U2|X1, . . . ,Xℓ+m,M = b]︸ ︷︷ ︸
f(M)

. (4.17)

This corresponds to the expectation of the random variable P [U1 = U2|X1, . . . ,Xℓ+m].
Using this observation, instead of computing the sum over over all 2m terms, since the priors
P (Mi = bi) are known, we propose taking a fixed number of samples (c) from the prior
distribution on M . Denote M (t) as the t-th sampled vector. We compute f(M (t)) for each
sample, and estimate (4.16) as the sample average over all samples. In other words,

P [U1 = U2|X1, . . . ,Xℓ+m] ≃ 1

c

c∑

t=1

f(M (t)). (4.18)

Note that as c → ∞, due to the law of large numbers, (4.18) converges to the expected
value at the right-hand side. Thus, more samples yields more accurate estimation for the
posterior probability. This reduces the complexity of computing the posterior to O(m), where
m is the size of the anchor set, since we fix c to a constant (and equal to 50 in experimental
evaluations). We have not explored the tradeoff between c and the precision of the estimator
for (4.16).

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Clustering Coefficient (C)

A
ve

ra
ge

 M
at

ch
in

g
E

rr
or

Average Matching Error vs. Clustering Coefficient for G(2000,p,q), E(D)=50, s2 = 0.81

(a) Average matching error vs. clustering coefficient.

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

Matching posterior r

F
ra

ct
io

n
of

 n
od

e
pa

irs
 w

ith
 p

os
te

rio
r

>
=

 r

CCDF of matching posteriors for two sampled graphs of G(2000,p,q), E(D) = 50, s2 = 0.81

C = 0.15
C = 0.12
C = 0.09
C = 0.08
C = 0.06

(b) Empirical CCDF of posterior probability for matched node
pairs.

Figure 4.7: Average matching error and matching posteriors for different clustering coeffi-
cients.

Part II

Evolution of Social Networks

51

5 Network Densification

5.1 Introduction

Most of the works on complex networks has focused on static scenarios, where a single snapshot
of the network is considered for investigation. More recently, the focus has moved to dynamic
scenarios, where the network evolves with time. Indeed, most real networks evolve over time,
as edges and nodes can be added or deleted from the system. In this context, a recently
observed feature is densification, which occurs when the number of edges grows faster than
the number of nodes. More precisely, this implies that the average degree of the network
grows with time. This surprising phenomenon is empirically validated by the recent work of
Leskovec et al. [66], where densification is observed in six large datasets. Even more surprising
is the fact that the observed densification exhibited a very specific and precise relationship,
namely, a power law of the form m(t) ∼ n(t)α, where m(t) and n(t) denote the number of
edges and nodes of the network at time t and α is a constant greater than 1. We refer to
power-law densification with exponent α as α-densification.

Leskovec et al. [66] propose a mathematical model for network growth, called forest fire
model, that results in α-densification. A key element of their model is the fact that newly
created nodes establish more edges than nodes that were created earlier. They show that this
model can lead to a power-law densification over time.

Densification is a surprising feature. It implies that the average node degree grows without
bound, which is counter intuitive in many real settings. For example, does it make sense that
an individual’s number of social ties depends on the size of the total population of the planet?
Even more counter-intuitive is the notion that densification can lead to a decrease of the
network diameter (or of the average distance) as the network grows. Does it make sense
that the average distance between Internet domains decreases as the Internet grows? Despite
these intuitive doubts, the evidence from several disparate datasets is convincing and solid.
We believe therefore that reconciling the observed phenomenon with domain intuition is a
promising area of research.

Our contribution is a novel explanation for the observed densification in real networks.
Our explanation posits that densification can arise as a feature of a common procedure to
observe - or measure - dynamic networks, rather than as a feature of the network itself. To
sharpen this explanation, we show that densification can actually arise even when observing a
fixed network that is gradually discovered through a sampling process. This sampling process
captures the usual way of observing dynamic networks, as described in Chapter 1. We argue
that the network growth is a direct consequence of the sampling process, i.e., the gradual
discovery of this underlying network, rather than a property of the network itself.

To support this claim, we use the edge sampling model proposed in Chapter 1. We consider
two variants of this model, which capture two common procedures for the observation of real
networks. The first variant is the accumulation model, where we assume that the observed

53

54 Chapter 5. Network Densification

network is the result of all the edges discovered since the beginning of the observation. As
time evolves, the observed network grows and “converges” to the hidden full network. The
second variant is the modulation model, where we assume that independent snapshots are
obtained at different times, which we can view as samples of the hidden full network. We
study these two variants to reflect different measurement methodologies used in the studies of
network evolution, and we show that both variants can lead to densification in the observed
network. How the sampled networks densify depends both on the structural properties of the
underlying network and on the sampling process itself.

Using a simplified instantiation of the edge sampling model, we establish analytical results
indicating that the number of nodes and edges discovered indeed densify over time. In par-
ticular, we prove that densification is present for all time instances greater than a threshold,
and we derive a range (as a function of number of discovered nodes) over which densification
arises. We also prove that densification converges to a power law as time increases, with an
exponent that is inversely proportional to the probability mass of degree one nodes. More
importantly, we prove that a network densifies if and only if its degree distribution is a power-
law. Finally, we apply our model to real network data and show that it can fairly capture
the densification observed in practice. Our results indicate that edge sampling is a plausible
alternative explanation for the network densification.

As stated above, the key basis of our model lies in the way many real networks are observed:
edges of an underlying graph are observed directly, with nodes being observed indirectly. We
do not claim that all networks densify because of edge sampling; nor that all real networks
densify. However, we do believe that edge sampling can be a plausible explanation for the
observed densification of some networks, where the observation of edges leads to the discovery
of nodes from the underlying graph. In other words, we explain densification as a feature of
the statistical estimation instead of a feature of the real network. In [66] Leskovec et al.
propose network growth as a plausible model to explain densification.

We close this section by commenting on the difference between degree power laws, a widely
researched feature of many real networks, and power-law densification. Degree power laws
have often been linked to the ”rich get richer” phenomenon. This refers to the fact that
rich (e.g., large degree) nodes tend to become richer (i.e., even larger degrees) as the network
grows in size, giving rise to power law degree distributions. This is the main idea, for example,
behind the preferential attachment models [50, 10], used for explaining how a single snapshot
of the network is formed. This degree distribution is usually fixed, despite models that allow
the graph to grow over time. However, power law densification refers to the relationship
between number of nodes and edges as the network evolves (i.e., in different snapshots of the
network). In other words, power-law degree distribution is the property of a single snapshot
of the network, whereas power-law densification refers to the relationship between number of
edges and nodes for a sequence of networks (e.g., because the network is growing). Notice
that in classic graph models (such as Barabasi and Albert’s scale-free model [11], Watts and
Strogatz’s small-world model [106]), the average degree is assumed to be constant over time
(i.e., the number of edges grows linearly in the number of nodes), thus no densification is
present (though featuring power law degree distribution). So it is important to note that the
two are orthogonal, in the sense that each can exist independently. For example, a sequence
of dn-regular graphs G(n, dn) with dn = nα−1 (α > 1) does not exhibit a degree power law,
as every snapshot has constant degree over the ensemble of nodes; however, it does exhibit α-
densification. Nevertheless, a sequence of random graphs whose degree distribution is drawn
from a distribution D with power-law tail (and with E[D] < ∞) does exhibit degree power

5.2. Motivation 55

law, but not densification.

The remainder of this chapter is organized as follows. Section 5.2 shows a concrete ex-
ample of network densification and the problem statement. Section 5.3 presents the Edge
Sampling model, its theoretical properties and numerical evaluations. Sections 5.6 presents
an evaluation of the proposed model when applied to real network data. Section 5.7 briefly
discusses the related work. Finally, Section 5.8 concludes.

5.2 Motivation

In order to explain and illustrate the concept of densification, we present an example of a real
network that densifies over time. In particular, we consider an e-mail network. In this directed
graph, nodes represent e-mail addresses and edges represent message exchanges. The network
evolves in time through the observation of new messages that are exchanged, as described
below.

Let mij(t) denote a message sent from e-mail address i to e-mail address j at time t.
Moreover, let M [t1, t2] denote the set of all messages sent in the interval [t1, t2].
Let G[t1, t2] = (V [t1, t2], E[t1, t2]) be a directed graph defined as follows. Let E[t1, t2] =⋃

m∈M [t1,t2]
e(m), where e(mij(t)) = {(i, j)}. Thus, E[t1, t2] denotes the set of directed edges

that appear in the graph in the interval [t1, t2]. Similarly, let V [t1, t2] =
⋃

m∈M [t1,t2]
v(m),

where v(mij(t)) = {i, j}. Thus, V [t1, t2] denotes the set of nodes that appear in the graph in
the interval [t1, t2].

We consider a dataset of e-mail messages collected at the mail server of EPFL for a period
of 89 weeks. The dataset is aggregated by week, such that timestamps are in the timescale
of weeks (i.e., all messages sent in a particular week have the same timestamp). To filter out
bogus messages (spam, mailing lists, wrong addresses, etc), only e-mails to or from registered
EPFL personnel were considered, as well as only e-mail addresses that both sent and received
a message at least once in the observed interval of time. The filtered dataset contains a total
of 23, 679, 417 e-mail messages.

From this point, we use m(t) to denote the number of edges and n(t) to denote the number
of nodes, as a function of time. Following the procedure describe above, we construct the e-
mail network by growing it one week at a time, computing G[1, t], where t = 1, . . . , 89. Thus,
for each week t, we have a value for the number of edges m(t) = |E[1, t]| and the number of
nodes n(t) = |V [1, t]| in the graph. Figure 5.1 plots the number of nodes versus the number of
edges for all values of t in log-log scale. The result clearly shows a densification of the network,
as the number of edges increases much faster than the number of nodes. In particular, the
number of nodes goes from n(1) = 45, 782 to n(89) = 431, 200, while the number of edges
grows from m(1) = 115, 898 to m(89) = 3, 945, 937. Moreover, we can observe a fairly precise
linear relationship between logm(t) and log n(t), which indicates that the two variables are
related through a power law of the type m(t) ∼ n(t)α. Let α̂ be the slope of the line obtained
by performing a linear regression of the points in the plot. Thus, for the data shown in Figure
5.1 we have that α̂ = 1.57.

As stated earlier, Leskovec et al. [66] have also observed power-law relationships between
the number of edges and nodes for various real networks, including an e-mail network. The
fact that power laws seem to be ubiquitous relationship between the number edges and nodes
of an evolving network motivates us to search for alternative explanations for densification.

It is important to notice how the e-mail network was grown in the example above. Indeed,

56 Chapter 5. Network Densification

10
4

10
5

10
6

10
4

10
5

10
6

10
7

n(t)

m
(t

) α̂ = 1.57

Figure 5.1: Evolution of the number of nodes n(t) versus the number of edges m(t) over time
for EPFL e-mail network.

the network is grown one message at a time, revealing edges at each step, and nodes are
discovered through these edges. We believe that many real networks are also grown in this
same way, that is, through the observation of edges. For example, in the World-Wide Web
network, web documents (nodes) are discovered through the observation of hyperlinks in the
documents (edges). In the Internet AS-level graph, ASes (nodes) are inferred through the
observation BGP announcements (edges). In the IMDB actors to movies networks, actors and
movies (nodes) are discovered when an actor plays in a movie (edges). Thus, the process of
growing the network through the observation of edges (or edge sampling) seems fairly universal
and is the key motivation for the model we introduce next.

5.3 Model

In this section, we use the edge sampling model, and elaborate on how it can well explain the
densification behavior.

In particular, let G = (V,E) be the underlying graph with n = |V | denoting the total
number of vertices and m = |E| denoting the total number of edges in the graph. Let f̄(k)
denote the empirical degree distribution of G. We obtain a single sample Gs = (Vs, Es) of
the graph by sampling its edges independently with probability s. We define the set Es ⊂ E
to denote the set of edges that have fired in the realization when the sampling parameter is
s, and hence have been discovered. Similarly, define the set Vs =

⋃
e∈Es

γ(e) ⊂ V to denote
the set of vertices that have been discovered, where γ(e) is a function that returns the set of
vertices adjacent to the edge e, that is, γ ((u, v)) = {u, v}. Thus, |Es| and |Vs| are the number
of edges and vertices, respectively, that are discovered when the sampling parameter is s. In
the following, we determine both E[|Es|] and E[|Vs|], that is, the expectation of these random
variables. For ease of expression, from this point we use the following notations:

n(s) = E[|Vs|] (5.1)

m(s) = E[|Es|]. (5.2)

5.3. Model 57

Since all edges are discovered with the same probability s, we can write:

m(s) = ms. (5.3)

Let d̄ denote the expected degree of the underlying graph. It can be shown that m = nd̄/2.
Thus, we can rewrite equation (5.3) as follows:

m(s) = nd̄s/2. (5.4)

Let q denote the probability that a node is discovered by the process when the sampling
parameter is s. This means that at least one edge adjacent to the node fired. This probability
is the complement of the node not being discovered, which means that none of the edges
adjacent to the node fired when edges fire with probability s. Thus, conditioning on the node
degree and sampling of the adjacent edges, we have:

q =

∞∑

k=0

f̄(k)
[
1 − (1 − s)k

]
(5.5)

Similarly to m(s), we can then write n(s) as follows:

n(s) = nq (5.6)

We can establish limiting results for both m(s) and n(s) as s goes to 1. In particular, we
can show that:

m(s → 1) = lim
s→1

m(s) = nd̄/2 (5.7)

n(s → 1) = lim
s→1

n(s) = n(1 − f̄(0)) (5.8)

Thus, s = 1 reveals all the edges of G, but only its non-isolated nodes (i.e., nodes with positive
degree).

As stated earlier, our ultimate goal is to establish a relationship between m(s) and n(s).
In particular, can the edge sampling model lead to densification on the number of edges and
nodes discovered? We start by defining two terms: densification and α-densification. The
former means that the number of edges and nodes discovered are related super-linearly, but
not necessarily through a power law relationship. The latter means that densification follows a
power law relationship of the form m(s) ∼ n(s)α for a constant α > 1. It is usually understood
that this relationship should span several orders of magnitude over n(s) to be unambiguous;
we do not make this requirement explicit in the definition.

As we soon show, the edge sampling model can lead to densification, and under some con-
ditions to α-densification. This indicates that densification can arise based on how we observe
the fixed underlying graph, without requiring any dynamic growth process that modifies its
structure.

We investigate the relationship between m(s) and n(s) by defining α(s), as follows:

α(s) =
∂ log (m(s))

∂ log (n(s))

=

(
∂ log (m(s))

∂s

)(
∂ log (n(s))

∂s

)−1

(5.9)

58 Chapter 5. Network Densification

Thus, α(s) denotes the instantaneous slope of the n(s) versus m(s) plot in log-log scale.
Densification then means that α(s) > 1 for several order of magnitude on n(s), while α-
densification means that α(s) is larger than 1 and is approximately constant for several orders
of magnitude on n(s).

Using equations (5.4) and (5.6), we can derive α(s) analytically by applying its definition,
which is given in equation (5.9). In particular, we have:

α(s) =
(1 − s)

(
1 −∑k f̄(k)(1 − s)k

)

s
∑

k f̄(k)k(1 − s)k
(5.10)

We can obtain both a lower bound and an upper bound for α(s). In particular we show
that for s > 1/2, the following holds:

1 ≤ α(s) ≤ 1

f̄(1)
. (5.11)

The proofs are found in Appendix 5.A.

We can also establish two limiting results for α(s). Let α(s → 1) be the limit of α(s) when
s goes to 1. Similarly, let α(s → 0) be the limit of α(s) when s goes to zero. We show that:

α(s → 1) = lim
s→1

α(s) =
1 − f̄(0)

f̄(1)
(5.12)

α(s → 0) = lim
s→0

α(s) = 1 (5.13)

Once again, the proofs are found in Appendix 5.A.

The above result can be intuitively understood as follows. As s grows to 1, where the
probability that an edge fires is quite large, the probability that a node of degree two or higher
has been revealed is very close to one. The asymptotic slope of the n(s)/m(s) curve when
almost all nodes have been discovered is then dominated by the discovery of the remaining
edges and nodes of degree one. As s shrinks to 0, where very few edges fire and therefore
very few nodes are discovered, it is very likely that when an edge fires it will reveal two
undiscovered nodes. Thus, the number of edges and nodes will grow linearly.

To support this last finding, we can establish yet another result for the case s is small,
near zero. In particular, when s is small we have that 1 − (1 − s)d ≃ ds. Therefore, q ≃ sd̄.
And finally,

n(s) ≃ nd̄s (5.14)

Using equations (5.4) and (5.14) and applying it to equation (5.9), we obtain α(s) = 1.
Therefore, when s is sufficiently small, the discovery process through sampling does not yield
densification.

It is interesting to note that the instantaneous slope of edge-node curve, α(s), in the
asymptotic regimes analyzed above (i.e., when s is near zero or near one), does not depend
on the degree distribution, which might seem counter-intuitive. However, these results say
nothing about the behavior of the n(s)/m(s) curve for non-extreme values of the sampling
parameter. In what follows, we estimate α(s) for a range of values s when the degree of the
underlying graph follows a specific distribution.

5.3. Model 59

5.3.1 Densification Regimes and the Value of Cutoff

In this section, we first elaborate the transition of different phases by changing the sampling
parameter s as we sweep the edge-node curve. Thus we hereby clarify the different regimes
for the densification behavior, focusing on the regime where densification holds. More specif-
ically, we introduce three regimes over the evolution of edge-node curve: transient regime,
densification regime and saturation regime, as depicted in Figure 5.2.

Figure 5.2: The number of nodes discovered (n(s)) versus the number of edges discovered
(m(s)) in log-log scale, resulting in different regimes as the sampling parameter s is changed.

As discussed before and shown in Equations (5.12) and (5.13), the limiting behavior of
α(s) is only a function of lags zero and one of the degree distribution of the underlying graph,
and not the tail behavior. Thus, as we start growing s from zero, the edge-node curve in
log-scale follows a linear relationship with slope one (transient regime). As s goes beyond a
certain threshold, which we refer to as cutoff, densification starts (densification regime). The
slope of the edge-node curve depends on the degree distribution of the underlying graph. As
we will soon show, α-densification (i.e., α(s) being constant) is observed over several orders
of magnitude of n(s) in the case of a power-law degree distribution. Finally, as s gets close to
1, α(s) grows to α(s → 1) (saturation regime), resulting in the saturation of edges and nodes
with a large exponent.

Thus the regime of interest is the middle, where densification emerges. Here we derive the
exact value of the cutoff (starting point for densification) as a function of the parameters of
the degree distribution, and validate our results numerically in Section 5.5.

To do so, we introduce an approximation for the densification regime that plays a key
role in our theoretical results that follow. Given the sampling parameter s, the probability
that a node with degree d is discovered is given by 1 − (1 − s)d. Note that this probability
is close to 1 for large enough d. We assume that if a node has degree greater than some
threshold, it will be discovered in the sampling process, otherwise not. This threshold would
be a function of s, since for s large, the probability of a node being discovered should be
higher, and vice versa. Now notice that out of the d edges incident to a given node with
degree d, the expected number of edges that will fire is given by ds. So we make the following

60 Chapter 5. Network Densification

simplifying approximation: A node will be discovered if the expected number of its incident
edges that are discovered is greater than 1, but will remain unknown to the discovery process
otherwise.

Approximation. The probability of a node being discovered can be approximated as
the probability of its degree being greater than 1/s, i.e.,

q ≃ P (D > 1/s), (5.15)

where D is a random variable with distribution f(k) denoting the node degree. Note
that in our notation, f(k) corresponds to the degree distribution for random variable D as
the degree, whereas f̄(k) denotes the empirical degree distribution of the underlying graph.
Similarly, E[D] and d̄ correspond to the average degree in each case, respectively.

Note that we use the approximation above only for the densification regime, i.e. as densifi-
cation starts when nodes are being discovered through edges, whereas in the transient regime
edges and nodes are discovered linearly (as shown in Section 5.3), and (5.15) does not hold.
We use this idea for identifying the cutoff. In other words, we examine for which values of s
the approximation holds, which is the key in finding the cutoff value.

Let dmax denote the maximum degree in the underlying graph. Observe that the ap-
proximation holds only for s > 1/dmax, where dmax is the maximum degree of the graph.
Indeed, for s < 1/dmax, the right-hand side of (5.15) will be zero, thus no such approxima-
tion will be valid. This observation suggests that the cutoff occurs at the threshold value of
s = 1/dmax, which we call s∗, above which densification is present. Hence the transition from
no densification to densification occurs at the cutoff value of:

s∗ ≃ 1

dmax
. (5.16)

Note that the result holds for any distribution of the underlying graph. Furthermore, we
can derive the approximate values of m(s) and n(s) for this value of s∗. This can be done as
follows:

m(s)∗ = ms∗ = nE[D]s∗/2 =
1

2

(
n

dmax

)
E[D] (5.17)

n(s)∗ = n

dmax∑

k=1

f(k)
[
1 − (1 − s∗)k

]

≃ n

dmax∑

k=1

f(k) [ks∗] =

(
n

dmax

)
E[D], (5.18)

where (5.18) follows since s∗ is small and approximately 1/dmax.
In the next section, we focus on the densification regime and derive the condition for the

underlying graph for which α-densification is present.

5.4 Conditions for Power-Law Densification

Now that we have defined the different regimes in the sampling model, and derived the cutoff
value, we should comment on the densification regime, and how densification depends on

5.4. Conditions for Power-Law Densification 61

the underlying graph. As shown in Section 5.3, the instantaneous slope of edge-node curve
in log-log scale is a function of the sampling parameter s. However, we hereby investigate
whether α-densification is present for certain cases. Notice that α-densification corresponds
to a constant densification exponent α over the densification regime, i.e. α(s) not depending
on s. We divide the proof in two parts in the following sections:

1. Assuming that the graph α-densifies, what can we say about the degree distribution?
(see Section 5.4.1)

2. Assuming that the graph has a power-law degree distribution, will it also α-densify?
(see Section 5.4.2)

5.4.1 Necessary Condition for Power-Law Densification

In this section, we answer the following important question: Under what conditions on the
underlying degree distribution do we see α-densification? We hereby summarize our approach:

1. We express the expected number of edges and nodes discovered, i.e., m(s) and n(s), as
a function of s and q respectively.

2. We use Approximation (5.15) to express q as a function of s and the degree distribu-
tion f(k).

3. We establish a power-law relationship between m(s) and n(s), and derive the func-
tion f(k) such that this relationship holds.

Recall that the average number of edges and nodes at every sampling instance is expressed
by (5.3) and (5.6). Replacing q with (5.15), we obtain,

m(s) = ms

n(s) = nq ≃ nP (D > 1/s) = n
∑dmax

k=1/s f(k) (5.19)

Using the above, since m and n are constants, in order to have a power-law relationship
between m(s) and n(s), we should have s ∼ qα, where α is the constant densification exponent
larger than 1. We set γ − 1 = α−1, and write the probability of node discovery as:

q = csγ−1, 1 < γ < 2 (5.20)

for some constant c. Substituting (5.20) in (5.19) yields:

dmax∑

k=1/s

f(k) = csγ−1. (5.21)

It now suffices to find the function f(k) such that (5.21) holds. This can be done through
a recursive procedure as follows.

62 Chapter 5. Network Densification

As k can only take integer values for the discrete distribution, we start by evaluating
(5.21) for different values of k = 1/s, starting from s = 1/dmax. We can write:

s =
1

dmax
=⇒

dmax∑

k=dmax

f(k) = f(dmax) = c

(
1

dγ−1
max

)

s =
1

(dmax − 1)
=⇒

dmax∑

k=dmax−1

f(k) = f(dmax) + f(dmax − 1) = c

(
1

(dmax − 1)γ−1

)

=⇒ f(dmax − 1) = c

(
1

(dmax − 1)γ−1
− 1

dγ−1
max

)

s =
1

(dmax − 2)
=⇒

dmax∑

k=dmax−2

f(k) = f(dmax) + f(dmax − 1) + f(dmax − 2)

= c

(
1

(dmax − 2)γ−1

)

=⇒ f(dmax − 2) = c

(
1

(dmax − 2)γ−1
− 1

(dmax − 1)γ−1

)

...

And in general f(k) can be expressed as:

f(k) =

{
c
(

1
kγ−1 − 1

(k+1)γ−1

)
, 1 ≤ k < dmax

c
(

1
kγ−1

)
, k = dmax

(5.22)

Thus the family of distributions giving rise to α-densification have the form of (5.22). We
now further simplify this result for 1 ≤ k < dmax as follows:

f(k) = c

(
1

kγ−1
− 1

(k + 1)γ−1

)
= c

(k + 1)γ−1 − kγ−1

kγ−1(k + 1)γ−1

(a)≃ c(γ − 1)kγ−2

kγ−1(k + 1)γ−1
≃ c(γ − 1)

kγ
,

(5.23)
where (a) follows for k sufficiently large. Indeed, the above result shows that the networks
exhibiting a power-law densification have degree distributions close to a power-law (of the form
ck−γ). Note that the resulting PDF corresponds to the family of power-law distributions with
the power exponent γ lying between 1 and 2. Indeed, the above argument suggests that in
order to observe α-densification, the underlying graph should have a degree distribution in
the form of a power law with degree exponent between 1 and 2. This is well in line with the
fact that many real network topologies exhibit heavy-tailed node degree distributions [15, 6].

5.4.2 Sufficient Condition for Power-Law Densification

Having proved the power-law degree as a necessary condition for α-densification, we now
assume such a degree distribution for the underlying graph, and show that it leads to α-
densification (and thus is a sufficient condition for α-densification). We also establish a rela-
tionship between the degree exponent and the densification exponent. We hereby summarize
our approach:

5.4. Conditions for Power-Law Densification 63

1. We assume a discrete power-law degree distribution f(k) for the underlying graph.

2. We use Approximation (5.15) to express q as a function of s and the power exponent of
the degree distribution (γ).

3. We use (5.3) and (5.6), and check to see whether a power-law relationship of the form
m(s) ∼ n(s)α holds or not.

To elaborate on this, we will consider a Zipf distribution to model the power-law degree
of the fixed underlying graph G. Thus,

f(k) = c
1

kγ
, k = 1, . . . , dmax (5.24)

where γ is the Zipf parameter, and c is a normalization factor with dmax corresponding to the
maximum degree in the underlying graph G. Note that as dmax increases, the Zipf distribution
approximates a power-law1. Moreover, it can be shown that for infinite dmax the distribution
has infinite mean and variance for γ < 2, finite mean and infinite variance for 2 ≤ γ < 3, and
finite mean and variance for γ ≥ 3.

We have

1 =

dmax∑

k=1

ck−γ ∼
∫ dmax

k=1
ck−γ dk =⇒ c =

γ − 1

1 − d1−γ
max

≃ γ − 1,

when γ > 1 and dmax grows large.
We again use Approximation (5.15), and verify whether the relationship m(s) ∼ n(s)α

holds. Using (5.15), we can write

q ≃ P (D > 1/s) ≃
∫ dmax

k=1/s
ck−γ dk

=
c

γ − 1
(sγ−1 − dmax

1−γ) =
sγ−1 − dmax

1−γ

1 − dmax
1−γ . (5.25)

Observe that if sγ−1 ≫ dmax
1−γ , i.e. s ≫ 1/dmax, the right-hand side of (5.25) can be

approximated as sγ−1, whereas this does not hold if s < 1/dmax.2

Thus, for n large, we obtain

m(s) = ms

n(s) = nsγ−1.

Since m and n are fixed, we have m(s) ∼ n(s)α for all s > 1/dmax, with

α =
1

γ − 1
, 1 < γ < 2 (5.26)

This result shows that a power-law degree distribution is a sufficient condition for power-
law densification. Furthermore, it establishes a direct relationship between the exponent of the

1A Zipf distribution is a discrete truncated Pareto distribution
2Again, we derive the cutoff value of s∗ = 1/dmax for the specific case of power-law degree distribution. We

derived this result for any distribution in Section 5.3.1.

64 Chapter 5. Network Densification

degree distribution (γ) of the underlying graph and the α-densification exponent. Notice that
the obtained exponent is constant, not depending on s, and only dependent on the parameter
of the distribution. As we will soon show through numerical evaluations, this relationship is
indeed a good approximation for the densification exponent α.

Notice that Approximation (5.15) is too crude for γ > 2, as in this case s becomes
larger than q (i.e., the the probability of edge discovery gets larger than the probability of
node discovery, see (5.25)). For γ > 2, we conjecture that α is close to 1, in particular for
increasingly larger values of γ. We will investigate this issue numerically in the next section.
Thus, when γ > 2 the edge sampling model does not yield densification. This was also
previously shown in Section 5.4 as a necessary condition for α-densification.

For the Zipf distribution, the average degree can be easily approximated as

E[D] ≃ γ − 1

2 − γ
(d2−γ

max − 1). (5.27)

Using this, the cutoff values n(s∗) and m(s∗) can well be approximated using (5.17) and (5.18).
Thus, considering (5.26) and (5.27), we can observe that as the degree exponent increases,
densification exponents decreases, while the range over which we see α-densification becomes
larger (since E(D) and thus the value of cutoff becomes smaller). This is also validated by
numerical results in Section 5.5.

To summarize, we introduced the different regimes over the change of sampling parameter,
calculated the value of cutoff for densification, and illustrated that for the case of power-law
degree distribution we observe α-densification with the exponent α derived as a function of
the degree exponent. More specifically, we showed that a power-law degree distribution for
the underlying graph with exponent between 1 and 2 is a necessary and sufficient condition
for exhibiting α-densification. Furthermore, we obtained the relationship between the degree
exponent and the densification exponents (α = 1

γ−1).

5.5 Numerical Evaluations

In this section we conduct numerical evaluations of the edge sampling model presented above.
We assume that the node degree of the underlying graph follows a Zipf distribution, given by
equation ((5.24)), with γ denoting the exponent. Moreover, we assume that the underlying
graph has n = 107 nodes. Note that in this case, dmax ≃ n.

Figure 5.3 shows the evolution of m(s) and n(s) over different values for the sampling
parameter s in log-scale, computed using equations (5.4) and (5.6), for a Zipf distribution
with γ = 1.5. The curves exhibit an interesting behavior. As shown in Figure 5.3, at first,
while s is small, the number of nodes discovered grows faster than the number of edges
discovered. This occurs because in this range, almost every edge discovery results in the
discovery of two nodes, which leads to a constant slope in edge-node curve. This is in line
with our claim before, i.e. no densification when s is close to zero. Also notice the value of s
where the number of edges exceeds the number of nodes and densification starts: the cutoff
value for sampling parameter closely matches our theoretical result of s∗ = 1/dmax = 10−7.
As s increases beyond the cutoff, the number of nodes discovered grows more slowly than the
number of edges. This occurs because, in this range, almost all nodes have been discovered
while edges continue to be discovered. Finally, as s approaches 1, the discovery process starts
saturating.

5.5. Numerical Evaluations 65

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Sampling parameter (s)

m
(s

)
, n

(s
)

n(s)

m(s)

Figure 5.3: Evolution of the number of nodes (n(s)) and the number of edges (m(s)) discovered
over change of sampling parameter for an underlying graph with a Zipf degree distribution
(n = 107, γ = 1.5).

Figure 5.4 depicts the expected number of nodes discovered versus the expected number
of edges discovered using the same sampling parameter for Zipf distributions with different
degree exponents. Notice that the plot is in log-log scale, thus, densification is present when
the derivative (i.e., slope) of the curve is greater than 1 for a wide range of scales on n(s).
Moreover, if this derivative is approximately constant for a wide range of scales on n(s), then
the relationship between m(s) and n(s) is a power law of the type m(s) ∼ n(s)α, where α
is the slope of this straight line. Indeed, the curves for the Zipf distribution with γ < 2 in
Figure 5.4 show α-densification, as indicated by the theoretical analysis.

Figure 5.4 also illustrates the different regimes for α. In particular, when s is small enough,
we have α close to 1. As s increases beyond the cutoff value of s∗, i.e. when the number
of discovered nodes exceeds n(s)∗, we have α greater than 1 and approximately constant.
Moreover, as we increase γ, the range over which densification is present (i.e., α greater than
1) decreases (for a fixed n), however, a higher α-densification exponent is achieved (as proved
in Section 5.3.1). For γ = 1.5, α-densification spans three decades, while for γ = 1.8 it spans
five decades. Finally, for γ = 2.5, we observe a slope close to 1 for the entire range of values
for s, i.e. no densification is present, as expected.

For comparison, we estimate the densification exponent after the threshold by using linear
regression of the data points in this interesting regime, denoted by α̂ (as shown in Figure 5.4).
We observe that the estimated slope found through numerical evaluations is close to our
previous result, i.e. 1

γ−1 . For example, for γ = 1.5, we have that α̂ = 2, which is equal to our
theoretical approximation of 1/(γ − 1), and for γ = 1.8, α̂ = 1.3, which is again close to our
prediction (1.25). Moreover, the value of the cutoff, i.e., n(s)∗ can be computed theoretically
using (5.17), which will be approximated by E[D] in this case since the maximum degree is
assumed to be equal to n. Using (5.27), we obtain two values of 3.16× 103 and 96 for γ = 1.5
and 1.8 respectively. As seen in the plot (as dashed lines), the cutoff values closely match the
numerical results.

Also, the final slope in the plot (not shown here) is close to the limiting theoretical slope,
α(s → 1), for different values of γ. It is interesting to observe that α(s → 1) - which is the

66 Chapter 5. Network Densification

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

10
8

10
10

10
12

n(s)

m
(s

)

α̂ = 2
α̂ = 1.3

α̂ = 1

γ=1.5
γ=1.8
γ=2.5

Figure 5.4: The number of nodes discovered (n(s)) versus the number of edges discovered
(m(s)) by the same sampling parameter for Zipf degree distributions (n = 107, γ = 1.5,
γ = 1.8, γ = 2.5).

asymptotic slope - is not far from α̂. Indeed, this indicates that graphs where nodes follow a
heavy-tailed distribution tend to saturate slowly, because they have many low-degree nodes.
This results in an α-densification exponent that is not far from 1/f(1).

We should again emphasize that the interesting regime is when the edges and nodes are
being discovered, while we are away from both early transient and late saturation phases.
In this range, we observe a constant densification exponent over a wide range of n(s). For
a small sampling parameter, no densification is observed, whereas for large s we reach the
asymptotic slope of α(s → 1).

Figure 5.5 depicts the evolution of α(s) for Zipf distribution with different values of γ,
computed using equations (5.10). We first observe that densification occurs for all sampling
parameters (α(s) > 1 for all 0 < s < 1). More surprisingly, we observe that α(s) quickly
converges to a nearly constant value as s increases, and finally reaches α(s → 1). If this
convergence occurs orders of magnitude before saturation of the discovery process, then the
model yields an α-densification. Finally, although α(s → 1) depends only on f(1) (see equa-
tion (5.12)), the underlying degree distribution plays a role in determining if the edge sampling
model will yield α-densification.

In order to support our claim, Figure 5.6 depicts the relationship between the estimated
densification exponent α̂ and the degree exponent γ. As before, α̂ was computed through
a linear regression of the points in the interesting regime (i.e., densification regime). As
illustrated in the figure, as γ increases large, specifically when γ is greater than 2, α̂ approaches
1. This supports our conjecture that α-densification occurs when 1 < γ < 2.

A summary of the approximated values of cutoff, average degree, and the asymptotic/
expected/estimated slope is shown in Table 5.1. A basic comparison validates our theoretical
results, and the accuracy of the obtained values for the densification behavior and cutoff.
Basically, the estimated densification exponent α̂ (through linear regression) is quite close to
the predicted exponent from theory (α = 1/(γ − 1)). Moreoever, comparing the theoretical
values of cutoff (s∗ and n(s)∗) with the numerical results in Figures 5.3 and 5.4 well assesses
the goodness of our theoretical approximations in Section 5.3.

5.5. Numerical Evaluations 67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Sampling parameter (s)

α(
s)

γ=1.2
γ=1.5
γ=1.8
γ=2.5

Figure 5.5: The densification exponent α(s) as a function of time for Zipf degree distributions
(n = 107, γ = 1.2, γ = 1.5, γ = 1.8, γ = 2.5).

Table 5.1: Comparison of different parameters for different degree distributions
γ s∗ E[D](≃ n(s)∗) α(s → 1) 1/(γ − 1) α̂

1.5 1E-7 3161 2.6 2 2

1.8 1E-7 96 1.9 1.25 1.3

2.5 1E-7 3 1.3 – 1

Finally, we examine the robustness of edge sampling model through truncating the degree
distribution from left and/or right. We show that the exponent for α-densification is only a
function of the degree exponent of the underlying graph, and truncating the distribution does
not affect the observed exponent α. In other words, we claim that densification behavior in
the regime of interest does not depend on the maximum or minimum degree (or in general,
individual lags) of the underlying graph, and the same densification exponent will be present
if the degree exponent is γ. In order to do this, we truncate the distribution from left and
right (resulting in lower maximum degree and higher minimum degree) without changing the
behavior in the middle. Two scenarios are considered: In the first case, after truncation we
rescale the distribution to distribute the mass over all points. In the second case, all the mass
(either from the truncation point up to n for maximum degree, or from 1 to truncation point
for minimum degree) is put at the truncation point.

Figure 5.7 depicts the edge-node curve of the same Zipf distributions (before saturation
point), but truncated at left and right at the values of 5 and 8×106 respectively, i.e., dmin = 5
and dmax = 8 × 106 (instead of the default values of 1 and n = 107).

As shown in the figure, we observe two parallel lines for two cases of rescaling the distri-
bution after truncation or putting the mass at truncation points. Furthermore, this slope is
equal to the original densification exponent α = 1

γ−1 . Thus, the edge sampling model is robust
in the sense that the densification behavior remains the same when truncating the distribu-
tion, while keeping the same degree exponent. However, as can be observed in Figure 5.7, the
cutoff point (and thus the densification regime) will be different, because the average degree
and the maximum degree are different in the two truncation processes.

68 Chapter 5. Network Densification

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

10

11

Zipf Degree Exponent (γ)

D
en

si
fic

at
io

n
E

xp
on

en
t (

α)

Figure 5.6: Relationship between the densification exponent (α) and the degree exponent (γ)
for an underlying graph with a Zipf degree distribution (n = 107)

In summary, the edge sampling model has a single parameter s that varies between zero
and one and is used to sweep the edge-node curve. As s approaches zero, the slope of the
curve approaches 1, thus no densification is present. However, for sufficiently large s, it is
possible that the curve follows a power-law, thus exhibiting α-densification. Moreover, this
cutoff point for a sufficiently large s depends on the the average degree and maximum degree
of the underlying graph. In particular, for a power-law degree distribution, a larger skew (i.e.,
smaller γ) requires a larger cutoff (i.e., a larger s). However, a larger skew also means that
the densification exponent will be larger (since α = 1/(γ − 1)). If the degree distribution is
not skewed enough (i.e., if γ > 2), then no cutoff exists, meaning that the slope is always 1,
and thus, no densification is present. Finally, the densification exponent is a function of the
tail exponent of the distribution, and is robust to truncation through rescaling and putting
mass at cut points.

5.5.1 Observation Models

In the previous section we evaluated the edge sampling model numerically, which has a single
parameter, namely, the edge sampling probability, s. Before applying the model to real data,
we comment on the relationship between how datasets of real networks are gathered, and also
on the choice of the parameter s. In particular, considering how these datasets are obtained,
we believe that the parameter s varies for either of the following reasons:

Accumulation In this interpretation of the sampling model, knowledge about the edges and
nodes of the underlying graph is accumulated over time. This captures studies where
new edges (and consequently nodes) are added to an evolving graph (e.g., the evolution
of a social network). Thus, the key parameter of this model is time, which will determine
the probability that edges and nodes are discovered, i.e. s = f(t). As time grows from
zero to infinity, the sampling parameter varies from zero to one, resulting in the gradual
discovery of edges and nodes.

We assume that any edge e is associated with an independent renewal process of rate
λ. We define then FF (t, λ) to be the inter-sampling time cumulative distribution for an

5.5. Numerical Evaluations 69

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

n(p)

m
(p

)

mass at cut points
rescaled

Zipf distribution with n=107, s=1.5,
distributions truncated from right at
8×106 and left at 5

Same slope for two cases: mass at cut
points and re−scaled, before saturation.
different means −> different cutoff points
(n/d

max
)E(D)

Figure 5.7: The number of nodes discovered (n(s)) versus the number of edges discovered
(m(s)) for truncated Zipf degree distribution with γ = 1.5 (n = 107)

edge with a sampling rate of λ. Moreover, the sampling rate of an edge is also a random
variable with cumulative distribution FR(λ), identical for all edges of G. We will also
assume that sampling rates are chosen independently and that edges are also sampled
independently of each other.

Modulation In this interpretation of the model, a fixed time window is considered. In
other words, the sampling parameter s, is a function of a global sampling rate, which
determines the rate with which the edges fire within a given fixed length time window.
Different time windows can have different intensities with respect to the edge sampling
rates. The motivation behind this interpretation is that in the analysis of real data
we often consider fixed windows of time over the dataset, as opposed to an increasing
time interval. However, different windows of time may have different sampling rates.
For example, consider the study of e-mail networks and a time window of one month.
It is natural that different months will have different intensities of e-mail exchange.
For example, a vacation month will surely have a lower sampling rate than an end-of-
semester month, in the e-mail network of a large university.

As before, we introduce an inter-sampling time distribution. However, here we define
a modulating intensity parameter Λ; it influences the edge sampling rates. So we have
s = f(λ). In particular, the edge sampling rate will be given by

λ = Λλo (5.28)

where λo is a random variable that follows the original edge sampling rate cumulative
distribution, FR(λ). Note that the actual edge sampling rate distribution is simply the
original edge sampling rate distribution scaled by a constant Λ.

Notice that we are only giving different interpretations to s. In particular, we let s be
controlled either by t or by Λ, which will be the case when we apply the edge sampling model
to real datasets.

70 Chapter 5. Network Densification

5.6 Real Data Experiments and Variations of the Model

In this section, we apply the edge sampling model to two datasets of real network data.
The goal is to illustrate that the sampling model can capture and thus partially explain,
the observed densification when considering data from these networks. In order to do this,
we consider the two variations of the model, i.e. accumulation and modulation. Thus, the
sampling parameter s will be a function of time or intensity, respectively, and is determined
through the choice of this function, as described below.

Unfortunately, we do not have the real underlying graph to drive the edge sampling
process. We also have no knowledge of the edge sampling probability s, which can be char-
acterized by the edge sampling rates and the inter-sampling time distribution. Therefore, in
order to apply the model we propose, we will use the actual dataset to derive estimates for
these unknown parameters.

The underlying graph G = (V,E) we consider is given by the accumulated graph over the
entire dataset, i.e.,

G[0, tf] = (V [0, tf], E[0, tf]),

where tf is the length of the available dataset. Thus, we will assume that the degree distribu-
tion of the underlying graph is given by the empirical degree distribution of G[0, tf], namely
f̄(k).

Concerning the edge sampling process, we will assume that the edge sampling rate for
each edge is given by its average over the entire dataset (or its average over a time window,
for the case of modulation). Thus, for each edge e ∈ E, we define λe = |Mij [0, tf]|/tf , where
edge e = (i, j) and Mij [0, tf] is the set of samples of the edge (i, j) available in the dataset in
the period [0, tf] (same argument valid for a fixed time window). Finally, we assume that the
inter-sampling times of an edge e ∈ E is exponentially distributed with an associated rate λ,
i.e. the sampling parameter s will be a function of time and rate. Thus,

FF (t, λ) = s(t, λ) = 1 − e−λt. (5.29)

To apply the sampling model to real data, we will consider various versions of the model,
from the most parsimonious model to the most detailed use of information from real data.
In all cases, the goal is to find the edge-node curve, to investigate whether a power-law
relationship exists between the number of edges and nodes, and to compare the estimated
exponent with that of the real data to verify the edge sampling model. We suggest the
following experiments:

Simple Edge Sampling Model - Accumulation This is the simplest case where the only
parameters we use from the data are the empirical degree distribution of the underlying
graph, f̄(k), with n nodes and m edges, and the total number of exchanged messages
in [0, tf]. For the rate, we assume all edges have the same rate equal to the overall
average message rate per edge, i.e. λ = |M [0, tf]|/tf/m. Thus by fixing λ and changing
t from 0 to tf , we derive the edge sampling probability for each t using (5.29). We can
then derive different points in edge-node curve for each value of s using the following
equations:

m(s) = nd̄s/2

n(s) = n

∞∑

k=0

f̄(k)
[
1 − (1 − s)k

]
. (5.30)

5.6. Real Data Experiments and Variations of the Model 71

Note that here s is a function of t, and λ is fixed (s(t) = 1 − e−λt).

Simple Edge Sampling Model - Modulation In this case, we consider a fixed time win-
dow (thus t is fixed to 1). The parameters we use from data include the empirical degree
distribution of the underlying graph f̄(k), and the number of exchanged messages at
each window of time, i.e., |M [t, t]| (which would yield the total number of messages
|M [0, tf]| as well). Then, for each time window, we estimate an average message rate,
same for all edges, using the edge sampling intensity of that window, i.e. Λt = |M [t, t]|/Λ,
where Λ = |M [0, tf]|/tf is the overall average message rate (per time window). Thus
the average message rate per edge for each time window will be λ = Λt/m, fixed for all
edges in time-stamp t, and we can again use the empirical degree distribution f̄(k) and
equations (5.29) and (5.30) to derive the points in edge-node curve. Note that here s is
a function of λ and t is fixed to 1 (s(λ) = 1 − e−λt).

Edge Sampling Using Rate Distribution Here we use both empirical degree distribu-
tion f̄(k) and the rate distribution fR(λ) of the underlying accumulated graph. So, we
are using more detailed information from the data: the rate distribution. More specifi-
cally, rather than considering the average number of exchanged messages (overall or per
time window), we assume that we know the empirical edge-sampling rate distribution,
i.e., the distribution of the number of messages Mij exchanged over the whole period
of [0, tf]. Then, for each time instance t, we find m(s) and n(s) by using the degree
distribution and equations (5.30), knowing that here s can be derived by unconditioning
on λ as follows:

s =

∫ ∞

0
(1 − e−λt)fR(λ) dλ (5.31)

Now for the case of accumulation, by changing the parameter t (and thus s), we can
derive the edge-node curve using equations (5.30) and (5.31). Note that for the modu-
lation case, we must have for each time window a different rate distribution, and we set
t to 1. The rest of the argument is the same as above, only that different points on the
edge-node curve are obtained for different rate distributions for each time window.

Edge Sampling Using Exact Structure In this case, we use the exact structure of the
underlying accumulated graph, i.e. again more information of the underlying graph. In
other words, instead of using the degree/rate distribution of the edges, we consider every
edge and calculate its empirical rate λe (proportional to the sum of all the messages
the edge has exchanged over the period of the dataset). We iterate over all edges and
nodes of the underlying graph, and sum up their probability of being sampled using
their exact rates to obtain the total number of edges and nodes. This way we derive
the edge-node curve by varying either time instant t (and fixing λe for each edge), i.e.,
accumulation, or finding λe of each edge for each time window (and fixing t to 1), i.e.,
modulation. This can be summarized as follows:

m(t) =
∑

e∈E

(1 − eλet)

n(t) =
∑

v∈V

(1 − eλvt), (5.32)

72 Chapter 5. Network Densification

where λv corresponds to the rate of node v, equal to the sum of the rates of its incident
edges, i.e.

λv =
∑

e∈N (v)

λe, (5.33)

with N (v) denoting the neighborhood of node v.

Again note that for accumulation, the parameter t will be changed, whereas λe is fixed
for each edge (but different for all edges), and for modulation, t is fixed and λe’s change
for every time window.

In this dissertation, we show the results for the first two experiments, i.e., simple edge
sampling model, by using accumulation and modulation, and we show how well the edge
sampling model works for modeling the densification behavior. We leave further experiments
on the model to future work. We use an EPFL e-mail dataset for accumulation and modulation
models, and Autonomous Systems data only for modulation.

5.6.1 Simple Accumulation Model

We will consider an EPFL e-mail dataset described in Section 5.2. Recall that this dataset
leads to α-densification, as illustrated in Figure 5.1. Using the same dataset, we obtain
the necessary parameters to construct the edge sampling model, as described above. The
underlying graph is formed through the accumulation of edges and nodes over a 89-week
period, and the same overall average message rate (per edge) is applied for all edges. Finally,
we numerically compute n(t) and m(t) for this specific model. As with the original dataset,
t is measured in weeks and varies from 1 to 89.

10
5

10
5

10
6

10
7

n(t)

m
(t

)

α̂ = 1.8

Figure 5.8: The edge sampling model applied to the EPFL e-mail network dataset.

The results produced by the model are shown in Figure 5.8. The plot clearly indicates
that the edge sampling process leads to the densification of the number of edges versus nodes
that are discovered over time. Moreover, the densification produced by the model seems to
follow a power law, with α̂ = 1.8 (recall that α̂ is the slope of the line obtained through a
linear regression over the points in the plot). Surprisingly, this exponent closely matches the

5.6. Real Data Experiments and Variations of the Model 73

actual data (α̂ = 1.57, see Figure 5.1), which indicates that the edge sampling process is a
very plausible explanation for the observed densification.

To assess the goodness of the fitted slope, we consider the confidence interval for the slope
of the line obtained through linear regression in Figure 5.1. Using simple statistical tools,
we obtain the 95% confidence interval for the slope of the fitted line. For EPFL e-mail data
set, we find a confidence interval of (1.55, 1.57) with the slope being α̂ = 1.57. Thus, the
estimated slope is well above 1 with high probability, which shows a clear densification as the
network grows.

5.6.2 Simple Modulation Model

In this section we will apply the edge sampling model over a fixed window of time (proposed
in Section 5.5.1 as modulation) to real data. Recall that the basis for this model is that real
data is often provided in snapshots over a fixed window of time. Moreover, even when this is
not the case, data analysis often considers data only over a fixed window of time, varying the
position of the window over the dataset.

EPFL E-mail Dataset

We start by presenting the results for the actual EPFL e-mail dataset. Recall that the EPFL
e-mail dataset is provided in snapshots of weeks (i.e., all messages that were sent/received
during a given week). Thus, for each week t = 1, . . . , 89, we can define the graph G[t, t] =
(V [t, t], E[t, t]), which is defined using only messages exchanged during that week. For each
graph, we let n(t) = |V [t, t]| denote the number of nodes and m(t) = |E[t, t]| denote the
number of edges. Differently from before, notice that n(t) and m(t) correspond to the number
of nodes and edges respectively, seen on week t only.

Figure 5.9 shows the plot of n(t) versus m(t) for t = 1, . . . , 89 for the actual EPFL e-mail
dataset. Interestingly, we again observe densification despite the fact that information about
the graph is not accumulated over time. Thus, densification arises here for reasons other than
accumulation over time, as each point corresponds to exactly one week. Moreover, there is
no trend between time and the points in the plot. Although the points do not form a straight
line, there is a clear increasing trend among them. When fitted to a straight line, we obtain
a slope of α̂ = 1.89, as illustrated in the figure.

As before, we find the confidence interval for the estimated slope, which in this case is
(1.65, 2.12). Although the intervals do not express tight bounds, we can still claim that with
high probability we observe a clear densification.

In order to apply the simple edge sampling model through modulation, we again need
to determine its parameters. Besides the underlying graph and the sampling process, we
also need to determine the edge sampling intensity. We will estimate as before the actual
underlying graph and sampling process, by considering the graph accumulated over the entire
dataset and the average rate of messages per edge. We still need to determine, however, the
edge sampling intensity for each fixed time window.

Let Λt denote the edge sampling intensity of week t. We define Λt = |M [t, t]|/Λ, where
M [t, t] is the set of messages in the dataset during week t and Λ is the overall average message
rate (per week). In particular, we define Λ = |M [1, 89]|/89. Thus, Λt measures the average
intensity of the edge sampling rate of week t in relationship to the overall average edge

74 Chapter 5. Network Densification

10
4.2

10
4.4

10
4.6

10
4.8

10
4

10
5

10
6

n(t)

m
(t

)
α̂ = 1.89

Figure 5.9: Densification of EPFL e-mail dataset using a fixed time window (1 week).

sampling rate. In other words, the sampling parameter s will be a function of the modulating
intensity parameter in this case.

We can now apply the edge sampling model with a fixed time window. Notice that
each week t corresponds to a different time window with edge sampling intensity Λt. Figure
5.10 shows the expected number of nodes n(Λt) versus the expected number of edges m(Λt)
discovered for each week t. It is clear that the model yields densification when considering
the different weeks. Moreover, there is strong linear dependence between n(Λt) and m(Λt)
indicating a power law relationship. Finally, a straight line fitted to the data yields the slope
α̂ = 1.5, which is fairly close to the actual dataset, with a confidence interval far above 1. This
supports the claim that the proposed edge sampling model captures the discovery process of
edges and nodes.

10
5

10
4

10
5

10
6

n(Λ
t
)

m
(Λ

t) α̂ = 1.5

Figure 5.10: The edge sampling model with fixed time window applied to EPFL e-mail dataset
(1 week).

5.6. Real Data Experiments and Variations of the Model 75

AS Graph Dataset

In this section we consider another publicly available dataset, the AS graph. The Internet
today is composed of several thousands Autonomous Systems (ASs) that interconnect with
each other providing global connectivity. Most of ASs are owned and operated by Internet
Service Providers (ISPs) such as AT&T or MCI, and other ASs belong to smaller businesses
or universities. The interconnection of ASs forms a graph, which is known as the AS graph.

Information about the AS graph is provided daily through snapshots generated from an
aggregate of information about the network. However, for a myriad of reasons, these daily
snapshots provide only an estimate of the real AS graph. Moreover, the real AS graph
constantly changes, as both ASs and their interconnections are added and deleted over time.

We consider a dataset of the AS graph formed by 735 daily snapshots. As for the EPFL
e-mail dataset, each snapshot defines a graph G[t, t] = (V [t, t], E[t, t]) formed by all nodes and
edges that appear in day t. For each day t, we thus have a number of nodes n(t) = |V [t, t]|
and a number of edges e(t) = |E[t, t]|.

Figure 5.11 shows the result of plotting n(t) versus e(t) in log-log scale for all days.
Although the number of nodes and edges vary little from one day to another, the plot still
strongly indicates a power law densification with α̂ = 1.09.

To assess the goodness of this fit, we calculate the confidence interval for the slope, which
yields the interval (1.08, 1.1). Thus although α̂ is close to 1, with high probability it will be
a value above 1, resulting in densification.

10
3.4

10
3.5

10
3.6

10
3.7

10
3.8

10
4

n(t)

m
(t

) α̂ = 1.09

Figure 5.11: Densification of the AS graph dataset using a fixed time window (1 day).

We will apply the edge sampling model with fixed time window to the AS graph dataset.
Notice that since each snapshot provides full view of the AS graph, the edge sampling model
where information is accumulated over time is not suitable for this dataset. However, in order
to apply the fixed time window model we need to estimate its parameters from this dataset.
We execute the same procedure used for EPFL e-mail dataset, estimating the fixed underlying
graph and the edge sampling rates using the accumulated graph3. We also determine in the
same manner, for each daily snapshot, the edge sampling intensity.

3In the AS graph dataset, for each snapshot, each edge has either rate one (i.e., edge is present in the AS
graph) or zero (i.e., edge is not present).

76 Chapter 5. Network Densification

Figure 5.12 shows the result obtained with the model for the various sampling intensi-
ties Λt. Once again, we observe densification on the number of nodes and edges discovered
when considering each fixed time window. Moreover, there is a roughly linear trend in this
relationship, indicating a power law densification, with α̂ = 2, as illustrated in the plot.

10
3.3

10
3.4

10
3.5

10
3.6

10
3.7

10
4

n(Λ
t
)

m
(Λ

t)

α̂ = 2

Figure 5.12: The edge sampling model with fixed time window applied to the AS graph
dataset 1 day).

Although the slope of the fitted line (α̂) yielded by the model is not very close to that
of the actual data, we still believe the model is representative of how nodes and edges are
revealed in this dataset, and we observe a clear densifying behavior.

There can be different reasons the model does not match the data accurately. First,
the real underlying graph is unknown, and it also changes in time. In order to apply the
model to real data, we made the assumption of having the degree distribution of the final
accumulative graph for the underlying graph. As seen before, the degree distribution of the
underlying graph is a key factor in the densification behavior and the observed exponent.
Thus, this assumption surely affects the result when edge sampling is applied to real data.
Furthermore, in applying the model to fixed time windows, we estimated an average intensity
through finding the ratio of total number of messages in a fixed window and the total number
of messages in the final accumulative graph. How accurate this estimation is still needs to
be investigated on more datasets. In general, the mismatch with data is mostly due to the
fact that the simple edge sampling model uses minimal information from data, and the use
of more detailed information such as rate distribution or exact structure would increase the
accuracy.

We also applied the proposed models to the exact structure of the underlying graph (where
the underlying graph is given by the final cumulative graph), as opposed to considering only
the empirical degree distribution (i.e., the last experiment suggested in the beginning of Sec-
tion 5.6). Using the edge sampling model with exponential inter-sampling time distribution,
we observe that results from the model match real data very accurately for both cases of
accumulation and modulation (not shown here). This further strengthens our claim that
densification arises regardless of the process used for sampling the edges.

We have considered a couple other datasets analyzed by Leskovec et al. [66], namely the
IMDB actors-to-movies bipartite graph and arXiv citation graph. However, these datasets

5.7. Related Work 77

are not good examples to which the proposed edge sampling model can be applied. To be
more precise, in the citation graph, nodes (i.e., papers) in the graph appear first, and edges
(i.e., citations) appear afterwards, when a given paper cites another. Thus, in this dataset,
new nodes are not revealed through sampling the edges of the graph. In the IMDB dataset,
movies and actors correspond to the two different types of nodes of a bipartite graph. An
edge between a given pair of nodes is present when a given actor plays a role in a given movie.
Thus, each edge is sampled only once (i.e., when an actor plays in a new movie), as the
edge will never be sampled again, giving rise to a constant edge sampling rate for all edges.
For these reasons, in this work, we do not consider these datasets in the framework of the
proposed edge sampling model, and leave experiments on more datasets to future work.

5.7 Related Work

Network (or graph) densification is a phenomenon that was recently observed by Leskovec et
al. in various datasets of real-data over time [64, 66].

Most of the graphs considered in their work were generated by accumulating the data
available in the datasets over time. However, they also considered the case where the graph
is generated by considering only fixed windows of time. This is the case for the AS graph and
the e-mail network. For the e-mail network, they observe that the densification exponent is
larger for the fixed time window case, which is consistent with our observations.

Besides providing empirical evidence of network densification, Leskovec et al. also provide
mathematical models that can capture and partially explain this phenomenon [64, 66]. The
intuition behind their models is that densification occurs due to the growth of the network.
Basically, nodes arriving at a later point tend to establish more edges than nodes arrived
earlier. The proposed Forest Fire Model is based on this intuition and is a model for network
growth, where nodes and edges are added to the graph over time. They also prove that this
model leads to the densification of the network over time. Leskovec et al. also investigate
other growth models for networks, showing how properties such as power law densification
can arise, in particular when using the model of Kronecker Graphs [60, 57].

An observation similar to the findings of Leskovec et al. concerning network densification
was also previously made by Dorogovtsev and Mendes [24]. They empirically observed that
the graph formed by the World Wide Web was densifying over time, naming this phenomenon
accelerated growth. They also propose a model to capture this phenomenon where the average
node degree grows as a power law in time.

5.8 Summary

In this work we investigate the recently observed phenomenon known as densification, where
the number of edges of a network grows much faster than the number of nodes. We provide,
in particular, a novel explanation for this phenomenon when considering some real datasets.
The key idea is that densification arises naturally from the process used to reveal the edges
and nodes of the unknown underlying graph.

By assuming a heavy-tailed degree distribution for the underlying graph, we prove prop-
erties concerning the densification of the number of edges and nodes discovered over different
values for the sampling parameter. In particular, we show that a power law relationship,
which we call α-densification, can arise over a wide range of scales with exponent given by

78 Chapter 5. Network Densification

1
γ−1 , where γ is the power-law exponent of the node degree distribution of the underlying
graph. We also prove limiting results for densification exponent as s approaches both ex-
tremes (i.e., 0 and 1), and show that densification can be present and it is bounded for all
0 < s < 1.

Furthermore, we show that a graph densifies under edge sampling if and only if its under-
lying degree distribution is of the form of a power-law. This is the case for a wide range of
real-world graphs and suggests that densification can be observed in most real networks.

We also comment on the relationship of empirical network studies with the edge sampling
model, and specifically, on what factors affect the sampling probability s. We introduce two
observation models, namely accumulation and modulation. In the first variation, edges and
nodes are discovered and accumulated over time; in the second variation, time is fixed but
the edge sampling intensity for a given time window is allowed to vary.

Finally, we consider datasets of real graphs, namely the EPFL e-mail network and the
Internet AS graph, both of which show densification over time. We apply the two variations
of our model to these datasets and the results obtained indicate that the edge sampling model
is indeed a plausible alternative explanation for the observed densification phenomenon.

Publication [87]

Pedram Pedarsani, Daniel R. Figueiredo, and Matthias Grossglauser. Densification Arising
from Sampling Fixed Graphs. In Proceedings of the ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, SIGMETRICS ’08, pages
205–216, 2008.

5.A Appendix

Here we find upper and lower bounds for equation (5.10), i.e.

α(p) =
(1 − p)

(
1 −∑k f̄(k)(1 − p)k

)

p
∑

k f̄(k)k(1 − p)k

We first consider the upper bound. For p > 1/2, we have 1 − p < p. Thus we can write

(1 − p)
(
1 −∑k f̄(k)(1 − p)k

)

p
∑

k f̄(k)k(1 − p)k

(a)

≤ 1 − p∑
k f̄(k)k(1 − p)k

=
1

f̄(1) + f̄(2)(1 − p) + · · · ≤
1

f̄(1)

where (a) follows as the second term in the numerator is P (v), and thus less than 1.

Now we consider the lower bound. We can rewrite α(t) as

α(t) =

(
1 − p∑

k f̄(k)k(1 − p)k

)

︸ ︷︷ ︸
Q

(
1 −∑k f̄(k)(1 − p)k

p

)

︸ ︷︷ ︸
T

. (5.34)

Assuming f̄(0) = 0 (which is the case for Zipf distribution), and using
∑

k f̄(k) = 1, we
have,

Q =
f̄(1)(1 − p) + f̄(2)(1 − p) + f̄(3)(1 − p) + · · ·

f̄(1)(1 − p) + f̄(2) · 2e(1 − p)2 + · · · (5.35)

5.A. Appendix 79

Comparing the coefficients of f̄(k) in the numerator and denominator of (5.35) for all k > 1,
we have,

(1 − p) ≥ k(1 − p)k, k = 2, 3, . . . if ln
1

1 − p
≥ ln(k)

k − 1
. (5.36)

Since ln(k)
k−1 is a decreasing function of k, the condition p ≥ 1/2 (derived by substituting k = 2)

suffices to have each term in the numerator equal or greater than the corresponding term in
the denominator, i.e.

f̄(k)(1 − p) ≥ f̄(k)k(1 − p)k, k = 1, 2, 3, . . . if p ≥ 1/2, (5.37)

which results in Q ≥ 1. Note that for k = 1 the two corresponding terms are equal, thus
satisfying (5.37).

Following the same approach for T , we have,

T =
1 −

Y︷ ︸︸ ︷(
f̄(1)(1 − p) + f̄(2)(1 − p)2 + · · ·

)

1 −
(
f̄(1)(1 − p) + f̄(2)(1 − p) + · · ·

)
︸ ︷︷ ︸

Z

. (5.38)

Comparing the coefficients of f̄(k), k = 1, 2, . . . in Y and Z, we observe,

f̄(k)(1 − p)k ≤ f̄(k)(1 − p), k = 1, 2 . . . , (5.39)

which results in Z ≤ Y , yielding T ≥ 1. Thus,

α(t) = Q · T ≥ 1, if p ≥ 1/2, (5.40)

which proves the lower bound in equation (5.11).

Putting all together, we proved that for p ≥ 1/2,

1 ≤ α(p) ≤ 1

f̄(1)
. (5.41)

Next, we prove the two limiting results for α(p) as defined in equation (5.10). Define
α(p → 0) to be the limit of α(p) when p goes to zero. Thus,

α(p → 0) = lim
p→0

α(p)

= lim
p→0

(1 − p)
(
1 −∑k f̄(k)(1 − p)k

)

p
∑

k f̄(k)k(1 − p)k

= lim
p→0

1 −∑k f̄(k)(1 − pk + · · ·)
p
∑

k f̄(k)k(1 − pk · · ·) = 1

where we used Taylor’s expansion for (1 − p)k.

80 Chapter 5. Network Densification

Now define α(p → 1) to be the limit of α(p) when p goes to 1. Thus,

α(p → 1) = lim
p→1

α(p)

= lim
p→1

(1 − p)
(
1 −∑k f̄(k)(1 − p)k

)

p
∑

k f̄(k)k(1 − p)k

= lim
p→1

1 −∑k f̄(k)(1 − p)k

p
· (1 − p)∑

k f̄(k)k(1 − p)k

= lim
p→1

1 −∑k f̄(k)(1 − p)k

p
· 1∑

k f̄(k)k(1 − p)k−1

(b)
=

(
1 − f̄(0)

) (1

f̄(1)

)

=
1 − f̄(0)

f̄(1)
(5.42)

where (b) follows because in the first term of the product, the denominator goes to one and
all terms in the sum go to zero except for k = 0; in the second term of the product, all terms
in the sum go to zero except for k = 1.

Note that when f̄(0) = 0, equation (5.42) simplifies to 1
f̄(1)

. This simplification applies

in the case of the Zipf distribution, where f̄(0) = 0 independent of its parameter s and n.
Moreover, for the Zipf distribution, we have that f̄(1) = 1/A, where A is the normalization
factor of the distribution, which is given by

A =

n∑

i=1

1/is = 1 +
1

2s
+

1

3s
+ · · · +

1

ns
. (5.43)

Thus, for the Zipf distribution, we have that α(p → 1) = 1/f̄(1) = A.

Part III

Preserving Privacy in

Recommender Systems

81

6 Preserving Privacy in Collabora-
tive Filtering

In recommender systems, usually, a central server needs to have access to users’ profiles
in order to generate useful recommendations. Having this access, however, undermines the
users’ privacy. The more information is revealed to the server on the user-item relations,
the lower the users’ privacy is. Yet, hiding part of the profiles to increase the privacy comes
at the cost of recommendation accuracy or difficulty of implementing the method. In this
chapter, we propose a distributed mechanism for users to augment their profiles in a way that
obfuscates the user-item connection to an untrusted server, with minimum loss on the accuracy
of the recommender system. We rely on the central server to generate the recommendations.
However, each user stores his profile offline, modifies it by partly merging it with the profile
of similar users through direct contact with them, and only then periodically uploads his
profile to the server. We propose a metric to measure privacy at the system level, using graph
matching concepts. Our experiments on the Netflix prize dataset show that our method is
effective in solving the tradeoff between privacy and accuracy in recommender systems in an
applicable way.

6.1 Introduction

Recommendation systems are widely used to help users, overwhelmed by the huge number
of options available to them, find items that they might like. The items can be of any type:
books, movies, web pages, restaurants, sightseeing places, online news, and even lifestyles.
By collecting information about users’ preferences for different items, a recommender system
creates user profiles. The preferences of a user in the past can help the recommender system
predict other items that might also be of interest to the user in the future. Collaborative
filtering (CF), as one of the main categories of recommender systems, relies on the similarities
of users’ tastes: if two users have similar preferences for certain items, each user probably
enjoys the items of interest to the other. Thus, the more information each user gives about his
interests, the more meaningful the recommendations will be. This is the basis of CF systems.

In order to run the process of recommending items to users, recommender servers need
to have access to users’ profiles. Therefore, the profiles are usually stored on repositories to
which collaborative filtering algorithms can have access. In such systems, the users do not
have technical measures to limit the amount of information on their profiles to the server,
that might not be necessary for generating recommendations. In other words, users have to
place their profiles online (i.e., on the server) and trust the server (and the service providers)
to keep the users’ profiles private. The information available to the server hurts the privacy
of the users on two levels.

First, if a user’s real identity is available to the server, the server can associate the user’s

83

84 Chapter 6. Preserving Privacy in Collaborative Filtering

profile, which contains his private information, to his real identity (e.g., Amazon knows the
real identities and postal addresses of those who have purchased products and can link them
with the profiles of those users). This is an obvious privacy breach, considering that a user
does not want to reveal the link between his real identity and his profile to be revealed,
yet he wants to use the service. This threat becomes more obvious when users share their
opinion about the locations they regularly visit, e.g., restaurants, libraries, coffee shops, or
sport centers [3].

Second, even if the real identity of a user is not known to the server, it can try to de-
anonymize the user’s identity by correlating the information contained in the user’s profile
and some information obtained from other databases [80].

Obviously, hiding information from the server helps to thwart these threats. Nevertheless,
users want to receive accurate recommendations. Hence, the tradeoff between privacy and
accuracy appears. The more accurate information the server has about users’ profiles, the
more meaningful the server’s recommendations are, but the lower the users’ privacy will be.

Moving from centralized approaches to distributed collaborative filtering algorithms solves
the privacy issues to a great extent [14, 72]. Yet, distributed CF algorithms are not as accurate
as their centralized versions that have complete information about users’ profiles. Moreover,
they are not as practical as the centralized CF systems. The users’ cooperation is needed
not only to protect their privacy but also to make the system run properly. Making use
of sophisticated cryptographic tools [20] might be another approach to solving the problem.
However, these approaches are usually not practical and therefore remain unused. The security
of these systems depends on that of key establishment and management. Considering that
the perfect implementation of these schemes is hard to achieve in practice, they are not
well received. Therefore, finding a more practical solution that does not trade much system
accuracy in order to gain privacy for the users is an unsolved problem and yet crucial for
users of CF systems.

In this chapter, we propose a method that provides a compromise for the tradeoff between
privacy on the one hand and accuracy and practicality on the other hand. In other words,
our method increases the privacy in a practical way with a negligible effect on the recommen-
dation accuracy. To this end, we still rely on the central server to generate recommendations.
Additionally, we employ a distributed communication between users in order to improve their
privacy. In our model, each user has two versions of his profile: the online (on the server)
and the offline (located on the user’s side), where the online profile is frequently synchronized
with the offline version. Basically, the actual profile of a user is a subset of his offline profile.
Users’ offline profiles are aggregated in order to obfuscate the actual items rated by each user.
As we will show, the hybrid nature of our approach helps users gain privacy from distributed
aggregation and reach a level of accuracy comparable to the one achieved with a centralized
CF.

The remainder of this chapter is organized as follows. In Section 6.2, we define our
notations and basic elements of a CF and state the problem, i.e., privacy preserving in the
presence of an untrusted server. In Section 6.3, we provide an overview of the solution
and elaborate our approach. In Section 6.4, we define evaluation metrics for privacy and
recommendation accuracy. In Section 6.5, we validate the efficiency of our method by applying
it to the real data set from the Netflix prize competition. Finally, in Sections 6.6 and 6.7, we
review the related work and conclude.

6.2. Problem Statement 85

6.2 Problem Statement

6.2.1 Definitions and Notations

Formally, a collaborative filtering (CF) algorithm deals with a set of users and a set of items.
In our setting, the non-empty set of users in the system is denoted by U , where |U| = N .
We also represent the non-empty set of items by I, where |I| = M . Let ru,i(t) be the rating
of user u to item i at time t, where ru,i(t) ∈ {1, 2, · · · , rmax} and rmax is the maximum
valid rating. The set of items rated by user u up to time t is denoted by Iu(t) ⊆ I. The
profile of user u at time t is defined as {(i, ru,i(t)) s.t. i ∈ Iu(t)} which is the set of items
coupled with their ratings rated by the user until t. We denote by fi(t) the rating frequency
of item i at time t which is the fraction of users that have rated item i up to time t (i.e.,
fi(t) = |{u ∈ U s.t. i ∈ Iu(t)}|/N). To simplify the presentation, we sometimes omit the time
index if it is clear from the context.

Collaborative filtering algorithms attempt to make predictions on the ratings of a particu-
lar user by collecting taste information from other users. CF algorithms fall into two general
classes: model-based and memory-based methods [18]. Model-based algorithms learn a proba-
bilistic model from the underlying data using statistical techniques and then use the model to
make predictions. Memory-based methods find similar users or items in the dataset in order
to predict the items that a user might like and recommend them to him. This approach is
based on the assumption that similar users prefer similar items, or that the preferred items
of a user are similar. Memory-based CF methods can be further divided into two groups:
user-based and item-based [100]. User-based methods, which are the focus of this work, are
heuristics to predict a rating of a user to an item by combining the ratings of users who are
most similar to the target user (so called, the user’s neighbors). The Pearson’s correlation
coefficient [45], estimates the similarity wu,v between two users u and v, as follows.

wu,v =

∑
i∈(Iu∩Iv)

(ru,i − ru)(rv,i − rv)
√∑

i∈(Iu∩Iv)(ru,i − ru)2 ·∑i∈(Iu∩Iv)(rv,i − rv)2
(6.1)

where, ru is the mean of ratings by user u.

In order to predict the rating of user u to item i, first, the similarity of u to all other users
is computed and then the nearest neighbors of u, denoted by set Nu, are determined. The
set Nu contains |Nu| users who are, based on (6.1), most similar to u. Next, the prediction
of ru,i, denoted by r̂u,i, is done by combining the ratings of neighbors of u to item i [45, 94],
as follows.

r̂u,i = ru +

∑
v∈Nu

wu,v(rv,i − rv)∑
v∈Nu

wu,v
(6.2)

Finally, the items that have a high potential of interest to the user (i.e., are predicted to
have high and positive ratings) are recommended to him.

6.2.2 Problem Definition

We consider the scenario where a collaborative filtering algorithm (described in Section 6.2.1)
is implemented on a server and users provide information about their profiles to the server in
order to receive recommendations. We define the problem as finding a mechanism by which
the users can adapt their profiles (available to the server) to the privacy level they expect

86 Chapter 6. Preserving Privacy in Collaborative Filtering

from the system. The solution must have minimum effect on the system’s accuracy. We
assume the server to be untrusted, and we evaluate the level of privacy in the system with
respect to that. Yet, the information revealed among users themselves, if there is any need
for communication, must be under the users’ control (i.e., what information is given and to
whom). Intuitively, system privacy is high if the server is not able to construct the users’
profiles based on the information available to it.

6.3 Proposed Method

In this section, we first give an overview of our solution in Section 6.3.1, and we define a few
new concepts needed to describe our scheme. Next, in Sections 6.3.2 and 6.3.3 we formally
model the problem and our proposed solution.

6.3.1 Sketch of the Solution

We assume there is a central recommender system where users’ profiles are stored and from
which users receive recommendations. We call a user’s profile stored on the server his online
profile. We assume that a user has a local repository where he stores his own profile; we call
this locally stored profile the offline profile. The server does not have access to the users’
offline profiles and the recommendations are produced based on the online profiles available
to the server. Each user independently synchronizes his online profile with his offline profile.
Therefore, from time to time, the changes that have been made to the offline profile, since the
last synchronization, will be applied to the online version, all at once. Obviously, the recently
rated items are among these changes. In addition to these actual ratings, users add other
items to their profiles, which are not originally rated by them; instead, they are received from
other users with whom they communicate.

Users communicate with each other through different media such as face-to-face communi-
cation in a meeting, cellular networks, instant messaging through the Internet, communicating
via a social network, or by exchanging e-mails. We refer to any such communication as con-
tact between two users. A user arbitrarily selects his peers and certain information about
the users’ offline profiles is exchanged between the user and its peer at each contact. Based
on this information, they add a subset of the other user’s items to their own profiles. The
exchanged information between users, the number of items that are added to their profile and
the items (plus their associated ratings) that are selected for the aggregation depend on the
aggregation function they use.

From the server’s point of view, each user adds a batch of new items (plus the ratings) to
his online profile at each synchronization. It is not known to the server which of these items
have been actually rated by the user. In other words, the user’s actual profile is hidden from
the server; hence, there is privacy for the user. This, of course, comes at a cost: a drop in the
recommendation accuracy. In the next sections, we answer the following questions, in order
to find the appropriate aggregation functions: How many items should be aggregated during
a contact between two users? What items are better candidates for aggregation? What is the
effect of contact rate on privacy and accuracy?

6.3. Proposed Method 87

contact

i
1

i
2 i

3 i
4

i
5

i
6

i
7

i
1

i
2

i
3 i

4
i
5

i
6 i

7

u uv v

Figure 6.1: Aggregation of users’ offline profiles after a contact. A contact occurs between
users u and v at time t, with Ioff

u (t) = {i1, i2, i4, i6} and Ioff
v (t) = {i3, i4, i5, i7}. User u gives

{i2, i4, i6}, which is a subset of his profile, to v. User v also gives {i3, i5} to u. Additional
edges (dashed lines) appear after the aggregation, and the offline graph is evolved through
aggregating the new added edges. After the aggregation, Ioff

u (t+) = {i1, i2, i3, i4, i5, i6} and
Ioff
u (t+) = {i2, i3, i4, i5, i6, i7}.

6.3.2 The Model

We model users’ profiles by a weighted bipartite graph, where nodes denote the users and
items, and the weights correspond to the ratings of the users to the items.

Let Gt(U, V,E) be a bipartite weighted graph, where the vertex set U = U corresponds to
the users, the vertex set V = I corresponds to the items, and the edge set E(t) corresponds to
the users’ rating for the items until time t. Thus, an edge (u, i) ∈ E(t) exists when user u ∈ U
has rated item i ∈ V at some time before t. Each edge (u, i) has an associated weight ru,i(t)
denoting the rating of user u assigned to item i. In such a setting, a user’s profile or Iu(t) will
be the set of nodes adjacent to node u. We call Gt the actual graph, because it represents the
actual users’ ratings of the items, i.e., in the case that there is no privacy preserving method
in use.

Using our method, there will be two other graphs in the system. One represents the users’
online profiles and the other represents the users’ offline profiles.

We denote the offline graph by Goff
t (U, V,Eoff). This conceptual graph, which is stored

in a distributed manner, is formed by the aggregation of edges through users’ contacts and
by rating new items over time until t. The edges that are added to the offline graph appear
either as a result of actual ratings by the users, or through aggregation by contacting other
users. Hence, the actual graph Gt is embedded and hidden in Goff

t . We also denote Ioff
u (t)

to be the user’s offline profile at t. By definition, for every user u at any time t we have
Iu(t) ⊆ Ioff

u (t). Note that Ioff
u (t) \ Iu(t) is the set of items (plus their ratings) that are added

through aggregation to a user’s offline profile.

In our model, the online graph is denoted by Gon
t (U, V,Eon) and Ion

u (t) represents the
online profile of user u. The online graph gets updated over time when users synchronize
their online profiles with their offline versions. As a result, at any time, there might be some
edges in graph Goff

t that have not yet been added to the graph Gon
t . Therefore, Ion

u (t) ⊆ Ioff
u (t),

for every user u at any time t.

Figure 6.1 illustrates the effects of aggregation on the offline profiles of two users after their
contact. Assume two users u and v contact each other at time t, with offline profiles Ioff

u (t)
and Ioff

v (t) before the contact. We also denote Ioff
u (t+) and Ioff

v (t+) to be their offline profiles
after contact. As it is shown, each user (e.g., u) gives a subset of his own profile to his peer
(e.g., v) to be aggregated to the peer’s previous profile. The way they select the mentioned
subset is explained in the next section. Note that the added edges preserve their weights
(ratings). In the case the receiver is given an item that is already in his offline profile, he

88 Chapter 6. Preserving Privacy in Collaborative Filtering

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

t
1

t
2

t
3

t
4

u

Online GraphOffline Graph

Figure 6.2: Evolution of the offline (left column) and online (right column) graphs over time
(t1 < t2 < t3 < t4). Circles represent the items and the users are shown by the squares.
We focus on the profiles of user u, distinguished by the black square. In the left column,
the solid lines are the actual ratings of the users, and the dashed lines are the additional
ratings aggregated to the users’ offline profiles. Profiles Ioff

u and Ion
u are synchronized at

time t1. Graph Gon
t stays unchanged, regarding user u, until the next synchronization time t4.

Graph Goff
t is accumulated through addition of both actual rating edges (solid lines) and also

the aggregated edges (dashed lines). User u rates a new item at t2 and aggregates some other
items at t3. The solid lines in the right column (i.e., the online graph) indicate that the server
is unable to distinguish between the actual and dummy (i.e., those added through aggregation)
ratings. The grey lines belong to other users’ profile that are evolving independently of each
other.

updates its rating, if it is not an actual rating.

We assume each user, on average, contacts n users per time unit and these peers are
selected uniformly at random from U . The process of contacting other users and updating
the offline profiles continues for all users over time, in parallel with the process of actually
rating new items. Thus, graph Goff

t will be grown over time. More formally, for t1 < t2,
Ioff
u (t1) ⊆ Ioff

u (t2), i.e., the resulting bipartite graph Goff
t2 has the same vertex sets as Goff

t1 , and
Eoff(t1) ⊆ Eoff (t2).

Each user occasionally synchronizes his offline and online profiles at arbitrary time in-
stants. Thus, the online graph on the server changes dynamically over time. Figure 6.2 shows
this evolution.

We emphasize that each time a user synchronizes his online profile with the offline version,
the server is incapable of distinguishing between the new edges that belong to the user’s actual
profile and the edges added through aggregation. Moreover, users who contact each other have
access only to information derived from the offline profiles of their peers and cannot pinpoint
the actual items of each others’ offline profiles. Hence, a user’s privacy is protected not only
against the server but also against the other users.

In order to prevent a user from being confused about his own rated items, the process
of aggregation and also the aggregated items (i.e., his offline profile minus his actual profile)

6.3. Proposed Method 89

can be made transparent to the user. Hence, a user can add, remove, or modify his actual
ratings without any confusion, although he is able to find out what the extra items are in
his profile. From the server’s side, the server is not aware of which items are actually rated
by the user, and generates recommendations based on their online profiles. Therefore, the
server passes the top items that might be of interest to a user without filtering out the items
already existing in his profile. Instead, the process of filtering is done at the user’s side, in a
transparent way, i.e., the server recommends a set of highly recommended items to the user
and it is the user application that avoids recommending the items that are previously rated
by the user himself. This prevents a user from missing a recommendable item because it is
in his profile but not actually rated by the user.

6.3.3 Profile Aggregation

As described in the previous section, the process of updating graph Goff
t is accomplished

through an aggregation process where users contact each other and update their offline profiles
by adding a subset of their peer’s rated items to their own profile. Consider a contact between
users u and v at time t. We denote Iagg

v (t) (named the aggregated items from v) as the subset
of items (plus their ratings) in the offline profile of user v, which are added to the offline
profile of user u. Considering Ioff

u (t+) as the offline profile of u after the aggregation, the
following equation holds:

Ioff
u (t+) = Ioff

u (t) ∪ Iagg
v (t). (6.3)

The same argument holds for the inverse case (updated profile of v). Note that the added
edges keep the same rating value after being added to a user’s profile, i.e., assuming item i is
added to the offline profile of user u after his contact with user v, we have:

roffu,i(t
+) = roffv,i(t), i ∈ Iagg

v (t), i /∈ Iu(t). (6.4)

But, if the candidate item already exists in u’s actual profile, i.e., i ∈ Iagg
v (t)∩Iu(t), the rate

stays unchanged.
In order to choose the candidate items for aggregation, we should consider two issues:

1) The number of items to be aggregated (|Iagg
v (t)|), and 2) which subset of Ioff

v (t) (with
cardinality |Iagg

v (t)|) to select. We provide answers to these questions by introducing different
types of aggregation.

In this work, we introduce two possible aggregation processes, focusing on our key idea:
aggregation based on the similarity of the users who contact each other. We believe that this
approach yields the best performance of the system for preserving both privacy and accuracy.

Similarity-Based Aggregation

In this case, at each contact, the similarity of the two users is calculated using (6.1). Each
user then gives a proportion - equal to the similarity value - of his items in his offline profile
to the other user for aggregation, i.e., if we assume a contact between users u and v at time t,
using (6.3) we have,

|Ioff
u (t+)| ≤ |Ioff

u (t)| + ⌊simu,v · |Ioff
v (t)|⌋, (6.5)

where |Ioff
u (t+)| denotes the size of u’s offline profile after aggregation, and |Ioff

u (t)| and
|Ioff

v (t)| denote the size of u and v’s profiles before aggregation, respectively. Note that
|Iagg

v (t)| = ⌊simu,v · |Ioff
v (t)|⌋, and the equality holds when Ioff

u (t) ∩ Ioff
v (t) = φ. We denote

90 Chapter 6. Preserving Privacy in Collaborative Filtering

simu,v as the similarity between users u and v (value between 0 and 1) which is computed as
follows:

simu,v =

{
wu,v if wu,v > 0
0 otherwise

(6.6)

where wu,v is the Pearson’s correlation for the similarity of the users u and v. In other
words, the two users only accept the aggregated items when there is a positive similarity
between them, otherwise no aggregation occurs.

Although our main focus is on the protection of the users’ privacy against the untrusted
server and not against each other, we still can employ some tools to protect users’ privacy
from each other. Users, who contact each other, need to reveal their profiles to each other in
order to compute the similarity value. The level of privacy can be improved by using methods
that compute similarity between two profiles without revealing their content. Lathia et al.[56]
propose an interesting concordance measure to estimate the similarity between two users in
a distributed system without revealing their profiles to each other. This method can be used
when one user contacts another user in whom he has little trust.

To answer the question of “which subset of Ioff
v (t) to choose”, we notice that the items in

Iagg
v (t) can be chosen through different methods. We hereby suggest two ways:

• Similarity-based Minimum Rating Frequency
(SMRF) One way to choose the set Iagg

v (t) is to sort the elements of Ioff
v (t) by their

rating frequency, and select the first ⌊simu,v · |Ioff
v (t)|⌋ elements with minimum rating

frequency. In other words, we choose the subset of the user’s rated items that have been
least rated by the users in the system (i.e., in the online graph). We assume that the
server makes the current rating frequency of items, fon

i (t), available to the users.

• Similarity-based Random Selection (SRS) In this case, the ⌊simu,v · |Ioff
v (t)|⌋

candidate items are selected uniformly at random from the set of items in Ioff
v (t).

We evaluate the effectiveness of these aggregation functions and compare them in Sec-
tion 6.5.

Fixed Random-Selection Aggregation

Aside from choosing the aggregated items based on the similarity of users, we consider another
simple type of aggregation: fixed random selection, where each user gives a fixed fraction of
his rated items to the other user, i.e.,

|Ioff
u (t+)| ≤ |Ioff

u (t)| + ⌊c · |Ioff
v (t)|⌋, (6.7)

where, c is a constant value between 0 and 1. Note that here |Iagg
v (t)| = ⌊c · |Ioff

v (t)|⌋, and
the aggregated items are chosen uniformly at random.

• Union is an example of this aggregation, where each user gives all of his rated items to
the other user, i.e.,

Ioff
u (t+) = Ioff

u (t) ∪ Ioff
v (t). (6.8)

6.4. Evaluation Metrics 91

6.4 Evaluation Metrics

In this section, we describe our definition of privacy and recommendation accuracy. Following
the definitions, we formalize our metrics for evaluating the proposed method in terms of the
privacy gain and the accuracy loss.

6.4.1 Privacy Measurement

We define the lack of privacy as the amount of information the server has about the actual
profile of the users. In other words, it reflects how accurately the server can guess the actual
profile of the users (modeled as Gt) using the online graph Gon

t , and how valuable the estimated
profiles are, in terms of identifying the users and distinguishing between them. To define
privacy, we focus more on the users-items connection rather than on the ratings the users
assign to the items (for an adversary who tracks a user it is more interesting to know to which
places the user has been, rather than knowing the user’s opinion about those places).

To evaluate the privacy provided by our method, based on the above-mentioned privacy
definition, we define a privacy metric considering the graphs Gt and Gon

t . We emphasize that
privacy is preserved in our model through additional edges that exist in the online graph, but
not in the actual graph. Thus, we compute to what extent the structures of graphs Gt and
Gon

t are similar, as a higher structural difference accounts for higher privacy. This falls into
the subject of approximate graph matching introduced in Chapter 1, where the structures of
two graphs are compared with the goal of matching the correspondent nodes based on the
structures. In our problem, as the node set of the two graphs are the same, the structural
difference can be viewed as the difference between the corresponding edges.

Following the above discussion, we introduce the same error measure for edge-inconsistency
as used in Chapter 3. We consider only the structures of two given graphs G1(V,E1) and
G2(V,E2), where V denotes the node set (the same for both graphs), and E1 and E2 denote
different edge sets. The matching error ∆ is defined as the number of edges that exist in one
graph with their corresponding edges not existing in the other graph:

∆ =
∑

(u,i)∈E1

1{(u,i)/∈E2} +
∑

(u,i)∈E2

1{(u,i)/∈E1}, (6.9)

where 1{A} denotes the indicator function on A, and (u, i) denotes an edge between nodes u
and i in either of the two graphs.

In our setting, graphs Gt and Gon
t correspond to G1 and G2 respectively, with their node

set divided into two sets V and U to exhibit the bipartite property of users and items. The
privacy metric is equivalent to the matching error ∆, as ∆ counts the number of differences
in the corresponding edges of two graphs, and higher structural difference results in higher
privacy. In our case, the first sum in (6.9) is zero, because Gon

t is an accumulated version of
Gt. Consider our own notations, where Ion

u and Iu stand for the items associated with user u
in his online and actual graphs, respectively. Counting the edges by iterating over the user
set U , the matching error can be written as:

∆ =
∑

u

∑

i∈Ion
u

1{i/∈Iu}. (6.10)

However, Narayanan and Shmatikov [80] show that an item with a high rating frequency
contains less information about those who have rated the item than an item with a low rating

92 Chapter 6. Preserving Privacy in Collaborative Filtering

frequency (e.g., it is more valuable, in identifying a user, to know that a user has purchased
“The Color of Pomegranates” than the fact that he purchased a Harry Potter DVD). Their
result shows that the higher the rating frequency of an item is, the more important this item is
for identifying users associated with that item, thus the more valuable it is in system privacy
preservation. If an adversary (the one who wants to break users’ privacy) falsely believes that
someone has rated an item with a low rating frequency, then the user’s privacy is much higher
than the case where the item has a high rating frequency.

Hence, we use the rating frequency fi in (6.10) to weight the items. We then normalize
it per user by dividing it by its maximum value for each user. This also guarantees a value
between 0 and 1 for the system privacy. Thus, privacy in the current work can be defined
as the normalized weighted edge-difference function over the node pairs of the two graphs.
Rewriting (6.10), this can be expressed as follows. For the sake of simplicity, we omit the
time index.

privacy =
1

N
·
∑

u



∑

i∈(Ion
u \Iu)

(
1
fi

)

∑
i∈Ion

u
(1
fi

)


 (6.11)

To put is simply, looking at the bipartite graph, for each user we compute the weighted
difference of his rated items in graphs Gt and Gon

t , with the weights being the inverse of the
item’s rating frequency. The overall system privacy is then computed as the normalized sum
of all such terms for all users. Such a metric captures both the server’s chance for successfully
guessing the users’ actual profiles and the importance of the profiles in identifying the users
(using the rating frequency).

Let us look more closely at how the privacy metric can be interpreted. The closer the
privacy metric of a system is to one, the harder it is for the adversary to distinguish the actual
profiles of the users from their online profiles. Moreover, it becomes harder for the adversary
to distinguish between users and to de-anonymize their profiles [80]. As the privacy metric
approaches one, the privacy gain becomes slower by adding more items to the profile of users,
whereas its growth is faster for small privacy values. The privacy becomes one if the actual
graph is infinitely small compared to the online graph and it is zero if they are the same. It
is important to note that this metric is not designed to compare the privacy of two systems
with different settings, but rather to reflect the privacy gain inside a system.

Note that there are some items in a user’s offline profile whose rating changes due to 1)
being rated later by the user himself, 2) being received again from contacting users. The
first subset is not distinguishable from the second and their ratio intuitively follows (6.11).
Therefore, we do not re-evaluate the effect of this factor on the users’ privacy.

6.4.2 Recommendation Accuracy

Modifying the users’ actual profiles in order to increase their privacy level may reduce the
accuracy of the recommendation system. We measure the cost of running our method as the
difference between the recommendation error in our system and the system with no privacy.
In both cases we compute the recommendation error based on RMSE. Let Îu denote the set
of predicted items in the recommender system for user u. The system error for any graph G
is computed as follows (the same for graph Gon).

RMSE(G) =

√∑
u

∑
i∈Îu

(ru,i − r̂u,i)2

∑
u |Îu|

(6.12)

6.5. Experimental Results 93

Finally, the cost of using our method is computed as the percentage of the accuracy loss,
i.e., the additional imposed error, formalized as follows.

accuracy loss =
RMSE(Gon) −RMSE(G)

RMSE(G)
(6.13)

6.5 Experimental Results

In this section, we validate the effectiveness of our model and the mechanisms we proposed
in Section 6.3. First, we describe the data set that we use in our experiments and explain our
simulation model. Next, we evaluate the effectiveness of different aggregation functions used
in our mechanism based on the metrics described in Section 6.4.

In each experiment, we used a subset of the Netflix data set, released for Netflix prize [2],
containing 300 randomly chosen profiles with ratings between early 2001 and late 2006. The
ratings are on a scale from one to five (integral) stars.

To evaluate recommendation accuracy, we use 10% of the actual ratings of each user as the
testing set and the remaining 90% as the training set. For each experiment, we evaluate the
privacy achievement and also the accuracy of the system for different values of user contact
rates. Contacts between users are selected uniformly at random, both for the contacting peers
and their time of contact. We evaluate the privacy and accuracy of an aggregation function
with respect to the average users’ contact rate. This evaluation is made at the end of each
experiment (December 2006). The particular contact rate determines the average number
of users a given user has contact with per year. Besides, in all experiments the number of
neighbors of each user, needed for generating recommendations, was selected to be 30 (i.e.,
|Nu| = 30 for any user u). Outcome of various experiments are averaged over different over
different random contact sets to obtain the final results. In this setting, we implemented the
following aggregation functions.

• Similarity-based minimum rating frequency (SMRF)

• Similarity-based random selection (SRS)

• Union aggregation

The Union function provides the maximum privacy that can be achieved using our method.
Therefore, it acts as a benchmark to evaluate the effectiveness of the similarity-based aggre-
gation functions.

Figures 6.3(a) and 6.3(b) illustrate the privacy metric and accuracy loss, respectively, for
different aggregation functions, calculated using (6.11) and (6.13). From these results, one
observes the privacy-accuracy trade-off for different mechanisms, and can select the appro-
priate type of aggregation. The effect of contact rate on the privacy level and accuracy loss
is also shown.

We observe from Figure 6.3(a) that the system privacy level quickly approaches the max-
imum value of one as the average contact rate increases, under union aggregation. Moreover,
when this aggregation is used, the users’ profiles (offline and therefore online) become flatter
as time goes on (i.e., users’ profiles become more similar). However, this leads to a consider-
able decrease in system accuracy compared to the other aggregation functions (Figure 6.3(b)
shows a fast increase in accuracy loss for Union function). On the other hand, Figure 6.3(b)

94 Chapter 6. Preserving Privacy in Collaborative Filtering

shows that the other two methods SRS and SMRF suffer only a slight decline in the system
accuracy, in comparison with Union aggregation, for different values of contact rate.

The efficiency of our mechanism becomes more apparent when we observe that a small
number of contacts per user substantially increases the privacy level and imposes minor de-
crease in accuracy. For instance, observe that under SMRF (SRS) aggregation, a contact rate
of 6 per year per user results in 0.64 (0.48) increment in system privacy with an accuracy loss
of less than 2% (1%).

We observe that although SRS causes a smaller accuracy loss, the larger increase in system
privacy under SMRF identifies it as a good alternative mechanism. This is due to the fact that
sorting the aggregated candidates by minimum rating frequency makes the users difficult to
distinguish by the server. However, SRS is the most practical aggregation function, as it is not
dependent on any system parameter or any information from the server. Another advantage
of SRS over SMRF is the stability of its accuracy loss for different contact rate values.

In general, experimental results validate our proposed mechanism in preserving privacy in
a distributed way. The results show that similarity-based aggregation achieves good results
in terms of higher system privacy with a negligible effect on accuracy loss for small average
contact rates. When users have information about the rating frequency of items, giving the
items with minimum rating frequency to their peers increases the privacy. This is because it
increases the number of users who have rated sensitive items of a user (i.e., the items that help
identifying the user). Yet, if such information is not available for users, the SRS aggregation
can be used, which provides a bit less privacy but imposes a lower accuracy loss. SRS is also
more stable (in terms of the accuracy loss) for different contact rate values. The key factor
of similarity-based aggregation functions is that they preserve the similarity between users
almost unchanged, compared to the case where there is no privacy protection mechanism in
use.

6.6 Related Work

Several techniques have been proposed to preserve the privacy of users in recommender sys-
tems. Perturbing users’ ratings, using cryptographic tools such as homomorphic cryptogra-
phy, and storing users’ profiles in a distributed manner are the main categories for privacy
preservation in collaborative filtering systems.

Polat and Du [91] propose a randomized perturbation technique to preserve privacy in
collaborative filtering. Users’ ratings are modified by adding random noise to them in order
to prevent the central server from deriving the users’ actual ratings. The challenge is to find a
perturbation algorithm that imposes the smallest error on the recommendation process. The
users enjoy a high level of privacy if the server is not able to estimate the actual ratings they
assigned to the items. However, the items rated by the users are revealed in the proposed
technique, regardless of the perturbation level. This is despite the fact that keeping the
connection between users and items is more crucial (in order to preserve users’ privacy) than
disguising the ratings assigned to those connections. Revealing the places visited by the users
to the server enables it to track users over space and time, whether they liked those places or
not.

Canny [20, 21] proposes the use of homomorphic cryptography in the public server in
order to hide the operations of the recommender system. In the proposed method, users
create communities and each user searches for recommendations from the most appropriate

6.6. Related Work 95

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Yearly Contact Rate of Users

S
ys

te
m

 P
riv

ac
y

UNION
SMRF
SRS

(a) Privacy gain for different users’ contact rate

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Average Yearly Contact Rate of Users

A
cc

ur
ac

y
Lo

ss

UNION
SMRF
SRS

(b) Accuracy loss for different users’ contact rate

Figure 6.3: Performance of different aggregation functions with respect to the achieved privacy
and drop in system accuracy.

96 Chapter 6. Preserving Privacy in Collaborative Filtering

community with the hope of receiving more valuable recommendations, rather than asking
from those who have similar profiles. Each community of users can compute a public aggregate
of their profiles, which does not expose the individuals’ profiles. Homomorphic cryptography
allows the users to hide the aggregation operation from the server, although it is performed
by the server itself. Participation of users in the distributed system to provide privacy for
others was assumed to happen in this work, which might not be the case in reality. Moreover,
the implementation of such a cryptographic scheme, especially its required key management,
is difficult to achieve, considering the status of the current usage of cryptographic systems in
the Internet. Similar ideas are proposed in [4] where homomorphic cryptography is used to
hide similarity measurement from server’s eyes.

Storing users’ profiles on their own side and running the recommender system in a dis-
tributed manner, without relying on any server, is another option. Miller et al.[72] propose
transmitting only the similarity measures over the network and keeping users’ profiles secret
on their side to preserve their privacy. Berkovsky et al.[14] propose a distributed P2P system
to avoid storing users’ profiles on a single server. Although these methods eliminate the main
source of threat against users’ privacy, they need high cooperation among users to generate
meaningful recommendations. Every user pays the price of using this method, regardless of
his interest in protecting his privacy.

Lathia et al.[56] propose a concordance measure to estimate the similarity between two
users in a distributed system without revealing their actual profiles to each other. A randomly
generated temporal profile is shared between two users, and both of them compute the number
of concordant, discordant and tied pairs of ratings between their own profile and the temporal
profile. Exchanging the results, they are able to estimate the similarity between their profiles.
Hence, they keep the items they have rated as well as the rating values private. In this
method, users need to reveal their profiles for generating recommendations. Therefore, this
method provides privacy only for measuring similarity, not for a collaborative filtering system
as a whole. Two users who do not trust each other, in our proposed method, can use Lathia’s
method to estimate their similarity.

Finally, the concept of approximate graph matching – from which the idea of privacy metric
in this work was inspired – has been widely studied in literature. We refer to Section 2.2 for
a more in-depth discussion of the related work in this field.

6.7 Summary

In this work, we proposed a novel method for privacy preservation in collaborative filtering
recommendation systems. We addressed the problem of protecting the users’ privacy in the
presence of an untrusted central server, where the server has access to users’ profiles. To
avoid privacy violation, we proposed a mechanism where users store locally an offline profile
on their own side, hidden from the server, and an online profile on the server from which the
server generates the recommendations. The online profiles of different users are frequently
synchronized with their offline versions in an independent and distributed way. Using a graph
theoretic approach, we developed a model where each user arbitrarily contacts other users
over time, and modifies his own offline profile through a process known as aggregation. To
evaluate the privacy of the system, we applied our model to the Netflix prize data set to
investigate the privacy-accuracy tradeoff for different aggregation types. Through experi-
ments, we showed that such a mechanism can lead to a high level of privacy through a proper

6.7. Summary 97

choice of aggregation functions, while having a marginal negative effect on the accuracy of the
recommendation system. The results illustrate that similarity-based aggregation functions,
where users receive items from other users proportional to the similarity between them, yield
a considerable privacy level at a very low accuracy loss.

As future work, our mechanism can be implemented in a realistic setting in which users
contact each other based on their friendship (e.g., in social networks) or their physical vicinity
(e.g., using wireless peer-to-peer communication). In such a setting, various practical issues
such as the effect of the privacy preserving mechanism on the overhead of users’ profiles and
their maintenance, and the acceptability of the system in a real world scenario can be inves-
tigated. Moreover, the robustness of the algorithm to sophisticated adversarial attacks and
its relation to the proposed metric are worth studying.

Publication [101]

R. Shokri, P. Pedarsani, G. Theodorakopoulos and J.-P. Hubaux. Preserving Privacy in
Collaborative Filtering through Distributed Aggregation of Offline Profiles. In
Proceedings of ACM International Conference on Recommender Systems, RecSys ’09, pages
157-164, 2009.

Conclusion

With the rapid growth of social networks and the increasing availability of network data,
the study of such networks has gained particular attention in the recent years. In this work,
we have studied two aspects of social and complex networks. First, we have looked into
the privacy issue in social networks. Network owners and social network operators release
extensive amounts of data to the public for research and marketing purposes. In most cases,
they apply anonymization techniques in order to protect the privacy of users in the released
data. We have investigated how the availability of side information threatens the identification
of users in anonymized network data. Furthermore, we have introduced a privacy-preserving
mechanism for social recommender systems. Second, we have investigated network evolution
and the dynamics of social networks. It has been recently observed that social networks tend
to become denser over time. We have proposed a novel explanation for the evolution of social
networks and their densification.

In Part I, we study network de-anonymization and how to infer user identities from
anonymized network data. In Chapter 2, we define our approach to the de-anonymization
problem. We assume the only information available to the attacker is an anonymized target
network (an unlabeled graph), and an auxiliary network that is derived from some publicly
available resource and is structurally similar to the anonymized graph. We introduce the de-
anonymization problem as a graph matching problem, where the goal is to find the mapping
between the nodes of two overlapping graphs by using only their structures. This is referred
to as approximate graph matching. We review the literature on network de-anonymization
and approximate graph matching at the end of this chapter.

In Chapter 3, we push further the theoretical aspect of the matching problem. We
first introduce a new probabilistic model for the structural similarity of two graphs. We
assume that each graph is a sample from an underlying generator graph and that a sampling
probability (or similarity parameter) controls the amount of similarity between the graphs. We
introduce a sampling process that samples every edge in the graph with the same probability s,
independent of all other edges. Applying this process twice on the generator graph, we obtain
two correlated (edge-)overlapping graphs that are structurally similar but not identical. Using
this model and considering a G(n, p) random graph model for the underlying graph, we
establish conditions on the network parameters and on the similarity under which an attacker
with infinite computational power can perfectly match the nodes with high probability as the
graph size grows large. More specifically, we derive a lower-bound for the similarity of two
networks above which perfect matching is feasible, and we show that the bound is indeed a
mild condition on the scaling of the average degree with the number of nodes, which is the
case for many real networks. Our theoretical results imply that de-anonymization is feasible in
the presence of some minimal side information: the structural similarity to a known network.

In Chapter 4, we look into the algorithmic perspective of approximate graph matching:

99

100 Conclusion

how to match two structurally similar large graphs in an efficient way. Relying on the same
probabilistic model for the similarity of two graphs, we propose a novel iterative algorithm for
graph matching. At each phase of the algorithm, we consider a set of candidate nodes to be
mapped; for every node in this set, we define a fingerprint including a set of node attributes,
namely its degree and its distances to previously mapped nodes in the corresponding graph.
Using these fingerprints and introducing models for node distances and degrees after sampling,
we develop a clean Bayesian framework to compute the posterior probability of two nodes
being a correct match. Using all pair-wise posteriors, we transform the matching problem to a
maximum weighted bipartite matching problem at each phase. Unlike some recently proposed
methods, our algorithm relies on no initial seed set and uses only the network structures to
build the map incrementally. Furthermore, we show the efficiency of our algorithm to match
a high percentage of nodes by applying it to real data.

Part II, including Chapter 5, contains our contribution for the second direction of
this thesis: network dynamics. We study the evolution of social networks and a recently
observed phenomenon in social networks known as densification: the super-linear growth of
the number of edges versus nodes as the network evolves, and thus the increase of the average
degree over time. Observing how network data is gathered and used in practice, we introduce
an observation process, where the edges of a fixed underlying graph are sampled, and nodes
are revealed only indirectly through the edges. We show that this model leads to densification,
both theoretically and experimentally. We also establish conditions for densification, and show
a direct relationship between a power-law degree distribution and power-law densification,
which is verified in experiments. Our results imply that densification, rather than an inherent
property of social and complex networks, is due to an observation bias and results from the
way we observe real networks.

Finally, in Part III and Chapter 6 we elaborate on our additional work on privacy in
recommendation systems. We consider a collaborative filtering recommender system, and
a scenario in which users intend to preserve their privacy by hiding their profiles from an
untrusted recommander server while receiving accurate recommendations. We propose a
model where each user modifies his/her profile before revealing it to the server. In a process
called aggregation, each user contacts other random users at arbitrary points in time, and
reveals an aggregated profile to the server. Our experiments on real data show that our
method yields high-level privacy for users at a low accuracy loss.

Future Research Directions

The results of this thesis indicate that it is possible to break user privacy by using only graph
structure as the side information attained from an auxiliary source. Although most of our
works in this direction are based on a specific similarity model, the results imply the need
for designing smarter and more efficient methods of publishing user data in order to protect
users’ privacy. Our work can be extended in various directions.

• The theoretical approach for finding the conditions for graph matching used edge sam-
pling to model the similarity of two networks. Currently, we are working on solving the
same problem for node sampling, where every node is sampled with some probability,
independently of all other nodes. Next, to generalize our approach, a breakthrough in
this direction would be the combination of edge and node sampling, which would give
the most general model for the similarity of two networks. Furthermore, the choice of

101

a random graph as the generator can be extended to more realistic types of graphs,
although the mathematical tractability could be an obstacle to generalizing the results
in this regards. Finally, the threshold for the feasibility of matching in the random
graph model could potentially be improved if the condition is relaxed to matching the
nodes of the giant connected components of the two graphs, rather than all nodes.

• Our matching algorithm is distinguished from other methods in the literature because it
uses no a priori information (no initial seeds) other than graph structures. This suggests
that even though the algorithm complexity might hinder the matching of the graphs of
tens of millions of nodes, it can still be used for matching a subset of nodes over a few
iterations, fixing them as seeds, and then using the seeds with an existing propagation
algorithm as in [81] to match all nodes.

• We applied our matching algorithm to a dataset of EPFL e-mail exchanges. The al-
gorithm can be applied to other real datasets of interest and used not only for de-
anonymization but also for other application purposes. An interesting example is
matching documents from two different languages, e.g., cross-referencing dictionaries,
or matching Wikipedia pages from different languages.

• Based on our results, keeping a network anonymous is difficult, knowing that adversaries
can access various side information from other sources. Our method suggests that any
kind of structural information can be used as node attributes and might leak some
information about the node. A promising research direction could be how to perturb
the structure of the graph in order to keep it private while preserving global statistics for
graph properties; thus the released data could still be useful for research purposes. More
fundamentally, we could study how to release network data and guarantee no leak in
user identities. There have been several works in the database community on the notion
of differential privacy for minimizing the chance of identifying records in the database
[27, 28]; in graph literature, there are also some preliminary works on differential private
release of network data while maintaining some structural information for public or
research use [42, 73]. However, this is still an immature area with strong potential for
research.

Bibliography

[1] AOL Search Data Scandal. http://en.wikipedia.org/wiki/
AOL_search_data_scandal.

[2] Netflix prize, http://www.netflixprize.com.

[3] Rummble, http://www.rummble.com.

[4] W. Ahmad and A. Khokhar. An architecture for privacy preserving collaborative filter-
ing on web portals. In International Symposium on Information Assurance and Security
(IAS), Aug. 2007.

[5] William Aiello, Fan Chung, and Linyuan Lu. A Random Graph Model for Massive
Graphs. In STOC ’00, pages 171–180, 2000.

[6] R. Albert and A. Barabasi. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1):47–97, 2002.

[7] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore Art Thou R3579X?:
Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In
WWW ’07, pages 181–190, 2007.

[8] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group forma-
tion in large social networks: membership, growth, and evolution. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’06, pages 44–54, 2006.

[9] Lars Backstrom, Ravi Kumar, Cameron Marlow, Jasmine Novak, and Andrew Tomkins.
Preferential behavior in online groups. In Proceedings of the international conference
on Web search and web data mining, WSDM ’08, pages 117–128, 2008.

[10] A. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286:509–
512, 1999.

[11] A. Barabasi and E. Bonbeau. Scale-free networks. Sci Am, 288(5):60–69, May 2003.

[12] Albert László Barabási. Scale-free networks: A decade and beyond. Science, 325:412,
2009.

[13] E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant, and C. Boeres. Inexact graph
matching using learning and simulation of bayesian networks. an empirical comparison
between different approaches with synthetic data. In Workshop Notes of CaNew2000:
Workshop on Bayesian and Causal Networks: From Inference to Data Mining, 2000.

103

http://en.wikipedia.org/wiki/
AOL_search_data_scandal

104 BIBLIOGRAPHY

[14] Shlomo Berkovsky, Yaniv Eytani, Tsvi Kuflik, and Francesco Ricci. Enhancing privacy
and preserving accuracy of a distributed collaborative filtering. In Proceedings of ACM
RecSys, 2007.

[15] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D-U. Hwang. Complex networks
: Structure and dynamics. Physics Reports, 424(4-5):175–308, feb 2006.

[16] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D-U. Hwang. Complex Networks:
Structure and Dynamics. Physics Reports, 424(4-5):175–308, 2006.

[17] B. Bollobas. Random Graphs (2nd edition). Cambridge University Press, 2001.

[18] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. Microsoft Research, 1998.

[19] Tibério S. Caetano, Julian John McAuley, Li Cheng, Quoc V. Le, and Alexander J.
Smola. Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 31(6),
2009.

[20] J. Canny. Collaborative filtering with privacy. In IEEE Symposium on Security and
Privacy, 2002.

[21] John Canny. Collaborative filtering with privacy via factor analysis. In ACM SIGIR,
2002.

[22] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and
James Scott. Impact of Human Mobility on Opportunistic Forwarding Algorithms.
IEEE Transactions on Mobile Computing, 6:606–620, 2007.

[23] Li Chen and Ho Keung Tsoi. Privacy concern and trust in using social network sites:
a comparison between french and chinese users. In Proceedings of the 13th IFIP TC 13
international conference on Human-computer interaction - Volume Part III, INTER-
ACT’11, pages 234–241, 2011.

[24] S. N. Dorogovtsev and J. F. F. Mendes. Accelerated growth of networks. In Handbook
of Graphs and Networks: From the Genome to the Internet, S. Bornholdt and H.G.
Schuster, Eds, Wiley-VCH, Berlin, Germany, 2002.

[25] Ran Duan and Hsin-Hao Su. A scaling algorithm for maximum weight matching in
bipartite graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, pages 1413–1424, 2012.

[26] Olivier Duchenne, Francis Bach, In-So Kweon, and Jean Ponce. A tensor-based algo-
rithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 33(12),
2011.

[27] Cynthia Dwork. Differential privacy. In in ICALP, pages 1–12, 2006.

[28] Cynthia Dwork. Differential privacy: a survey of results. In Proceedings of the 5th in-
ternational conference on Theory and applications of models of computation, TAMC’08,
pages 1–19, 2008.

BIBLIOGRAPHY 105

[29] Holger Ebel, Jörn Davidsen, and Stefan Bornholdt. Dynamics of social networks. Com-
plexity, 2002.

[30] David Emms, Richard C. Wilson, and Edwin R. Hancock. Graph matching using the
interference of discrete-time quantum walks. Image Vision Comput., 27(7):934–949,
2009.

[31] Francisco Escolano, Edwin R. Hancock, and Miguel Angel Lozano. Graph matching
through entropic manifold alignment. In CVPR, pages 2417–2424, 2011.

[32] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network problems.
SIAM J. Comput., 18(5):1013–1036, 1989.

[33] M. Garey and D. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[34] M. Gjoka, M. Kurant, C.T. Butts, and A. Markopoulou. Walking in facebook: A case
study of unbiased sampling of osns. In INFOCOM, 2010 Proceedings IEEE, march 2010.

[35] K.-I. Goh, Y.-H. Eom, H. Jeong, B. Kahng, and D. Kim. Structure and evolution of
online social relationships: Heterogeneity in unrestricted discussions. Physical Review,
73, June 2006.

[36] Jennifer Golbeck. The dynamics of web-based social networks: Membership, relation-
ships, and change. First Monday, 12, 2007.

[37] Andrew V. Goldberg and Robert Kennedy. An efficient cost scaling algorithm for the
assignment problem. MATH. PROGRAM, 71:153–177, 1995.

[38] Marco Gori, Marco Maggini, and Lorenzo Sarti. Exact and Approximate Graph Match-
ing Using Random Walks. IEEE Trans. Pattern Anal. Mach. Intell., 27(7):1100–1111,
2005.

[39] Ralph Gross and Alessandro Acquisti. Information Revelation and Privacy in Online
Social Networks. In WPES ’05: Proceedings of the 2005 ACM workshop on Privacy in
the electronic society, pages 71–80, 2005.

[40] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in Online Social Networks. In
WOSN’08: Workshop on Online Social Networks, 2008.

[41] Muhammad Haseeb and Edwin R. Hancock. Feature point matching using a hermitian
property matrix. In SIMBAD, pages 321–332, 2011.

[42] M. Hay, Chao Li, G. Miklau, and D. Jensen. Accurate estimation of the degree distribu-
tion of private networks. In Data Mining, 2009. ICDM ’09. Ninth IEEE International
Conference on, pages 169 –178, 2009.

[43] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Chao Li. Resisting
Structural Re-Identification in Anonymized Networks. VLDB Journal, 19(6), December
2010.

106 BIBLIOGRAPHY

[44] Xiaoyun He, Jaideep Vaidya, Basit Shafiq, Nabil Adam, and Vijay Atluri. Preserving
privacy in social networks: A structure-aware approach. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology - Volume 01, pages 647–654, Washington, DC, USA, 2009. IEEE
Computer Society.

[45] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorithmic
framework for performing collaborative filtering. In ACM SIGIR, 1999.

[46] Shawndra Hill, Foster Provost, and Chris Volinsky. Network-based Marketing: Identi-
fying Likely Adopters via Consumer Networks. Statistical Science, 21:256–276, 2006.

[47] S. Janson, T. Luczak, and A. Ruciński. Random Graphs. Wiley, 2000.

[48] E.M. Jin, M. Girvan, and M.E.J. Newman. Structure of growing social networks. Phys.
Rev. E, 64(4), September 2001.

[49] Brian Karrer and M. E. J. Newman. Random Graph Models for Directed Acyclic
Networks. Physical review. E, 2009.

[50] J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The web
as a graph: measurements, models and methods. In Proc. of the 5th International
Computing and combinatorics Conference (COCOON), 1999.

[51] Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proc.
32nd ACM Symposium on Theory of Computing (STOC), 2000.

[52] Aleksandra Korolova, Rajeev Motwani, Shubha U. Nabar, and Ying Xu. Link Privacy in
Social Networks. In CIKM ’08: Proceeding of the 17th ACM conference on Information
and knowledge management, pages 289–298, 2008.

[53] Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The Structure of Information
Pathways in a Social Communication Network. In KDD ’08, pages 435–443, 2008.

[54] B. Krishnamurthy and C. Willis. Characterizing Privacy in Online Social Networks. In
WOSN’08: Workshop on Online Social Networks, 2008.

[55] Victor V. Kryssanov, Frank J. Rinaldo, Evgeny L. Kuleshov, and Hitoshi Ogawa. Mod-
eling the dynamics of social networks. CoRR, 2006.

[56] Neal Lathia, Stephen Hailes, and Licia Capra. Private distributed collaborative filtering
using estimated concordance measures. In Proceedings of ACM RecSys, 2007.

[57] J. Leskovec and C. Faloutsos. Scalable modeling of real graphs using kronecker multi-
plication. In International Conference on Machine Learning (ICML), 2007.

[58] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-Tracking and the Dynamics
of the News Cycle. In KDD ’09, pages 497–506, 2009.

[59] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic evo-
lution of social networks. In Proceedings of the 14th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, KDD ’08, pages 462–470, 2008.

BIBLIOGRAPHY 107

[60] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos. Realistic,
mathematically tractable graph generation and evolution, using kronecker multiplica-
tion. In European Conference on Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD), 2005.

[61] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin
Ghahramani. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn.
Res., 11:985–1042, 2010.

[62] Jure Leskovec and Christos Faloutsos. Sampling from Large Graphs. In KDD ’06, pages
631–636, 2006.

[63] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting Positive and Nega-
tive Links in Online Social Networks. In WWW ’10, pages 641–650, 2010.

[64] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification
laws, shrinking diameters and possible explanations. In ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), 2005.

[65] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over Time: Densification
Laws, Shrinking Diameters and Possible Explanations. In KDD ’05, pages 177–187,
2005.

[66] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification
and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (ACM
TKDD), 1(1), 2007.

[67] Jure Leskovec, Ajit Singh, and Jon Kleinberg. Patterns of influence in a recommendation
network. In Proceedings of the 10th Pacific-Asia conference on Advances in Knowledge
Discovery and Data Mining, PAKDD’06, pages 380–389, 2006.

[68] L. Li, D. Alderson, J. Doyle, and W. Willinger. Towards a theory of scale-free graphs:
Definition, properties, and implications. Internet Mathematics, 2(4), 2006.

[69] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In
Proc. of the twelfth international conference on Information and knowledge management
(CIKM), pages 556–559, 2004.

[70] Bin Luo and Edwin R. Hancock. Structural Graph Matching Using the EM Algo-
rithm and Singular Value Decomposition. IEEE Trans. Pattern Anal. Mach. Intell.,
23(10):1120–1136, 2001.

[71] David Martin and Andrew Schulman. Deanonymizing Users of the SafeWeb Anonymiz-
ing Service. In Proceedings of the 11th USENIX Security Symposium, pages 123–137,
2002.

[72] Bradley N. Miller, Joseph A. Konstan, and John Riedl. Pocketlens: Toward a personal
recommender system. ACM Trans. Inf. Syst., 22(3), 2004.

[73] Darakhshan J. Mir and Rebecca N. Wright. A differentially private graph estimator.
In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops,
ICDMW ’09, 2009.

108 BIBLIOGRAPHY

[74] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Growth of the Flickr Social Network. In WOSP ’08: Proceedings of the
first workshop on Online social networks, pages 25–30, 2008.

[75] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and Analysis of Online Social Networks. In IMC ’07:
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pages
29–42, 2007.

[76] Prateek Mittal, Charalampos Papamanthou, and Dawn Song. Preserving link privacy
in social network based systems. CoRR, 2012.

[77] Richard Myers, Richard C. Wilson, and Edwin R. Hancock. Bayesian Graph Edit
Distance. IEEE Trans. Pattern Anal. Mach. Intell., 22(6), 2000.

[78] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethencourt, Emil Ste-
fanov, Eui Chul Richard Shin, and Dawn Song. On the feasibility of internet-scale
author identification. In Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP ’12, pages 300–314, 2012.

[79] Arvind Narayanan, Elaine Shi, and Benjamin I. P. Rubinstein. Link prediction by de-
anonymization: How we won the kaggle social network challenge. In IJCNN, pages
1825–1834, 2011.

[80] Arvind Narayanan and Vitaly Shmatikov. Robust De-anonymization of Large Sparse
Datasets. In SP ’08: Proceedings of the 2008 IEEE Symposium on Security and Privacy,
pages 111–125, 2008.

[81] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing Social Networks. Security
and Privacy, IEEE Symposium on, 0:173–187, 2009.

[82] Arvind Narayanan and Vitaly Shmatikov. Myths and fallacies of ”personally identifiable
information”. Commun. ACM, 53(6):24–26, June 2010.

[83] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social
networks. Proceedings of the National Academy of Sciences of the United States of
America, 99(Suppl 1):2566–2572, 2002.

[84] M.E.J. Newman. The structure and function of complex networks. SIAM Reviews,
45(2):167–256, March 2003.

[85] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach.
Intell., 26(10):1367–1372, 2004.

[86] Gergely Palla, Albert lászló Barabási, Tamás Vicsek, and Budapest Hungary. Quanti-
fying social group evolution. Nature, 446, 2007.

[87] Pedram Pedarsani, Daniel R. Figueiredo, and Matthias Grossglauser. Densification
arising from sampling fixed graphs. In SIGMETRICS ’08, pages 205–216, 2008.

BIBLIOGRAPHY 109

[88] Pedram Pedarsani, Daniel R. Figueiredo, and Matthias Grossglauser. A bayesian
method for matching two similar graphs without side information. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining,
submitted.

[89] Pedram Pedarsani and Matthias Grossglauser. On the privacy of anonymized networks.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, KDD ’11, pages 1235–1243, 2011.

[90] Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, undetectability, un-
observability, pseudonymity, and identity management – a consolidated proposal for
terminology, 2008.

[91] Huseyin Polat and Wenliang Du. Privacy-preserving collaborative filtering using ran-
domized perturbation techniques. In Proceedings of IEEE ICDM, 2003.

[92] Novi Quadrianto, Alex J. Smola, Le Song, and Tinne Tuytelaars. Kernelized sorting.
IEEE Trans. Pattern Anal. Mach. Intell., 32(10), 2010.

[93] Anand Rangarajan, James M. Coughlan, and Alan L. Yuille. A bayesian network
framework for relational shape matching. In ICCV, pages 671–678, 2003.

[94] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of ACM Conference
on Computer Supported Cooperative Work, 1994.

[95] Bruno Ribeiro and Don Towsley. Estimating and sampling graphs with multidimen-
sional random walks. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, IMC ’10, pages 390–403, 2010.

[96] Bruno F. Ribeiro, Pinghui Wang, Fabricio Murai, and Don Towsley. Sampling directed
graphs with random walks. In INFOCOM, pages 1692–1700. IEEE, 2012.

[97] Yossi Richter, Elad Yom-Tov, and Noam Slonim. Predicting Customer Churn in Mobile
Networks through Analysis of Social Groups. In Proc. SIAM Int’l Conference on Data
Mining (SDM) 2010, 2010.

[98] John Riordan. An Introduction to Combinatorial Analysis. Wiley, 1958.

[99] A. Sanfeliu and K. Fu. A Distance Measure between Attributed Relational Graphs
for Pattern Recognition. IEEE Transactions On Systems, Man, and Cybernetics,
13(3):353–362, 1983.

[100] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based collabo-
rative filtering recommendation algorithms. In WWW, 2001.

[101] Reza Shokri, Pedram Pedarsani, George Theodorakopoulos, and Jean-Pierre Hubaux.
Preserving privacy in collaborative filtering through distributed aggregation of offline
profiles. In Proceedings of the third ACM conference on Recommender systems, RecSys
’09, pages 157–164, 2009.

110 BIBLIOGRAPHY

[102] Yuanyuan Tian and Jignesh M. Patel. TALE: A Tool for Approximate Large Graph
Matching. Data Engineering, International Conference on, 0:963–972, 2008.

[103] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, 23(1):31–42, 1976.

[104] Tianyi Wang, Yang Chen, Zengbin Zhang, Peng Sun, Beixing Deng, and Xing Li.
Unbiased sampling in directed social graph. In Proceedings of the ACM SIGCOMM
2010 conference, SIGCOMM ’10, pages 401–402, 2010.

[105] Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan Hui, Beixing
Deng, and Xing Li. Understanding graph sampling algorithms for social network analy-
sis. In Proceedings of the 2011 31st International Conference on Distributed Computing
Systems Workshops, ICDCSW ’11, pages 123–128, 2011.

[106] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, June 1998.

[107] Mark L. Williams, Richard C. Wilson, and Edwin R. Hancock. Multiple graph matching
with bayesian inference. Pattern Recognition Letters, 18(11-13):1275–128, 1997.

[108] Richard C. Wilson and Edwin R. Hancock. A bayesian compatibility model for graph
matching. Pattern Recognition Letters, 17(3):263–276, 1996.

[109] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. A Practical
Attack to De-Anonymize Social Network Users. In IEEE Symposium on Security &
Privacy, 2010.

[110] Bai Xiao, Edwin R. Hancock, and Richard C. Wilson. A generative model for graph
matching and embedding. Computer Vision and Image Understanding, 113(7):777–789,
2009.

[111] Mikhail Zaslavskiy, Francis R. Bach, and Jean-Philippe Vert. A path following algorithm
for the graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell., 31(12), 2009.

[112] Bin Zhou and Jian Pei. Preserving Privacy in Social Networks Against Neighborhood
Attacks. In ICDE ’08: Proceedings of the 2008 IEEE 24th International Conference on
Data Engineering, pages 506–515, 2008.

Index

anonymization, 2
approximate graph matching, 3, 12, 13, 28,

31, 91
Autonomous Systems dataset, 75
auxiliary information, see side information

Bayes’ rule, 34
Bayesian inference, 32
binomial random variable, 20, 38
bipartite graph, 40, 87

Chernoff bound, 30
collaborative filtering, 83

centralized, 84
distributed, 84
memory-based, 85

item-based, 85
user-based, 85

model-based, 85
complex network, 4
complex networks, 1, 53

de-anonymization, 2, 12, 15
densification, 4, 53

cutoff, 59
regimes, 59

differential privacy, 101

edge overlap, 26, 44, 45
edge sampling, 5, 16, 33, 53, 56

independent edge sampling, 27
sampling parameter, 17, 46, 56, 64, 66

EPFL e-mail network, 25, 43, 45, 55, 72

First Moment Method, 19
forest fire model, 4, 53

generator graph, see underlying graph
graph isomorphism, 31

automorphism, 16, 22
graph matching, 11, 31

graph sampling, 4, 33

Hungarian algorithm, 39, 41

law of large numbers, 49

matching algorithm, 32, 39
anchor, 33, 36, 39
Bayesian framework, 33
complexity, 41
confidence metric, 32
cost function, 32, 34
iterative, 33, 39
matching posterior, 34, 44
node degree, 35, 39
normalization of posteriors, 42
pair-wise distance, 35, 39
prior distributions, 46
statistical framework, 32

matching error, 44, 45
maximum weighted bipartite matching, 40, 41

Netflix prize dataset, 93
network evolution, 3, 5, 54
node attributes, 34

absolute attributes, 34
relative attributes, 34

node mismatch, 22, 36

observation models
accumulation model, 53, 68, 70
exact structure, 71
modulation model, 54, 69, 71
rate distribution, 71

Pearson’s Chi-Square test, 27
Pearson’s correlation coefficient, 85
permutation, 16

identity permutation, 18, 20–22
non-identity permutation, 19
order-k permutation, 18

111

112 INDEX

personally identifiable information, 2, 11
power-law degree distribution, 54

degree exponent, 62, 65
power-law densification, 53, 60

densification exponent, 61, 62, 65
preserving privacy in collaborative filtering

offline graph, 87
online graph, 87, 91
privacy measure, 91
profile aggregation, 86, 87, 89

similarity-based minimum rating frequency,
90, 93

similarity-based random selection, 90,
93

union aggregation, 90, 93
profile synchronization, 88
users’ contact, 86, 87

privacy-preserving, 2, 83

random graph, 16
G(n, p; s) model, 16
Erdös-Rényi random graph, 16

re-identification, see de-anonymization
recommendation accuracy, 92, 93
recommendation systems, 83

seed set, 2, 31, 101
side information, 2, 101
similarity parameter, 16, 23
social networks, 1

dynamics, 3, 53
privacy, 1

sparse graph, 29
sparse graphs, 32
structural similarity, 5, 16, 25, 31

cost function, 17, 91
edge-consistency, 17, 91

underlying graph, 5, 53
fixed, 5, 53

untrusted server, 86
user identities, 11
user privacy, 1, 11, 83

anonymity, 2
user profiles, 83

offline, 84, 86
online, 84, 86

user ratings, 85, 87

users’ similarity, 85

Zipf distribution, 63, 64

Pedram

Pedarsani

PhD in Communication Systems and Computer Science
 “Specialized in IT, Data Mining, Big Data Analysis and Statistical Modeling”

Address:

Chemin de Crissier 16
1008 Jouxtens-Mézery

Switzerland
Phone:

+41 77 410 05 31

30, married, Iranian (having work authorization)
work permit B (CH), permanent residence Canada
E-mail:

pedram.pedarsani@epfl.ch

Website:

http://people.epfl.ch/pedram.pedarsani

Work Experience

2007 – 2013

Sep-Nov 2008
Nov-Dec 2009

2006 - 2007

2006

2004

EPFL, Lausanne: Research Assistant and PhD candidate in LCA (Laboratory for computer

Communications and Applications)

 Thesis project title: Privacy and Dynamics of Social Networks

 Research Tasks

 Social networks mining and analysis

 Theoretical study and probabilistic modeling of complex and social networks

 Data mining and statistical analysis of large graphs, datasets of real networks and big data

 Proposing probabilistic models for network structures and the dynamics of networks

 Investigating privacy issues and the threat of user identification in anonymous network data

 Presenting research work in various meetings and prestigious ACM conferences

 Achievements

 Developing a new model for social networks growth and the surprising densification behavior

 Proposing a highly efficient mechanism for preserving users privacy in recommender systems

 Demonstrating the privacy threat for user identification in social networks, and showing both
analytically and experimentally that an anonymized network is sensitive to privacy attacks

 Introducing a new practical efficient algorithm to break anonymity in social network data

 Teaching / Supervising Tasks:

 Teaching assistant for several undergraduate courses
 Supervising Semester and Master projects

Nokia Research Center, Helsinki: Researcher/Visitor in Internet Laboratory

 Tasks: Investigating privacy issues in social networks, focusing on “network de-anonymization”

 Achievements: Introducing a novel theoretical framework for de-anonymizing social networks

EPFL, Lausanne: Master project in Laboratory for computer Communications and Applications

 Project title: Social Networks, Modeling and Applications

EPFL, Lausanne: Semester project in Laboratory of Information and Communication Systems

 Project title: Distributed Detection in Wireless Ad Hoc Sensor Networks

Iran Telecommunications Research Center (ITRC), Tehran, Iran: Internship in

Communications theory group.

 Project title: OFDM and its applications

Education

Apr 2007- March
2013

2005 – 2007

2001 – 2005

LCA, EPFL, Lausanne: PhD Candidate & Research Assistant, Computer Science and

Communication Systems. Expected graduation date: January 2013.

EPFL, Lausanne: M.Sc. in Communication Systems, with “Specialization in Wireless

Communications”. Overall GPA: 5.32/6.

University Of Tehran, Iran: B.Sc. in Electrical Engineering – Telecommunications. Overall GPA:

18.50/20.00

mailto:pedram.pedarsani@epfl.ch
http://people.epfl.ch/pedram.pedarsani

Publications

2013

2011

2009

2008

Pedram Pedarsani, Daniel R. Figueiredo and Matthias Grossglauser. A Bayesian Method for
Matching Two Similar Graphs without Side Information. Submitted to 2013 ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD ’13.

Pedram Pedarsani and Matthias Grossglauser. On the Privacy of Anonymized Networks. In

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’11, pages 1235–1243, 2011.

Reza Shokri, Pedram Pedarsani, George Theodorakopoulos and Jean-Pierre Hubaux. Preserving
Privacy in Collaborative Filtering through Distributed Aggregation of Offline Profiles. In

Proceedings of ACM International Conference on Recommender Systems, RecSys ’09, pages 157-
164, 2009.

Pedram Pedarsani, Daniel R. Figueiredo, and Matthias Grossglauser. Densification Arising from
Sampling Fixed Graphs. In Proceedings of the ACM SIGMETRICS international conference on

measurement and modeling of computer systems, SIGMETRICS ’08, pages 205–216, 2008.

Competences

Research/Career
competences

Soft Skills /
Leadership

Computer Skills

Language Skills

 Probability theory and statistics, graph theory and stochastic processes

 Data mining, matching learning, and big data analysis

 Algorithmic skills for the analysis of large graphs and datasets

 Knowledge of communication networks, wireless communication and internet protocols

 Good communication, organizational and language skills

 Teamwork / Project Management and Leadership

 Co-founder and President of “Iranian Students Association at EPFL (IRSA)” in 2008
 Supervising various student projects at LCA, EPFL (2007-2012)
 Knowledge and interest in management and economy (e.g., taking microeconomics PhD course)

 Java, C, C++, Python, SQL, LaTeX, Matlab, MS Office, Windows, Linux

 English: fluent (spoken & written), having TOEFL, GRE and FCE certificates

 French: very good (spoken & written), having level B2 certificate

 German: basic

 Persian: excellent (native speaker)

Teaching 

Spring 2010

Spring 2009
Fall 2007

Fall 2006

Spring 2005

Fall 2004

Fall 2004
Spring 2004

 “Informatique II”, EPFL, STI Department

 “Programmation”, EPFL, ENAC Department

 “Computer Networks”, EPFL, IC Department

 “Signal Processing for Communication”, EPFL, IC Department

 “Engineering Mathematics”, University of Tehran, ECE Department

 “Engineering Mathematics”, University of Tehran, ECE Department

 “Linear Control Systems”, University of Tehran, ECE Department

 “Engineering Mathematics”, University of Tehran, ECE Department

Relevant Graduate
Courses



 Dynamical Networks

 Pattern Classification and Machine Learning

 Stochastic Models in Communications and Computer Science

 Advanced Analysis of Algorithms

 Models and Methods for Random Networks

 Advanced Digital Communications

 Information Theory

 Mobile Networks

 Mobile Satellite Communications

 Wireless Communications and Mobility

 Advanced Signal Processing: Wavelets and Applications

 Microeconomics

Honors & Awards

2005 – 2007

2003 – 2005

 Departmental Fellowship at EPFL (in terms of financial aid covering all educational and living

expenses).

 Ranked 1
st

 in Communications field, Electrical Engineering, University of Tehran.

Interests

Music

 Sport



 Playing Piano for 8 years, and Santur (an Iranian traditional musical instrument) for 9 years

 Participating in several competitions and public/private concerts of both piano and santur

 Tennis, Swimming, Fitness, Hiking, Running

