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Abstract

Firstly, a dynamical analysis of adiabatic perturbations of a perfect

fluid is performed to first-order about a general FLRW background

using the 1 + 3 covariant and gauge-invariant formalism. The 1 +

3 covariant analog of the Mukhanov-Sasaki and Grishchuk variables

needed to quantise the scalar and tensor perturbations respectively

about a spatially-curved FLRW background space-time are identified.

The dynamics of the vector perturbations is also discussed.

Secondly, a dynamical analysis of an inhomogeneous and anisotropic

effective Weyssenhoff fluid, which is a perfect fluid with spin in the

Einstein-Cartan theory, is performed by Brechet et al. (2007) in a

gauge-invariant manner using the 1 + 3 covariant and gauge-invariant

approach. A verification of the dynamical equations is performed for

the special case of irrotational flow with zero peculiar acceleration by

evolving the constraints.

Thirdly, a dynamical analysis of an effective homogeneous and irrota-

tional Weyssenhoff fluid in general relativity is performed by Brechet

et al. (2008) using the 1 + 3 covariant and gauge-invariant approach.

The spin contributions to the field equations produce a bounce that

averts an initial singularity, provided that the spin density exceeds the

rate of shear. At later times, when the spin contribution can be ne-

glected, a Weyssenhoff fluid reduces to a standard cosmological fluid

in general relativity. Numerical solutions for the time evolution of the

generalised scale factor R(t) in spatially-curved models are presented,

some of which exhibit eternal oscillatory behaviour without any sin-

gularities. In spatially-flat models, analytical solutions for particular

values of the equation-of-state parameter are derived. Although the



scale factor of a Weyssenhoff fluid generically has a positive temporal

curvature near a bounce (i.e. R̈(t) > 0), it requires unreasonable fine

tuning of the equation-of-state parameter to produce a sufficiently

extended period of inflation to fit the current observational data.

Fourthly, in order to determine numerically the background dynamics

of general inflationary models, suitable classical initial conditions have

to be found from which to start the integration of the equations of

motion. The method proposed by Boyanovsky, de Vega and Sanchez

assumes a spatially-flat model with an inflaton potential typical of

new inflation and determines the initial conditions at a time when

the inflaton field is at the local maximum of the potential by assum-

ing equipartition of the kinetic and potential energies of the inflaton

field. This leaves the normalisation of the solutions undetermined.

The procedure followed by Lasenby and Doran assumes a spatially-

closed model with a chaotic inflaton potential and determines the

initial conditions as the model emerges from the initial singularity

by performing a series expansion. We note that quite generically im-

mediately after the initial singularity, the pre-inflationary dynamics

of the universe is dominated by the kinetic energy of the inflaton,

which naturally yields analytic solutions for any spatial curvature −
provided there is no bounce − with no dependence on the potential.

This therefore suggests a new generic way of setting initial conditions

for inflation. Using this new procedure, we determine the initial con-

ditions for chaotic and new inflation potentials and study both the

subsequent background evolution and the spectrum of scalar pertur-

bations produced in the spatially-flat case.
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Chapter 1

Introduction

Cosmology is the study of the dynamics and content of the Universe as a whole.

Until the dawn of the 20th century, space and time were regarded as two distinct

entities, and the universe was considered as static, infinite and eternal. Einstein

(1905) overthrew the prevailing paradigm by showing that space and time are not

independent notions but form a single four dimensional continuum called ‘space-

time’. In his theory of General Relativity, Einstein (1916) went even one step

further by relating the dynamics of physical bodies to the geometry of space-time.

The first cosmological model based on General Relativity that Einstein (1917)

developed was a static model of the cosmos, which he studied for philosophical

reasons but finally rejected after Hubble (1929) discovered that the observable

universe was expanding. Friedman (1922) and Lemaitre (1927) independently

showed how the expansion of the universe could be described by a spatially ho-

mogeneous and isotropic model obeying the field equations of General Relativity.

The expansion pointed to an extremely hot origin of the Universe, called the

“Big Bang”, which was predicted by Alpher et al. (1948) to leave a thermal relic

radiation. This prediction was confirmed by Penzias & Wilson (1970) with the

discovery of the cosmic microwave background radiation (CMB), which estab-

lished the hot Big Bang model as a cosmological paradigm.

On sufficiently large scales, the observable universe has been shown by Mather

et al. (1992) to be almost homogeneous and isotropic based on observations of

the CMB using the satellite COBE. Thus, to a very good approximation the

geometry of the universe obeys the Cosmological Principle and can be described

1



by the homogeneous and isotropic Friedman (1924)-Lemaitre (1927)-Robertson

(1935)-Walker (1937) or FLRW space-time metric, which is sometimes referred

to as FRW or simply RW metric. The cosmological models based on an FLRW

geometry are very successful in explaining the major features of the observed

universe, but they fail to describe accurately the ‘real’ universe due to their

highly idealised degree of symmetry, which does not correspond to the ‘lumpy’

real universe. Although these models can describe the ‘smoothed-out’ features

of the observable universe on large scales, one needs to perturb them in order to

get realistic ‘almost-FLRW’ universe models, which account for the presence of

inhomogeneities and anisotropies arising during structure formation.

Cosmological perturbation theory about a FLRW background metric was ini-

tiated by Lifschitz (1947) and extended notably by Grishchuk (1974), Bardeen

(1980), Mukhanov et al. (1992), and Kodama & Sasaki (1984). This is the stan-

dard approach to performing a perturbation analysis of general relativity in order

to describe the ‘realistic’ dynamics of cosmological models. It has the disadvan-

tage that truly physical results can be obtained only after completely specifying

the correspondence between the ‘real’ perturbed space-time and a ‘fictitious’ un-

perturbed FLRW background space-time. Such a correspondence is not uniquely

defined and changes under a gauge transformation. The degrees of freedom in the

definition of the correspondence, or the gauge freedom, leave unphysical gauge

modes in the dynamical equations describing the evolution of the perturbations

as mentioned by Bruni et al. (1992a). This gauge problem described by Lifshitz &

Khalatnikov (1963) and Sachs & Wolfe (1967) is inherent to such a ‘background-

based’ perturbation approach. Indeed, the metric, and consequently the Einstein

equations, have 10 degrees of freedom whereas the dynamics is determined by

6 parameters only. Therefore, the 4 remaining degrees of freedom are directly

related to the gauge.

To solve this problem, Bardeen (1980) determined a set of gauge-invariant

quantities to describe the perturbations and derived their dynamical equations.

These quantities are mathematically well defined but do not have a transparent

geometrical meaning since they are defined with respect to a particular coordinate

system as mentioned by Stewart (1990), and their physical meaning is obscure as

stated by Ellis et al. (1989).

2



1.1 1 + 3 covariant formalism

An alternative way to circumvent the gauge problem is to follow the 1 + 3-

covariant approach, which was developed by Heckmann & Schücking (1955), Ray-

chaudhuri (1957), and Ehlers (1961), and extended by Hawking (1966), Olson

(1976) and Ellis & Bruni (1989). We shall pursue that approach in this disserta-

tion.

1.1 1 + 3 covariant formalism

The aim of the 1 + 3 covariant and gauge-invariant approach is to study the

dynamics of real cosmological fluid models in a physically transparent manner.

This formalism relies on covariantly defined variables, which are gauge-invariant

by construction as explained by Bruni et al. (1992a), thus simplifying the method-

ology and clarifying the physical interpretation of the models. It also allows the

metric to be arbitrary. The formalism uses the kinematic quantities, the energy-

momentum tensor of the fluid, the ‘electric’ and ‘magnetic’ parts of the Weyl ten-

sor, instead of the metric, which in itself does not provide a covariant description,

as explained by Tsagas et al. (2008). The key equations are the Ricci and Bianchi

identities, applied to the fluid 4-velocity vector, while Einsteins equations are in-

corporated via algebraic relations between the Ricci and the energy-momentum

tensor. This approach admits a covariant and gauge-invariant linearisation that

allows a first-order perturbation analysis to be performed in a direct manner, as

mentioned by Challinor (2000) and explained in Section 1.1.3.

To introduce the 1 + 3 covariant formalism, we follow the approach outlined

by Ellis & van Elst (1999). For convenience, we follow Hawking (1966) and Ellis &

Bruni (1989) by adopting the (−,+,+,+) signature convention for the Lorentzian

metric throughout this dissertation. This choice of signature is particularly ap-

propriate for the 1 + 3 covariant formalism. Indeed, using such a formalism,

the dynamical equations are projected on the local spatial hypersurfaces, which

are positively defined for our signature convention. The correspondence for dy-

namical quantities expressed in terms of the opposite signature convention used

by Obukhov & Korotky (1987) and Brechet et al. (2007) can be found in Ap-

pendix A. For convenience, we use Planck or ‘natural’ units (G = c = ~ = 1).

3



1.1 1 + 3 covariant formalism

1.1.1 1 + 3 decomposition

The 1+3 covariant and gauge-invariant approach is based on a 1+3 decomposition

of geometric quantities with respect to a fundamental 4-velocity ua that uniquely

determines the frame and the worldline of every infinitesimal volume element of

fluid,

ua =
dxa

dτ
, uau

a = −1 , (1.1)

where xa are arbitrary cosmic coordinates, and τ is the proper time measured

along the worldlines. In the context of a general cosmological model, we require

that the 4-velocity be chosen in a physical manner such that in the FLRW limit

the dipole of the cosmic microwave background radiation vanishes. This condition

is necessary to ensure the gauge-invariance of the approach.

The 4-velocity ua defines locally two projection tensors in a unique fashion,

Uab = −uaub ⇒ Ua
cU

c
b = Ua

b , Ua
a = 1 , Uabu

b = ua ,

hab = gab + uaub ⇒ hach
c
b = hab , haa = 3 , habu

b = 0 .
(1.2)

The first projects parallel to the 4-velocity vector ua, and the second de-

termines the (orthogonal) metric properties of the instantaneous rest-spaces of

observers moving with 4-velocity ua. The volume element for the rest-spaces is

defined as

εbcd = uaηabcd ⇒ εabc = ε[abc] , εabcu
c = 0 , (1.3)

where ηabcd is the totally antisymmetric pseudotensor and 4-dimensional volume

element (ηabcd = η[abcd], η0123 =
√
− det gab). Note that the contraction of the

rest-space volume elements can be expressed in terms of the induced metric on

these rest-spaces as,

εabcε
def = 3!h[d

ah
e
bh
f ]
c = 3!hd[ah

e
bh
f
c] . (1.4)

Moreover, we define two projected covariant derivatives which are the time pro-

jected covariant derivative along the worldline (denoted ˙ ) and the spatially pro-

jected covariant derivative (denoted Da). For any quantity Qa...
b..., these are

respectively defined as

Q̇a...
b... ≡ uc∇cQ

a...
b... ,

DcQ
a...

b... ≡ hf ch
a
d . . . h

e
b . . .∇fQ

d...
e... .

(1.5)

4



1.1 1 + 3 covariant formalism

Furthermore, the kinematics and the dynamics are determined by projected ten-

sors that are orthogonal to ua on every index. The angle brackets are used to

denote respectively orthogonal projections of vectors V a and the orthogonally

projected symmetric trace-free part (PSTF) of rank-2 tensors T ab according to,

V 〈a〉 = habV
b ,

T 〈ab〉 =
(
h(a

ch
b)
d − 1

3
habhcd

)
T cd .

(1.6)

For convenience, the angle brackets are also used to denote the orthogonal pro-

jections of covariant time derivatives of vectors and tensors along the worldline

ua as follows,

V̇ 〈a〉 = habV̇
b ,

Ṫ 〈ab〉 =
(
h(a

ch
b)
d − 1

3
habhcd

)
Ṫ cd .

(1.7)

Note that, in general, the time derivative of vectors and tensors does not commute

with the projection of these quantities on the spatial hypersurfaces according to,

V̇ 〈a〉 6= (V 〈a〉)· ,

Ṫ 〈ab〉 6= (T 〈ab〉)· .
(1.8)

The projection of the covariant time derivative of a quantity Qa...
b... on the spatial

hypersurfaces is defined as,

(3) (Qa...
b...)
· ≡ hac . . . h

d
b . . . u

e∇eQ
c...

d... . (1.9)

It is also useful to define the projected covariant curl as,

curlQa...b ≡ εcd〈aD
cQd

...b〉 . (1.10)

1.1.2 Kinematical quantities

Information relating to the kinematics is contained in the covariant derivative of

ua which can be split into irreducible parts, defined by their symmetry properties,

∇aub = −uaab +Daub = −uaab + 1
3
Θhab + σab + ωab , (1.11)

where
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1.1 1 + 3 covariant formalism

• aa ≡ ub∇bu
a is the relativistic acceleration vector, representing the degree

to which matter moves under forces other than gravity.

• Θ ≡ Dau
a is the scalar describing the volume rate of expansion of the fluid

(with H = 1
3
Θ the Hubble parameter).

• σab ≡ D〈aub〉 is the trace-free rate-of-shear tensor describing the rate of

distortion of the fluid flow.

• ωab ≡ D[aub] is the antisymmetric vorticity tensor describing the rotation

of the fluid relative to a non-rotating frame.

These kinematical quantities have the following properties,

aau
a = 0 ,

σabu
b = 0 , σab = σ(ab) , σaa = 0 , (1.12)

ωabu
b = 0 , ωab = ω[ab] , ωaa = 0 .

It is useful to introduce a pseudovector ωa defined as the dual of the vorticity

tensor ωbc,

ωa ≡ 1
2
εabcωbc , (1.13)

and thus satisfying,

ωau
a = 0 , ωabω

b = 0 . (1.14)

Note that in presence of vorticity the spatially projected covariant derivatives

do not commute, which implies that any scalar field S has to satisfy the non-

commutation relation,

D[aDb]S = ωabṠ . (1.15)

It is also of physical interest to introduce three further scalars, which are

respectively the acceleration, the shear and the vorticity magnitudes squared and

are defined as,

a2 =
1

2
aba

b ≥ 0 ,

σ2 =
1

2
σabσ

ab ≥ 0 , (1.16)

ω2 =
1

2
ωabω

ab ≥ 0 .
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1.1 1 + 3 covariant formalism

1.1.3 Linearisation about a FLRW background

The basic philosophy of the perturbation theory based on the 1 + 3 covariant for-

malism is different from the ‘background-based’ perturbation theory as explained

by Ellis et al. (1990). Instead of starting with a background space-time and then

perturbing it, the approach begins with an inhomogeneous and anisotropic ‘real’

space-time, which reduces to the background space-time on large scales. We

will take the background to be an homogeneous and isotropic FLRW space-time,

although this formalism allows in principle for more complicated backgrounds.

Therefore, the ‘real’ space-time has been appropriately called by Ellis et al. (1989)

an ‘almost FLRW’ space-time. In this perturbation theory, the approximation

takes place by neglecting higher-order terms in the exact equations when the val-

ues of the kinematic and dynamic variables are close to those they would take in

the background FLRW space-time. The analysis is performed in the real space-

time and the dynamical equations are subsequently linearised. The background

solution is simply the zero-order approximation of the exact solution of the dy-

namical equations.

To build a covariant linear perturbation theory, we will linearise the quantities

of the 1 + 3 covariant formalism about an FLRW background space-time. Gauge

invariance of the perturbations is guaranteed by the Gauge Invariance Lemma

established by Stewart & Walker (1974), which states if a quantity vanishes in the

background space-time, then it is gauge invariant at first-order. The 4-velocity

is uniquely defined in the ‘almost FLRW’ space-time, which ensures that the

perturbations are also uniquely defined, as mentioned by Ellis & van Elst (1999).

The homogeneity of the background space-time implies that the acceleration

aa is a first-order variable, since it vanishes in the background space-time (i.e. at

zeroth order). Similarly, the isotropy of the background space-time implies that

rate of shear σab is also a first-order variable. Finally, the existence of spatial

hypersurfaces orthogonal to the worldline in the background space-time implies

that vorticity tensor ωab and the vorticity covector ωa are first-order variables.

Therefore, the only zero-order kinematic quantity is the rate of expansion Θ.

In the background space-time, which means to zero-order in the dynamical

7



1.2 Outline

variables, the covariant derivative of the worldline thus becomes,

∇aub = 1
3
Θhab . (1.17)

It is also useful to define (up to some constant factor) a zero-order scale factor

R such that,

Θ = 3H ≡ Ṙ

R
, (1.18)

where H is the cosmic Hubble scale factor. In the 1 + 3 covariant approach, R is

generally a locally defined variable. However, for the homogeneous FLRW back-

ground space-time, the symmetries allow R to be globally defined and interpreted

as a cosmological scale factor.

Finally, to carry out a linear perturbation analysis, it is convenient to intro-

duce the conformal time variable τ̂ satisfying the differential relation,

dτ̂ ≡ dτ

R
, (1.19)

which implies that the derivatives with respect to cosmic time τ and conformal

time τ̂ of a quantity Qa···
b··· are related by,

Q′ a···b··· = RQ̇a···
b··· , (1.20)

where a prime denotes a derivative with respect to conformal time τ̂ . The con-

formal Hubble scale factor H is related to the cosmic scale factor H by H = RH.

1.2 Outline

The remainder of this thesis is structured as follows.

In Chapter 2, we perform an analysis of first-order adiabatic perturbations of

a perfect fluid about a general FLRW background using the 1 + 3 covariant and

gauge-invariant formalism.

In Chapter 3, Brechet et al. (2007) carry out a dynamical analysis of an

inhomogeneous and anisotropic effective Weyssenhoff fluid in General Relativity

using the 1 + 3 covariant and gauge-invariant formalism.

In Chapter 4, Brechet et al. (2008) investigate the dynamics of an homo-

geneous and irrotational Weyssenhoff fluid in general relativity using the 1 + 3

8



1.2 Outline

covariant and gauge-invariant approach. Under certain conditions, such a fluid

gives rise to a Big Bounce cosmology.

In Chapter 5, we determine suitable classical initial conditions for the back-

ground evolution of general inflationary models and study both the subsequent

background evolution and the spectrum of scalar perturbations produced in the

spatially-flat case.

In Chapter 6, we present concluding remarks, summarising the work per-

formed in this thesis and outlining promising avenues of future research.
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Chapter 2

First-order adiabatic

perturbations of a perfect fluid

about a general FLRW

background in the 1 + 3 covariant

approach

The perturbation theory based on the 1 + 3 covariant formalism and gauge-

invariant uses a ‘real’ unperturbed ‘almost FLRW’ space-time, which reduces to

the background space-time on sufficiently large scales. The perturbation analy-

sis consists in linearising the dynamical equations about an FLRW background

space-time by neglecting second- or higher-order terms in the exact equations

when the values of the kinematic and dynamic variables are close to those they

would take in the background FLRW space-time. Note that the background

FLRW space-time is simply the zero-order approximation of the exact solution

of the dynamical equations. Although in the 1 + 3 covariant formalism, the

scalar, vector and tensor perturbations are handled in a unified way, as men-

tioned by Challinor (2000), they decouple to first-order and can be studied inde-

pendently, as explained by Mukhanov et al. (1992). The first attempt to establish

an explicit relation between the perturbation variables in the 1 + 3 covariant for-

malism and the corresponding variables in the ‘background-based’ approach was

10



made by Goode (1989). For a perfect fluid in a spatially-curved case, the analog

of the Bardeen variable for the scalar perturbations in the 1 + 3 covariant ap-

proach was first identified by Woszczyna & Kulak (1989) and the analog of the

curvature perturbation by Bruni et al. (1992a).

In the 1 + 3 formalism, the time derivative of a physical quantity is defined

usually as the projection of the covariant derivative of the quantity on the world-

line as outlined in Section 1.1, but this is not the only way to define covariantly

a time derivative as Thiffeault (2001) showed. As Langlois & Vernizzi (2005)

suggested, the Lie derivative along the worldline of a fluid element is another

possible definition. However, the Lie derivative of a scalar field along the world-

line is identical to time derivative of the scalar field along the worldline. Since,

in this dissertation, we aim to identify scalar quantities, which are respectively

scalar perturbations and the scalar amplitude of vector and tensor perturbations,

we will define the time derivative of physical quantities to be the projection of

the covariant derivative of the quantity on the worldline.

It is worth mentioning that, recently, Pitrou & Uzan (2007) used Lie deriva-

tives to recast the dynamical equations for the scalar and tensor perturbations in

the 1+3 covariant formalism in order to identify perturbation variables, which are

similar to the Sasaki-Mukhanov variables in a spatially-flat case. In particular,

they claim to identify the scalar and tensor variables that map to the Mukhanov-

Sasaki variables when considering a spatially-flat almost FLRW universe, but this

is not clear. Firstly, in the scalar case, the perturbation variable va that Pitrou

and Uzan obtained is not a scalar but a covector. Secondly, for tensor perturba-

tions in the spatially-flat case, Pitrou and Uzan obtained a wave equation in terms

of Lie derivatives of tensor fields, which they identify as the Mukhanov-Sasaki

variables. However, the scalar amplitudes of the tensor perturbations obtained by

contracting the tensors do not map to the corresponding scalar Mukhanov-Sasaki

variables obtained in the ‘background-based’ approach. Furthermore, Pitrou and

Uzan did not consider a perfect fluid but instead restricted their analysis to a

single scalar field.

This chapter is devoted to the identification, in the 1 + 3 covariant approach,

for adiabatic perturbations of a perfect fluid in spatially-curved FLRW models, of

the analog of the Mukhanov-Sasaki and Grishchuk variables needed to quantise
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2.1 Lagrangian and Eulerian dynamical descriptions of fluid
perturbations

the scalar and tensor perturbations respectively. The quantisation of fields in a

spatially-curved space-time lies outside the scope of this dissertation. However,

this topic has been addressed in detail by Birrell & Davies (1982) and Fulling

(1989). Our approach broadens the scalar perturbations analysis performed

by Woszczyna & Kulak (1989), Bruni et al. (1992a) and Lyth & Woszczyna

(1995) in a spatially-curved case.

The structure of this chapter is as follows. In Section 2.1, we compare the

Eulerian and Lagrangian fluid descriptions. In Section 2.2, we establish the first-

order dynamical equations for adiabatic perturbations of a perfect fluid in the 1+3

covariant approach. In Section 2.4, we identify the analog of the Mukhanov-

Sasaki variable for the scalar perturbations. In Section 2.5, we determine the

dynamics of the scalar amplitude of the vector perturbations. In Section 2.6, we

finally identify the analog of the Grishchuk variables for the tensor perturbations.

2.1 Lagrangian and Eulerian dynamical descrip-

tions of fluid perturbations

It is useful to consider the two complementary ways of describing the non-

relativistic dynamics of a perfect fluid. Firstly, the Lagrangian description iden-

tifies infinitesimal elements of fluid, which are sometimes referred to as “fluid

particles”, and follows them along their motion. Secondly, the Eulerian descrip-

tion does not identify infinitesimal elements of fluid but focuses instead on the

fluid flow through the fixed infinitesimal spatial volume at rest in the coordinate

system, as explained by Smirnov-Rueda (2005).

The main difference between Newtonian fluid dynamics and its relativistic

counterpart is that, in the former, space and time are two distinct entities whereas,

in the latter, they form a single four dimensional continuum. A dynamical descrip-

tion of a relativistic fluid requires unambiguous definitions of “rates-of-change”

of dynamical quantities, which require in turn a clear distinction between space

and time. Fortunately, the 1 + 3 covariant formalism allows such a distinction, as

mentioned by Andersson & Comer (2007), provided the fluid is irrotational with

no acceleration, which ensures the existence of spatial hypersurfaces orthogonal
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2.1 Lagrangian and Eulerian dynamical descriptions of fluid
perturbations

to the worldline and of a globally defined cosmic time t, as explained by Ellis

& van Elst (1999). Since scalar perturbations are density perturbations, which

generate accelerations, and vector perturbations are vorticity perturbations, as

shown by Hawking (1966), a fluid model describing a (real) universe albeit based

on an almost FLRW space-time does not allow “rates-of-change” of dynamical

quantities to be unambiguously defined. The “rates-of-change” of such quantities

can, however, be unambiguously defined in the FLRW background space-time and

extended to the almost FLRW space-time, where the “rates-of-change” of the cor-

responding dynamical quantities are obtained by perturbation of the background

quantities.

The 1 + 3 covariant formalism is gauge-invariant but not frame-independent.

To study the relativistic dynamics of the adiabatic perturbations of a perfect

fluid, it is necessary to distinguish the background frame from the perturbation

frame. As in the non-relativistic dynamics of a perfect fluid, there are two ways

to describe the dynamics of adiabatic perturbations. Firstly, the Lagrangian

description, identifies infinitesimal elements of the perturbed fluid and follows

their motion along the worldlines. Secondly, the Eulerian description, identifies

an infinitesimal tri-dimensional spatial volume in the background space-time, and

describes the flow of the perturbed fluid through the infinitesimal spatial volume.

Thus, the background frame is a relativistic generalisation of the rest frame of

a Newtonian fluid. Note that, unlike the Newtonian rest frame, the background

frame is not static, and therefore, the infinitesimal background volume element

itself evolves along its own worldline. The background frame corresponds to the

Eulerian frame and the perturbation frame to the Lagrangian frame of the fluid.

The unperturbed dynamical background quantities are all scalars, since the

background FLRW space-time is isotropic and homogeneous, and thus does not

admit any privileged point or direction in accordance with the Cosmological Prin-

ciple. Hence, unlike the perturbations, the unperturbed quantities are defined in

a frame-independent way. Therefore, the following discussion focuses only on

perturbations.

In the 1+3 covariant formalism, the dynamics of an infinitesimal fluid element

is uniquely determined by the worldline. Similarly to the procedure followed

by Ellis et al. (2001), we require the 4-velocity ua of the fluid element in the
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2.1 Lagrangian and Eulerian dynamical descriptions of fluid
perturbations

Lagrangian perturbation frame to have a non-relativistic spatial motion relative

to 4-velocity ūa of the fluid element in the Eulerian background frame. The

non-relativistic velocity composition relation is given by,

ua = ūa + va , (2.1)

where va is the spatial velocity vector of the infinitesimal Laplacian displacement

and satisfies ūav
a = 0. The velocity vectors contract as,

ūaū
a = −1 , vav

a = v2 , uau
a = −1 + v2 , (2.2)

where the non-relativistic velocity composition relation (2.1) implies that v2 � 1.

Since the velocity va vanishes in the background, the velocity squared v2 is a

second-order perturbation variable, which can be safely neglected in a first-order

perturbation analysis. Hence to first-order, the 4-velocities satisfy,

uau
a ' ūaū

a = −1 . (2.3)

Using the time derivative (1.5) of a perturbation Qa···
b··· and the velocity com-

position law (2.3), the “rates-of-change” of Qa···
b··· evaluated respectively in the

Eulerian background frame and in the Lagrangian perturbation frame are related

by,

uc∇cQ
a···

b··· = ūc∇cQ
a···

b··· + vcDcQ
a···

b··· , (2.4)

where uc∇cQ
a···

b··· is the “rate-of-change” of Qa···
b··· in the Lagrangian frame,

ūc∇cQ
a···

b··· is the “rate-of-change” of Qa···
b··· in the Eulerian frame and vcDcQ

a···
b···

is a convective term accounting for the “rate of change” of Qa···
b··· due to the

relative motion of the Lagrangian perturbation frame with respect to the Eulerian

background frame. It is important to note that although the perturbation Qa···
b···

vanishes in the background FLRW space-time, it does not vanish in the Eulerian

background frame of an almost FLRW (real) space-time.

Since the peculiar velocity of the fluid element and the perturbation van-

ish in the background, they are first-order terms. Hence, the convective term

vcDcQ
a···

b··· in (2.4) is a second-order term, since it is the product of two first-

order terms. Thus, to first-order in the perturbation (which means neglecting

second- and higher-order products of first-order variables) it follows from (2.4)
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2.2 First-order adiabatic dynamics of a perfect fluid about an FLRW
background

that the time derivative of the perturbation in the Eulerian background frame is

equal to the time derivative of the perturbation in the Lagrangian perturbation

frame, and (2.4) reduces to,

uc∇cQ
a···

b··· = ūc∇cQ
a···

b··· . (2.5)

Hence, to first-order, the dynamical analysis of the adiabatic perturbations is

frame-independent, since the choice of frame or worldline induces a second-order

difference in the time derivative of a perturbation. However, to perform a second-

or higher- order perturbation analysis, the Eulerian and Lagrangian frames have

to distinguished. This lies beyond the scope of this dissertation.

It is worth mentioning that in the non-relativistic limit, the differential oper-

ators occurring in (2.4) reduce respectively to,

uc∇c =
D

Dt
, ūc∇c =

∂

∂t
, vcDc = v ·∇ , (2.6)

where D
Dt

is the Lagrangian total time differential operator, ∂
∂t

the Eulerian partial

time differential operator, v the spatial velocity vector and∇ the spatial gradient.

Thus, for a scalar perturbation S and a spatial vector perturbation V in the non-

relativistic limit, (2.4) reduces respectively to the well-known non-relativistic fluid

dynamical relations,

D

Dt
S =

∂

∂t
S + v·∇S ,

D

Dt
V =

∂

∂t
V + v·∇V .

(2.7)

2.2 First-order adiabatic dynamics of a perfect

fluid about an FLRW background

We will now use the 1+3 covariant formalism, outlined in Section 1.1, to describe

the adiabatic dynamics of a perfect fluid to first-order in the dynamical variables,

which means neglecting second and higher order products of first-order dynamical

variables. We then perform a perturbation analysis of such a fluid about an FLRW

background, which will be used in Section 2.4 - Section 2.6 to describe scalar,

vector and tensor perturbations respectively.
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2.3 Einstein field equations

2.3 Einstein field equations

The dynamics of a perfect fluid is described by the Einstein field equations, which

read,

Rab − 1
2
gabR = κTab , (2.8)

where Rab and R are respectively the Ricci tensor and scalar. The dynamical

model is fully determined by the matter content and the curvature. The matter

content is described by the stress-energy momentum tensor Tab. For a perfect

fluid, using the 1 + 3 formalism, it can be recast as,

Tab = ρuaub + phab , (2.9)

where ρ is the energy density and p the pressure of the fluid. We assume the fluid

to be barotropic ρ = ρ(p) and linear so that it satisfies the equation of state,

p = wρ , (2.10)

where w is the equation-of-state parameter. The energy density ρ and the pressure

p are zero-order variables that do not vanish on the background.

For an adiabatic flow, the speed of sound is defined as

c2
s ≡

dp

dρ
, (2.11)

and the time derivative of the equation-of-state parameter satisfies,

ẇ = −Θ(c2
s − w)(1 + w) , (2.12)

where we used the energy conservation equation (2.50). Note that from (2.12), it

follows that c2
s = w if ẇ = 0.

The Ricci tensor Rab is simply obtained by substituting the expression (2.9)

for the stress energy momentum tensor into the Einstein field equations (2.8),

Rab = κ
2

(ρ+ 3p)uaub + κ
2

(ρ− p)hab . (2.13)

As shown by Hawking (1966), all the information related to the curvature is

encoded in the Riemann tensor which can be decomposed as,

Rab
cd = Cab

cd + 2δ[a
[cR

b]
d] − 1

3
Rδa[cδ

b
d] , (2.14)

where Cab
cd is the Weyl tensor.
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2.3 Einstein field equations

2.3.1 Weyl tensor

The Weyl tensor Cabcd is constructed to be the trace-free part of the Riemann

tensor Rabcd and thus satisfies the identities,

Cabcd = C[ab][cd] ,

Cabcd = Ccdab ,

Ca[bcd] = 0 ,

Cabc
b = 0 ,

(2.15)

which implies that it also satisfies the duality identity

ηabcdCef
cd = ηefcdCab

cd . (2.16)

By analogy to classical electrodynamics, the Weyl tensor can be split relative

to ua into an ‘electric’ and a ‘magnetic’ part, as mentioned by Hawking (1966),

according to,

Eab = Cacbdu
cud , (2.17)

Hab =∗ Cacbdu
cud = 1

2
εadeC

de
bcu

c , (2.18)

where ∗Cacbd is the dual of the Weyl tensor. These parts represent the ‘free

gravitational field’, enabling gravitational action at a distance and describing

tidal forces and gravitational waves. Their properties follow directly from the

symmetries of the Weyl tensor (2.15) and (2.16),

Eabu
b = 0 , Eab = E(ab) , Ea

a = 0 ,

Habu
b = 0 , Hab = H(ab) , Ha

a = 0 .
(2.19)

Finally, the Weyl tensor can be decomposed in terms of its two parts as,

Cab
cd = 4u[au[cE

b]
d] + 4h[a

[cE
b]
d] + 2εabeu[cHd]e + 2εcdeu

[aHb]e . (2.20)

2.3.2 Riemann tensor decomposition

The Riemann tensor Rabcd can now be recast in terms of the Ricci tensor (2.13),

the electric (2.17) and magnetic (2.18) parts of the Weyl tensor according to the
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2.3 Einstein field equations

decomposition (2.14) in the following way,

Rab
cd = 2

3
κ (ρ+ 3p)u[au[ch

b]
d] + 2

3
κρha[ch

b
d]

+ 4u[au[cE
b]
d] + 4h[a

[cE
b]
d] + 2εabeu[cHd]e + 2εcdeu

[aHb]e .
(2.21)

The Riemann tensor restricted to the spatial hypersurface, (3)Rab
cd, is related to

the Riemann tensor defined on the whole space-time, Rab
cd, by

(3)Rab
cd = haeh

b
fh

g
ch
h
dR

ef
gh − 2va[cv

b
d] . (2.22)

where the tensor vab is defined as,

vab ≡ Daub . (2.23)

For a perfect fluid, using the decomposition (2.21), the spatial Riemann ten-

sor (2.22) becomes,

(3)Rab
cd = 2

3
κρha[ch

b
d] + 4ha[cE

b
d] − 2va[cv

b
d] . (2.24)

To zero-order, the decomposition of the spatially projected Riemann tensor (2.22)

reduces to,
(3)Rab

cd =
2K

R2
ha[ch

b
d] . (2.25)

where K is the curvature parameter, which is related to the Gaussian curvature

K by,
(3)R = K =

6K

R2
, (2.26)

where (3)R is the spatial curvature scalar, which is obtained by twice contracting

the spatially projected Riemann tensor (2.22).

In general, there are three sets of dynamical equations for a perfect fluid.

These sets are derived, respectively, from the Ricci identities, the Bianchi iden-

tities, once- and twice-contracted. We present now each set in turn and expand

the dynamical equations to first-order about an FLRW background space-time.
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2.3 Einstein field equations

2.3.3 Ricci identities

The first set of dynamical equations arises from the Ricci identities. These iden-

tities can firstly be applied to the whole space-time and secondly to the spatial

hypersurfaces according to,

∇[a∇b]uc = 1
2
Rabcdu

d , (2.27)

D[aDb]vc = 1
2

(3)Rabcdv
d , (2.28)

where the spatial vectors va are orthogonal to the worldline, i.e. vaua = 0.

The information contained in the Ricci identities (2.27)-(2.28) can be ex-

tracted by projecting them on different hypersurfaces using the decomposition of

the corresponding Riemann tensors (2.21)-(2.24) and following the same proce-

dure as Brechet et al. (2007).

To first-order, the Ricci identities applied to the whole space-time (2.27) yield

three propagation equations, which are respectively the Raychaudhuri equation,

the rate of shear propagation equation and the vorticity propagation equation,

Θ̇ = −1
3
Θ2 − κ

2
(ρ+ 3p) +Dbab , (2.29)

ω̇〈a〉 = −2
3
Θωa + 1

2
curl aa , (2.30)

σ̇〈ab〉 = −2
3
Θσab − Eab +D〈aab〉 , (2.31)

and three constraint equations,

Daωa = 0 , (2.32)

Dbσab = 2
3
DaΘ− curlωa , (2.33)

Hab = curl σab −D〈aωb〉 . (2.34)

The Ricci identities applied to the spatial hypersurfaces express the spatial

curvature. Their contractions yield the spatial Ricci tensor (3)Rab and scalar (3)R

respectively, which to first-order are given by,

(3)Rab = 1
3

(3)
Rhab − 1

3
Θ (σab − ωab) + Eab , (2.35)

K = −2
3
Θ2 + 2κρ . (2.36)
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2.3 Einstein field equations

To zero-order, using the expression for the Gaussian curvature (2.26), the con-

tractions of the spatial Ricci identities (2.35) and (2.36) reduce respectively to,

(3)Rab = 1
3

(3)
Rhab , (2.37)

1

9
Θ2 =

κ

3
ρ− K

R2
. (2.38)

Note that the above expression (2.38) is the Friedmann equation. It is useful

to recast the Friedmann (2.38) and Raychaudhuri (2.29) equations in terms of

conformal time. To zero-order, these equations are respectively given by,

H2 = κ
3
ρR2 −K , (2.39)

H′ = −κ
6
ρR2(1 + 3w) . (2.40)

Finally, it is convenient to recast them as,

H2 −H′ +K = κ
2
ρR2 (1 + w) , (2.41)

H′ = −κ
2

(1 + 3w) (H2 +K) . (2.42)

2.3.4 Once-contracted Bianchi identities

The second and third set of dynamical equations are contained in the Bianchi

identities. The Riemann tensor satisfies the Bianchi identities as follows,

∇[eRab]
cd = 0 . (2.43)

By substituting the expression for the Riemann tensor decomposition (2.14) and

the effective Einstein field equations (2.8) into the Bianchi identities (2.43) and

contracting two indices (d = e), the once-contracted Bianchi identities are found

to be,

∇dCab
cd +∇[aRb]

c + 1
6
δc

[a∇b]R = 0 . (2.44)

In a similar manner to the Ricci identities, the information stored in the once-

contracted Bianchi identities has to be projected along the worldlines ua and on

the spatial hypersurfaces hab.
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2.4 Scalar perturbations

To first order, the once-contracted Bianchi identities (2.44) yield two prop-

agation equations, which are respectively the electric and magnetic propagation

equations,

Ė〈ab〉 = −ΘEab + curlHab − κ
2

(ρ+ p)σab , (2.45)

Ḣ〈ab〉 = −ΘHab − curlEab , (2.46)

and two constraint equations,

DbEab = κ
3
Daρ , (2.47)

DbHab = −κ (ρ+ p)ωa . (2.48)

2.3.5 Twice-contracted Bianchi identities

The third set of equations is given by the twice-contracted Bianchi identities which

represent the conservation of the effective stress energy momentum tensor. They

are obtained by performing a second contraction (b = c) on the once-contracted

Bianchi identities (2.44),

∇b
(
Rab + 1

2
gabR

)
= κ∇bTab = 0 . (2.49)

To first order, the twice-contracted Bianchi identities (2.49) yield one propagation

equations, which is the energy conservation equation,

ρ̇ = −Θ (ρ+ p) , (2.50)

and one constraint equation, which is the momentum conservation equation,

Dap = −aa (ρ+ p) . (2.51)

2.4 Scalar perturbations

2.4.1 Bardeen equation

Physically, scalar perturbations represent spatial variations of zero-order scalar

quantities. Thus, spatial Laplacians of zero-order scalars are natural candidates
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2.4 Scalar perturbations

to describe such perturbations. Since we are interested in determining the time

evolution of scalar perturbations in a comoving frame, we choose comoving spa-

tial Laplacians of zero-order scalars as scalar perturbations variables. For the

linearised dynamics of a perfect fluid about a homogeneous and isotropic back-

ground, there are only four zero-order scalars, the energy density ρ, the pressure

p, the expansion rate Θ and the Gaussian curvature K. For an adiabatic flow, the

pressure is a function of the energy density (2.10). Thus, to describe the dynamics

of adiabatic scalar perturbations, we define three scalar perturbation variables,

which are respectively the comoving spatial Laplacian of the energy density Φ,

the comoving spatial Laplacian of the expansion rate Ψ and the comoving spatial

Laplacian of the Gaussian curvature χ,

Φ ≡ Rκ∆ρ , (2.52)

Ψ ≡ R∆Θ , (2.53)

χ ≡ 1
2
R∆K , (2.54)

where the comoving spatial Laplacian ∆ is related to the cosmic spatial Laplacian

D2 by,

∆ = R2D2 = R2DaDa , (2.55)

and the factor of a half in (2.54) is included to be consistent with the usual defini-

tion of the corresponding variable in the ‘background-based’ approach developed

by Mukhanov et al. (1992). Similar definitions for the comoving spatial Lapla-

cian of the energy density and the comoving spatial Laplacian of the Gaussian

curvature were used respectively by Woszczyna & Kulak (1989) and Bruni et al.

(1992a). For a vanishing background curvature, it is worth mentioning that the

curvature perturbation does not vanish, since it is a first-order variable. The

dynamics of the scalar perturbations is obtained by taking the comoving spatial

Laplacian of the scalar propagation equations (2.50), (2.29), (2.36) and the spa-

tial gradient of the constraint (2.51) in order to express the constraint in terms

of a comoving spacial Laplacian of a zero-order scalar. The dynamical equations

of the scalar perturbations are respectively the comoving spatial Laplacian of the

energy conservation equation (2.50), the comoving spatial Laplacian of the Ray-

chaudhuri equation (2.29), the comoving spatial Laplacian of the Gauss-Codacci
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2.4 Scalar perturbations

equation (2.36) and the spatial gradient of the momentum conservation equation,

which to first-order reduce to,

∆ρ̇+ Θ∆(ρ+ p) + (ρ+ p)∆Θ = 0 , (2.56)

∆Θ̇ + 2
3
Θ∆Θ + κ

2
∆(ρ+ 3p)−∆

(
Dbab

)
= 0 , (2.57)

∆K + 4
3
Θ∆Θ− 2κ∆ρ = 0 , (2.58)

∆p+R2 (ρ+ p)Dbab = 0 . (2.59)

In order to reverse the order of the comoving spatial Laplacian and the time

derivative of a scalar field S in the propagation equations (2.56) and (2.57), it is

useful to introduce the first-order scalar identity,

∆Ṡ = (∆S)· − 1
3
Θ∆S −R2ṠDbab . (2.60)

The dynamical equations (2.56), (2.57), and (2.58) are recast in terms of the

comoving spatial Laplacian (2.52), (2.53) and (2.54) using the the scalar iden-

tity (2.60), the gradient of the momentum conservation equation (2.59), the

Friedmann equation (2.38), the Raychaudhuri equation (2.29) and the energy

conservation equation (2.50). To first-order, in a comoving frame, the dynamical

equations reduce to,

Φ̇ + 1
3
ΘΦ + κρ(1 + w)Ψ = 0 , (2.61)

Ψ̇ +

(
1

2
+

3Kc2
s

R2κρ(1 + w)

)
Φ +

c2
s

R2κρ(1 + w)
∆Φ = 0 , (2.62)

χ+ 2
3
ΘΨ− Φ = 0 . (2.63)

In order to determine the dynamics of the scalar perturbations, it is useful to

express the dynamical equations (2.61), (2.62) and (2.63) in terms of conformal

time according to,

Φ′ + HΦ +Rκρ(1 + w)Ψ = 0 , (2.64)

Ψ′ +

(
R

2
+

3Kc2
s

Rκρ(1 + w)

)
Φ +

c2
s

Rκρ(1 + w)
∆Φ = 0 , (2.65)

χ+
2H

R
Ψ− Φ = 0 . (2.66)
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2.4 Scalar perturbations

In order to determine the conformal time evolution of the density perturbation

variable Φ, the dynamics has to be recast in terms of a second-order differential

equation for Φ. By differentiating the Φ-propagation equation (2.64) with respect

to conformal time, using the Ψ-propagation equation (2.65) to substitute Φ for Ψ

and the zero-order relations (2.41) and (2.42), a second-order differential equation

for Φ is obtained according to,

Φ′′ + 3H
(
1 + c2

s

)
Φ′ +

[
(1 + 3c2

s)(H
2 −K) + 2H′

]
Φ− c2

s∆Φ = 0 , (2.67)

which is the Bardeen (1980) equation (denoted [4.9]) and identified by Woszczyna

& Kulak (1989) in the 1 + 3 covariant formalism.

We now formally relate the energy density perturbation variable Φ used in

the 1 + 3 covariant approach to the Bardeen variables ΦA and ΦH used in the

‘background-based’ approach. By taking the comoving spatial Laplacian of the

divergence of the electric part of the Weyl tensor Eab (2.47), the energy density

perturbation Φ is found to be related to Eab according to,

Φ = 3R3DaDbEab . (2.68)

The expression of the electric part of the Weyl tensor Eab in terms of the Bardeen

variables ΦA and ΦH was first established by Bruni et al. (1992a) in equations

[113-114]. For a perfect fluid (i.e. in absence of anisotropic stress), the Bardeen

variables have the same norm but opposite signs (i.e. ΦH = −ΦA). Substituting

the relations [113-114] derived by Bruni et al. (1992a) into (2.68), the energy

density perturbation Φ is found to be the fourth-order derivative of the Bardeen

variable ΦA according to,

Φ = 3�ΦA , (2.69)

where,

� ≡ 3DaDbD〈aDb〉 . (2.70)

Note that by taking spatial derivatives of the electric part of the Weyl tensor,

the vector and tensor perturbation terms contained in equations [113-114] vanish.

To first-order, the conformal time derivative and the comoving spatial Laplacian
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2.4 Scalar perturbations

commute with the spatial differential operator �,

Φ′ = �Φ′A , (2.71)

∆Φ = �∆ΦA . (2.72)

Thus, to first-order, the dynamics of the energy density perturbation Φ is identical

to the dynamics of the Bardeen variable ΦA since the Bardeen equation (2.67)

is entirely described by conformal time derivatives and spatial Laplacians of Φ.

Therefore, in the 1 + 3 covariant formalism, Φ is the analog of ΦA.

2.4.2 Mukhanov-Sasaki equation

The Bardeen equation describes the time evolution of the density perturbation

variable Φ. Similarly, the Mukhanov-Sasaki equation describes the time evolution

of the curvature perturbation variable, which in the spatially-curved case we will

denote by ζ, and which reduces to χ defined in (2.54) in the spatially-flat case

(K = 0), as we will now show.

To make contact with the standard definition of the curvature perturbation

in the ‘background-based’ approach, it is useful to express χ in terms of Φ only.

By substituting (2.64) into (2.66), using the Friedmann equation (2.39), the ex-

pression for χ to first-order becomes,

χ =
2

3(1 + w)

(
1 +

K

H2

)−1(
Φ +

Φ′

H

)
+ Φ , (2.73)

which, for a spatially-flat background space-time (K = 0), reduces to,

χ =
2

3(1 + w)

(
Φ +

Φ′

H

)
+ Φ , (2.74)

which is the standard definition of the curvature perturbation (see Mukhanov

(2005), Durrer (2008)). In the spatially-flat case, the conformal time derivative

of the curvature perturbation χ is given by,

χ′ =
2c2
s

3H(1 + w)
∆Φ , (2.75)

which shows that the curvature perturbation χ is a conserved quantity on large

scales. To show this explicitly a Fourier transform has to be performed (see Durrer

25



2.4 Scalar perturbations

(2008)). However, we note that on large scales the comoving spatial Laplacian

of the analog of Bardeen variable is negligible compared to the comoving scale

H, thus satisfying ∆Φ � H. Nonetheless, the curvature perturbation is not

conserved on super-Hubble scales for a spatially-curved background space-time

as explained by Bruni et al. (1992a).

In the spatially-curved case, Bruni et al. (1992a) mention that there is a

generalised curvature perturbation C̃, which is conserved on large scales and

defined up to a constant amplitude. Thus, we define the generalised curvature

variable ζ as

ζ ≡ R

2

(
∆K− 4K

R2(1 + w)

∆ρ

ρ

)
, (2.76)

where ζ ≡ 1
2
C̃ in order for ζ to reduce to χ in the spatially-flat case (K = 0).

The generalised curvature perturbation variable ζ in the spatially-curved case is

related to the curvature perturbation χ in the spatially-flat case by,

ζ = χ− 2K

3H2 (1 + w)

(
1 +

K

H2

)−1

Φ . (2.77)

We now briefly show that ζ is conserved on large scales. By substituting (2.73)

into (2.77), the generalised curvature perturbation ζ is recast in terms of the

analog of the Bardeen variable Φ only according to,

ζ =
2

3(1 + w)

(
1 +

K

H2

)−1 [(
1− K

H2

)
Φ +

Φ′

H

]
+ Φ . (2.78)

For a spatially-curved case, by differentiating (2.78) and substituting the Bardeen

equation (2.67), the conformal time derivative of the generalised curvature per-

turbation ζ ′ is found to be,

ζ ′ =
2c2
s

3H(1 + w)

(
1 +

K

H2

)−1

∆Φ , (2.79)

which means that the generalised curvature perturbation ζ is a conserved quantity

on super-Hubble scales. To show this explicitly a harmonic decomposition has

to be performed. However, similarly to the spatially-flat case, we note that on

large scale the comoving spacial Laplacian of the analog of the Bardeen variable

is negligible compared to the comoving scale H, thus satisfying ∆Φ� H.
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2.4 Scalar perturbations

In order to determine the conformal time evolution of the curvature pertur-

bation variable ζ, the dynamics has to be recast in terms of a second-order differ-

ential equation for ζ. By differentiating the ζ-propagation equation (2.79) with

respect to time and using the comoving Laplacian of the generalised curvature

perturbation ζ (2.78) to substitute ζ for Φ, a second order differential equation

for ζ is obtained according to,

ζ ′′ + 2

(
H

2

(
1− 3c2

s

)
− H′

H

)
ζ ′ − c2

s∆ζ = 0 . (2.80)

It is convenient to introduce a new variable z,

z ≡ R2

csH

(κ
3
ρ(1 + w)

)1/2

, (2.81)

which allows the ζ-propagation equation (2.80) to be recast in a more convenient

form as,

ζ ′′ + 2
z′

z
ζ ′ − c2

s∆ζ = 0 . (2.82)

Note that using the dynamical equation (2.41), z is rewritten as,

z =
R2

csH

(
H2 −H′ +K

)1/2
, (2.83)

which corresponds to the variable defined by Mukhanov et al. (1992) in equation

[10.43b].

It is also useful to define another variable,

v ≡ zζ , (2.84)

which is the analog of the variable v defined by Mukhanov et al. (1992) in equation

[10.61]. Using v, the dynamics of the second-order dynamical equation (2.82) is

explicitly recast in terms of a wave equation given by,

v′′ −
(
c2
s∆ +

z′′

z

)
v = 0 . (2.85)

This wave equation is the Mukhanov-Sasaki equation in a spatially-curved FLRW

background space-time denoted [11.7] by Mukhanov et al. (1992).
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2.4.3 Mukhanov-Sasaki variable

The scalar variable v = zζ is hence the 1 + 3 covariant analog of the Mukhanov-

Sasaki variable associated to the scalar perturbations (note that in a spatially-flat

case, the analog of the Mukhanov-Sasaki variable reduces to v = zχ). In the

general case, the homogeneity and isotropy of the spatial hypersurfaces enable us

to perform a harmonic decomposition of the scalar perturbation variable v, where

v is decomposed into components that transform irreducibly under translations

and rotations, and evolve independently, as explained by Durrer (2008). The

harmonic analysis of the scalar perturbation v consists of a decomposition into

eigenfunctions of the comoving spatial Laplacian of v according to,

∆vk = −k2vk , (2.86)

where k is the eigenvalue of the associated harmonic mode and the k-index denotes

the eigenvector of the mode. The comoving wavenumber ν of the scalar mode is

defined as,

ν2 = k2 +K , (2.87)

where K = {−1, 0, 1} is normalised. The comoving wavenumber ν takes contin-

uous values when K = {−1, 0} and discrete ones for K = 1. In particular, the

regular normalisable eigenmodes have ν ≥ 0 for flat and hyperbolic spatial hyper-

surfaces, and an integer satisfying ν ≥ 1 for spheric hypersurfaces as explained

by Lyth & Woszczyna (1995) and Tsagas et al. (2008).

To first order, the dynamics of the scalar perturbations can be rewritten as a

series of decoupled harmonic oscillators. Using the harmonic decomposition (2.86)

in terms of k, the Mukhanov-Sasaki wave equation (2.85) in the k-mode is given

by,

vk
′′ +

(
c2
sk

2 − z′′

z

)
vk = 0 . (2.88)

Note that (2.88) corresponds to a simple damped harmonic oscillator in the k-

mode,

vk
′′ + ω2

kvk = 0 , (2.89)

where the conformal time dependent frequency ωk(τ̂) is given by,

ωk =

(
c2
sk

2 − z′′

z

)1/2

. (2.90)
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2.4.4 Comparison with scalar perturbations of a scalar

field in the ‘background-based’ approach

The dynamics of the early universe is believed to undergo an inflation phase

described by a scalar field as shown by Guth (1981) and Linde (1982). In a

‘background-based’ approach, the scalar field φ in the ‘real’ space-time is decom-

posed into a background component φ0 and a gauge-dependent perturbation δφ

according to,

φ(t,x) = φ0(t) + δφ(t,x) . (2.91)

According to Weinberg (2008), the energy-momentum tensor of an unperturbed

scalar field takes the perfect fluid form with an energy density and pressure re-

spectively given by,

ρ0 = 1
2
φ̇2

0 + V (φ0) ,

p0 = 1
2
φ̇2

0 − V (φ0) ,
(2.92)

where V (φ0) is an arbitrary real potential. The initial conditions for inflation

needed to perform the quantisation are set as the model emerges from the Big

Bang, where the scalar field dynamics is dominated by the kinetic term and

satisfies φ̇0 � V (φ0). Therefore, at very early times, the scalar field behaves

like stiff matter and the equation of state parameter w is related to the speed of

sound by w = c2
s = 1 as mentioned by Durrer (2008). The dynamics of scalar

perturbations of a scalar field in a 1 + 3 covariant approach was first investigated

by Bruni et al. (1992b). Langlois & Vernizzi (2007) later generalised the 1 + 3

covariant approach to multi-scalar fields.

To first order, the dynamical equation for the Bardeen variable is given by,

Φ̇A +HΦA = κ
2
φ̇0δφ , (2.93)

which corresponds to equation [10.1.12] presented by Weinberg (2008). By com-

paring this dynamical relation with the corresponding result (2.64) found in the

1+3 covariant approach using the zero-order expression for the energy density and

pressure of a scalar field (2.92) and by using the correspondence relation (2.69),
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2.5 Vector perturbations

the 1 + 3 covariant perturbation variable Ψ is found to be related to the scalar

field perturbation δφ by,

Ψ = −�
(
δφ

2φ̇0

)
. (2.94)

The curvature perturbation variables in the flat case χ and the curved case ζ can

be recast in terms of the Bardeen variable ΦA and the scalar field perturbation

variable δφ according to,

χ = �

(
ΦA + H

δφ

φ′0

)
,

ζ = �

([
1− K

3H2

(
1 +

K

H2

)−1
]

ΦA + H
δφ

φ′0

)
.

(2.95)

The quantisation variable z can also be expressed in terms of the scalar field

perturbation according to,

z =
(κ

3

)1/2 Rφ′0
H

. (2.96)

Finally, for a scalar field behaving like a stiff fluid (i.e. cs = 1), the Mukhanov-

Sasaki wave equation in the k-mode (2.88) reduces to,

vk
′′ +

(
k2 − z′′

z

)
vk = 0 . (2.97)

Thereby, with the identities presented above, we formally related the first-order

scalar perturbation variables in the 1+3 covariant formalism to the corresponding

variables in the ‘background-based’ approach.

2.5 Vector perturbations

Vector perturbations are described by spatially projected and divergence-free vec-

tors as explained by Tsagas et al. (2008). The only dynamical variable which

satisfies these constraints to first-order is the vorticity pseudo-vector ωa. The

vanishing divergence of ωa to first-order can be deduced from (2.32).

The dynamics of the vorticity covector ωa is determined by the vorticity prop-

agation equation (2.30). To obtain an explicit evolution equation in terms of the
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2.5 Vector perturbations

vorticity covector only, the term involving the acceleration has to be recast in

terms of the vorticity. Using the momentum conservation equation (2.51) and

the kinetic non-commutation identity (1.15), we find to first-order,

curl aa = 2c2
sΘωa . (2.98)

Thus, to first-order, the vorticity propagation equation (2.30) can be recast as,

ω̇〈a〉 + 2
3
Θ
(
1− 3

2
c2
s

)
ωa = 0 , (2.99)

as shown by Hawking (1966). It is convenient to express this dynamical equation

in a comoving frame according to,

ω′〈a〉 + 2H
(
1− 3

2
c2
s

)
ωa = 0 . (2.100)

Using the vorticity contraction identity,

w2′ = 2ω′〈a〉ω
a , (2.101)

a first-order propagation equation for the vorticity scalar w is obtained,

ω′ = −2H
(
1− 3

2
c2
s

)
ω , (2.102)

and implies that the vorticity scalar scales as,

ω ∝ R−2+3c2s , (2.103)

which is in agreement with the result obtained by Hawking (1966) and mentioned

by Tsagas et al. (2008).

The scaling relation (2.103) implies that during the expansion phase (R′ > 0),

the scalar amplitude of the vorticity ω decays if c2
s <

2
3
. The inflationary scenario

is the simplest known generating mechanism for the initial density fluctuations.

For an inflaton field in slow-roll (w = −1), the vorticity scalar scales as ω ∝ R−5.

Hence, the value of the vorticity scalar at the end of slow-roll inflation ωf is

related to the value of the vorticity scalar at the onset of the slow-roll inflation

ωi by,
ωf
ωi

= exp (−5N) , (2.104)

where N is the number of e-fold during the slow-roll phase. Hence, if the vector

perturbations were initially significant, they have decayed by a factor exp(5N)

during slow-roll inflation (2.104) and can safely be neglected in a subsequent

quantitative perturbation analysis.

31



2.6 Tensor perturbations

2.6 Tensor perturbations

Tensor perturbations are described by spatially projected, symmetric, trace-free

and transverse second rank tensors, as explained by Tsagas et al. (2008). To

find a suitable tensor to describe such perturbations, it is useful to split the

magnetic part of the Weyl tensor Hab into a transverse part denoted H
(T )
ab and a

non-transverse part denoted H
(V )
ab according to,

Hab = H
(T )
ab +H

(V )
ab . (2.105)

where the (T ) and (V ) indices refer respectively to tensorial and vectorial degrees of

freedom. By construction, H
(T )
ab is divergence-free and satisfies the requirements

for a tensor perturbation. For convenience, in this section, we will not use explic-

itly the (T ) index to refer to the transverse part of the magnetic part of the Weyl

tensor, since we are only considering tensorial degrees of freedom. Note that in

the irrotational case, the magnetic part of the Weyl tensor is divergence-free to

first-order − this can be deduced from the constraint (2.48). Thus, in that case,

the analysis is restricted to the tensorial degrees of freedom only and Hab = H
(T )
ab .

It is also worth mentioning that the electric part of the Weyl cannot qualify as a

tensor perturbation, since it is not divergence-free in presence of matter − this

can be inferred from the constraint (2.47).

2.6.1 Grishchuk equation

In order to obtain a second-order differential equation in terms of Hab, it is useful

to introduce linearised identities mentioned by Challinor (2000). Using the Ricci

identities (2.27)-(2.28), the expression for the Riemann tensor to zero-order (2.25)

and the definition of a curl (1.10), a symmetric and spatially projected tensor

T〈ab〉 to first-order has to satisfy the geometric linearised identity,

(3)( curlTab)
· = curl Ṫ〈ab〉 − 1

3
Θ curlTab , (2.106)

and if Tab is transverse to first-order,

DbTab = 0 , (2.107)
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then it also satisfies the identity,

curl ( curlTab) = −D2Tab +
3K

R2
Tab . (2.108)

By differentiating the magnetic propagation equation (2.46), substituting the

electric propagation equation (2.45) and using the linearised identities (2.106)

and (2.108), the dynamical equation for Hab to first order reduces to,

Ḧ〈ab〉 +
7

3
ΘḢ〈ab〉 + 2

(
(1− w)κρ− 3K

R2

)
Hab −D2Hab = 0 , (2.109)

which has been established by Challinor (2000). Using the zero-order dynamical

relations (2.39) and (2.40), it is convenient to recast the dynamics of Hab (2.109)

in terms of conformal time τ̂ according to,

H ′′〈ab〉 + 6HH ′〈ab〉 −
(
∆− 2K − 8H2 − 4H′

)
Hab = 0 . (2.110)

In order to eliminate the second term on the LHS of (2.110) and find a suitable

wave equation for the gravitational waves, it is useful to introduce the rescaled

magnetic part of the Weyl tensor H̃ab defined as

H̃ab ≡ R3Hab . (2.111)

The propagation equation of the tensor perturbations (2.110) can be now ele-

gantly reformulated to first-order in terms of H̃ab and yields,

H̃ ′′〈ab〉 −
(

∆− 2K +
R′′

R

)
H̃ab = 0 , (2.112)

which is the Grishchuk equation Grishchuk (1974) describing the dynamics of

primordial gravitational waves in a spatially-curved case.

2.6.2 Tensor decomposition of H̃ab

In order to determine the scalar Grishchuk variables associated to the tensor

perturbations, which are the scalar amplitudes of the tensor perturbations, a

tensor decomposition of H̃ab has to be performed. From the properties of the

magnetic part of the Weyl tensor Hab, we deduce that the key tensor H̃ab is

33



2.6 Tensor perturbations

symmetric, trace-free and transverse to first-order. The transversality of H̃ab can

be expressed as,

DbH̃ab = kbH̃ab = 0 , (2.113)

where kb is the spatial wavevector of the transverse gravitational waves satisfying

ubkb = 0. For convenience, we now define two vectors e(1)a and e(2)a that provide

an orthonormal basis for the two-dimensional spatial hypersurface orthogonal

to the propagation direction ka of the gravitational waves, and thus satisfy the

following constraints,

uae(1)
a = uae(2)

a = kae(1)
a = kae(2)

a = 0 ,

e(1)ae(1)
a = e(2)ae(2)

a = 1 , (2.114)

e(1)ae(2)
a = 0 .

Note that these two vectors are not uniquely defined, which does not hinder our

perturbation analysis since any orthonormal vector basis of the two dimensional

hypersurface can be rotated to recover our vector basis {e(1)a, e(2)a}.
For an irrotational fluid, the Fermi-Walker transport of the basis vectors e

(1)
a

and e
(2)
a vanishes as mentioned by Weinberg (1972),

ub∇be
(1)
a − uaabe

(1)
b = 0 ,

ub∇be
(2)
a − uaabe

(2)
b = 0 .

(2.115)

Projecting the Fermi-Walker transported basis vectors (2.115) on the spatial hy-

persurface yields,

e
(1)′
〈a〉 = e

(2)′
〈a〉 = 0 . (2.116)

Taking the comoving spatial Laplacian of the constraints (2.114), we deduce

the following identities,

e(1)a∆e(1)
a = e(2)a∆e(2)

a = 0 ,

e(1)a∆e(2)
a = −e(2)a∆e(1)

a .
(2.117)

In order to decompose the tensor perturbation tensor H̃ab into two polarisation

modes, we define two covariant, trace-free and linearly independent polarisation
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2.6 Tensor perturbations

tensors,

e+
ab = 1

2

(
e(1)
a e

(1)
b − e

(2)
a e

(2)
b

)
,

e×ab = 1
2

(
e(1)
a e

(2)
b + e(2)

a e
(1)
b

)
,

(2.118)

which satisfy the orthonormality conditions,

e+
abe

+ab = e×abe
×ab = 1 ,

e+
abe
×ab = 0 ,

(2.119)

and thus form an orthonormal tensor basis for the polarisation modes as shown

by Durrer (2008). From the identities (2.116), we deduce that the spatially pro-

jected time derivatives of the polarisation tensors vanish,

e+′
〈ab〉 = e×′〈ab〉 = 0 . (2.120)

Taking the comoving Laplacian of the orthonormality conditions (2.119) and using

the identities (2.117), we deduce the following constraints,

e+
ab∆e

+ab = e×ab∆e
×ab = 0 ,

e+
ab∆e

×ab = e×ab∆e
+ab = 0 .

(2.121)

The tensor perturbation variable H̃ab is spatially projected, transverse, trace-

less, and therefore can be decomposed into two polarisation modes {+,×} ac-

cording to,

H̃ab = h+e+
ab + h×e×ab , (2.122)

where

h+ = H̃abe+
ab ,

h× = H̃abe×ab ,

are the scalar amplitudes of the tensor perturbations. The corresponding de-

composition in the ‘background-based’ approach is mentioned by Durrer (2008).

The linear independence of the polarisation tensors in the first-order perturba-

tion analysis allows us to study separately the dynamics of the two decoupled

polarisation modes. To keep the notation compact, we introduce the polarisation

mode superscript λ = {+,×}.
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2.6 Tensor perturbations

2.6.3 Grishchuk variables

Contracting the Grishchuk equation (2.112) with the polarisation basis tensors

eλab and using the identities (2.120) and (2.121), we obtain the Grishchuk equation

for the scalar amplitude of the tensor perturbations associated to the polarisation

mode λ,

hλ′′ −
(

∆− 2K +
R′′

R

)
hλ = 0 . (2.123)

where hλ is the Grishchuk variable, which describes the scalar amplitude of the

tensor perturbations in the polarisation mode λ. There are two Grishchuk vari-

ables {h+, h×} associated to the polarisation modes of the tensor perturbations.

In a similar manner than for the scalar perturbations, we perform a harmonic

decomposition of the tensors perturbations. The harmonics analysis of the tensor

perturbations consists in a decomposition into eigenfunctions of the comoving

spatial Laplacian of the scalar amplitude of the tensor perturbation variable hλ

according to,

∆hλk = −k2hλk , (2.124)

where k is the eigenvalue of the associated harmonic mode and the suffix k denotes

the eigenvector of the mode.

Finally, to first-order, the dynamics of the tensor perturbations for each po-

larisation mode λ can be rewritten as a serie of decoupled harmonic oscillators.

Using the harmonic decomposition of the scalar amplitudes in terms of k (2.124),

the evolution equation for the scalar amplitude of the tensor perturbations (2.123)

in the k-mode satisfies,

hλk
′′

+

(
k2 + 2K − R′′

R

)
hλk = 0 , (2.125)

for each polarisation λ = {+,×}. The tensor perturbation amplitudes variables

hλ are identified as the two scalar Grishchuk variables associated to the tensor

perturbations. Note that (2.125) corresponds to a simple harmonic oscillator with

a polarisation λ in the k-mode,

hλk
′′

+ ωλk
2
hλk = 0 , (2.126)
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2.6 Tensor perturbations

where the conformal time dependent frequency ωλk (τ̂) is given by,

ωλk =

(
k2 + 2K − R′′

R

)1/2

. (2.127)
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Chapter 3

Effective Weyssenhoff fluid

dynamics in the 1 + 3 covariant

approach

Gravitation, the first fundamental force known to modern physics seems also

to be the least understood. Even though the validity of Einstein’s theory of

general relativity has been very well tested on a macroscopic scale, it is known to

present great theoretical challenges on a microscopic scale. General relativity was

originally formulated as a classical field theory valid for mass distributions in a

macrophysical realm. To extend general relativity to the microphysical realm, the

spin of matter has to be considered. Macroscopic matter is made of elementary

particles of mass m and spin s, whose dynamics can be locally described by

quantum field theory and special relativity. As a result, these particles can be

classified using unitary representations of the Poincare group, where the mass m

is connected with the translational part of the group and the spin s is related to

the rotational part as mentioned by Hehl et al. (1976). Mass and spin are two

elementary and complementary microscopic notions which, once averaged on a

macroscopic scale, have a distinctive behaviour. The mass acts like a monopole

and adds up because of its scalar nature whereas the spin behaves like a dipole

and can average out because of its vectorial nature.

The vanishing expectation value of the spin seems to allow a macroscopic

description of a continuous distribution of matter in terms of the mass alone.
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This is precisely the case in general relativity where the energy-momentum tensor

of matter is the only source of the gravitational field. In that case, the dynamics

can be entirely expressed in terms of the metric, which locally accounts for the

curvature of space-time. Even though for a macroscopic random distribution of

elementary particles with spin, the expectation value of the spin vanishes, the

variance does not vanish. To take into account all the local degrees of freedom of

the Poincare gauge, there has to be a spin source of the gravitational field. The

hypothesis made by Sciama (1962) is the existence of a spin density tensor acting

as a material source of the rotational field. The rotational field can be entirely

expressed in terms of the antisymmetric part of the connection called torsion,

which is independent of the metric.

The EC theory extends Einstein’s theory of GR in a natural way by including

the spin properties of matter and their influence on the geometrical structure of

space-time, which could be summarised as follows: “mass bends space-time and

spin twists it”. By removing the symmetry requirement on the two lower indices

of the connection, Cartan (1922) showed that the dynamics is no longer entirely

determined by the metric; the antisymmetric part of the connection called torsion

became an independent dynamical variable. Besides the energy-momentum of

the matter content sourcing curvature, its spin was later postulated by Sciama

(1962) to be the source of torsion. As mentioned by Hehl et al. (1976), the EC

theory locally satisfies the Poincaré symmetry accounting for rotational degrees

of freedom associated with curvature and translational degrees of freedom linked

to torsion.

Weyssenhoff & Raabe (1947) initiated a careful study of the behaviour of

perfect fluids with spin. In order to build cosmological models based on the EC

theory, Obukhov & Korotky (1987) extended their work. They showed, in partic-

ular, that by assuming the Frenkel condition the model reduces to the description

of an effective fluid in GR where the effective stress-energy momentum tensor con-

tains some additional spin squared terms. Note that the Frenkel condition arises

naturally when performing a rigorous variation of the action. It simply means

that the spin pseudovector is spacelike in the fluid rest frame.

As Puetzfeld & Chen (2004) point out, there are an increasing number of

theoretical reasons for studying cosmological models based on a non-Riemannian

39



geometry, as some key features of the current concordance model such as dark

matter, dark energy and in particular inflation still need to be explained. The

Weyssenhoff fluid, for example, seems a promising candidate to describe cosmo-

logical inflation in a geometrical manner without using scalar fields, which have

not yet been observed. This promising behaviour may arise from the spin den-

sity squared terms contained within the effective stress energy momentum tensor

derived by Obukhov & Korotky (1987), since these spin contributions dominate

the dynamics at early times. Although the Weyssenhoff fluid is expected to leave

the late time dynamics unchanged, making it an unsuitable candidate to describe

dark energy, it may still therefore significantly affect the early time evolution of

the fluid.

In this chapter, we restricted our study to the formal derivation of the dy-

namical relations for an effective Weyssenhoff fluid. A detailed study of the large

scales dynamics of such a fluid in an attempt to get a spin based inflation will be

pursued in Chapter 4. To remain as general as possible we chose not to perform

in this dissertation a first- or second-order perturbation analysis for a particular

class of models, although it would be interesting to pursue such a study in fur-

ther work. The dynamics of such a fluid in a 1 + 3 covariant approach has been

studied previously in a cosmological context by Palle (1999). However, the use of

effective GR relations in conjunction with EC identities is rather opaque in this

work, and also certain length scales are excluded from the analysis making a new

study, which considers all length scales, appropriate.

In the standard GR theory, the 1 + 3 covariant approach leads to six propa-

gation equations and six constraint equations. These give respectively the time

and spatial covariant derivatives of the set of dynamical variables, which are the

energy density ρ, the expansion rate Θ, the shear density σ, the vorticity density

ω, the ‘electric’ part of the Weyl tensor E and the ‘magnetic’ part of the Weyl

tensor H. The Weyssenhoff fluid is described by an effective GR theory, where

the additional degrees of freedom due to torsion are entirely determined by the

spin density S. Therefore, in addition to the spin density modifying the dynam-

ical equations for the six standard variables, we also expect to find additional

dynamical relations.
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3.1 Torsion

The structure of this chapter is as follows. In Section 3.1, we introduce the

notion of torsion and interpret it geometrically. In Section 3.2, we briefly outline

the EC theory. In Section 3.3, we show how the EC theory can be recast as an

effective GR theory. In Section 3.4 we give a concise description of a Weyssenhoff

fluid. Section 3.5 is devoted to the Weyssenhoff fluid dynamical analysis using

the 1 + 3 covariant and gauge-invariant formalism outlined in Section 1.1. The

consistency of the particular case with zero vorticity and peculiar acceleration

(ω = a = 0) is established by evolving the constraints in Section 3.6. The last

section draws a comparison with Palle’s results.

3.1 Torsion

The effect of the spin density tensor is to locally induce torsion in the structure

of space-time. The torsion tensor T abc is defined as the antisymmetric part of the

affine connection Γ̃abc,

T abc = Γ̃a[bc] =
1

2

(
Γ̃abc − Γ̃acb

)
, (3.1)

which vanishes in GR since the connection is assumed to be symmetric in its two

lower indices. Note that the tilde denotes an EC geometrical object to distinguish

it from an effective GR object. In a non-Riemanian manifold, the connection

is not symmetric with respect to its lower indices. For such a manifold, the

analytic expression for the EC connection Γ̃abc follows from the definition of the

infinitesimal parallel transport of a vector V a along a curve with a tangent vector

tc,

tc∇̃cV
a = tc

(
∂cV

a + Γ̃abcV
b
)

= 0 , (3.2)

where we adopt the same convention as Obukhov & Korotky (1987). In order

to recover the other convention adopted by Schouten (1954), the indices b and

c have to be permuted in the definition of the connection (3.2). Note that for a

Riemanian manifold both conventions are strictly equivalent since the connection

is symmetric with respect to its lower indices.

To get some new insight into the geometrical significance of torsion we now

interpret the torsion tensor in geometrical terms following the approach of Ham-

mond (2002). We consider transporting the infinitesimal vector χa along ζa, and
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Figure 3.1: Parallel transport of ζa along χa and vice versa. The non-closure Ca

is proportional to the torsion T abcχ
bζc.

compare that to transporting ζa along χa. Suppose we define Aa to be the vector

resulting from parallel transporting ζa along χa, and Ba the one resulting from

parallel transporting χa along ζa, using (3.2), we obtain

Aa = χa + ζa − Γ̃abcζ
bχc

Ba = ζa + χa − Γ̃abcχ
bζc .

(3.3)

The difference between these infinitesimal parallel transported vectors Ca is pro-

portional to the contracted torsion tensor (3.1),

Ca = Aa −Ba = 2T abcχ
bζc. (3.4)

From a geometrical point of view, torsion twists space-time such that parallelo-

grams do not close any more as shown in Figure 3.1.

The EC theory can be extended to include non-metricity since the covariant

derivative of the metric does not necessarily vanish according to,

∇̃agbc ≡Mabc , (3.5)
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3.2 Einstein-Cartan theory

where Mabc is the non-metricity tensor. The four dimensional manifold X4 in-

cludes non-metricity, torsion and curvature. For a vanishing nonmetricity, X4

reduces to the Weitzenboeck manifold U4. In absence of either torsion or cur-

vature, the resulting manifolds are respectively the Riemannian manifold V4 and

the Teleparallel manifold T4. In absence of curvature and torsion, the Minkowski

manifold M4 is recovered.

Even if non-metricity seems an interesting mathematical generalisation for a

gravitation theory, it is not compatible with local Poincaré invariance. In order

for lengths and angles to be invariant under parallel transport, the non-metricity

has to vanish, as mentioned by Hehl et al. (1976). Therefore, we impose the

metricity condition,

∇̃agbc = 0 , (3.6)

which leaves us with torsion and curvature.

The effects of torsion are not able to affect significantly the physics of the

observable universe. In fact, the densities required for spin density to dominate

the dynamics can only be reached in the very early universe so that cosmology is

the only viable approach to test torsion as explained by Capozziello & Stornaiolo

(1998).

3.2 Einstein-Cartan theory

In order to find a proper description of a Weyssenhoff fluid, we first have to

determine the EC field equations. The gauge group associated with the EC

theory is the Poincaré group as mentioned by Hehl et al. (1976). This is easy to

understand as the asymmetry of the connection requires an affine generalisation

of the Lorentz group which is precisely the Poincaré group. Under a Poincaré

transformation, a contravariant vector xa transforms as,

x′a = Λa
bx
b + ab , (3.7)

where Λa
b is an infinitesimal Lorentz transformation and aa an arbitrary con-

travariant vector. In the following, lower case indices refer to a holonomic coordi-

nate basis, while capital indices denote an arbitrary non-holonomic orthonormal

basis.
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3.2 Einstein-Cartan theory

The gauge theory approach has an intrinsic elegance since it can not only be

applied to gravity but also to quantum field theory and is therefore a promising

framework for the unification of the physical laws. In the Poincaré gauge theory

of gravity, the gravitational field is described by the tetrad field ea
A and the

local spin connection ω̃ABa. The spin connection is antisymmetric in its capital

case indices, ω̃ABa = −ω̃BAa, and the inverse of the tetrad is given by eaA, such

that eaAea
B = δBA and eaAeb

A = δ ab . The geometrical structure of U4 − i.e. the

metric gab and the EC connection Γ̃abc − is completely determined by the tetrad

(translational field) and the spin connection (rotational field) according to,

gab = ea
Aeb

BηAB , (3.8)

Γ̃abc = eaAω̃
A
Bceb

B + eaA∂ceb
A . (3.9)

Using the gauge relations (3.8) and (3.9), the torsion tensor (3.1) can be rewritten

in terms of the translational and rotational fields,

QA
ab = ec

AΓ̃c[ab] = −1
2

(
∂aeb

A − ∂beaA + ω̃ABaeb
B − ω̃ABbeaB

)
. (3.10)

The metric and the connection are assumed to be compatible, which means that

the non-metricity vanishes (3.6) and implies that the EC connection Γ̃abc can be

decomposed in terms of the Levi-Civita connection Γabc and the contortion tensor

Ka
bc as,

Γ̃abc = Γabc −Ka
bc , (3.11)

where,

Γabc = 1
2
gad(∂bgdc + ∂cgbd − ∂dgbc) ,

Ka
bc = −T abc − Tbca − Tcba .

The curvature is described by the Riemann-Cartan tensor and its contractions,

i.e. the Ricci-Cartan tensor and the Ricci-Cartan scalar,

R̃A
Bab = ∂aω̃

A
Bb − ∂bω̃ABa + ω̃CBbω̃

A
Ca − ω̃CBaω̃ACb , (3.12)

R̃ab = R̃c
acb = ecAea

BR̃A
Bcb , (3.13)

R̃ = R̃cb
cb = ecAe

b
Cη

CBR̃A
Bcb . (3.14)
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3.2 Einstein-Cartan theory

where we used the same conventions as Obukhov & Korotky (1987). The field

equations of the EC theory are derived from the action S defined on a space-time

manifold M as,

S =

∫
M

d4x
[ e

2κ

(
R̃− 2Λ

)
+ Lm

]
, (3.15)

where κ = 8πG/c4, e = det(ea
A), Λ is the cosmological constant and Lm =

Lm(ea
A, ω̃ABa, φm) is the Lagrangian density of the matter fields φm. Varying the

action (3.15) independently for ea
A and ω̃ABa, the field equations are respectively

found to be,

R̃a
A − 1

2
eaAR̃ + eaAΛ = κT̃ aA , (3.16)

T aAB + 2ea[ATB] = κSaAB , (3.17)

where TB = T aBa is the torsion trace, and the material sources of the gravitational

field are respectively the energy-momentum and the spin density tensors defined

as,

T̃ aA ≡
1

e

δLm

δeaA
, (3.18)

SaAB ≡
1

e

δLm

δω̃ABa
. (3.19)

These source terms are the functional tensors of the EC classical field theory

obtained by variation of the action S. They should not be confused with the

corresponding canonical tensors derived from Noether’s theorem since these two

kinds of tensors may differ in an EC framework.

It is important to mention that Cartan (1922) initially postulated the orbital

angular momentum tensor to be the source of torsion. After the successful in-

troduction of the spin as an intrinsic angular momentum tensor by Uhlenbeck &

Goudsmit (1925), Sciama (1962) extended Cartan’s ideas by assuming the spin

density tensor to be the source of torsion. Although Sciama’s postulate became

the new paradigm of the Einstein-Cartan theory, there is no theoretical reason

to discard Cartan’s initial insight. Since the source of curvature is the energy-

momentum tensor, which is a function of the rest energy and the translational

kinetic energy, it seems conceptually appealing to postulate, by analogy with the
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3.3 EC theory as an effective GR theory

translational case, the total angular momentum, which is a function of the in-

trinsic angular momentum and the orbital angular momentum, as the source of

torsion. It would be interesting to pursue such an idea, but we will not do so in

this dissertation. Instead, we will restrict our analysis to Sciama’s postulate.

The translational field equation (3.16) can be recast in terms of purely holo-

nomic coordinates and decomposed into symmetric and anti-symmetric parts,

R̃(ab) − 1
2
gabR̃ + gabΛ = κT̃(ab) , (3.20)

R̃[ab] = κT̃[ab] . (3.21)

In is useful to established geometrical identities for the Riemann and Ricci

tensor. Using the definition of the Riemann tensor (3.12), the Riemann cyclic

identity is found to be,

R̃a
[bcd] = 2∇̃[bT

a
cd] + 4T e[bcT

a
d]e . (3.22)

Contracting the cyclic identity with respect to a and c yields the antisymmetric

part of the Ricci tensor,

R̃[ab] =
(
∇̃c − 2Tc

) (
T cab + 2δc[aTb]

)
. (3.23)

3.3 EC theory as an effective GR theory

Given that the EC rotational field equation (3.17) is an algebraic coupling between

the torsion tensor and its material source (i.e. the spin density tensor), the torsion

tensor T abc can be recast entirely in terms of the spin density tensor Sabc and its

trace Sc according to,

T abc = κ
(
Sabc + δa[bSc]

)
, (3.24)

where Sc = Saca and Sc = −2κTc. Using the rotational field equation (3.24), the

expression (3.11) for the EC connection Γ̃abc can be recast in terms of the GR

Levi-Civita connection Γabc with additional spin density terms,

Γ̃abc = Γabc + κ (Sabc + Sbc
a + Scb

a − δacSb + gbcS
a) . (3.25)

Since the EC curvature tensors are entirely described by the EC connection,

they can be decomposed into the corresponding GR tensors with additional spin
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3.3 EC theory as an effective GR theory

terms. Using the EC connection (3.25), the LHS of the symmetric translational

field equation (3.20) reduces to,

R̃(ab) −
1

2
gabR̃ = Rab −

1

2
gabR + 2κ∇cS(ab)

c

+ 2κ2

(
S(ab)

cSc + S(a
cdS|dc|b) +

1

2
S(a

cdSb)cd

)
+ gabκ

2

(
ScS

c − ScdeSedc −
1

2
ScdeS

cde

)
.

(3.26)

Similarly, using the contracted cyclic identity (3.23), the rotational field equa-

tion (3.24) and the EC connection (3.25), the LHS of the antisymmetric transla-

tional field equation (3.21) becomes,

R̃[ab] = κ∇cS
c
ab + 2κ2

(
S[a

cdS|cd|b] + ScabSc −
1

2
S[ab]

cSc

)
. (3.27)

The EC stress-energy momentum tensor T̃ab can also formally be decomposed

into the sum of its GR analog Tab and an effective tensor τab according to,

T̃ab = Tab + τab , (3.28)

where τab is a function of the spin density tensor Scab, which depends on the fluid

model.

Having decomposed the geometric and material parts of the EC field equation

into GR tensors with additional spin density tensorial terms (3.26), the symmetric

EC field equation (3.20) is recast now as an effective GR field equation,

Rab −
1

2
gabR = κT sab ,

where the effective stress-energy momentum tensor T sab contains the spin terms

and is related to the GR stress-energy momentum tensor Tab by,

T sab = Tab + τ(ab) − 2∇cS(ab)
c − 2κ

(
S(ab)

cSc + S(a
cdS|dc|b) +

1

2
S(a

cdSb)cd

)
− gabκ

(
ScS

c − ScdeSedc −
1

2
ScdeS

cde

)
.

(3.29)

The antisymmetric EC field equation (3.21) has no GR equivalent. Using the

decomposition (3.27), it can be recast in terms of the GR covariant derivative
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3.3 EC theory as an effective GR theory

as a GR spin field equation describing the time evolution of the material spin

density source according to,

τ[ab] = ∇cS
c
ab + 2κ

(
S[a

cdS|cd|b] + ScabSc −
1

2
S[ab]

cSc

)
. (3.30)

3.3.1 Perfect fluid with spin

In order to determine the dynamics of a model in an effective GR framework, we

need to specify the nature of the matter content. We consider the particular case

of a perfect fluid with spin, which is the EC generalisation of a perfect fluid in

GR. By analogy with a perfect fluid in GR, following the approach of Obukhov &

Korotky (1987), we postulate the EC stress-energy momentum tensor of a perfect

fluid with spin to be defined as,

T̃ab ≡ uaP̃b + p (gab + uaub) , (3.31)

where ua is the 4-velocity of the fluid, p is the pressure of the fluid and P̃a is the

EC 4-momentum, which is related to the GR 4-momentum Pa by,

uaP̃
a = uaP

a = −ρ , (3.32)

where ρ is the energy density of the fluid.

The antisymmetric part of the EC energy-momentum tensor τab represents

the angular momentum tensor, which is recast in terms of the EC 4-momentum

P̃b as,

τ[ab] = u[aP̃b] . (3.33)

By contracting the angular momentum conservation equation (3.30) with the

4-velocity ua and using the angular momentum identity (3.33) and the contraction

relation (3.32), the EC 4-momentum P̃b is found to be,

P̃b = ρub − 2ua
[
∇cS

c
ab + 2κ

(
S[a

cdS|cd|b] + ScabSc −
1

2
S[ab]

cSc

)]
. (3.34)

The EC stress energy momentum tensor of a perfect fluid with spin T̃ab is

obtained by substituting the EC 4-momentum P̃b into (3.31) according to,

T̃ab = ρuaub + p (gab + uaub)

− 2uau
d

[
∇cS

c
db + 2κ

(
S[d

ceS|ce|b] + ScdbSc −
1

2
S[db]

cSc

)]
.

(3.35)
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From the effective decomposition (3.28) and the GR stress energy momentum

tensor Tab of a perfect fluid (2.9), it follows that the effective tensor τab yields,

τab = −2uau
d

[
∇cS

c
db + 2κ

(
S[d

ceS|ce|b] + ScdbSc −
1

2
S[db]

cSc

)]
. (3.36)

3.4 Weyssenhoff fluid description

The Weyssenhoff fluid is a continuous macroscopic medium, which is characterized

on microscopic scales by the spin of the matter fields. The spin density of matter

is described by an antisymmetric tensor,

Sab = −Sba , (3.37)

and has been postulated by Obukhov & Korotky (1987) to be related to the

source of torsion according to,

Sabc = uaSbc . (3.38)

The Frenkel condition requires the intrinsic spin of a matter field to be spacelike

in the rest frame of the fluid,

Sabu
b = 0 . (3.39)

This condition arises naturally from a rigorous variation of the matter Lagrangian

Lm as shown by Obukhov & Korotky (1987).

The Frenkel condition implies that the spin density trace vanishes,

Sa = 0 , (3.40)

and therefore the algebraic coupling (3.24) reduces to,

T abc = κuaSbc . (3.41)

The Weyssenhoff fluid is an EC perfect fluid with spin, as mentioned by

Obukhov & Korotky (1987), which can be recast as an effective GR perfect

fluid with spin, as shown in Section 3.3. Using the Frenkel condition, the an-

alytical expression for the effective GR field equation (3.29) and the spin field

equation (3.30) are considerably reduced. In order to simplify the notation and
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3.4 Weyssenhoff fluid description

clarify the physical interpretation of the dynamics, it is useful to introduce a spin

density pseudovector Sa and a spin density scalar S defined respectively as,

Sa = 1
2
εabcSbc , (3.42)

S2 = 1
2
SabS

ab ≥ 0 , . (3.43)

Substituting the GR stress energy momentum tensor Tab of a perfect fluid (2.9)

and the symmetric part of the effective tensor τab (3.36) into the effective GR

field equation (3.29), and using the Weyssenhoff spin density tensor decomposi-

tion (3.38) and the Frenkel condition (3.39), the effective GR field equation of a

Weyssenhoff fluid is found to be,

Rab − 1
2
gabR = κT sab ,

where the effective stress energy momentum tensor of the fluid is given by,

T sab = (ρs + ps)uaub + psgab − 2
(
gcd − ucud

)
∇c

[
u(aSb)d

]
, (3.44)

with effective energy density and pressure of the form,

ρs = ρ− κS2 + κ−1Λ , ps = p− κS2 − κ−1Λ , (3.45)

satisfying the physical equation-of-state,

p = wρ , (3.46)

where w is the equation-of-state parameter. Note that the sign differences with

Obukhov & Korotky (1987) in the analytical expression for the effective field

equation (3.44) are due to an opposite choice of metric signature.

Similarly, by substituting the antisymmetric part of the effective tensor τab

(3.36) into the spin field equation (3.30), and using the Weyssenhoff spin den-

sity tensor decomposition (3.38) and the Frenkel condition (3.39), the spin field

equation of a Weyssenhoff fluid is found to be,

∇a (uaSbc) = −2udu[b∇|a
(
uaSd|c]

)
. (3.47)
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3.5 Weyssenhoff fluid dynamics using a 1+3 covariant approach

3.5 Weyssenhoff fluid dynamics using a 1+3 co-

variant approach

We will now use the 1+3 covariant approach to describe accurately the dynamics

of a Weyssenhoff fluid in GR on all scales and in a non-perturbative way. Once

the dynamical evolution is entirely determined, a perturbation analysis can be

performed for any given class of models according to their symmetries. We will

not perform a perturbation analysis of a Weyssenhoff fluid in this dissertation,

but such an analysis would be a natural and interesting extension of our study.

In a cosmological context, we would require the cosmological fluid to be highly

symmetric on large scales but allow for generic inhomogeneities on small scales.

This is necessary to provide an accurate enough description of the observable

universe accounting for its homogeneity and isotropy on large scales as well as

for all the complicated structures it contains on small scales.

In GR, the Weyssenhoff fluid dynamics is actually a generalisation of the dy-

namics of a perfect fluid, where the effective energy density ρs and pressure ps

contain a spin density squared S2 correction term, and the stress energy mo-

mentum tensor T sab incorporates an additional spin divergence term. The new

contribution to the effective dynamics comes from the spin field equation (3.47).

Thus, the dynamics of a perfect fluid is recovered for a vanishing spin density.

The dynamical model of a perfect fluid with spin is fully determined by its

matter content − including the spin properties of the particles − and its curva-

ture. The matter content of the Weyssenhoff fluid is described by the effective

stress-energy momentum tensor (3.44). Using the 1+3 formalism, it can be recast

as,

T sab = (ρs + 4ωcSc)uaub + pshab − 2u(aD
cSb)c − 4u(aa

cSb)c − 2σ(a
cSb)c + 2ω(a

cSb)c .

(3.48)

The physical interpretation of the Weyssenhoff fluid now becomes more trans-

parent. The terms containing the effective energy density ρs and pressure ps

represent the behaviour of an effective perfect fluid, where ρs and ps account for

the spin contributions. The other terms describe how the peculiar acceleration

of the fluid ab and the fluid anisotropies − described by the rate-of-shear σab and
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3.5 Weyssenhoff fluid dynamics using a 1+3 covariant approach

the vorticity ωab respectively − couple to the spin density Sab and contribute to

the effective energy density of the fluid.

The Ricci tensor Rab is simply obtained by substituting the expression (3.48)

for the effective stress energy momentum tensor T sab into the Einstein field equa-

tions (3.44),

Rab = κ
2

(ρs + 3ps + 8ωcSc)uaub + κ
2

(ρs − ps)hab
− 2κu(aD

cSb)c − 4κu(aa
cSb)c − 2κσ(a

cSb)c + 2κω(a
cSb)c .

(3.49)

3.5.1 Riemann tensor decomposition

The Riemann tensor Rab
cd can be fully split in a 1+3 manner according to (2.14)

by using the expression (3.49) for the Ricci tensor Rab and the decomposition of

the Weyl tensor Cab
cd into its electric Eab and magnetic Hab parts. For conve-

nience, the tensor is split into three parts: the spinning perfect fluid part (P),

the electric part of the Weyl tensor (E) and the magnetic part of the Weyl tensor

(H). The decomposition yields,

Rab
cd = Rab

P cd +Rab
E cd +Rab

H cd , (3.50)

where

Rab
P cd = 2

3
κ (ρs + 3ps + 12ωeSe)u

[au[ch
b]
d]

+ 2
3
κρsh

[a
[ch

b]
d]

− 2κ
(
h[a

[c + u[au[c

)
[ub]DeSd]e + ud]DeS

b]e + 2ub]aeSd]e + 2ud]aeS
b]e

+ σb]eSd]e + σd]eS
b]e − ωb]eSd]e − ωd]eS

b]e] ,

Rab
E cd = Cab

E cd = 4u[au[cE
b]
d] + 4h[a

[cE
b]
d] ,

Rab
H cd = Cab

H cd = 2εabeu[cHd]e + 2εcdeu
[aHb]e .

Note that for a vanishing spin density (i.e. in absence of torsion), we recover

the results of Chapter 2. This is also the case for every propagation and constraint

equation describing the dynamics of the Weyssenhoff fluid because these expres-

sions are projections of effective GR identities which are based on the Riemann

tensor and its contractions.

We now derive the dynamical equations obtained by projection of the Ricci

identities, the Bianchi identities, once- and twice-contracted, and the spin field

equation. We discuss each set of identities in turn.
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3.5 Weyssenhoff fluid dynamics using a 1+3 covariant approach

3.5.2 Ricci identities

The first set of dynamical equations arises from the Ricci identities (2.27). To

extract the physical information stored in the Ricci identities, the latter have to be

projected along the worldlines ua and on the orthogonal spatial hypersurfaces hab.

The non-vanishing projections yield the propagation equations and the constraint

equations respectively,

uahbeh
c
f

(
∇[a∇b]uc − 1

2
R[ab]cdu

d
)

= 0 , (3.51)

εabeh
c
f

(
∇[a∇b]uc − 1

2
R[ab]cdu

d
)

= 0 , (3.52)

where the latter have been expressed in terms of rank-2 tensors by duality (εabe)

without loss of information.

The Ricci identities can be further split by separating the propagation and

constraint equations into their trace part (T), symmetric trace-free part (STF)

and antisymmetric trace-free part (ATF). The sets of equations are explicitly

determined by the kinematics of the 1 + 3 covariant formalism (1.11) and by

substituting the Riemann tensor decomposition (3.50) into the projections yield-

ing the propagation (3.51) and constraint (3.52) equations respectively before

splitting them into parts.

The propagation equations are found to be as follows.

• The Raychaudhuri equation (T),

Θ̇ = −1
3
Θ2 +Dba

b + 2
(
a2 − σ2 + ω2

)
− κ

2

(
ρs + 3ps + 8ωbSb

)
, (3.53)

which is the basic dynamical equation of a perfect fluid with spin in this

system. The last term on the RHS describes how the interaction between

the spin density and the vorticity density affects the large scale dynamics.

The physical meaning of this term is clear: the energy required to align the

spin with the vorticity will act like a brake on the expansion, leading to the

presence of this damping term in the Raychaudhuri equation.

• The vorticity propagation equation (ATF),

ω̇〈a〉 = −2
3
Θωa + 1

2
curl aa + σa

bωb , (3.54)
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3.5 Weyssenhoff fluid dynamics using a 1+3 covariant approach

which shows how vorticity conservation follows for a perfect fluid. Note

that there is no spin contribution, which means that torsion does not ex-

plicitly affect the vorticity evolution, although the effect of spin on the other

dynamical variables must be taken into account.

• The shear propagation equation (STF),

σ̇〈ab〉 = −2
3
Θσab +D〈aab〉 + a〈aab〉 − σ〈acσb〉c − ω〈aωb〉 − Eab

− κ
(
σ〈a

cSb〉c + ω〈aSb〉
)
,

(3.55)

which shows how the tidal gravitational field Eab and the spin density Sab

induce shear. The coupling between the spin density, the shear density and

the vorticity contributes to the fluid anisotropies by increasing the rate of

shear.

The constraint equations are given by the following relations.

• The vorticity divergence constraint (T),

Dbω
b = abω

b . (3.56)

This constraint simply expresses the fact that, in presence of a peculiar

acceleration induced by a non-gravitational force due to the fluid dynamics,

the spatial variation of vorticity is proportional to the vorticity.

• The shear and spin divergence constraint (ATF),

Db

(
σa

b + ωa
b − κSab

)
− 2

3
DaΘ = −2ab

(
ωa

b − κSab
)
. (3.57)

Using the vorticity constraint (3.56), the shear and spin density constraint

(3.57) can be recast as,

Db

(
σa

b − κSab
)
− 2

3
DaΘ = −ab

(
3ωa

b − 2κSa
b
)
. (3.58)

This expression relates the spatial variation of physical quantities, such as

the spin density, the rate of shear and the expansion rate on the LHS, to

the coupling between the acceleration due to the fluid dynamics and the

fluid anisotropies on the RHS.
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3.5 Weyssenhoff fluid dynamics using a 1+3 covariant approach

• The magnetic constraint (STF),

Hab = −D〈aωb〉 − 2a〈aωb〉 + curlσab . (3.59)

Using the vorticity constraint (3.56), the magnetic constraint (3.59) reduces

to,

Hab = −3a〈aωb〉 + curlσab . (3.60)

This constraint shows that the magnetic part of the Weyl tensor is induced

by the curl of the shear and the coupling between the acceleration due to

the fluid dynamics and the vorticity.

3.5.3 Once-contracted Bianchi identities

The second and third set of dynamical equations are contained in the Bianchi

identities (2.43). In a similar manner to the Ricci identities, the information

stored in the once-contracted Bianchi identities (2.44) has to be projected on the

different hypersurfaces. The projections yield respectively two propagation and

two constraint equations,

ha〈eh
c
f〉ub

(
∇dCab

cd +∇[aRb]
c + 1

6
δc

[a∇b]R
)

= 0 , (3.61)

εab〈eh
c
f〉

(
∇dCab

cd +∇[aRb]
c + 1

6
δc

[a∇b]R
)

= 0 , (3.62)

haeh
c
b

(
∇dCab

cd +∇[aRb]
c + 1

6
δc

[a∇b]R
)

= 0 , (3.63)

εeabu
c
(
∇dCab

cd +∇[aRb]
c + 1

6
δc

[a∇b]R
)

= 0 . (3.64)

The sets of equations are explicitly determined by substituting the expression

for the Weyl tensor splitting (3.50) and the Ricci tensor (3.49) into the projections

of the once-contracted Bianchi identities (3.61)-(3.64).

The propagation equations are found to be as follows.

• The electric propagation equation,

Ė〈ab〉 = −ΘEab + curlHab − κ
2

(ρs + ps)σab

+ 3σ〈a
cEb〉c − ω〈acEb〉c + 2εcd〈aa

cHb〉
d + κ (SĖ)〈ab〉 ,

(3.65)
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where

(SĖ)〈ab〉 = (3)
(
σ〈a

cSb〉c + ω〈aSb〉
)·

+ 1
3

Θ
(
σ〈a

cSb〉c + ω〈aSb〉
)

+ 1
2
σcd
(
σ〈a

cSb〉
d − ω〈acSb〉d

)
+ 1

2

(
D〈a + 2a〈a

) (
DcSb〉c + 2acSb〉c

)
.

This equation is similar in form to Maxwell’s electric propagation equa-

tion in an expanding universe. The (SĖ)〈ab〉 term on the RHS of rela-

tion (3.65) describes how the coupling between the spin density and the

fluid anisotropies contributes to the gravitational tidal field Eab.

• The magnetic propagation equation,

Ḣ〈ab〉 = −ΘHab− curlEab+3σ〈a
cHb〉c−ω〈acHb〉c−2εcd〈aa

cEb〉
d+κ (SḢ)〈ab〉 ,

(3.66)

where

(SḢ)〈ab〉 = − 1
2
εcd〈a[D

c{(σde − ωde)Sb〉e + Sde(σb〉e − ωb〉c)}

− (σb〉
d − ωb〉d)(DeS

de + 2aeS
de)− ωcd(DeSb〉e + 2aeSb〉e)] .

This expression is analogous to Maxwell’s magnetic propagation equation

in an expanding universe. The (SḢ)〈ab〉 term on the RHS of this rela-

tion (3.66) describe how the coupling between the spin density and the

fluid anisotropies contributes to the gravitational tidal field Hab.

In a similar manner to that in which Maxwell’s equations describe electrody-

namics in an expanding universe, the coupling between the electric (3.65) and

magnetic (3.66) propagation equations gives rise to gravitational waves damped

by the expansion of the universe.

The constraint equations are given by the following relations.

• The electric constraint equation,

DbEab = κ
3
Daρs + 3ωbHab + εabcσ

b
dH

cd + κ (SdivE)a , (3.67)

where

(SdivE)a = −Da[(σ
bc − ωbc)Sbc] +Db[(σ(a

c − ω(a
c)Sb)c]

+ 1
3
Θ
(
DbSab + 2abSab

)
− 1

2
σab
(
DcS

bc + 2acS
bc
)
.
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3.5 Weyssenhoff fluid dynamics using a 1+3 covariant approach

This constraint is a vector analogue of the Newtonian Poisson equation. It

is similar in form to Maxwell’s electric divergence equation. For this gravi-

tational field equation, the source is not the electric charge density but the

energy density. The (SdivE)a term on the RHS of expression (3.67) describes

how the coupling between the spin density and the fluid anisotropies acts

like an effective electric divergence source.

• The magnetic constraint equation,

DbHab = κ (ρs + ps)ωa − 3ωbEab − εabcσbdEcd + κ (SdivH)a , (3.68)

where

(SdivH)a = −1
2
εabcD

b (DeS
ce + 2aeS

ce) .

This constraint is analogous to Maxwell’s magnetic divergence equation.

Unlike for Maxwell’s equation, this gravitational field equation has a source

term which is the fluid vorticity. The (SdivH)a term on the RHS of expres-

sion (3.68) describes how the coupling between the spin density and the

fluid anisotropies acts like an effective magnetic divergence source.

3.5.4 Twice-contracted Bianchi identities

The third set of equations is given by the twice-contracted Bianchi identities

which represent the conservation of the effective stress energy momentum tensor.

They are obtained by performing a second contraction on the once-contracted

Bianchi identities (2.44). There are only two possible projections to extract the

information stored in the twice-contracted Bianchi identities,

ua∇bT sab = 0 , (3.69)

hc
a∇bT sab = 0 . (3.70)

The propagation and constraint equations are explicitly determined by substi-

tuting the reduced expression for the stress-energy momentum tensor (3.48) into

the two projections of the twice-contracted Bianchi identities (3.69) and (3.70)

respectively.

The propagation equation is found to be as follows.
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• The effective energy conservation equation,

ρ̇s = −Θ (ρs + ps) . (3.71)

Note that for a vanishing spin density this relation reduces to the well-known

energy conservation equation determining the evolution of the physical en-

ergy density ρ and pressure p.

The constraint equation is given by the following relation.

• The momentum conservation equation,

Daps = − (ρs + ps) aa + (Sp)a , (3.72)

where

(Sp)a = 2
(
Db + ab

) (
σ(a

cSb)c − ω(a
cSb)c

)
+(3)(DcSac + 2acSac)

·

+ 4
3
Θ (DcSac + 2acSac) +

(
σa

b − ωab
)

(DcSbc + 2acSbc) .

The term (Sp)a describes how the coupling between the spin density and

the fluid anisotropies contributes to the total angular momentum.

3.5.5 Spin dynamics

The last dynamical equation for the evolution of the Weyssenhoff fluid is the spin

field equation (3.47). To extract the spin propagation equation, the field equation

has to be twice projected on the hypersurface orthogonal to the worldline. By

duality, we can write it in terms of the spin density pseudovector Sa without loss

of information (3.42), and we obtain:

• The spin propagation equation,

Ṡ〈a〉 = −ΘSa . (3.73)

This expression (3.73) can be recast in terms of the spin-density scalar

S2 (3.43) defined as,

S2 = SaS
a . (3.74)
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It is then simply given by,

Ṡ = −ΘS . (3.75)

This relation shows that the evolution of the spin density is the same on all

scales because it is entirely determined by the volume rate of expansion of

the fluid. For consistency, note that this expression implies that the spin

density is inversely proportional to the volume of the fluid.

The effective energy conservation equation (3.71) can now be recast in terms

of the true (i.e. not effective) energy density and pressure of the fluid by

substituting the spin propagation equation (3.75),

ρ̇ = −Θ (ρ+ p) . (3.76)

The effective energy density ρs and pressure ps contain spin density squared

S2 correction terms (3.45). Thus, the spin propagation equation (3.75) and the

energy conservation equation (3.76) imply that the spin density will rule entirely

the dynamics of the fluid at early times (κS2 � ρ, p), whereas, at late times, the

spin contribution can safely be neglected (κS2 � ρ, p).

In a cosmological context, the spin dominated era might lead to an inflationary

behaviour. This promising prospect will be analysed in detail in the next chapter.

Given that the matter dominated era is not affected by the spin contribution, the

cosmological model thus reduces to the dynamical behaviour of a perfect fluid in

GR. Hence, the spin density contribution from the Weyssenhoff fluid is expected

to affect significantly the early time evolution of the fluid leaving the late time

dynamics unchanged. Therefore, it is not currently promising as a candidate to

describe dark energy.

3.6 Consistency of the dynamics for an irrota-

tional Weyssenhoff fluid with no peculiar ac-

celeration

The consistency of the propagation and constraint equations can be verified by

evolving the constraints. This is a tedious but straightforward task. To make the
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problem tractable, we chose to restrict our attention to the class of models for

which the fluid dynamics is described by an irrotational flow (i.e. ωab = 0) with

no peculiar acceleration (i.e. ab = 0). This ensures a hypersurface-orthogonal

flow and the existence of a globally defined cosmic time. If the flow is initially

irrotational, it will remain so at later times as mentioned by Ellis & van Elst

(1999) and as it follows directly from (3.54) in the ab = 0 case.

For each space-time slicing, we can now define the curvature tensors entirely

in terms of the spatial hypersurface orthogonal to the worldline. For this purpose,

let us define a vector va, which is orthogonal to the worldline, and an expansion

tensor Θab according to,

vaua = 0 , Θab = v(ab) = 1
3
Θhab + σab . (3.77)

The spatial Riemann tensor (3)Rabcd is related to the Riemann tensor Rabcd by

(3)Rabcd = ha
ehb

fhc
ghd

hRefgh −ΘacΘbd + ΘadΘbc . (3.78)

The spatial Ricci tensor and scalar can be obtained by contracting the spatial

Riemann tensor with the induced spatial metric hµν ,

(3)Rab = hcd
(3)
Racbd , (3.79)

(3)R = habhcd
(3)
Racbd . (3.80)

Using (1.11), (3.50), (3.55) and (3.78), these 3-space curvature quantities can be

recast respectively as,

(3)Rab
cd = 2

3
κha[ch

b
d]ρs + 4ha[cE

b
d] − 2Θa

[cΘ
b
d]

− 2κh[a
[c

(
Θd]eS

b]e + Θb]eSd]e

)
, (3.81)

(3)Rab = −σ̇〈ab〉 −Θσab − κσ〈acSb〉c + 1
3
hab
(
2κρs − 2

3
Θ2 + 2σ2

)
, (3.82)

(3)R = −2
3
Θ2 + 2κρs + 2σ2 . (3.83)

3.6.1 Evolution of the constraints

To determine the time evolution of the constraint equations, we shall follow

Maartens (1997) and generalise his results to include the presence of spin. For
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an irrotational Weyssenhoff fluid in absence of any peculiar acceleration, the

propagation equations (3.53), (3.55), (3.65), (3.66), (3.75) and (3.76), denoted by

PA = 0 where A = 0, . . . ,5 , reduce to

P0 = Ṡ + ΘS , (3.84)

P1 = ρ̇+ Θ (ρ+ p) , (3.85)

P2 = Θ̇ + 1
3
Θ2 + 2σ2 + κ

2
(ρs + 3ps) , (3.86)

P3
ab = σ̇〈ab〉 + 2

3
Θσab + σ〈a

cσb〉c + Eab + κσ〈a
cSb〉c , (3.87)

P4
ab = Ė〈ab〉 + ΘEab − curlHab + κ

2
(ρs + ps)σab − 3σ〈a

cEb〉c

− κ(3)
(
σ〈a

cSb〉c
)· − κ

3
Θσ〈a

cSb〉c − κ
2
σcdσ〈a

cSb〉
d − κ

2
D〈aD

cSb〉d , (3.88)

P5
ab = Ḣ〈ab〉 + ΘHab + curlEab − 3σ〈a

cHb〉c

+ κ
2
εcd〈aD

c
(
σdeSb〉e + σb〉eS

ρde
)
− κ

2
εcd〈aσb〉

cDeS
de , (3.89)

and the constraint equations (3.58), (3.60), (3.67), (3.68), and (3.72), denoted by

CA = 0 where A = 0, . . . ,4 , become

C0
a = Daps − 2Db

(
σ(a

cSb)c
)

+ σb
cDbSac − σabDcSbc

+ Sa
bDbΘ− 1

2
Sa

bDcSbc + εabcS
b
dH

cd , (3.90)

C1
a = Dbσab − κDbSab − 2

3
DaΘ , (3.91)

C2
ab = curl σab −Hab , (3.92)

C3
a = DbEab − κ

3
Daρs − εabcσbdHcd

− κDb
(
σ(a

cSb)c
)
− κ

3
ΘDbSab + κ

2
σabDcS

bc , (3.93)

C4
a = DbHab + εabcσ

b
dE

cd + κ
2
εabcD

bDdS
cd . (3.94)

The evolution of the constraints CA along the worldlines ua leads to a sys-

tem of equations ĊA = FA(CB), where FA do not contain time derivatives, since

these are eliminated via the propagation equations PA and suitable identities.

The covariant analysis of propagation and constraint equations involves frequent

use of a number of algebraic and differential identities governing the kinemati-

cal and dynamical quantities. In particular, one requires commutation rules for

spatial and time derivatives. The necessary identities are collected for conve-

nience in Appendix B. After lengthy calculations the explicit time evolution of
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the constraints (3.91), (3.92), and (3.94) is found to be,

(3)(C1
a)
· = −ΘC1

a + 2εa
bcσb

dC2
cd − C3

a + κC0
a , (3.95)

(3)(C2
ab)
· = −ΘC2

ab − εcd(aσb)cC
1
d , (3.96)

(3)(C4
a)
· = −4

3
ΘC4

a + 1
2
σa

bC4
b + 3

2
Ha

bC1
b − εabcHb

dC2
cd − 1

2
curlC3

a . (3.97)

The constraints are preserved under evolution as we now briefly explain. Sup-

pose that the constraints are satisfied on an initial spatial hypersurface {t = t0},
i.e. CA|t0 = 0, where t is the proper time along the worldlines. Since CA = 0 is a

solution for the initial data, it then follows from (3.95)-(3.97) that the constraints

are satisfied for all time.

The time evolution of C0
a was not explicitly established because the equation

of state needs to be specified for this endeavour. Neither was the expression for

the time evolution of C3
a explicitly determined due to the overwhelming alge-

braic complexity of that particular computation. However, it is plausible that

the dynamics is consistent since the three time evolution equations for the con-

straints (3.95), (3.96) and (3.97) involve all the constraint and propagation equa-

tions. This is true with the exception of P1. As we discuss in detail below, P1 is

not involved in the time evolution of (3.95), (3.96) and (3.97). However, Obukhov

& Korotky (1987) have shown, using the Frenkel condition, that any perfect fluid

with spin in the EC theory has an energy conservation equation of the form P1.

This is sufficient to show independently the consistency of P1.

The time evolution of C1
a, (3.95), involves the propagation equations P0, P2,

P3
ab and the constraint equations C0

a, C
1
a, C

2
ab. It has been determined by using

the covariant identities (B.4) and (B.8).

The time evolution of C2
ab, (3.96), involves the propagation equations P3

ab,

P5
ab and the constraint equations C1

a, C
2
ab. It has been determined by using the

covariant identities (B.7) and (B.11).

The time evolution of C4
a, (3.97), involves the propagation equations P0,

P3
ab, P4

ab, P5
ab and the constraint equations C1

a, C2
ab, C3

a, C4
a. It has been

determined by using the covariant identities (B.3), (B.5), (B.8), (B.9) and (B.10).

The constraint equations are not linearly independent given that they satisfy,

C4
a = 1

2
curlC1

a −DbC2
ab . (3.98)
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3.7 Comparison with previous results obtained by Palle

The consistency of the constraint equations can be explicitly inferred from

relation (3.98) as mentioned by Maartens (1997) and explained below. For any

given spatial hypersurface, i.e. {t = const}, the linear dependence (3.98) of the

constraint equations implies the constraint C4
a is satisfied provided that the con-

straints C1
a and C2

ab are also satisfied. Moreover, the time evolution of C1
a and

C2
ab, described by (3.95) and (3.96) respectively, depends explicitly on C0

a and

C3
a. Hence, if we take C0

a as determining DbSab, C
1
a as defining DaΘ, C2

ab as

establishing Hab and C3
a as setting Daρs, the constraint equations are consistent

with each other because C4
a then follows.

The consistency of the constraints for a perfect fluid in GR with non vanishing

vorticity and peculiar acceleration has been established by van Elst (1996). Thus,

having shown that the dynamics of an irrotational Weyssenhoff fluid in absence of

any peculiar acceleration (ω = a = 0) is consistent, it is very plausible − although

not proven − that this will remain the case in the general case when the vorticity

and the peculiar acceleration are considered. Hence, in that case, to establish

explicitly the consistency of the constraints for such a fluid, the coherence of the

terms involving the coupling between the spin density, the vorticity density and

the peculiar acceleration would have to be shown respectively. This would be a

extremely laborious algebraic task, but it is, in fact, quite likely to be true since

the consistency of two different particular cases has already been established.

3.7 Comparison with previous results obtained

by Palle

A first attempt to study the dynamics of a Weyssenhoff fluid in a 1 + 3 covariant

approach was initiated by Palle (1999). The results we find in this thesis disagree,

however, with the majority of the results derived by Palle, as we now briefly

explain.

In a similar way to our own procedure, Palle based his analysis on the effective

Einstein field equations for a Weyssenhoff fluid obtained by Obukhov & Korotky

(1987), which are outlined in relation {1} of his publication. As explicitly stated

in his work, Palle projects the EC version of the Ricci identities determined
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3.7 Comparison with previous results obtained by Palle

by Hehl (1974),

∇̃[a∇̃b]uc = 1
2
R̃cdabu

d +Qd
ab∇̃duc, (3.99)

which are given in relation {4} of his paper to find the corresponding propagation

and constraint equations. This stands in direct contradiction with the fact that

the 1 + 3 covariant approach used is based on effective GR field equations.

Moreover, in Palle’s work, there is no mention of the antisymmetric part of

the EC field equations which lead to the spin field equation. It seems unfeasi-

ble to provide an accurate description of a cosmological fluid with spin without

describing the spin dynamics.

Furthermore, Palle chose to neglect the contributions due to the electric and

magnetic part of the Weyl tensor but did not provide any explanation for this. In-

deed, the relation {7} he obtained for the shear propagation equation has no tidal

gravitational field Eab contribution, and there is no magnetic constraint equation.

To describe the late time cosmological evolution, it seems indeed reasonable to

neglect the contributions due to the primordial free propagating gravitational

fields which have been damped by the cosmological expansion. However, these

fields do significantly affect the early dynamics and have to be taken into account

in a general description of cosmological models.

Finally, Palle does not determine the cosmological relations derived from the

Bianchi identities. Again, these would be very useful to understand the dynamics

of the early time evolution of cosmological models.

Palle (2007) has recently clarified certain points relating to the approach he

followed in analysing the cosmological implications of a Weyssenhoff fluid. Several

issues still, however, remain a concern, as outlined below.

It is perfectly legitimate to analyse the Weyssenhoff fluid dynamics within an

EC framework without resorting to an effective GR framework. In such a case, the

appropriate way to determine the large scale propagation and constraint equations

is indeed to project the EC Ricci identites (3.99) on the relevant hypersurfaces,

which is what Palle seems to have done. To achieve this, the EC Ricci identities

have to be explicitly determined using the effective EC field equations. Our

contention is that the only effective field equations {1}mentioned by Palle (1999),

and used to perform the calculations, are the effective GR field equations obtained
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3.7 Comparison with previous results obtained by Palle

by Obukhov & Korotky. We believe that the GR field equations are incompatible

with EC Ricci identities, which would thus invalidate the analysis.

The physical motivation for using GR field equations is that it provides a more

natural generalisation for the dynamics of a perfect fluid within GR. Although

Palle’s procedure seems inconsistent, we have nevertheless translated his results

within a GR framework to be able to compare them. To compare explicitly our

results with those obtained by Palle, note that the torsion scalar Q2 he uses

is related − due to the algebraic coupling between spin and torsion − to our

definition of the spin density scalar S2 by,

Q2 = −κ2S2 . (3.100)

It is now straightforward to see that neither the propagation equations {5 − 7}
nor the constraint equations {8− 9} he found agree with our own corresponding

results. The detailed comparision and analysis is given in Section 3.7.1. We hope

that it might clarify this particular issue.

With regard to the scope of Palle’s paper, on large scales, the contribution

of the tidal forces to dynamics of the Weyssenhoff fluid can indeed be neglected

in dynamical analysis of the background evolution. Hence, the Weyl tensor can

safely be ignored in his approach, but it was not stated by Palle that only the

dynamics on large scales were under consideration. It was important to clarify

this issue because we have considered the dynamical evolution of Weyssenhoff

fluid on all scales.

Finally, let us just mention that, as suggested by Palle (2007), it might indeed

be more appropriate to consider an N-body simulation to determine the large

scale and late time dynamics of a Weyssenhoff fluid in a cosmological context.

However, this seems to us to lie outside our study, as we simply considered the

evolution of such a fluid on all scales and for all times.

3.7.1 Explicit comparison with Palle’s results

To compare our results (BHL) explicitly with the corresponding results obtained

by Palle, we reexpressed his EC propagation and constraint equations − presum-

ably obtained within an EC framework − into a GR framework using the relations
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3.7 Comparison with previous results obtained by Palle

given in Appendix B. The correspondence between the EC and GR connections

is given by,

Γ̃abc = Γabc + κ (uaSbc + uaSb
c + ubSa

c) , (3.101)

and necessary to recast the EC covariant derivative ∇̃a in terms of its GR coun-

terpart ∇a. To be consistent with Palle’s procedure, we only considered the dy-

namics on large scales, hence neglecting the contribution due to the tidal forces

(Eab = Hab = 0).

The propagation equations are respectively found to be (where we highlight

in bold face the terms that differ):

(Palle) : Θ̇ = −1
3
Θ2 +Dba

b + 2
(
a2 − σ2 + ω2

)
− κ

2
(ρs + 3ps) , (3.102)

(BHL) : Θ̇ = −1
3
Θ2 +Dba

b + 2
(
a2 − σ2 + ω2

)
− κ

2

(
ρs + 3ps + 8ωbSb

)
,

(3.103)

(Palle) : ω̇〈a〉 = −2
3
Θωa + 1

2
curl aa +

(
σa

b − κSa
b
)
ωb , (3.104)

(BHL) : ω̇〈a〉 = −2
3
Θωa + 1

2
curl aa + σbaωb , (3.105)

(Palle) : σ̇〈ab〉 = −2
3
Θσab −D〈aab〉 + a〈aab〉 − σ〈acσb〉c − ω〈aωb〉

− 2κσ〈a
cSb〉c + 1

3
hab

(
Θ + 2Dca

c− 2a2 + 2κ2S2
)
, (3.106)

(BHL) : σ̇〈ab〉 = −2
3
Θσab −D〈aab〉 + a〈aab〉 − σ〈acσb〉c − ω〈aωb〉

− κ
(
σ〈a

cSb〉c + ω〈aSb〉
)
. (3.107)

The constraint equations respectively yield (where we highlight in bold face

the terms that differ):

(Palle) : Db

(
ωb − κSb

)
= −ab

(
ωb − κSb

)
, (3.108)

(BHL) : Dbω
b = −abωb , (3.109)

(Palle) : Db

(
σa

b + ωa
b
)
− 2

3
DaΘ = 2abωa

b , (3.110)

(BHL) : Db

(
σa

b + ωa
b − κSa

b
)
− 2

3
DbΘ = 2aa

(
ωa

b − κSa
b
)
. (3.111)

Note that the shear propagation equation is by definition trace free. This

result is recovered by BHL but not by Palle. Furthermore, in absence of torsion −
i.e. for a vanishing spin contribution − the shear evolution equation obtained by
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3.7 Comparison with previous results obtained by Palle

Palle does not reduce to Hawking and Ellis’ result whereas the relation obtained

by BHL does.

We could not rigorously verify Palle’s result by evolving the constraints be-

cause the spin contribution to the Bianchi identities are needed for that purpose

as shown in Section 3.6. However, it would be of considerable interest if Palle

could emulate BHL and demonstrate that his set of equations also reduce to

Hawking and Ellis’ results in absence of torsion, and that the consistency of his

equations could be established in the absence of vorticity and of any peculiar

acceleration.
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Chapter 4

Classical big-bounce cosmology:

dynamical analysis of a

homogeneous and irrotational

Weyssenhoff fluid

In Chapter 3, we performed a formal derivation of the dynamical relations for

an effective Weyssenhoff fluid. In this chapter, we restrict our analysis to the

dynamics of such a fluid on large scales. We focus in particular on the cosmological

application of Weyssenhoff fluid. Firstly, we wish to investigate the possibility

that the spin contributions for a Weyssenhoff fluid may avert an initial singularity,

as first suggested by Trautman (1973). Secondly, since the inflation scenario is

the simplest known generating mechanism for the initial density fluctuations, it

is also of particular interest to see if the spin contributions are able to generate

a dynamical model endowed with an early inflationary era, as first suggested

by Gasperini (1986). Scalars fields can generate inflation, but they have not

yet been observed. Therefore, it is of interest to examine possible alternatives,

such as a Weyssenhoff fluid. In contrast to the approaches of Trautman (1973)

and Gasperini (1986), our use of the 1 + 3 covariant formalism enables us to

determine the dynamics of a Weyssenhoff fluid without assuming any particular

form for the space-time metric.

The study of the dynamics of a Weyssenhoff fluid in a 1+3 covariant approach
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was initiated by Palle (1999). His work has been revised and extended by Brechet

et al. (2007). This chapter extends the work carried out first by Trautman (1973)

in an isotropic space-time, and Kopczynski (1973) and Stewart & Hájiček (1973)

in an anisotropic space-time. It also generalises the analysis of the inflationary

behaviour of Weyssenhoff fluid models made by Gasperini (1986) to anisotropic

space-times.

In our dynamical analysis, we choose to restrict our study to a spatially homo-

geneous and irrotational Weyssenhoff fluid. This particular choice, which implies

a vanishing vorticity and peculiar acceleration, has been motivated by under-

lying fundamental physical reasons. For a vanishing vorticity, the fluid flow is

hypersurface-orthogonal, which means that the instantaneous rest spaces defined

at each space-time point should mesh together to form a set of 3-surfaces in

space-time as explained by Ellis (1971). These hypersurfaces, which are surfaces

of simultaneity for all the fluid observers, define a global cosmic time coordinate

determined by the fluid flow. Moreover, by assuming that any peculiar acceler-

ation vanishes, the cosmic time is then uniquely defined. It is worth mentioning

that the absence of vorticity is an involutive property, which means that if it is

true initially then it will remain so at later times as shown by Ellis & van Elst

(1999). Finally, the assumption that there is no vorticity on all scales implies

that the fluid has no global rotation. This is in line with recent Bayesian MCMC

analysis of WMAP data performed by Bridges et al. (2006). Their work con-

firms that a physical Bianchi VIIh model, which has a non-vanishing vorticity, is

statistically disfavored by the data.

It is worth pointing out that Szyd lowski & Krawiec (2004) have considered

an isotropic and homogeneous cosmological model in which a Weyssenhoff fluid

is proposed as a potential candidate to describe dark energy at late times. In a

subsequent publication, Krawiec et al. (2005) showed that it is not disfavoured

by SNIa data, but it may be in conflict with CMB and BBN observational con-

straints. By contrast, in this dissertation, we consider the full evolutionary his-

tory of an, in general, anisotropic universe with a Weyssenhoff fluid as its matter

source, concentrating in particular on the ‘early universe’ behaviour when the

spin terms are significant. Indeed, at late times, when the spin contributions can

be neglected, the Weyssenhoff fluid reduces to a standard cosmological fluid. We
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4.1 Spatial symmetries and macroscopic spin averaging

thus allow for the presence of a non-zero cosmological constant, in accord with

current observational constraints.

In Section 4.1, we discuss how to apply the spatial symmetries and macro-

scopic spin averaging procedure to a Weyssenhoff fluid. In Section 4.2, we estab-

lish the relevant dynamical relations for a homogeneous and irrotational Weyssen-

hoff fluid. In Section 4.3, we perform a geodesic singularity analysis for such a

fluid. Section 4.4 is devoted to the fluid dynamics. The behaviour of the gener-

alised scale factor R(t) of such a fluid in a spatially-curved models is discussed

in Section 4.5 and explicit analytical solutions in spatially-flat models are given

in Section 4.6.

4.1 Spatial symmetries and macroscopic spin av-

eraging

Although much of our following discussion will concern cosmological models that

are anisotropic, it is of interest to consider the status of a Weyssenhoff fluid as a

matter source for homogeneous and isotropic models.

4.1.1 Spatial symmetries

To be a suitable candidate for the matter content of such a cosmological model,

a Weyssenhoff fluid has to be compatible with the Cosmological Principle. In

mathematical terms, a four-dimensional space-time manifold satisfying this prin-

ciple is foliated by three dimensional spatial hypersurfaces, which are maximally

symmetric and thus invariant under the action of translations and rotations.

Although a Weyssenhoff fluid can be expressed as an effective GR fluid, the

dynamical nature of such a fluid is rooted in the EC theory. Thus, the dynamics

of such a fluid is determined by the translational and the rotational fields, which

are respectively the metric gab and the torsion T cab. The symmetries require the

dynamical fields to be invariant under the action of an infinitesimal isometry.
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4.1 Spatial symmetries and macroscopic spin averaging

Hence, the Lie derivatives of the dynamical fields have to vanish according to,

Lξgab = 0 , (4.1)

LξT
c
ab = 0 . (4.2)

where ξc are the Killing vectors generating the spatial isometries. A maximally

symmetric spatial hypersurface admits 6 Killings vectors as mentioned by Wein-

berg (1972). The 3 Killing vectors ξa generating the infinitesimal translations

are related to homogeneity and the 3 Killing pseudo-vectors χa generating the

infinitesimal rotations are related to isotropy. They satisfy,

ξa = habξ
b , (4.3)

χa = εabcD̃[bξc] , (4.4)

where εabc is three-dimensional Levi-Civita tensor.

For a cosmological fluid based on the EC theory, such as a Weyssenhoff fluid,

we can consider two different forms of the Cosmological Principle:

1. the Strong Cosmological Principle (SCP), where the Lie derivatives of the

metric (4.1) and of the torsion (4.2) have to vanish; and

2. the Weak Cosmological Principle (WCP), where only the Lie derivatives of

the metric (4.1) have to vanish and no restriction is imposed on the torsion.

The translational Killing equation resulting from the symmetries imposed on

the metric (4.1) yields,

D̃(aξb) = D(aξb) = 0 , (4.5)

which is a well-know result obtained in GR. Hence, the WCP is identical to

the GR Cosmological Principle, which implies that the space-time geometry is

described in terms of an FLRW metric.

Using the translational Killing equation (4.5), the rotational Killing equation

resulting from the symmetries imposed on the metric (4.2) is found to be,

(D̃dT
c
ab)ξ

d =
(
hceT dab + heaT

cd
b + hebTa

cd
)
D̃[dξe] . (4.6)

For any maximally symmetric space as mentioned by Weinberg (1972), we

can choose respectively a Killing vector ξa to vanish at a given point P , and
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4.1 Spatial symmetries and macroscopic spin averaging

independently, a Killing pseudo-vector χa to vanish at a given point Q according

to,

ξa(P ) = 0 , (4.7)

χa(Q) = 0 . (4.8)

Hence, homogeneity and isotropy can be considered separately.

By imposing the homogeneity condition (4.8) on the rotational Killing equa-

tion (4.6), the spatial covariant derivative of the torsion tensor has to vanish

according to,

D̃dTabc = 0 . (4.9)

Hence, torsion can only be a function of cosmic time t,

Tabc ≡ Tabc(t) . (4.10)

By imposing the isotropy condition (4.7) on the rotational Killing equa-

tion (4.6), the torsion tensor has to satisfy the constraint,

h[a
ch
b]
dT

c
ef + h[a

ch
b]
eT

c
df + h[a

ch
b]
eTdf

c = 0 . (4.11)

As shown explicitly in a theorem established by Tsamparlis (1979) and men-

tioned subsequently by Boehmer & Bronowski (2006), the homogeneity (4.10) and

isotropy (4.11) constraints taken together put severe restrictions on the torsion

tensor. The only non-vanishing components are found to be,

Tabc = ha
dhb

ehc
fT[def ] = f(t)εabc , (4.12)

T bab = uau
bhc

dhd
eT cbe = 1

3
uau

b(3)Tb , (4.13)

where f(t) is a scalar function of cosmic time t, a is a fixed index and (3)Tb is the

spatial trace of the torsion tensor defined as

(3)Tb ≡ hacTabc . (4.14)

We now discuss the application of this general framework to a Weyssenhoff fluid.
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4.1 Spatial symmetries and macroscopic spin averaging

4.1.2 Weyssenhoff fluid with macroscopic spin averaging

The algebraic coupling between the spin density and torsion tensors (3.41) shows

that the spin density Sab of a Weyssenhoff fluid can be related to the torsion as,

Sab = ucha
dhb

eκ−1Tcde . (4.15)

By substituting the non-vanishing components of the torsion (4.12) and (4.13)

satisfying the SCP into the expression for the spin density of a Weyssenhoff

fluid (4.15), it is straightforward to show that the spin density tensor has to

vanish,

Sab = 0 . (4.16)

Thus, Tsamparlis (1979) claims that a Weyssenhoff fluid is incompatible with

the SCP. This conclusion would hold if all the dynamical contributions of the spin

density were second rank tensors of the form Sab. However, this is not the case

since the dynamics contains spin density squared scalar terms. These scalar terms

are invariant under spatial isometries like rotations and translations. Hence, they

do satisfy the SCP.

In order for the Weyssenhoff fluid to be compatible with the SCP, the spin den-

sity tensorial terms have to vanish leaving the scalar terms unaffected. This can

be achieved by making the reasonable physical assumption that, locally, macro-

scopic spin averaging leads to a vanishing expectation value for the spin density

tensor according to,

〈Sab〉 = 0 . (4.17)

However, this macroscopic spin averaging does not lead to a vanishing expectation

value for the spin density squared scalar since this term is a variance term,〈
S2
〉

= 1
2

〈
SabS

ab
〉
6= 0 . (4.18)

The macroscopic spatial averaging of the spin density was performed in an

isotropic case by Gasperini (1986). It can be extended to an anisotropic case

provided that on small macroscopic scales the spin density pseudo-vectors are

assumed to be randomly oriented.
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4.2 Dynamics of a homogeneous and irrotational Weyssenhoff fluid

By considering a Weyssenhoff fluid in the absence of any peculiar acceleration

and by performing a macroscopic spin averaging, we indirectly require the fluid to

be homogeneous. This follows from the fact that, in this case, the conservation

law of momentum leads to a vanishing spatial derivative of the pressure and

energy density. This will be explicitly shown in Section 4.2.1.

Note that even in the absence of a macroscopic spin averaging, the Weyssen-

hoff fluid is still compatible with the WCP, which we discuss further in Sec-

tion 4.2.2. It is worth mentioning that there is no observational evidence so far

which would suggest that we should impose the SCP even though the mathe-

matical symmetries make such a principle mathematically appealing. A true test

of whether this principle is applicable would be the demonstration of physically

observable differences between this case and the WCP.

4.2 Dynamics of a homogeneous and irrotational

Weyssenhoff fluid

The dynamical equations for an homogeneous and irrotational Weyssenhoff fluid

with no peculiar acceleration are obtained by requiring the acceleration and the

vorticity pseudovector to vanish,

ab = 0 ,

ωb = 0 ,
(4.19)

in the dynamical equations of Chapter 3. To study the dynamics of a homoge-

neous fluid, it is not necessary to solve the once-contracted Bianchi identities,

which generate gravitational waves. Instead, we focus on the Ricci identities and

the twice-contracted Bianchi identities, which correspond to the conservation

laws.

The dynamics of an irrotational Weyssenhoff fluid with no peculiar acceler-

ation is entirely determined by the symmetric and spin field equations, (3.48)

and (3.47) respectively. The former can be used to determine the Ricci identities

and the energy conservation law. The latter simply expresses spin propagation.
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4.2 Dynamics of a homogeneous and irrotational Weyssenhoff fluid

One important consequence of the spatial averaging of the spin density is that

the stress-energy momentum tensor (3.48) reduces to an elegant expression given

by

T sab = ρsuaub + pshab , (4.20)

where the only spin contributions affecting the dynamics are the negative spin

squared variance terms entering the definition of the effective energy density and

pressure (3.45), as expected. These spin squared intrinsic interaction terms S2

are a key feature that distinguishes a Weyssenhoff fluid from a perfect fluid in

GR and lead to interesting properties we discuss below.

We have to be careful when performing the macroscopic spin averaging on the

dynamical equations. The Ricci identities and conservation laws can be entirely

determined from the stress-energy momentum tensor (4.20). As we have shown,

it is perfectly legitimate to perform a macroscopic spin averaging on the stress-

energy momentum tensor before obtaining explicitly the dynamical equations.

However, this is not the case for the spin field equation (3.47). Performing the

macroscopic spin averaging at this stage would make these field equations vanish.

To be consistent, we first have to determine the dynamical equations and express

them in terms of the spin density scalar before performing the spin averaging.

4.2.1 Dynamical equations

The dynamical equations for a homogenous and irrotational Weyssenhoff fluid

are obtained from the dynamical relations derived in Section 3.5 and Section 3.6

by imposing the conditions (4.19) and by performing a macroscopic spin av-

eraging (4.17). The energy conservation equation (3.76), the spin propagation

equation (3.75), the Raychaudhuri equation (3.53), the generalised Friedmann

equation (3.83), the momentum conservation equation (3.72) and the rate of
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4.2 Dynamics of a homogeneous and irrotational Weyssenhoff fluid

shear propagation equation (3.55) respectively reduce to,

ρ̇ = −Θ (ρ+ p) , (4.21)

Ṡ = −ΘS , (4.22)

Θ̇ = −1
3
Θ2 − 2σ2 − κ

2
(ρs + 3ps) , (4.23)

(3)R = 2
3
Θ2 − 2κρs − 2σ2 , (4.24)

Daps = 0 , (4.25)

σ̇〈ab〉 = −2
3
Θσab − σ〈acσb〉c − Eab . (4.26)

It is worth mentioning that the spin propagation equation (4.22) implies that

the spin density is inversely proportional to the volume of the fluid. Note that

although the vectorial expression for the spin propagation (3.73) vanishes due to

the macroscopic spin averaging (4.17), the scalar expression (4.22) still applies

because it is related to the spin variance (4.18).

Note also that the momentum conservation law (4.25) expresses the homo-

geneity of the Weyssenhoff fluid. This is due to the fact that according to this

law, the energy density, the pressure and the spin density of the fluid have to

be a function of cosmic time only. Hence, the torsion tensor has also to be a

function of cosmic time only, which is the homogeneity requirement (4.10). This

is only the case for a Weyssenhoff fluid with no peculiar acceleration on which

a macroscopic spin averaging has been performed, as otherwise the momentum

conservation law (4.25) would contain additional terms.

Finally, one must take particular care when deducing the time evolution of

the rate of shear from the rate of shear propagation equation (4.26). This is

due to the fact that the rate of shear coupling term σ〈a
cσb〉c and the tidal force

term Eab can not simply be neglected. A better route is to deduce the rate of

shear evolution equation from the spatial Ricci curvature tensor (3)Rab as shown

explicitly by Ellis (1973) and outlined below.

In order to determine a scalar propagation equation for the rate of shear, the

expression for the spatial Ricci curvature tensor (3.82) has to be contracted with

the rate of shear tensor σab according to,

(3)Rabσ
ab = −2σ (σ̇ + Θσ) , (4.27)
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4.2 Dynamics of a homogeneous and irrotational Weyssenhoff fluid

where we used the definition of the rate of shear scalar squared (1.16) and its

time derivative,

σ̇abσ
ab = 2σσ̇ . (4.28)

For the anisotropic Weyssenhoff fluid models, which satisfy the contracted curvature-

shear condition,
(3)Rabσ

ab = 0 , (4.29)

the propagation equation for the rate (4.27) of shear reduces to,

σ̇ = −Θσ . (4.30)

The propagation equation of the rate of shear scalar (4.30) closes the dynami-

cal system (4.21)-(4.23), making the rate of shear propagation equation (4.26)

redundant, thus eliminating in turn the need for an evolution equation for the

electric part of the Weyl tensor Eab. As pointed out by Dechant et al. (2009),

the only homogeneous Weyssenhoff fluid models which obey the rate of shear

propagation equation (4.30) are those that satisfy the contracted curvature-shear

condition (4.29). Note that this is a more restrictive condition than what was

alleged by Brechet et al. (2008). Spatially-flat models like Bianchi I models,

discussed notably by Stewart & Hájiček (1973), have a vanishing spatial curva-

ture and therefore satisfy the contracted curvature-shear condition. However,

the converse is not true. Anisotropic fluid models can satisfy the contracted

curvature-shear condition (4.29) without necessarily having a vanishing spatial

curvature. In order to show explicitly which Bianchi models satisfy the contracted

curvature-shear condition (4.29), the explicit expression for the spatial Ricci ten-

sor has to be determined using a specific metric. This is a tedious task, which

we will not undertake here. However, it is worth mentioning that Dechant et al.

(2009) undertook this task for Bianchi IX models and showed that, in this partic-

ular case, the contracted curvature-shear condition is violated. In the remainder

of this chapter, we will consider only the anisotropic Weyssenhoff fluid models

for which the contracted curvature-shear condition is satisfied.
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4.2 Dynamics of a homogeneous and irrotational Weyssenhoff fluid

4.2.2 Comparison with previous results

Let us compare our results with the conclusions reached by Lu & Cheng (1995) for

an isotropic Weyssenhoff fluid without any macroscopic spin averaging as shown

in Appendix A of their publication.

In an isotropic space-time, the dynamics of a Weyssenhoff fluid, without a

macroscopic spin averaging, is greatly simplified as we now briefly explain. The

projection of the effective Einstein field equations (3.44) along the worldline and

on the orthogonal spatial hypersurfaces, yields the following constraint,

uahc
bT sab = 0 . (4.31)

It arises from the fact that, in an isotropic case, the time-space components of the

Ricci tensor vanish. From the expression for the stress-energy momentum ten-

sor (3.48), it is clear that the constraint (4.31) implies a vanishing spin divergence,

DbSab = 0 . (4.32)

Moreover, the isotropy constraint implies a vanishing rate of shear (i.e. σ =

0). Thus, in this case, the effective stress energy momentum tensor without

the macroscopic spin averaging (3.48) reduces to the elegant expression (4.20)

obtained by performing the macroscopic spin averaging.

Hence, for a Weyssenhoff fluid and isotropic space-time, our results can be

compared to those of Lu & Cheng (1995). The results of our analysis do not agree

with the conclusions outlined by Lu & Cheng. First, they argue that the isotropic

Friedmann equation implies that the spin density has to be a function of time only,

with which we agree. Then, they claim that this stands in contradiction with the

fact that the spin density has also to be a function of space in order to satisfy the

projection constraint (4.31), which we dispute. The projection constraint simply

implies a vanishing orthogonal projection of the spin divergence on the spatial

hypersurface (4.32), which is perfectly compatible with the spin density being a

function of time only. Hence, contrary to their claim, a Weyssenhoff fluid model

seems to be perfectly consistent with an isotropic space-time (i.e. obeying the

WCP), even without spin averaging.
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4.3 Geodesic singularity analysis

For a homogeneous and irrotational Weyssenhoff fluid satisfying the macroscopic

spin averaging condition, the fluid congruence is geodesic. To study the behaviour

of such a fluid congruence near a singularity, we use the 1+3 covariant formalism,

which applies on local as well as on global scales for a homogeneous fluid model.

In order for singularities in the timelike geodesic congruence to occur, the

Raychaudhuri equation (4.23) has to satisfy the condition,

Θ̇ +
1

3
Θ < 0 , (4.33)

near the singularity, as we now explain. Following Wald (1984), we first recast

the singularity condition (4.33) in terms of the inverse expansion rate Θ−1 as,

d

dt

(
Θ−1

)
>

1

3
, (4.34)

After integrating with respect to cosmic time t, we find,

Θ−1(t) > Θ−1
∗ +

1

3
(t− t∗) , (4.35)

where Θ−1
∗ ≡ Θ−1 (t∗) and t = t∗ is some arbitrary cosmic time near the sin-

gularity. Thus, if Θ−1
∗ > 0 (Θ−1

∗ < 0), the model describes a fluid evolving

on a spatially expanding (collapsing) hypersurface at t = t∗. According to the

integrated singularity condition (4.35), Θ−1 (t) must vanish within a finite past

(future) time interval |t − t∗| < 3|Θ−1
∗ | with respect to t = t∗. Thus a geodesic

singularity, defined by Θ−1(t̂) = 0, occurs at t = t̂ .

The homogeneity requirement allows us to define − up to a constant factor

− a generalised scale factor R according to,

Θ ≡ 3
Ṙ

R
. (4.36)

In a 1 + 3 covariant approach, R is generally a locally defined variable. If the

model is homogeneous, however, R can be globally defined and interpreted as a

cosmological scale factor.

The singularity condition can now be recast in terms of the scale factor R and

reduces to,
R̈

R
< 0 . (4.37)
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One must also require the scale factor to obey the consistency condition, which

requires the expansion rate squared to be positively defined at all times according

to, (
Ṙ

R

)2

> 0 . (4.38)

To determine explicitly these two conditions (4.37)-(4.38), the Friedmann (4.24)

and Raychaudhuri (4.23) equations are recast in terms of the scale factor, using

respectively the expressions for the Ricci (3.49) and stress-energy-momentum

tensor (4.20) as, (
Ṙ

R

)2

=
1

3

(
T sabu

aub +
(3)R

2
+ σ2

)
, (4.39)

R̈

R
= −1

3

(
Rabu

aub + 2σ2
)
. (4.40)

Using the Friedmann (4.39) and the Raychaudhuri (4.40) equations, the con-

sistency (4.38) and singularity (4.37) conditions can respectively be explicitly

expressed as,

S2 − κ−2
(
σ2 + Λ + 1

2

(3)
R
)

κ−1ρ
< 1 , (4.41)

S2 − κ−2
(
σ2 − 1

2
Λ
)

κ−1ρ
<

1 + 3w

4
. (4.42)

The scaling of the energy density ρ, the spin density squared S2 and the rate

of shear squared σ2 can be deduced respectively from the energy conservation

law (4.21), the spin propagation equation (4.22) and the rate of shear propagation

equation (4.30) by recasting the expansion rate Θ in terms of the scale factor

R (4.36) according to,

S2 = S̄2

(
R

R̄

)−6

, (4.43)

σ2 = σ̄2

(
R

R̄

)−6

, (4.44)

ρ = ρ̄

(
R

R̄

)−3(1+w)

. (4.45)

80



4.3 Geodesic singularity analysis

Note that the bar corresponds to an arbitrary event (defined by a cosmic time

t = t̄), subject only to the condition R̄ 6= 0.

Furthermore, the spatial Ricci scalar (3)R is the Gaussian curvature of the

spatial hypersurface, which scales according to,

(3)R =(3) R̄

(
R

R̄

)−2

, (4.46)

and the cosmological constant Λ has by definition no scale dependence,

Λ = Λ̄ . (4.47)

Let us now assume the existence of singularities in the timelike geodesic con-

gruence for a homogeneous and irrotational Weyssenhoff fluid. By comparing

the scaling relations for the spatial Ricci scalar (4.46) and the cosmological con-

stant (4.47) with those obtained for the spin density squared (4.43) and the rate

of shear squared (4.44), we see that in the limit where the model tends towards

a singularity (i.e. R → 0), the contribution due to curvature and the cosmo-

logical constant is negligible. Hence, for a Weyssenhoff fluid with a physically

reasonable equation-of-state parameter (i.e. w < 1), the consistency (4.41) and

singularity (4.42) conditions merge into a single condition according to,

S2 − κ−2σ2

κ−1ρ
< 1 . (4.48)

Moreover, we can recast this condition in terms of the scale dependence R. In the

limit where the model tends towards a singularity, the condition (4.48) becomes,

lim
R→0

S̄2 − κ−2σ̄2

κ−1ρ̄

(
R

R̄

)−3(1−w)

< 1 . (4.49)

Provided the equation-of-state parameter w < 1, the singularity condition (4.49)

can only hold if the rate of shear squared is larger than the spin squared (i.e.

σ̄2 > κ2S̄2). Hence, in the opposite case, where the macroscopic spin density

squared of the Weyssenhoff fluid is larger than the fluid anisotropies according

to,

κ2S2 > σ2 , (4.50)
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there will be no singularity on any scale. This is a generalisation of the result es-

tablished independently for a Bianchi I metric by Kopczynski (1973) and Stewart

& Hájiček (1973).

Our singularity analysis is based on the assumption that the Weyssenhoff fluid

flow lines are geodesics, which implies that the macroscopic fluid (i.e. with spin

averaging) has to be homogeneous. A key question is whether this still holds

in presence of small inhomogeneities. According to Ellis (2007), the Hawking-

Penrose singularity theorems mentioned by Hawking & Ellis (1973) apply not

only to homogeneous models but also to approximately homogeneous models

with local pressure inhomogeneities. By analogy, if there is no singularity for

geodesics fluid flow lines, singularities may still be averted provided the real fluid

flow lines can be described as small perturbations around geodesics.

In following sections, we will assume that the spin-shear condition (4.50) holds,

which guarantees the absence of singularities for homogeneous models.

4.4 Dynamical evolution: general considerations

For a homogeneous fluid, the Gaussian curvature (3)R depends only on the scale

factor according to,

(3)R = − 6k

R2
, (4.51)

where k = {−1, 0, 1} is the normalised curvature parameter.

To analyse the dynamics of a homogeneous and irrotational Weyssenhoff fluid,

let us first recast explicitly the Friedmann (4.39) and Raychaudhuri (4.40) equa-

tions in terms of the physical quantities using the expression for the Gaussian

curvature (4.51) according to,(
Ṙ

R

)2

=
κ

3

[
ρ− κS2 +

1

κ

(
σ2 − 3k

R2
+ Λ

)]
, (4.52)

R̈

R
= −κ

6

[
ρ (1 + 3w)− 4κS2 +

4

κ

(
σ2 − 1

2
Λ

)]
. (4.53)

We will now discuss in more details the geodesic singularities presented in

Section 4.3, drawing out more fully the geometrical and physical applications.
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4.4.1 Geometric interpretation of the solutions

As outlined above, at stages of the dynamical evolution for which the scale factor

R(t) is small, a Weyssenhoff fluid with an equation-of-state parameter w < 1 is

dominated by the spin density and rate of shear contributions. This follows from

the scaling properties of the energy (4.45) of the spin density (4.43) and of the rate

of shear (4.44). Provided the spin-shear condition (4.50) is satisfied, there can be

no singularity (R→ 0), because the negative sign of the spin squared terms in the

RHS of the Friedmann equation (4.52) would imply the existence of an imaginary

rate of expansion, which is physically unacceptable (Θ ∈ R) as discussed before

in Section 4.3. For physical consistency, the RHS of the Friedmann equation has

to be positively defined at all times,

ρ− κS2 +
1

κ

(
σ2 − 3k

R2
+ Λ

)
≥ 0 , (4.54)

which clearly excludes the presence of a singularity provided w < 1. The physical

interpretation is that − as one goes backwards in cosmic time t from the present

epoch − the spin contributions to the field equations dominate and produce a

bounce, which we may take to occur at t = 0, that avoids an initial singularity

(i.e. R(0) > 0). Since this model contains no initial singularity, the temporal evo-

lution of the model, governed by the Friedmann (4.52) and Raychaudhuri (4.53)

equations, extends symmetrically to the negative part of the time arrow. In order

to satisfy the time symmetry requirement and avoid a kink in the time evolution

of the scale factor R(t) at t = 0, the expansion rate at the bounce has to vanish,

Ṙ(0) = 0, and the temporal curvature of the scale factor R̈(0) has to be finite.

Thus, the scale factor R(t) goes through an extremum at the bounce R(0) = R0

1. The energy density at the bounce, ρ0 = ρ(0), is determined by the limit where

the consistency requirement (4.54) becomes an equality,

ρ0 = κS2
0 −

1

κ

(
σ2

0 −
3k

R2
0

+ Λ

)
, (4.55)

where S0 = S(0) and σ0 = σ(0) denote respectively the spin energy density and

the rate of shear evaluated at the bounce. Note that this particular choice for the

1Note that, in this chapter, a zero subscript denotes the value of a quantity at the bounce

(i.e. t = 0) and not at the present epoch.
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energy density (4.55) at t = 0 has been made in order for the expansion rate to

vanish at the bounce. This can be shown explicitly by evaluating the Friedmann

equation (4.52) at the bounce using the expression for the energy density (4.55).

Quantitative expressions or the R(t)-curve in various cases are derived in

Section 4.6 below. Before doing so, however, it is worth noting that qualitatively,

the general shape of the R(t)-curve for a Weyssenhoff fluid is closely related to

the temporal curvature of the scale factor R̈, which is explicitly given by the

Raychaudhuri equation (4.53), and also to the range of values for R(t), which is

determined by the consistency condition (4.38) on the Friedmann equation (4.52).

In this section, we discuss one particular class of Weyssenhoff fluid models for

which the cosmological constant Λ is small (and positively defined),

0 < Λ� ρ0 , (4.56)

and the curvature is also small

0 <
3

R2
0

� ρ0 . (4.57)

The two constraints (4.56) and (4.57) on the class of models imply that the

sign of the temporal curvature of the scale factor depends only on the value of

the equation-of-state parameter w, which yields three different cases.

In the first case, where w < −1
3
, the RHS of the Raychaudhuri equation (4.53)

implies that the temporal curvature of the scale factor is positively defined at all

times,

R̈(t) > 0 for t ∈ (−∞,∞) . (4.58)

The positive sign of R̈ implies that the scale factor is minimal at the bounce and

the model is perpetually inflating (for t > 0).

In the second case, where w > 1, by comparing the consistency require-

ment (4.54) with the Raychaudhuri equation (4.53), the temporal curvature of

the scale factor is found to be negatively defined at all times,

R̈(t) < 0 for t ∈ (−∞,∞) . (4.59)

Note that for a model with an equation-of-state parameter w > 1, we reach the

same conclusion as for a fluid with an equation of state parameter w < 1, which
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is that the model has a time-symmetric evolution and bounces at t = 0. The

negative sign of R̈ implies that the scale factor is maximal at the bounce and is

deflating (for t > 0) until it eventually collapses.

In the third case, where−1
3
< w < 1, the symmetric time evolution of the scale

factor can be split into five parts. Firstly, for a small cosmic time, i.e. |t| < |tf | −
where the value of tf depends on the scale parameter w − the sign of the temporal

curvature of the scale factor is positive. This corresponds to the spin dominated

phase. Secondly, for a specific cosmic time, i.e. |t| = |tf |, the temporal curvature

of the scale factor vanishes as the time evolution of the scale factor reaches an

inflection point. Then, for a larger cosmic time, i.e. |tf | < |t| < |ta|, the temporal

curvature of the scale factor has the opposite sign until it reaches the second

inflection point |t| = |ta|. This corresponds to the matter dominated phase.

Finally, for large cosmic time, i.e. |t| > |ta|, the sign of the temporal curvature

of the scale factor becomes positive again. This corresponds to the cosmological

constant dominated phase. The behaviour of R̈(t) in terms of cosmic time t is

summarised as follows,

R̈(t) > 0 for t ∈ (−tf , tf ) , (4.60)

R̈(t) = 0 for t ∈ {−tf , tf} , (4.61)

R̈(t) < 0 for t ∈ (−ta,−tf ) ∪ (tf , ta) , (4.62)

R̈(t) = 0 for t ∈ {−ta, ta} , (4.63)

R̈(t) > 0 for t ∈ (−∞,−ta) ∪ (ta,∞) . (4.64)

In the first and second cases, the results obtained for the symmetric time

evolution of the scale factor are interesting mathematical solutions, but they

are inconsistent with current cosmological observations. In order to satisfy the

current cosmological data, the positively defined time evolution of the model has

to inflate, i.e. R̈(t) > 0, at early time (t < tf ), and produce a sufficient amount

of inflation. At later time (t > tf ), the energy density of the fluid dominates the

dynamics and acts like a brake on the expansion R̈(t) < 0.

During the spin-dominated phase, the contribution due to the cosmological

constant can be safely neglected (4.56) and the positive temporal curvature of
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the scale factor (4.60) leads to an inflation phase. The inflatability condition,

R̈(t) > 0, may be deduced from the Raychaudhuri equation (4.53) according to,

ρ(1 + 3w)− 4κS2 + 4κ−1σ2 < 0 . (4.65)

This inflation phase ends when this inequality is no longer satisfied, which cor-

responds to the inflection point of the temporal evolution of the scale factor, i.e.

t = tf . Hence, at the end of inflation the density is given by,

ρf =
4κ

(1 + 3w)

(
S2
f − κ−2σ2

f

)
. (4.66)

The temporal evolution of this model for a positively defined time is charac-

terised by a maximal physical energy density ρ = ρ0 coinciding with the start of

an inflation phase ending when the energy density reaches the density threshold

ρ = ρf . At the end of inflation, the model enters a matter dominated phase.

During this stage, the Weyssenhoff fluid model reduces asymptotically to the

cosmological solution obtained for a perfect fluid in GR in the limit where the

cosmic time is sufficiently large t� tf , which eventually leads to a cosmological

constant dominated phase for t� ta > tf .

4.4.2 Amount of inflation

The amount of inflation is measured by the number N of e-folds, which is de-

termined using the scaling of the energy density (4.45), the initial (4.55) and

final (4.66) energy densities, and found to be,

N ≡ ln
Rf

R0

= − 1

3(1 + w)
ln

[
4

1 + 3w

(
κ2S2

f − σ2
f

κ2S2
0 − σ2

0

)]
. (4.67)

Using the scaling relations obtained for the spin density squared (4.43) and

the rate of shear squared (4.44), the initial and final values of these quantities

are found to be related by the number of e-folds according to,

S2
0 = S2

f

(
R0

Rf

)−6

= S2
fe

6N , (4.68)

σ2
0 = σ2

f

(
R0

Rf

)−6

= σ2
fe

6N . (4.69)
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By recasting the initial values of the spin density squared and rate of shear

squared in terms of their final values according to (4.68) and (4.69) respectively,

the expression for the number of e-folds (4.67) reduces to an elegant expression,

N =
1

3(1− w)
ln

(
4

1 + 3w

)
, (4.70)

and is shown in Figure 4.1. It worth mentioning that the amount of inflation is

independent of the rate of shear or the spin density of the fluid. Let us mention

that Bianchi models based on a Weyssenhoff fluid have been studied previously

by Lu & Cheng (1995). However, the authors did not try to estimate the amount

of inflation in their analysis.

Figure 4.1: Number of e-folds N in terms of the equation-of-state parameter w.

N(w) has a vertical asymptote at w = −1
3
.

The only way to have achieve a substantial number of e-folds is by requiring

an equation of state of the form

w = −1

3
+ ε where 0 < ε� 1 , (4.71)
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which corresponds to no standard fluid and has therefore no acceptable physi-

cal basis. This conclusion has already been reached by Gasperini (1986) in the

isotropic case. We have showed that the same result still holds in the anisotropic

case.

It is interesting to note that a cosmic string fluid has an equation-of-state

parameter w = −1
3
. As mentioned by Ringeval (2001), a hybrid Weyssenhoff

fluid made for example of fermionic matter cosmic strings and matter fields -

− where the cosmic strings contribution dominates the dynamics at the era of

interest − has an equation-of-state parameter of the form (4.71) where the value

of the fine tuning parameter ε depends crucially on the ratio between the cosmic

string and the matter fields densities. Although such a fluid is a candidate to

obtain an inflation phase at an early positively defined time (i.e. just after the

bounce), it does not reduce to the cosmological standard model at later times

when the spin contribution can be safely neglected. This is due to the fact that

the density of the cosmic strings contribution ρst scales as ρst ∝ R−2. Hence, if

the cosmic strings contribution dominates the behaviour of the cosmic fluid for

an early positively defined time, it will do so at all times.

However, this problem may potentially be overcome by assuming that, at early

times, the cosmic strings decay into the matter fields of the standard model lead-

ing to a reheating phase. It would be worth further investigating this possibility.

The fine tuning parameter ε has a magnitude that is related to the number of

e-folds according to,

ε ∼ e−4N . (4.72)

To obtain, for example, an inflationary phase with N = 50−70 e-folds − which is

a characteristic range of values for current parameter estimations − the equation

of state has to be very fine tuned such that ε = 10−87− 10−122. It is worth noting

that this is a similar order of magnitude to the factor 10−120 relating the ratio

of the cosmological constant predicted by summing the zero point energy of the

Standard Model fields up to the Planck cutoff to that inferred from cosmological

observations, although this is almost certainly just a numerical coincidence.
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4.5 Quantitative dynamical evolution of spatially-

curved models

Our general approach allows one to investigate models with non-zero spatial cur-

vature and a cosmological constant. In general, it is not possible to find analytical

solutions for the time evolution of the scale factor. However, the behaviour of

the solutions can be analysed by integrating the dynamical equations numerically.

The analysis and plots of the time evolution of the scale factor in spatially-curved

models are presented below.

4.5.1 Solutions in presence of a cosmological constant

The dynamics of a homogeneous and anisotropic Weyssenhoff fluid in a spatially-

curved model in presence of a cosmological constant relies on the Fridemann (4.52)

and Raychaudhuri (4.53) equations. Using the scaling relation obtained for the

energy density (4.45), for the spin density (4.43), and for rate of shear (4.44), the

Friedmann (4.52) and Raychaudhuri (4.53) equations can be recast respectively

as,(
Ṙ

R

)2

=
κ

3
ρ0

(
R

R0

)−3(1+w)

− κ2

3

(
S2

0 − κ−2σ2
0

)( R

R0

)−6

− k

R2
0

(
R

R0

)−2

+
Λ

3
,

(4.73)

R̈

R
= −κ

6
ρ0 (1 + 3w)

(
R

R0

)−3(1+w)

+
2

3
κ2
(
S2

0 − κ−2σ2
0

)( R

R0

)−6

+
Λ

3
, (4.74)

where for t = 0, R0 is the scale factor, ρ0 the energy density, S0 the spin density

and σ0 the rate of shear.

For convenience, we introduce two dimensionless variables r, τ and four pa-

rameters δ2, s2, α, λ, defined as,

r ≡ R

R0

, τ ≡
√
κρ0

3
t ,

δ2 ≡ σ2
0

κρ0

, s2 ≡ κS2
0

ρ0

, (4.75)

α ≡ 3k

κρ0R2
0

, λ ≡ Λ

κρ0

,
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which are the rescaled scale factor r, the rescaled cosmic time τ , the rate of

shear squared parameter δ2, the spin density squared parameter s2, the curvature

parameter α and the cosmological constant parameter λ. Note that r and τ

depend on t, whereas δ2, s2, α and λ are constant, defined in terms of quantities

at the bounce t = 0.

The consistency condition at the bounce (4.55) can be recast in terms of

dimensionless parameters as,

s2 − δ2 = 1− α + λ . (4.76)

Using (4.76), the Friedmann (4.73) and Raychaudhuri (4.74) equations can also

be recast respectively in terms of the dimensionless parameters according to,

r′
2

=
1

r4

(
r3(1−w) − α

(
r4 − 1

)
− 1 + λ

(
r6 − 1

))
, (4.77)

r′′ = − 2

r5

(
1 + 3w

4
r3(1−w) + α− 1− λ

(
r6

2
+ 1

))
, (4.78)

where a prime denotes a derivative with respect to the rescaled rescaled cosmic

time τ . It worth emphasizing that the dynamics of a homogeneous Weyssenhoff

fluid does depend on just two parameters, which were chosen to be the curvature

parameter α and cosmological constant parameter λ, since they are determined

by observation.

The physical interpretation of these equations is well known. The Friedmann

equation corresponds to the conservation law of energy whereas the Raychaudhuri

equation represents the equation of motion.

The Friedmann equation (4.77) can be recast as follows,

1

2
r′

2
+ Ueff(r) = −α

2
, (4.79)

where the effective potential is given by

Ueff(r) = − 1

2r4

(
r3(1−w) + α− 1 + λ

(
r6 − 1

))
. (4.80)

The parameters present in the Friedmann and Raychaudhuri equations are

respectively,

• w: relativistic pressure (SR: continuous parameter),
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• α: curvature (GR: continuous parameter),

• −1: spin (EC: discrete parameter),

• λ: cosmological constant.

From the expression for the effective potential (4.80), we see that the spin

contribution has a positive sign, which means that it behaves like a potential

barrier. In other words, the spin-spin interaction leads to repulsive centrifugal

forces opposing the attractive effect of gravity, thus preventing collapse. Note

that this is also the case for a positive cosmological constant.

In the absence of relativistic pressure (i.e. w = 0), curvature (i.e. α = 0),

spin (i.e. the −1 factor vanishes), and cosmological constant (i.e. λ = 0) the

Friedmann and the Raychaudhuri equations reduce respectively to the energy

conservation law for a particle in a gravitational field with a vanishing total

energy (Etot = 0), and Newton’s second law of motion.

The mathematical solutions for the time evolution of rescaled scale factor

depend on the whole real range of the parameters (i.e. w, α, λ ∈ R). But for

physical consistency, we have to restrict the value of these parameters. Firstly,

the Weyssenhoff fluid cannot violate causality (i.e. cs < c), which sets an upper

bound on the equation-of-state parameter w,

w < 1 . (4.81)

Secondly, the spin-shear condition (4.50) and the consistency condition at the

bounce (4.76) restrict the range of the cosmological and curvature parameters

according to,

λ > α− 1 . (4.82)

In general, it is not possible to find analytic solutions for the Friedmann (4.77)

and Raychaudhuri (4.78) equations. However, it is possible to deduce the be-

haviour of the solutions by studying the asymptotic behaviour of the expansion

rate parameter r′ and its derivative r′′.

In the limit where r → 1, the temporal curvature of the rescaled scale factor

behaves like,

lim
r→1

r′′ = −3
(

2
3
α + 1

2
(w − 1)− λ

)
, (4.83)
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and the expansion rate parameter r′ has to vanish,

lim
r→1

r′ = 0 , (4.84)

to satisfy the consistency condition at the bounce (4.76). Hence, we find three

types of solutions, which depend on the respective value of the parameters:

1. limr→1 r
′′ > 0, which implies that the solution r(τ) is found within the range

1 ≤ r <∞ , (4.85)

provided the parameters w and α satisfy

λ > 2
3
α + 1

2
(w − 1) . (4.86)

2. limr→1 r
′′ = 0, which implies that the solution r(τ) is static

r = 1 , (4.87)

when the parameters w and α satisfy

λ = 2
3
α + 1

2
(w − 1) . (4.88)

3. limr→1 r
′′ < 0, which implies that the solution r(τ) is found within the range

0 ≤ r ≤ 1 , (4.89)

provided the parameters w and α satisfy

λ < 2
3
α + 1

2
(w − 1) . (4.90)

Moreover, the limit, limr→0 r
′2 = −∞ < 0, clearly does not exist. Hence,

the solutions always satisfy r > 0, which means that there cannot be any

singularity. Thus, for a negative temporal curvature r′′ < 0, the rescaled

scale factor r reaches a minimum value r∗ found within the range 0 < r∗ < 1.

The behaviour of the solutions for the rescaled scale factor r(τ) is summarised

in Table 4.1 below. Explicit numerical solutions in presence of a cosmological

constant for particular values of the curvature parameter α = {−1
2
, 0, 1

2
} and

equation-of-state parameter w = {−1,−1
3
, 0, 1

3
} are displayed in Figure 4.2 -

Figure 4.13.
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4.5 Quantitative dynamical evolution of spatially-curved models

Figure 4.2:
(
w = −1, α = −1

2

)
:

r(τ) curves for

λ = {−7
5
,−4

3
,−51

50
,−1, 0, 2}

Figure 4.3: (w = −1, α = 0):

r(τ) curves for

λ = {− 9
10
, 0, 2}

Figure 4.4:
(
w = −1, α = 1

2

)
:

r(τ) curves for

λ = {−2
5
, 0, 2}

Figure 4.5:
(
w = −1

3
, α = −1

2

)
:

r(τ) curves for

λ = {−7
5
,−1,− 1

20
, 0, 1

10
}
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Figure 4.6:
(
w = −1

3
, α = 0

)
:

r(τ) curves for

λ = {− 9
10
,−1

2
,− 1

20
, 0, 1

10
}

Figure 4.7:
(
w = −1

3
, α = 1

2

)
:

r(τ) curves for

λ = {−2
5
,−1

3
,− 1

50
, 0, 1

15
}

Figure 4.8:
(
w = 0, α = −1

2

)
:

r(τ) curves for

λ = {−7
5
,−5

6
,− 1

30
, 0, 1

10
}

Figure 4.9: (w = 0, α = 0):

r(τ) curves for

λ = {− 9
10
,−1

2
,− 1

30
,− 1

350
, 0, 1

10
}
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4.5 Quantitative dynamical evolution of spatially-curved models

Figure 4.10:
(
w = 0, α = 1

2

)
:

r(τ) curves for

λ = {−2
5
,−1

6
, 0, 1

55
, 2

103
, 1

50
, 1

15
}

Figure 4.11:
(
w = 1

3
, α = −1

2

)
:

r(τ) curves for

λ = {−7
5
,−2

3
,− 1

50
, 0, 1

10
}

Figure 4.12:
(
w = 1

3
, α = 0

)
:

r(τ) curves for

λ = {− 9
10
,−1

3
,− 1

150
, 0, 1

500
, 1

10
}

Figure 4.13:
(
w = 1

3
, α = 1

2

)
:

r(τ) curves for

λ = {−2
5
, 0, 1

15
, 4

51
, 1

10
}
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4.5 Quantitative dynamical evolution of spatially-curved models

Table 4.1: Behaviour of the solutions r(w, α, λ)

λ r

λ > 2
3
α + 1

2
(w − 1) 1 ≤ r ≤ ∞

λ = 2
3
α + 1

2
(w − 1) r = 1

λ < 2
3
α + 1

2
(w − 1) 0 < r∗ ≤ r ≤ 1

4.5.2 Solutions in the absence of a cosmological constant

In the absence of a cosmological constant, the consistency condition at the bounce

(4.76) reduces to,

s2 − δ2 = 1− α . (4.91)

Using the consistency condition (4.91), the Friedmann (4.77) and Raychaud-

huri (4.78) respectively reduce to,

r′
2

=
1

r4

(
r3(1−w) − α

(
r4 − 1

)
− 1
)
, (4.92)

r′′ = − 1

r5

(
1 + 3w

2
r3(1−w) + 2 (α− 1)

)
. (4.93)

As in the presence of a cosmological constant, the behaviour of the solutions

can be deduced from the asymptotic behaviour of the expansion rate parameter

r′ and its derivative r′′. The corresponding results concerning limiting values of

r′ and r′′ are obtained by setting λ = 0 in (4.83), (4.86), (4.88) and (4.90). In this

simpler case, let us now consider the behaviour of the expansion rate parameter

r′ in the limit where r →∞ and r → 0.

1. w ≤ −1
3

lim
r→∞

r′
2

=∞ ≥ 0 , (4.94)

which implies that the solutions for the rescaled scale factor r(τ) diverge

independently of the value of α.

2. −1
3
≤ w ≤ 1

lim
r→∞

r′
2

= −α ≥ 0 , (4.95)
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4.5 Quantitative dynamical evolution of spatially-curved models

which implies that the solutions for the rescaled scale factor r(τ) diverge

only for a non-closed spatial geometry (i.e. α ≤ 0). Hence for a weakly

closed spatial geometry (i.e r′′ > 0 and 0 < α < 3
4

(1− w)), the rescaled

scale factor oscillates between a minimum value r = 1 and a maximum

value r∗ defined by limr→r∗ r
′ = 0 according to,

1 ≤ r ≤ r∗ (4.96)

3. w < 1,

lim
r→0

r′
2

= −∞ < 0 , (4.97)

which does clearly not exist. Hence, the solutions always satisfies r > 0,

which means that there cannot be any singularity. For a strongly closed

spatial geometry (i.e r′′ < 0 and 0 < 3
4

(1− w) < α < 1), the rescaled scale

factor oscillates between a maximum value r = 1 and a minimum value r∗

defined by limr→r∗ r
′ = 0 according to,

0 < r∗ ≤ r ≤ 1 (4.98)

The behaviour of the solutions for the rescaled scale factor r(τ) is summarised

in Table 4.2 below. Explicit numerical solutions in presence of curvature (i.e.

α 6= 0) for w = {−1,−1
3
, 0, 1

3
} are displayed in Figure 4.14-Figure 4.17.

Table 4.2: Behaviour of the solutions r(w, α) for λ = 0

w α r

w ≤ −1
3

α < 1 1 ≤ r ≤ ∞

−1
3
< w < 1

α ≤ 0 1 ≤ r ≤ ∞

0 < α < 3
4

(1− w) < 1 1 ≤ r ≤ r∗

0 < α = 3
4

(1− w) < 1 r = 1

0 < 3
4

(1− w) < α < 1 0 < r∗ ≤ r ≤ 1
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4.5 Quantitative dynamical evolution of spatially-curved models

Figure 4.14: (w = −1):

r(τ) curves for

α = {−5, 0, 9
10
}

Figure 4.15:
(
w = −1

3

)
:

r(τ) curves for

α = {−5, 0, 3
4
, 9

10
}

Figure 4.16: (w = 0):

r(τ) curves for

α = {−5,−1
2
, 0, 1

4
, 1

2
, 2

3
, 3

4
, 9

10
}

Figure 4.17:
(
w = 1

3

)
:

r(τ) curves for

α = {−5,−1
2
, 0, 1

4
, 1

2
, 9

10
}
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4.6 Dynamical evolution of spatially-flat models with zero
cosmological constant

4.6 Dynamical evolution of spatially-flat models

with zero cosmological constant

In this section, we restrict our study to models with a vanishing spatial curvature

and cosmological constant (i.e. (3)R = Λ = 0) and find explicit solutions for the

time evolution of the rescaled scale factor. The reason for choosing this particular

class of models is because they admit analytical solutions. The dynamics of

a homogeneous and anisotropic Weyssenhoff fluid in a spatially-flat model in

the absence of a cosmological constant can be solved explicitly by determining

the asymptotic behaviour of the time evolution of the rescaled scale factor for

particular values of the equation of state parameter.

It is worth mentioning that exact bouncing solutions for spatially-flat cosmo-

logical models based on metric affine gravity theories (MAG), which include the

solutions for the class of models based on a Weyssenhoff fluid, have previously

been discussed by Stachowiak & Szyd lowski (2007).

In the absence of curvature and a cosmological constant, the consistency con-

dition at the bounce (4.76) reduces to,

s2 − δ2 = 1 . (4.99)

Using the consistency condition at the bounce (4.99) the Friedmann (4.77) and

Raychaudhuri (4.78) equations can be rewritten in terms of the dimensionless

parameters according to,(
r′

r

)2

= r−3(1+w) − r−6 , (4.100)

r′′

r
= −1 + 3w

2
r−3(1+w) + 2r−6 . (4.101)

To obtain the explicit time evolution for the rescaled scale factor r, the Fried-

mann (4.100) or Raychaudhuri (4.101) equations have to be integrated. In or-

der to obtain an analytical result, it is easier to integrate the Friedmann equa-

tion (4.100) according to, ∫
r2dr√

r3(1−w) − 1
=

∫
d|τ | . (4.102)
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The solution of this integral relation depends critically on the value of the

equation of state parameter w. We will consider six special cases given respec-

tively by w = {−1,−1
3
, 0, 1

3
, 1, 2}, which all admit analytical solutions to (4.102).

The last two solutions (i.e. w = 1, 2) are physically unacceptable (4.81) but

mathematically interesting solutions.

We first note, however, that in the limit where the model approaches the

bounce (r → 1), the asymptotic solution for the rescaled scale factor has the

quadratic form,

r(τ) =

(
1 +

3

4
(1− w)τ 2

)
, (4.103)

for any equation-of-state parameter w.

Moreover, in the limit where the model is sufficiently far away from the bounce

(r � 1), the asymptotic solution for the rescaled scale factor is given by,

r(τ) = exp (|τ |) , (4.104)

for an equation-of-state parameter w = −1, and evolves according to,

r(τ) =

(
3

2
(1 + w) τ

) 2
3(1+w)

, (4.105)

for an equation-of-state parameter w satisfying −1 < w < 1. Hence, for a

positively defined rescaled cosmic time (τ > 0), the asymptotic solutions for the

rescaled scale factor at late times, (r � 1), have the same time dependence as

the solutions found within a GR framework. This is due to the fact that the spin

contributions can be neglected at late times, which implies that the evolution of

an effective Weyssenhoff fluid asymptotically reduces to a perfect fluid in GR at

late times.

4.6.1 w = −1 case

A fluid with an equation-of-state parameter w = −1 behaves like a cosmological

constant. By solving the integrated Friedmann equation (4.102) for such an

equation-of-state parameter, the symmetric evolution of the rescaled scale factor

with respect to the rescaled cosmic time is found to be,

r = (cosh (3τ))1/3 . (4.106)
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For a Weyssenhoff fluid satisfying such an equation-of-state parameter, the sym-

metric temporal curvature of the rescaled scale factor r̈(τ) is positively defined at

all times. Hence, for a positively defined rescaled cosmic time (τ > 0), the model

inflates perpetually. It starts with a power law inflation phase (4.103) and tends

towards an exponentially inflating solution at late times (4.104).

4.6.2 w = −1
3 case

A fluid with w = −1
3

behaves like a macroscopic fluid made of cosmic strings. This

result has been established by Vilenkin (1981) by performing a spatial averaging

over a chaotic distribution of linear strings made of matter fields. For such an

equation-of-state parameter, an implicit relation for the symmetric time evolution

of the rescaled scale factor is found according to,

|τ | = 1

r

√
r4 − 1 + Re

(
1√
2

F

(
arccos

(
1

r

)
,

1√
2

)
−
√

2E

(
arccos

(
1

r

)
,

1√
2

))
,

(4.107)

where F (φ, k) and E(φ, k) are the elliptic integral of the first and second kind

respectively. As in the previous case, the symmetric temporal curvature of the

rescaled scale factor r̈(τ) is positively defined at all times. For a positively defined

rescaled cosmic time (τ > 0), the rescaled scale factor r(τ) tends asymptotically

towards a constant rate of expansion (i.e. lim
τ→∞

r̈(τ) = 0) in this limiting case.

4.6.3 w = 0 case

A fluid with w = 0 behaves like dust. The non-singular behaviour of dust

with spin was first investigated by Trautman (1973) and extended by Kuchowicz

(1978). The integrated Friedmann equation (4.102) for an isotropic Weyssenhoff

dust can be solved exactly. The symmetric evolution of the rescaled scale factor

with respect to the rescaled cosmic time is given by,

r =

(
1 +

9

4
τ 2

)1/3

, (4.108)

which agrees with the result established by Trautman.

101



4.6 Dynamical evolution of spatially-flat models with zero
cosmological constant

4.6.4 w = 1
3 case

A fluid with w = 1
3

behaves like radiation. For such an equation-of-state param-

eter, an implicit relation for the symmetric time evolution of the rescaled scale

factor is found according to,

|τ | = 1

2

(
r
√
r2 − 1 + arccosh (r)

)
. (4.109)

As in the anisotropic case, the isotropic solution of the rescaled scale factor for a

relativistic fluid with spin (4.109) has a clear physical meaning. It is an interpo-

lation between two limiting solutions, which describe an inflationary (4.103) and

a radiation dominated (4.105) era respectively.

4.6.5 w = 1 case

A fluid with w = 1 behaves like stiff matter. For such an equation-of-state pa-

rameter, the derivative of the integrated Friedmann equation (4.102) with respect

to the cosmic parameter yields a vanishing rate of expansion,

r′ = 0 . (4.110)

The value of the rescaled scale factor at the bounce is given by r(0) = 1. Hence,

the trivial solution for the evolution of the rescaled scale factor with respect to

the rescaled cosmic time is found according to,

r = 1 . (4.111)

4.6.6 w = 2 case

Finally, a fluid with w = 2 behaves like ultra stiff matter. A fluid with an

equation-of-state parameter w > 1 is physically unreasonable given that for such

a fluid the speed of sound exceeds the speed of light (cs > c). However, such a

solution is mathematically interesting because it leads to the presence of singu-

larities. By solving the integrated Friedmann equation (4.102) for an equation-

of-state parameter w = 2, an implicit relation for the symmetric time evolution

of the rescaled scale factor is found according to,

|τ | = 1

3

(√
r3 (1− r3) + arctan

√
r−3 − 1

)
. (4.112)
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For a Weyssenhoff fluid with an equation-of-state parameter w = 2, the time-

symmetric temporal curvature of the rescaled scale factor r̈(τ) is negatively de-

fined at all times (4.59). To ensure the continuity of the expansion rate Θ at

the bounce, the energy density at the bounce ρ0 has to satisfy (4.55) even if

the cosmological solution leads to the presence of singularities. As the absolute

value of the rescaled cosmic time |τ | increases, the value of the rescaled scale

factor decreases before eventually collapsing. From the implicit dynamical rela-

tion (4.112), the rescaled cosmic time |τc| at the collapse − defined by a vanishing

rescaled scale factor r(|τc|) = 0 − is found to be,

|τc| =
π

6
. (4.113)

The collapse of the scale factor R → 0 is equivalent to the divergence of the

expansion rate Θ→∞. For an equation of state parameter w = 2, the collapse of

the scale factor represents a mathematical singularity for the evolution of the scale

factor with respect to the rescaled cosmic time given that the rate of expansion

diverges at that point, Θ(τc) = −∞.

4.6.7 Graphic solutions

The cosmological constant (w = −1), cosmic strings (w = −1
3
), dust (w = 0),

radiation (w = 1
3
), stiff matter (w = 1) and ultra stiff matter (w = 2) solutions

for the evolution of the rescaled scale factor with respect the rescaled cosmic

time r(τ) are shown in Figure 4.18. For a positively defined rescaled cosmic time

(τ > 0), the inflection point on the graph of r(τ) − for the dust and radiation

solutions − corresponds to the end of inflation. The coordinates of this point are

(1.28, 1.41) for the radiation case and (1.15, 1.59) for the dust case.
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Figure 4.18: (α = λ = 0): r(τ) curves for w = {−1,−1
3
, 0, 1

3
, 1, 2}
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Chapter 5

Classical initial conditions for the

background evolution of inflation

models

Cosmological inflation was first introduced by Guth (1981) and then extended

by Linde (1982), to solve long standing problems with the paradigm of Big Bang

cosmology. In addition to solving the monopole, flatness and horizon problems,

inflation provides a mechanism for generating super-horizon scale cosmological

perturbations from quantum fluctuations of the inflaton field (see, for exam-

ple, Mukhanov et al. (1992)). Inflation thus predicts that large scale structures

in the universe are the result of quantum-mechanical fluctuations occurring dur-

ing the inflationary epoch. Inflationary perturbations of this type are consistent

with the anisotropy power spectrum of the CMB as mentioned by Hinshaw et al.

(2003).

In this chapter, we focus primarily on the background dynamics of inflationary

models. This cosmological evolution can generally only be determined numeri-

cally, which implies that initial conditions for the numerical integration have first

to be obtained. Although inflationary dynamics requires a rigorous quantum

treatment, it is possible to adopt a classical phenomenological approach to set-

ting the initial conditions. In particular, we consider two different inflationary

models proposed by Boyanovsky et al. (2006b) (BVS), and by Lasenby & Doran

(2005) (LD), which have followed such an approach. We then develop a new
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method that is inspired by the LD approach, but relies only on a kinetic domi-

nated regime which describes the dynamics of the inflaton field immediately after

the model emerges from the initial singularity.

The structure of this chapter is as follows. In Section 5.1, we will briefly intro-

duce the dynamics of inflationary models based on a scalar field. In Section 5.2

and Section 5.3 we will discuss how the initial conditions are obtained respectively

in the BVS model and the LD model. In Section 5.4 and Section 5.5, we will

examine how the initial conditions are determined in the kinetically dominated

regime for a chaotic and a new inflation potential respectively. Finally, we will

briefly discuss the scalar perturbations of inflationary models with a chaotic and

a new inflation potentials in Section 5.6.

5.1 Scalar field inflation models

The simplest way to create a homogeneous and isotropic cosmological background

model which undergoes an inflation phase is by assuming a real, time-dependent

and homogeneous scalar field as the matter source.

For a scalar field φ with a potential V (φ), the evolution equations, i.e. the

Raychaudhuri equation and the equation of motion for the scalar field, are re-

spectively given by,

Ḣ +H2 = −κ
3

(
φ̇2 − V (φ)

)
, (5.1)

φ̈+ 3Hφ̇+
d

dφ
V (φ) = 0 , (5.2)

where κ = 8π, H is the Hubble parameter and a dot denotes a derivative with

respect to cosmic time. The energy conservation of the scalar field is expressed

by the Friedmann equation,

H2 =
κ

3

(
1

2
φ̇2 + V (φ)

)
− k

R2
, (5.3)

where R is the scale factor, k the curvature parameter and H = Ṙ/R.

The onset of inflation is defined as R̈ = 0, or equivalently as Ḣ+H2 = 0, which

can be recast in terms of the scalar field using the Raychaudhuri equation (5.1)
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as,

φ̇2 = V (φ) . (5.4)

The slow roll inflation regime satisfies,

φ̇2 � V (φ) . (5.5)

The amount of inflation is measured by the number of e-folds N , which is related

to the Hubble parameter H by,

Ṅ = H . (5.6)

For a generic potential V (φ), there is no analytic solution for the dynamics of

a scalar field inflation model. Hence, the evolution equations (5.1) and (5.2) have

to be integrated numerically using suitable initial conditions on H, φ and φ̇. In

the following sections, three different ways of determining the initial conditions

are discussed. The inflationary model of Boyanovsky, de Vega and Sanchez (BVS)

is compared to the model of Lasenby and Doran (LD) and the latter is used as

the basis for our new method based on the kinetic domination of the scalar field

energy at early times.

5.2 Boyanovsky, de Vega and Sanchez (BVS)

initial conditions for inflation

BVS assume a spatially-flat model and an inflaton potential typical of new infla-

tion. One of the main features of the BVS model, is that the initial conditions

are set via energy equipartition,

1

2
φ̇2

eq = V (φeq) , (5.7)

where the eq-suffix denotes quantities evaluated at equipartition t = teq which,

from (5.4), is prior to the onset of inflation. At the onset of inflation (5.4), the

inflaton φ does not enter the slow-roll regime (5.5) straight away. Before reaching

the slow-roll regime, the inflaton loses most of its kinetic energy in the so-called

“fast-roll” regime, defined by Linde (2001), which is very brief compared to the

slow-roll phase.
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It is worth mentioning, even if this is not the main purpose of this work, that

the existence of a fast-roll period has important consequences for behaviour of

the inflationary perturbations. The fast-roll regime behaves like an attractive

potential in the wave equations for the mode functions of curvature and tensor

perturbations. This potential leads then to the suppression of the primordial

power spectra on large scales. Hence, it might be able to account for the sup-

pression of the quadrupole of the CMB in agreement with observational data as

suggested by Boyanovsky et al. (2006a).

For convenience, we introduce a dimensionless parameter h defined as,

h ≡ H

Hi

, (5.8)

where Hi is the Hubble parameter at the onset t = ti of slow-roll inflation, and

is nearly constant during the slow-roll inflation regime (i.e. H ' Hi). To recover

the results of BVS, it is also useful to recast the evolution equations in terms

of the number of e-folds. Using (5.6), we deduce that an arbitrary functional

f(N(t)) has to satisfy,

ḟ = Hf ′ , (5.9)

where the prime denotes a derivative with respect to the number of e-folds. Us-

ing this change of variables (5.9), the evolution equations (5.1) and (5.2) are

respectively recast as,

hh′ + h2 = −κ
3

(
h2φ′2 − 1

H2
i

V (φ)

)
, (5.10)

h2φ′′ + 3h2φ′ +
1

H2
i

d

dφ
V (φ) = 0 . (5.11)

In order to have no explicit dependence on Hi in their model, BVS studied a

new inflation potential of the form,

V (φ) =
3H2

i

κ

(
1− µκφ2

)2
, (5.12)

displayed in Figure 5.1, where µ ∝ m−2 is a constant, and m is the mass of the

scalar field. We note that, rather curiously, the amplitude of the potential is set

by the Hubble parameter during the slow-roll inflation period that results from

this same potential, which appears as a rather circular methodology.
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Figure 5.1: New inflation potential V (φ) with µ = 1 and Hi = 1.

The evolution equations (5.10) and (5.11) can then be recast as,

hh′ + h2 = −κ
3

(
h2φ′2 − 3

κ

(
1− µκφ2

)2
)
, (5.13)

h2φ′′ + 3h2φ′ − 12µφ
(
1− µκφ2

)
= 0 . (5.14)

During the slow-roll phase defined by (5.5), the kinetic term φ′2 can be ne-

glected, whilst the Hubble parameter H ' Hi and the inflaton field φ ' φi are

nearly constant. The Friedmann equation (5.3) in a spatially-flat case (k = 0)

and the expression for the potential (5.12) in the slow-roll regime imply that,

H2
i '

κ

3
V (φi) = H2

i

(
1− µκφ2

i

)2
, (5.15)

This expression sets a constraint on the scalar field during the slow-roll phase

according to,

µκφ2
i � 1 . (5.16)

To set up the initial value of the scalar field φeq, BVS assumed that the inflaton

φ was initially at the local maximum of the potential V (φ), i.e.

φeq = 0 . (5.17)
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5.2 Boyanovsky, de Vega and Sanchez (BVS) initial conditions for
inflation

Using the initial condition for the scalar field (5.17) and the constraint on the

scalar field during the slow roll phase (5.16), the potential Veq at t = teq and the

potential Vi at the onset of slow-roll inflation t = ti are simply related as follows,

Veq ' Vi . (5.18)

Using (5.18) and the equipartition of energy relation (5.7) to evaluate the

Friedmann equation at equipartition (i.e. t = teq) and comparing this result to

the Friedmann equation during slow roll (i.e. t = ti), the initial value of the

parameter heq is found to be,

heq =
√

2 . (5.19)

By substituting the expression for the potential (5.12) into the initial equipar-

tition of energy relation (5.7) and using the initial condition for the dimensionless

Hubble parameter (5.19), φ′eq is found to be,

φ′eq =

√
3

κ
. (5.20)

The last parameter which needs to be set is µ. BVS made the arbitrary choice

µ = 0.008, as mentioned in their publication.

Using the initial conditions (5.17), (5.19) and (5.20), and numerically inte-

grating the evolution equations (5.13) and (5.14), we studied the behaviour of the

h(N)-curves for different values of µ as shown in Figure 5.2. Note that the middle

curve corresponds to the result found by BVS and displayed by Boyanovsky et al.

(2006b).

Figure 5.2 shows that the BVS model is highly fine-tuned given that a change

by factor of 10 in the value of the parameter µ changes the number of e-folds

by an order of magnitude. Hence, the arbitrary µ = 0.008 seems to be carefully

chosen in order to lead to an amount of inflation in agreement with current

observations. For µ = 0.05, the numerical value of κµφ2
i ≈ 0.03, which implies

that the constraint on the potential (5.16) is satisfied. For smaller values of µ,

the inequality (5.16) is even better satisfied.

It is worth mentioning that although the BVS procedure enables numerical

solutions to be obtained for a new inflation like potential, it cannot be applied

for a chaotic potential. In the latter case, the initial value of the scalar field
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5.3 Lasenby, Doran (LD) initial conditions for inflation

Figure 5.2: Hubble parameter h in terms of the number of e-folds N for µ =

{0.005, 0.008, 0.05}.

cannot be zero because otherwise it would already be at the global minimum of

the potential and could certainly not inflate.

5.3 Lasenby, Doran (LD) initial conditions for

inflation

LD assume a spatially-closed model with a natural boundary on the total con-

formal time and a chaotic inflation potential. To compare this model with the

BVS model, however, we will restrict our analysis to a spatially-flat limit. One

important feature of the model is that it shows quite generally how the Hubble

parameter H and the scalar field φ admit a series expansion about the initial

singularity at t = 0. These series expansions enable one to set initial conditions

very shortly after the big bang singularity, as set out below.

We first briefly explain how these series expansions can be constructed follow-
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5.3 Lasenby, Doran (LD) initial conditions for inflation

ing the procedure of LD. The LD-model is based on a chaotic potential,

V (φ) =
1

2
m2φ2 . (5.21)

Using this expression, the evolution equations (5.1) and (5.2) are respectively

recast as,

Ḣ +H2 = −κ
3

(
φ̇2 − 1

2
m2φ2

)
, (5.22)

φ̈+ 3Hφ̇+m2φ = 0 . (5.23)

The Friedmann (5.3) equation becomes,

H2 =
κ

3

(
1

2
φ̇2 +

1

2
m2φ2

)
. (5.24)

The solutions of the evolution equations (5.22) and (5.23) satisfy a classical scaling

property which relates two solutions in a family of solutions determined respec-

tively at t and t̃ = σ−1t by a constant scaling factor σ,

H̃(t̃) = σH(t) ,

φ̃(t̃) = φ(t) , (5.25)

m̃ = σm ,

where a tilde denotes rescaled solutions. Note that this scaling property is useful

for numerical integration but does not survive quantisation. By changing the

mass of the scalar field, the solutions are not qualitatively but only quantitatively

changed given that the physical variables are rescaled. Without loss of generality,

we will from now on consider the case where m = mp = 1.

Coming out of the initial singularity, the dynamics of the inflationary model

is kinetically dominated (φ̇2 � V (φ)), which means that the Hubble parameter

H ∝ t−1. The Raychaudhuri equation (5.22) implies that the scalar field φ must

contain a term going as ln(t). But this then implies that the Hubble parameter H

must also contain a term in tln(t) in order to satisfy the equation of motion of the

scalar field (5.23). By iterating this process, we conclude that a series expansion

in terms of ln(t) is required to describe the behaviour around the singularity. To
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5.3 Lasenby, Doran (LD) initial conditions for inflation

perform the series expansion, it is convenient to introduce the dimensionless time

variable,

τ =
t

tp
, (5.26)

where tp is the Planck time, which is used for dimensional reasons only, given

that in Planck units tp = 1. The series expansion about the initial singularity

can now be written as,

H(τ) =
1

tp

∞∑
n=0

Hn(τ)lnn(τ) , (5.27)

φ(τ) =
1

lp

∞∑
n=0

φn(τ)lnn(τ) , (5.28)

where lp = 1 is the Planck length. Note that all the coefficients in the expansion,

i.e. Hn and φn, are dimensionless. Since we are working in Planck units, i.e.

t = τ , we will use only the dimensional cosmic time t from now on.

By substituting the series expansions for H and φ into the evolution equa-

tions (5.22) and (5.23), LD showed that the series are controlled by only one

arbitrary constant, b0, which determines the number of e-folds. To second order,

the series expansions for H(t) and φ(t) are respectively,

Hexp(t) =
1

3t
+

(
2

81
+

4

9

√
π

3
b0 +

4π

3
b2

0

)
m2t

−
(

2

27
t+

4

3

√
π

3
b0t

)
m2ln(t) (5.29)

+

(
1

9
t

)
m2ln2(t) + O(3) ,

φexp(t) = b0 −

(
11

1296

√
3

π
+

1

36
b0 −

1

2

√
π

3
b2

0

)
m2t2

−

(
1

6

√
3

π
−

(
1

216

√
3

π
− 1

6
b0

)
m2t2

)
ln(t) (5.30)

+

(
1

72

√
3

π
t2

)
m2ln2(t) + O(3) ,

where we reintroduced explicitly the mass variable m = 1 to compare the ex-

panded solution with the massless case.
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5.4 Kinetic initial conditions for a chaotic inflation potential

In principle, the series expansions Hexp(t) and φexp(t) enable us to determine

suitable ‘initial’ conditions, at some arbitrary time t = t0 prior to inflation, for

the subsequent numerical integration of the evolution equations (5.22) and (5.23)

by simply setting,

H(t0) = Hexp(t0) ,

φ(t0) = φexp(t0) , (5.31)

φ̇(t0) = φ̇exp(t0) .

In practice, expanding series to some order to set initial conditions for numer-

ical integration means that the initial integration time t = t0 must lie within

the domain in which these series, i.e. (5.29) and (5.30), provide a good approx-

imation. The analysis of the range of validity of the series expansions is given

in Appendix C.1.

The analytic expressions for the series expansions depend on an undetermined

parameter b0, which we arbitrarily set to b0 = 2.48 in the previous discussion.

The physical role of this parameter can be inferred from Figure 5.3. A variation

of the series expansion parameter b0 translates the H(N)-curves thus directly

affecting the number of e-folds as shown in Figure 5.3. This is in line with the

analysis of LD who showed that b0 is related to the number of e-folds. Note that,

similarly to the BVS model, the LD model is also fine tuned given that a factor

5 variation in the numerical value of b0 results in an order of magnitude change

in the number of e-folds N as illustrated in Figure 5.3.

5.4 Kinetic initial conditions for a chaotic infla-

tion potential

As the universe emerges from the initial singularity, the kinetic energy domi-

nates, i.e. φ̇2 � V (φ), which is the main feature of our new procedure to set

the initial conditions for the pre-inflationary dynamics. In the singularity limit,

where potential V (φ) can be neglected, the evolution equations (5.1)-(5.3) reduce
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5.4 Kinetic initial conditions for a chaotic inflation potential

Figure 5.3: H(N) for different values of b0 = {0.5, 2.48, 5}.

respectively to,

Ḣkin +H2
kin = −κ

3
φ̇2

kin , (5.32)

H2
kin =

κ

6
φ̇2

kin −
k

R2
kin

, (5.33)

φ̈kin + 3Hkinφ̇kin = 0 , (5.34)

where the subscript kin refers to a kinetically dominated model. By integrating

the equation of motion for the (effectively massless) scalar field (5.34), the kinetic

energy term is found to scale like φ̇2
kin ∝ R−6

kin. Thus, in the singularity limit,

i.e. Rkin → 0, the kinetic energy dominates the curvature term k
R2

kin
and the

Friedmann equation (5.33) can be recast as,

H2
kin =

κ

6
φ̇2

kin , (5.35)

By integrating the Raychaudhuri (5.32) and Friedmann (5.35) equations, the

expression for the Hubble parameter Hkin(t) and scalar field φkin(t) are found to
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5.4 Kinetic initial conditions for a chaotic inflation potential

be,

Hkin(t) =
1

3t
, (5.36)

φkin(t) = λ−
√

2

3κ
ln(t) , (5.37)

where λ is an integration constant. Note that with the parameter identifica-

tion λ = b0, the kinetically dominated quantities (5.36) and (5.37) represent the

leading order terms of the LD series expansions, which are (5.29) and (5.30)

respectively. The kinetically dominated solutions simply correspond to the dy-

namics obtained for a massless scalar field. Hence, by switching off the potential

in the LD model, we recover the solutions of our kinetic model.

For spatially open or flat models, the curvature term in (5.3) will not be

negative, which implies that H2 > 0 at all times from the initial singularity to

the end of the inflationary epoch. However, for spatially closed models, this is

not necessarily the case, since the negative curvature term may cause a bounce.

In order to avoid a bounce, a singularity condition has to be imposed on spatially

closed models. At the onset of inflation, i.e. φ̇2
b = V (φb), the kinetic energy

term scales like a curvature term, i.e. φ̇2
b ∝ R−2, where the suffix b denotes the

beginning of inflation. The scaling of the kinetic energy term before and after

the onset of inflation is determined by (5.2) according to,

φ̇2(t) ∝ R−2−ε if t < tb

φ̇2(t) ∝ R−2+ε if t > tb ,
(5.38)

where ε > 0. Since any potential is defined up to a constant (without loss of

generality), we only consider a positive potential, i.e. V (φ) > 0, in the following

discussion. If the total energy of the scalar field at the onset of inflation is larger

than the curvature term

H2
b =

κ

3

(
1

2
φ̇2
b + V (φb)

)
− 1

R2
b

> 0 , (5.39)

then it will be so at all times, thereby ensuring the presence of an initial singu-

larity. Hence, the condition (5.39), which a spatially-closed model has to satisfy
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5.5 Kinetic initial conditions for a new inflation potential

in order to avoid a bounce, depends explicitly on the potential at the onset of

inflation (5.4) and is given by,

V (φb) >
2

κR2
b

. (5.40)

To sum up, we have shown that all homogeneous and isotropic inflation models

which do not have a bounce, go through a kinetically dominated regime as they

emerge from the initial singularity where the dynamics is independent of the

potential and the curvature.

The analysis of the range of validity of the kinetically dominated regime for

a chaotic inflation potential is given in Appendix C.2. In a kinetically dominated

regime, Hkin(t) and φkin(t) are respectively determined by (5.36) and (5.37) and

thus satisfy,

dln(Hkin)

dln(t)
= −1 , (5.41)

dφkin

dln(t)
= −

√
2

3κ
≈ −0.16 . (5.42)

On a logarithmic scale, the estimated time range within which the solutions are

kinetically dominated is ln(t0) . −6, which is well before the onset of inflation

occurring at ln(ti) = −2.74. The logarithmic curves displayed in Figure 5.4

and Figure 5.5 show that for a time range ln(t) . −4 the behaviour of the

numerically integrated solutions Hint(t) and φint(t) is virtually indistinguishable

from the behaviour of the solutions Hkin(t) and φkin(t) obtained in a kinetically

dominated regime. This corroborates the fact that we are entirely justified in

considering the solutions to be kinematically dominated for a time range t ≤ 10−3.

5.5 Kinetic initial conditions for a new inflation

potential

Since the kinetic dominated approach can be applied at early times to models with

arbitrary inflation potential, as shown in Section 5.4, we discuss now the kinetic

initial conditions for an inflation model with a new inflation potential. Kinetic
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5.5 Kinetic initial conditions for a new inflation potential

Figure 5.4: Comparison between ln (Hint) and ln (Hkin) as a function of ln(t) for

a chaotic inflation potential

Figure 5.5: Comparison between φint and φkin as a function of ln(t) for a chaotic

inflation potential
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5.5 Kinetic initial conditions for a new inflation potential

initial conditions for inflation are not generally incompatible with a generic new

inflation potential. However, they are incompatible with the specific new inflation

model proposed by BVS, as we now briefly show. Energy conservation in the BVS

model implies that,
1
2
φ̇2

0 + V (φ0) = 2V (φeq) . (5.43)

The BVS model also requires the inflaton field to vanish at the equipartition of

energy, φeq = 0. Using the expression for the potential (5.12), and the constraint

on the inflaton at the equipartition of energy (5.17), the energy conservation

relation (5.43) and the kinetically dominated constraint on the initial conditions

φ̇2
0 � V (φ0) respectively become,(

1− µκφ2
0

)2
= 2− 3κ

2H2
i

φ̇2
0 , (5.44)(

1− µκφ2
0

)2 � 3κ

H2
i

φ̇2
0 . (5.45)

The energy conservation (5.44) and the kinetic constraint on the initial condi-

tions (5.45) require the initial value of the inflaton field φ0 and its first derivative

φ̇0 to satisfy respectively, (
1− µκφ2

0

)2 � 4

3
. (5.46)

φ̇2
0 �

4H2
i

9κ
, (5.47)

Using the energy conservation relation (5.44) and the constraint on the initial

inflaton field (5.46), the initial value of its first derivative is found to be,

φ̇2
0 ≈

4H2
i

3κ
, (5.48)

which contradicts the constraint (5.47). Thus, the kinetic initial conditions are

incompatible with the constraint imposed by the BVS model, which requires

the inflaton field (5.17) to vanish at the equipartition of energy. There is no

theoretical reason or physical argument to justify this assumption, whereas the

kinetic initial conditions do have a physical justification: as the universe comes

out of the initial singularity, the kinetic energy of the inflaton dominates over

the potential energy, which can safely be neglected. In order to use the kinetic
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5.5 Kinetic initial conditions for a new inflation potential

dominated approach, we therefore relax the requirement in the BVS model for

the inflaton to vanish at the equipartition of energy. Moreover, we slightly modify

the new inflation potential used in the BVS potential (5.12), according to,

V (φ) =
3A2

κ

(
1− µκφ2

)2
, (5.49)

where A is a time independent parameter fixing the amplitude of the potential.

The modified new inflation potential (5.49) does not depend on the numerical

value of the Hubble parameter Hi during the ‘slow-roll’ inflation phase. There

is a theoretical justification for this. In the BVS model, Hi is determined by

numerically integrating the dynamical equations, which in turn depend on Hi.

Hence, the potential determining the dynamics is defined in terms of the resulting

evolution. This is a circular methodology. On a conceptual level, the potential

can only be defined in terms of parameters which are independent of the solution

of the dynamical equations.

It is useful to mention that for a new inflation potential of the type (5.49), the

evolution equations remain qualitatively unchanged under the scaling properties

the scaling properties,

Ã = σA ,

µ̃ = µ .
(5.50)

where σ is the scaling constant.

In order to obtain a similar amount of inflation as for the chaotic potential

and use the numerical value µ = 0.008 as in the BVS model, we set λ = 5.1,

which determines the kinetic initial conditions (5.36) and (5.37). In order for the

model with a new inflation potential to enter the inflation phase with a similar

numerical value of H as the model with a chaotic inflation potential, we set

A = 1.2 in (5.49).

The analysis of the range of validity of the kinetically dominated regime for

a new inflation potential is given in Appendix C.3. On a logarithmic scale, the

estimated time range within which the solutions are kinetically dominated is

ln(t0) . −6, which is well before the onset of inflation occurring at ln(ti) = −2.75.

The logarithmic curves displayed in Figure 5.6 and Figure 5.7 show that for a time

range ln(t) . −4 the behaviour of the numerically integrated solutions Hint(t) and
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5.6 Scalar perturbations for chaotic and new inflation potentials

φint(t) is virtually indistinguishable from the behaviour of the solutions Hkin(t)

and φkin(t) obtained in a kinetically dominated regime. This corroborates the

fact that we are entirely justified in considering the solutions to be kinematically

dominated for a time range t ≤ 10−3.

Figure 5.6: Comparison between ln (Hint) and ln (Hkin) as a function of ln(t) for

a new inflation potential

5.6 Scalar perturbations for chaotic and new in-

flation potentials

Having discussed the time evolution of the background of inflation models, we

now briefly examine the scalar perturbations. BVS and LD both reach the con-

clusion that their model leads to a damping of the power spectrum at low values

of k compared to what would be expected from a straightforward power law

as predicted by Starobinsky (1996). Given that an inflation model based on a

chaotic potential with kinetic initial conditions corresponds to the LD model to

leading order, our perturbation analysis is expected to emulate the one obtained
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5.6 Scalar perturbations for chaotic and new inflation potentials

Figure 5.7: Comparison between φint and φkin as a function of ln(t) for a new

inflation potential

by Lasenby & Doran (2005) for a suitably small initial integration time. Simi-

larly, an inflation model based on the new inflation potential (5.49) is expected

to lead to a similar perturbation analysis as that obtained by Boyanovsky et al.

(2006b) for a suitably small initial integration time.

In order to generate scalar perturbations for a chaotic potential, which are

consistent with current observations, the mass of the scalar field m is of the order

10−6mp, as mentioned by Lasenby & Doran (2005). Hence, the solutions for a

chaotic potential have to be rescaled with σ = 10−6. Similarly, the solutions for

a new inflation potential have to be rescaled by the same factor σ. Using the

scaling properties (5.25), the numerical threshold for the range of applicability

of the kinetically dominated initial conditions becomes t0 ≤ 103tp. Hence, the

kinetic initial conditions are set three orders of magnitude above the Planck scale

and more than one order of magnitude below the onset of inflation which occurs

at ti ≤ 3 × 104tp. There is no need to advocate transplanckian physics here, as

we are well within the classical regime.

As shown by Liddle & Lyth (2000), the curvature power spectrum of the scalar
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5.6 Scalar perturbations for chaotic and new inflation potentials

perturbations PR(k) is given by

PR(k) =

(
H2

2πφ̇

)2

, (5.51)

and is governed by the ratio

χ = −H
2

φ̇
(5.52)

which represents the magnitude of the curvature perturbation obtained by nu-

merical integration using kinetic initial conditions as displayed in Figure 5.8.

Figure 5.8: Curvature perturbation magnitude 105χ as a function of ln(t).

The χ(ln(t))-curves in Figure 5.8 have the same shape as the corresponding

curve obtained by LD. As explained by Lasenby & Doran (2005), the turnover

of the χ(ln(t))-curves at around ln(t) = 12, which coincides with the onset of

inflation and suggests that the spectrum will contain less power at low-k values

as would be expected from a power law behaviour. This is an important result

since it shows that the falloff in the matter spectrum at low values of k is not

related to the spatial geometry or to the shape of the inflationary potential of the

model but is simply a generic feature which comes from the fact that the initial

integration conditions have been chosen during the kinetically dominated regime.
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5.6 Scalar perturbations for chaotic and new inflation potentials

Finally the primordial spectra of the curvature perturbation PR(k) for the

chaotic and the new inflation potential is plotted as a function of ln(k) in Fig-

ure 5.9, where k = RH. The shape of the power spectra corresponds to the shape

of the power spectrum obtained by LD although the ln(k) is shifted since it is

defined up to a constant. From Figure 5.9, we deduce that the power spectrum

for the model with a chaotic inflation potential contains more power that the

power spectrum for the model with a new inflation potential on all scales.

Figure 5.9: αPR(k) as a function of ln(k)+ const, where α = 1010
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Chapter 6

Conclusions

In Chapter 2, we performed a perturbation analysis of an adiabatic perfect fluid to

first order using the 1 + 3 covariant and gauge-invariant formalism and identified

the analog of the Mukhanov-Sasaki variable and the Grishchuk variables needed

to quantise the scalar and tensor perturbations respectively about a spatially-

curved FLRW background space-time. We also determined the dynamics of the

vector perturbations, which does not lead to a second order wave-equation, unlike

the scalar and tensor perturbation, but to a first order equation involving the

vorticity. In an expanding universe, the vorticity decays provided the sound speed

squared satisfies c2
s <

2
3

and the vector perturbations can therefore be neglected

in the analysis.

In cosmological perturbation theory, there are in general six degrees of free-

dom: two scalars, two vectors and two tensors as mentioned by R. Schaeffer,

J. Silk, M. Spiro, & J. Zinn-Justin (1996). However, in the perfect fluid case,

the two Bardeen potential are related by ΦA = −ΦH , and thus there is only one

remaining scalar degree of freedom. To sum up, to first-order, there is one degree

of freedom associated with the scalar analog of the Mukhanov-Sasaki variable v,

two degrees of freedom associated with the divergence-free vorticity covector ωa

and two degrees of freedom related to the two Grishchuk variables h+ and h×

representing the scalar amplitudes of the tensor perturbations. Hence, to first-

order, the dynamics of the adiabatic perturbations of a perfect fluid are described

by five parameters, as expected.
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It would be of interest to extend the first-order perturbation analysis of a per-

fect fluid using the 1 + 3 covariant and gauge-invariant formalism by considering

the isocurvature perturbations. Ellis & Bruni (1989) defined the isocurvature per-

turbations as the perturbations obtained by requiring the curvature perturbation

to vanish (i.e. ζ = 0) and showed that they decayed in an expanding universe.

Such a definition should be distinguished from the one given by Mukhanov et al.

(1992) and typically found in the literature, where the term isocurvature usually

means distortions in multi-component systems with zero perturbation in the to-

tal energy-density initially. By analogy with the ‘background based’ approach, it

would therefore be worth investigating the isocurvature perturbations generated

by multi-component fluid using a 1 + 3 covariant and gauge-invariant approach,

which has been investigated by Dunsby (1991), Dunsby et al. (1992) and Tsagas

et al. (2008). For such an endeavour, the equation-of-state of the fluid would

have to be modified since the entropy of the different components would play a

crucial role and could not simply be neglected. This would be quite an ambitious

enterprise, which would be worth pursuing.

In Chapter 3, Brechet et al. (2007) have used the 1 + 3 covariant approach to

determine the dynamics of an effective Weyssenhoff fluid in a non-perturbative

and hence completely general manner. This procedure leads to a consistent set of

seven propagation and six constraint equations. These give respectively the time

and spatial covariant derivative of the set of dynamical variables (ρ, Θ, σ, ω, E,

B, S). Compared to the dynamics of a perfect fluid in GR, there is one additional

propagation equation which is the spin density propagation equation. Note that

the spin constraint is included in the shear constraint. We also verified these

equations for the special case of irrotational flow with zero peculiar acceleration

by evolving the constraints.

In Chapter 4, Brechet et al. (2008) performed a dynamical analysis of an ef-

fective homogeneous and irrotational Weyssenhoff fluid using the 1 + 3 covariant

and gauge-invariant approach. Contrary to the case of a perfect fluid in GR,

the effective spin contributions to the fluid dynamics act like centrifugal forces

preventing the formation of singularities for isotropic and anisotropic models sat-

isfying the spin-shear constraint (4.50). The temporal evolution of the models is

symmetric with respect to t = 0. In a cosmological context, the energy density
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at the bounce state ρ0 has to be sufficiently dense in order to seed large scale

structures from primordial quantum fluctuations. For cosmological parameters

which are consistent with current cosmological data (4.56) and (4.57), the tem-

poral curvature of scale factor of a Weyssenhoff fluid is positively defined near

the bounce (4.60). However such a fluid is not a suitable candidate for inflation

given that the only way to include an inflation phase of about 50− 70 e-folds, is

by considering a fluid with a very fine-tuned equation-of-state (4.71), which does

not reduce to the standard cosmological fluid at later times. It is worth emphasiz-

ing that the time evolution of the scale factor of a homogeneous and irrotational

Weyssenhoff fluid exhibits eternal oscillations, without any singularities. By con-

trast, the corresponding solutions obtained for a perfect fluid in GR are cycloids,

which do exhibit singularities. Hence, the absence of singularities for a specific

range of parameters is a genuinely new feature of cosmological models based on

a Weyssenhoff fluid. Such singularity free bouncing cosmological model exhibits

a similar behaviour to the ekpyrotic and cyclic models developed by Steinhardt

& Turok (2002). Note that cosmological model based on a Weyssenhoff fluid

also predict the existence of stable static solutions, which do not diverge under

perturbations.

Weyssenhoff cosmological models have a positive temporal curvature of the

scale factor around the bounce for a broad range of parameters, which leads to

an inflation phase after the bounce. In order to be in agreement with current

observational data, the model has to generate enough inflation, which is only

possible for a very fine-tuned equation of state. Alternatively, a bouncing model

might offer an unexpected way to bypass inflation as Gasperini et al. (2004)

explain:“Technically speaking, the pre-bounce phase can replace the inflationary

phase of standard slow-roll inflation since it allows the cosmologically interesting

scales we observe today to start well inside the Hubble radius, and thus to have

time to homogenize through causal microphysics”. It is currently agreed that

inflation is required for quantum fluctuations on subhorizon scales to exit the

horizon. For an accelerated expansion, as occurring during the inflationary phase,

a mode can exit the horizon if it is stretched at a faster rate than the Hubble

radius. Conversely, as shown by Steinhardt & Turok (2002) for a decelerated
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contraction occurring during an ekpyrotic or pre-bounce phase, a mode can enter

the horizon if it shrinks at a faster rate than the Hubble radius.

Therefore, it is of great interest to investigate how perturbations behave as

they pass through a bounce. Large scale structures might be seeded by density

perturbations occurring before the bounce, which naturally rises the question

of how perturbations modes can be matched at the bounce. This is particularly

relevant for a wide range of bouncing models such as braneworld models discussed

by Davis & Brechet (2005). The matching of pre- and post-bounce perturbations

has been addressed by Gordon & Turok (2003) for a spatially-closed bouncing

model with a scalar field in GR, but also by Gratton et al. (2004) for the cyclic

model with a scalar field. To extend their work, it would be valuable to investigate

the evolution of density perturbations of a Weyssenhoff fluid through a bounce

on a classical and quantum level. This is quite an extensive task, which will

probably take a few years to be fully completed.

It is useful to carry the analysis out classically first using the 1 + 3 covariant

approach. This choice is motivated by the clear physical meaning and gauge in-

variance of the variables. The scalar perturbations have to satisfy the Mukhanov-

Sasaki equation. In presence of an initial singularity, the time dependent fre-

quency varies very quickly with respect to cosmic time as the model emerges

from the Big Bang whereas in a bouncing model the time dependent frequency is

slowly varying around the bounce given that the Hubble parameter is vanishing.

This enables us to use the WKB method in an iterative way around the bounce

in order to find classical analytic solutions for the perturbation modes.

In the first stage of the perturbation analysis, the pre-bounce phase can be

ignored and thus we set the initial conditions or conditions for physical quan-

tities at the bounce, which is a state of finite energy density. These bouncing

conditions for the classical and positively defined time evolution of the perturba-

tions as determined by a quantum description of cosmological perturbations. The

quantisation of matter fields in an expanding model leads in general to particle

production, unlike in a Minkowskian space-time, because the quantum modes are

not uniquely defined and related by the Bogolubov transformations. However,

in the deflationary and inflationary periods on either of the bounce, space-time

obeys a De Sitter geometry. By approaching the bounce, the expansion rate falls

128



smoothly to zero and the particle creation rate as well, thereby asymptotically re-

covering the well defined Minkowski modes, as shown by Birrell & Davies (1982).

Note that this would clearly not be the case for Big Bang cosmological models in

GR given that the expansion rate diverges as the model emerges form the initial

singularity. Hence, a bounce seems to be more suited to set “initial conditions

on perturbations”.

Once the conditions for physical quantities at the bounce have been set on a

quantum level, the behaviour of the perturbations during the pre-bounce phase

can then be investigated. During the contraction or ekpyrotic phase, the per-

turbation modes exit successively the horizon. At the bounce, only small scale

perturbations will still be oscillating within the horizon. The quantum modes of

those pre-bounce perturbations will then have to be matched with the quantum

modes of the post-bounce perturbations in order to understand the entire history

of the density perturbations.

This investigation will enable us to understand better the impact of pre-

bounce perturbations on the post-bounce perturbation spectrum based on an

effective GR perturbation analysis. It will also predict how scale invariance is af-

fected by pre-bounce perturbations. This perturbation analysis will be performed

for different types of fields including spinors, which will yield deeper insight for

the evolution of perturbation through a bounce.

In Chapter 5, we investigated the methods used to find suitable classical initial

conditions to start the numerical integration of the equations of motion for the

background dynamics of general inflationary models. The method proposed by

BVS and LD are suited only to their specific choice of inflationary potential. The

procedure followed by BVS requires a potential which scales like V (φ) ∝ H2
i since

then the evolution equations can be recast in terms of the dimensionless parameter

h. Their procedure is unsatisfactory because it leaves the scaling factors Hi and

φi undetermined and chooses the value of H and φ at equipartition as initial

conditions for numerical integration. The procedure adopted by LD requires a

quadratic potential for the series expansion in power of ln(t). It is conceptually

more satisfying since the initial conditions are set in a more natural way as

the model emerges from the initial singularity. Since the model is kinetically

dominated just after the Big Bang, an analytic solution can be found for all the
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physical quantities of interest, the Hubble parameter Hkin and the inflaton φkin.

These results can be used to set classical initial conditions at t ' t0 for any type

of potential provided that t� tp, irrespective of the curvature of the underlying

space-time, provided that the model does not have a bounce. This seems to be the

simplest way to find suitable classical initial conditions for numerical integration.

By initiating the numerical integration during the kinetic dominated era, the

matter perturbation spectrum exhibits a falloff at low-k. Such a feature might

possibly provide an explanation for the low-` falloff in the CMB power spectrum

observed by WMAP for any type of inflationary potential.
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Appendix A

Transformation of physical

quantities in the 1 + 3 formalism

under a signature change

The signature convention (−,+,+,+) we have used throughout this paper is

the opposite of the one (+,−,−,−) adopted by many authors. To facilitate

the comparison between results obtained using different conventions, the explicit

transformations for physical quantities evaluated within the effective field theory

are given below.

The metrics, the Levi-Civita tensors and the derivatives transform as,

gab → −gab , hab → −hab , εabcd → εabcd , εabc → εabc ,

∂a → ∂a , ∇a → ∇a , Da → Da .

The kinematical quantities transform as,

ua → ua , ua → −ua , ab → ab , ab → −ab ,

σab → −σab , ωab → −ωab , ωa → ωa , ωa → −ωa .
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The dynamical quantities transform as,

Rabcd → −Rabcd , Rab → Rab , R→ −R ,

Cabcd → −Cabcd , Eab → −Eab , Hab → −Hab ,

Tab → Tab , Sab → Sab , Sa → −Sa .
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Appendix B

Covariant identities for an

irrotational Weyssenhoff fluid

with no peculiar acceleration

It is straightforward to show that the derivatives of the induced metric hab and

the Levi-Civita tensor εabc vanish,

Dchab = 0 , (3)(hab)
· = 0 , (B.1)

Ddεabc = 0 , (3)(εabc)
· = 0 . (B.2)

In this appendix, we consider an irrotational Weyssenhoff fluid (ωab = 0) with

no peculiar acceleration (ab = 0). The covariant identities are defined in terms

of a scalar field S, a vector field Va and three tensor fields, Aab, Bab and Cab

satisfying the following properties

Vau
a = 0 , Aabu

a = Aabu
b = 0 ,

Bab = B〈ab〉 , Cab = C〈ab〉 .

Using the kinematical decomposition (1.11), the identities involving the deriva-
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tives of the scalar field S are found to be,

D[aDb]S = 0 , (B.3)

(3)(DaS)· = DaṠ − 1
3
ΘDaS − σabDbS . (B.4)

Using the Ricci identities (2.27), the identities involving the derivatives of the

vector field Vab and tensor field Aab are given by,

(3)(DaVb)
· = DaV̇b − 1

3
ΘDaVb − σacDcVb + εbcdV

cHa
d + κha[bV

cDdSc]d , (B.5)

(3)(DaVa)
· = DaV̇a − 1

3
ΘDaVa − σabDaV b + κV aDbSab , (B.6)

(3)(DcAab)
· = DcȦab − 1

3
ΘDcAab − σcdDdAab −

(
εadeA

d
b + εbdeAa

d
)
Hc

e

+ κ
(
Adbhc[a + Aa

dhc[b
)
DeSd]e , (B.7)

(3)(DbAab)
· = DbȦab − 1

3
ΘDbAab − σbcDbAa

c − εabcAbdHcd

+ κ
2

(
Aba + 2Aa

b
)
DcSbc . (B.8)

Using the definition of the curl (1.10) and the spatial Ricci identities (2.28),the

identities involving the derivatives of the symmetric trace-free tensor fields Bab

and Cab yield,

εabcC
b
d (curlB)cd = 2CbcD[aBb]c − 1

2
CabDcB

bc , (B.9)

Db curlBab = 1
2
εabcD

b
(
DdB

cd
)

+ εabcB
b
d

(
1
3
Θσcd − Ecd

)
− εbcdσbaσceBde + 3

2
κεabcσ

〈b
dS

e〉dBe
c . (B.10)

(3)( curlB)·ab = curl Ḃab − 1
3
Θ curlBab − σcdεde〈aDcBb〉

e

+ 3H〈a
cBb〉c + κ

2
εcd〈aBb〉

cDeS
de . (B.11)

Note that for a vanishing spin density tensor (i.e. Sab = 0), these identities reduce

to the identities established by Maartens (1997) for a perfect fluid in GR.
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Appendix C

Range of validity of the initial

conditions of dynamical

quantities for inflationary models

C.1 Range of validity of the series expansions of

dynamical quantities in the LD model

To analyse the range of validity of the series expansions of dynamical quantities

in the LD model, we begin by setting the initial conditions at a very early time

t0 = 10−7 using (5.31), with the RHS evaluated to second-order, and integrating

numerically to obtain the results Hint(t) and φint(t). These are then compared

with Hexp(t) and φexp(t) evaluated to first and second order (i.e. O(1) and O(2)).

The choice of t0 = 10−7 is arbitrary, but is intended to be sufficiently small to

provide an accurate description of inflationary dynamics and sufficiently large to

avoid computational errors. In order for the dynamics to produce an amount of

inflation compatible with current observations, we set b0 = 2.48, as we will show

below. The qualitative behaviour of the H(t)-curves is shown in Figure C.1 and
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C.1 Range of validity of the series expansions of dynamical quantities
in the LD model

relevant numerical results are given in Table C.1.

Figure C.1: Comparison between the series expansion Hexp (to second-order) and

the numerically integrated solution Hint.

The numerical solution for the time evolution of the Hubble parameter Hint(t)

decreases monotically before reaching the slow-roll plateau whereas the series ex-

pansion Hexp(t) reaches a minimum at tmin = 0.103, as illustrated in Figure C.1.

For the series expansion of the inflaton φexp(t), the minimum value occurs at a

time t∗min > tmin as illustrated in Figure C.2. Qualitatively, tmin represents an

upper bound on the numerical value for the initial integration time t0. However,

since we are interested in determining the inflationary dynamics, the initial in-

tegration time must also be chosen before the onset of inflation, which occurs at

ti = 0.0649. This imposes the further practical constraint t < ti on the domain

of applicability of the series expansions. Quantitatively, for a time t ≤ 10−2 the

difference between the series expansions to first and second order and the numer-

ically integrated solutions are less than 0.1% for H(t) and less than 0.01% for

φ(t), as shown in Table C.1. Hence, it seems reasonable to claim that in the time

range t ≤ 10−2 the series expansions to first or second order can be considered as
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C.1 Range of validity of the series expansions of dynamical quantities
in the LD model

Figure C.2: Comparison between the series expansion φexp (to second-order) and

the numerically integrated solution φint.

well within their domain of validity, which is why we did not consider any further

expansion order.

From Figure C.3, we see that the H(N)-curves converge as the initial inte-

gration time t0 approaches the singularity (t0 → 0). For a time range t0 ≤ 10−2,

the H(N)-curves are virtually indistinguishable, thus corroborating the fact that

the initial integration time t0 = 10−2 can be considered as a numerical threshold

for the range of applicability of the series expansions.
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C.2 Range of validity of the kinematically dominated regime for a
chaotic inflation potential

Table C.1: Behaviour of Hexp and φexp compared to Hint and φint

t Hexp O(1) Hexp O(2) Hint φexp O(1) φexp O(2) φint

10−1 6.87 6.82 6.28 2.8959 2.8951 2.8878

10−2 33.79 33.76 33.76 3.2306 3.2305 3.2305

10−3 333.39 333.38 333.38 3.6051 3.6051 3.6051

10−4 3333.33 3333.33 3333.33 3.9801 3.9801 3.9801

C.2 Range of validity of the kinematically dom-

inated regime for a chaotic inflation poten-

tial

To determine the time range for which the kinetically dominated regime provides

a good approximation to the pre-inflationary dynamics, we follow the same pro-

cedure used in Appendix C.1. For comparison, we consider a spatially-flat model

with a chaotic potential and set λ = 2.48. As in the LD model, we set the initial

conditions at very early time t0 = 10−7, but using the kinetic solutions (5.36)

and (5.37) and integrate numerically to obtain Hint(t) and φint(t), which we then

compare with Hkin(t) and φkin(t). The qualitative behaviour of the H(t)-curves

and φ(t)-curves are shown respectively in Figure C.4 and in Figure C.5, and

relevant numerical results are given in Table C.2.

The qualitative difference between the solutions for the Hubble scale factor

obtained in the kinetically dominated regime Hkin(t) and by numerical integration

Hint(t) are displayed in Figure C.4. For a time range t ≤ 10−3, the quantitative

difference between the kinetically dominated solutions, i.e. Hkin(t) and φkin(t),

and the numerically integrated ones, i.e. Hint(t) and φint(t), is respectively less

than 0.015% and less than 0.003% as shown in Table C.2. For such a time range,

the H(t)-curves and the φ(t)-curves displayed respectively in Figure C.4 and
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C.2 Range of validity of the kinematically dominated regime for a
chaotic inflation potential

Figure C.3: Hint(N) for different initial integration times {t0 = 0.1, t0 ≤ 0.01}.

Figure C.4: Comparison between the kinetically dominated Hubble scale factor

Hkin and the numerically integrated solution Hint for a chaotic inflation potential.
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C.2 Range of validity of the kinematically dominated regime for a
chaotic inflation potential

Figure C.5: Comparison between the kinetically dominated inflaton φkin and the

numerically integrated solution φint for a chaotic inflation potential.

Figure C.5 are clearly indistinguishable. Hence, for a time range t ≤ 10−3, the

pre-inflationary model can be reasonably considered as kinetically dominated.

As for the LD model, we see from Figure C.6 that the H(N)-curves converge

as the initial integration time t0 approaches the singularity. For a time range

t0 ≤ 10−3, theH(N)-curves are virtually indistinguishable, thus corroborating the

fact that the initial integration time t0 = 10−3 can be considered as a numerical

threshold for the validity of the kinematically dominated regime.

Note that there is an order of magnitude difference between the range of ap-

plicability of the LD series expansions and the domain in which the kinematically

dominated quantities can be used to set the initial conditions. For a chaotic po-

tential, the LD series expansions are by definition a better approximation to the

pre-inflationary dynamics than the kinetically dominated model, given that they

take into account the effect of the potential. However, for a sufficiently small

time range, the two models agree up to a very high precision and we are entirely

justified in considering the dynamics of the model as kinetically dominated. One

should recall, however, that the kinetic dominated approach can be applied at
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C.3 Range of validity of the kinematically dominated regime for a
new inflation potential

Table C.2: Behaviour of Hkin and φkin compared to Hint and φint for a chaotic

inflation potential

t Hkin Hint φkin φint

10−1 3.33 6.28 2.8550 2.8878

10−2 33.33 33.76 3.2300 3.2305

10−3 333.33 333.38 3.6050 3.6051

10−4 3333.33 3333.33 3.9801 3.9801

very early times to models with arbitrary spatial curvature and any inflation

potential.

C.3 Range of validity of the kinematically dom-

inated regime for a new inflation potential

To determine the time range for which the kinetically dominated regime provides

a good approximation to the pre-inflationary dynamics, we follow the same pro-

cedure used in Appendix C.1 and Appendix C.2. We set the initial conditions at

very early time t0 = 10−7, but using the kinetic solutions (5.36) and (5.37) and

integrate numerically to obtain Hint(t) and φint(t), which we then compare with

Hkin(t) and φkin(t). The qualitative behaviour of the H(t)-curves and φ(t)-curves

are shown respectively in Figure C.7 and in Figure C.8, and relevant numerical

results are given in Table C.3.

The qualitative difference between the solutions for the Hubble scale factor

obtained in the kinetically dominated regime Hkin(t) and by numerical integration

Hint(t) are displayed in Figure C.7. For a time range t ≤ 10−3, the quantitative

difference between the kinetically dominated solutions, i.e. Hkin(t) and φkin(t),

and the numerically integrated ones, i.e. Hint(t) and φint(t), is respectively less
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C.3 Range of validity of the kinematically dominated regime for a
new inflation potential

Figure C.6: Hint(N) for a chaotic potential with different initial integration times

{t0 = 10−2, t0 ≤ 10−3}.

Figure C.7: Comparison between the kinetically dominated Hubble scale factor

Hkin and the numerically integrated solution Hint for a new inflation potential.
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C.3 Range of validity of the kinematically dominated regime for a
new inflation potential

Figure C.8: Comparison between the kinetically dominated inflaton φkin and the

numerically integrated solution φint for a new inflation potential.

than 0.020% and less than 0.001% as shown in Table C.3. For such a time range,

the H(t)-curves and the φ(t)-curves displayed respectively in Figure C.7 and

Figure C.8 are clearly indistinguishable. Hence, for a time range t ≤ 10−3, the

pre-inflationary model can be reasonably considered as kinetically dominated.

As for the inflation model with a chaotic potential, we see from Figure C.9

that the H(N)-curves converge as the initial integration time t0 approaches the

singularity. For a time range t0 ≤ 10−3, the H(N)-curves are virtually indis-

tinguishable, so the initial integration time t0 = 10−3 can be considered as a

numerical threshold for the validity of the kinematically dominated regime. The

H(N)-curves obtained for the new inflation potential (5.49) do not undergo a

period of slow-roll inflation since H ′(N) 6= 0 as (C.9) clearly shows. It is worth

emphasising that an inflation model does not have to undergo a period of slow-roll

in order to produce enough inflation, which does not discredit the new inflation

potential. However, the absence of a slow-roll inflation period, corroborates the

fact that an inflation potential defined explicitly in terms of the Hubble parameter

during the slow-roll phase Hi is inconsistent.
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C.3 Range of validity of the kinematically dominated regime for a
new inflation potential

Table C.3: Behaviour ofHkin and φkin compared toHint and φint for a new inflation

potential

t Hkin Hint φkin φint

10−1 3.33 6.48 5.4750 5.5092

10−2 33.33 33.82 5.8500 5.8505

10−3 333.33 333.39 6.2250 6.2250

10−4 3333.33 3333.34 6.6000 6.6000

Figure C.9: Hint(N) for a new inflation potential with different initial integration

times {t0 = 10−2, t0 ≤ 10−3}.
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