
Fast Object Detection with Entropy-Driven Evaluation

Raphael Sznitman1, Carlos Becker1, François Fleuret1,2, and Pascal Fua1
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Abstract

Cascade-style approaches to implementing ensemble
classifiers can deliver significant speed-ups at test time.
While highly effective, they remain challenging to tune and
their overall performance depends on the availability of
large validation sets to estimate rejection thresholds. These
characteristics are often prohibitive and thus limit their ap-
plicability.

We introduce an alternative approach to speeding-up
classifier evaluation which overcomes these limitations. It
involves maintaining a probability estimate of the class la-
bel at each intermediary response and stopping when the
corresponding uncertainty becomes small enough. As a re-
sult, the evaluation terminates early based on the sequence
of responses observed. Furthermore, it does so indepen-
dently of the type of ensemble classifier used or the way it
was trained. We show through extensive experimentation
that our method provides 2 to 10 fold speed-ups, over exist-
ing state-of-the-art methods, at almost no loss in accuracy
on a number of object classification tasks.

1. Introduction
Ensemble classifiers, such as Tree-based Random

Forests (RF) [5], Boosted Stumps (BS) [9] and Boosted
Trees (BT) [6] have proven effective at solving tasks such
as object detection [26, 10, 2], image retrieval in large
datasets [27, 30] and object categorization [3, 14, 21, 18].

Typically, using an ensemble classifier requires evaluat-
ing the many individual classifiers they are made of. Due to
the ever growing amount of data that must be predicted, and
in spite of their efficient prediction procedure, the resulting
computational requirements can remain prohibitive, espe-
cially for applications with limited computational power.

Speeding up object classifiers is a well researched prob-
lem and it is well known that at its heart lies a trade-off
between accuracy and speed [26, 23, 4, 29, 8]. Perhaps

the most famous demonstration of this trade-off is found in
the seminal face detection paper [26], where a “hard” cas-
cade of classifiers was used to filter out and reject non-faces
while only mildly decreasing the overall classifier accuracy.

Since then, a number of new ways to improve this trade-
off have been proposed, mainly along the lines of rejecting
non-object candidates quickly. For example, a relaxation of
the hard cascade to a soft one was introduced to more effec-
tively reject non-target candidates and to alleviate many of
the difficulties encountered when training hard cascades [4].
Similarly, some have used rejection criteria based on Walds’
Sequential Probability Ratio Test [23] or using more empir-
ical observations [29].

While these methods have been successful, they require
either strong independence assumptions on the output of the
weak learners to guarantee optimality [23], or precise esti-
mation of a set of rejection thresholds, whose values are
computed from samples of a sufficiently large validation
set [4, 29]. In the first case, performance suffers when the
assumptions are violated, which is often. In the second, the
methods are at a disadvantage when training and validation
data are expensive or difficult to acquire.

In this paper we propose a method that classifies can-
didates quickly on the basis of a sequence of results, or
stages, computed during prediction. We introduce a generic
Bayesian framework that keeps track of the uncertainty of
a candidate’s class label as prediction proceeds and stops
when it falls below a chosen level. Unlike previous methods
that need multiple stage-specific thresholds, the class label
uncertainty in our method only requires a single threshold,
common to all stages, to specify when the uncertainty is
small enough. We show experimentally that our method
provides significant gains in speed or accuracy, and often
both, over state-of-the-art early stopping methods on a num-
ber of object classification tasks when using different en-
semble classifiers.

The remainder of this paper is organized as follows: In
Sec. 2 we briefly survey the related literature. Sec. 3 intro-
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duces our general framework and method, while in Sec. 4,
we demonstrate the performance of our approach on differ-
ent tasks.

2. Related Work
There has been much interest in speeding up classifiers

based on context. For the purpose of finding objects in im-
ages, some successful methods have exploited image-based
features that are either global, local or additive within com-
plex optimization schemes to prune large areas of the search
space and speed up detection [17, 24]. More recently, Mul-
tiple Instance Learning [29, 28, 8] has also been used to
this end, by simultaneously evaluating multiple candidates
based on their local neighborhoods. This has been shown to
be particularly appropriate when a single positive sample is
surrounded by many negative ones, as is the case of faces in
typical scenes.

While effective, these methods are not intended for cases
that require independent classification of each instance.
Among methods designed for this purpose and that attempt
to reject negatives early, one of the earliest and most influen-
tial works is the hard cascade of classifiers proposed in [26]
for face detection. In that work, rejection thresholds on a
set of distinct classifiers were used to conservatively filter
out non-faces during classification. Since then, a number of
strategies have been proposed to optimize how cascades are
built [15, 16, 20].

Perhaps most relevant to this work is that of [4], where
the hard cascade was replaced by a single soft cascade clas-
sifier with stage-wise rejection thresholds that were com-
puted using a cascade calibration procedure (CCAL). More
specifically, thresholds on the sum of stage scores were
found by adjusting a performance vector such that each
stage of the soft cascade rejected at most a fixed propor-
tion of positive targets from a validation set. While effec-
tive, this approach requires the user to adjust a performance
vector and target error rate. Furthermore, the final classifier
accuracy is closely linked to the quantity and variability of
positive samples in the validation set used to calibrate the
cascade. Along the same lines, a simple Direct Backward
Pruning algorithm (DBP) was introduced in [29] which sets
rejection thresholds on the sum of stage scores. This was
achieved by taking the threshold at each stage to be the min-
imum sum of stage scores observed over a validation set or
subset. While effectively removing the need for the per-
formance vector of [4], this strategy can still only perform
well for validation subsets large enough so that thresholds
generalize to the test set.

A different approach to setting rejection thresholds is
that of [23], where stage-wise thresholds are based on
the Sequential Probability Ratio Test (SPRT). This test is
shown to be optimal when individual observations at each
stage are i.i.d. However, in practice, the ratio test used re-

lies on the sum of stage scores, hence strongly correlating
observations and thus violating a number of assumptions.

In short, all the above-mentioned approaches to early ter-
mination of a classifier evaluation critically depend either
on large validation sets or on several strong assumptions on
the behavior of weak classifiers. Our approach avoids these
requirements by tracking the uncertainty of the candidate
class in a Bayesian way.

3. Method
As in cascade approaches [26, 23, 4, 29], given an en-

semble classifier that sequentially evaluates stages, our goal
is to reduce the computational burden by using as few re-
sources as possible on easy-to-classify cases. We differ
from earlier approaches in that we track the class label in
a Bayesian way by modeling the individual stage compu-
tations, and dynamically infer when additional classifica-
tion stages are necessary at run-time. In some sense, our
method normalizes each stage individually and accumulates
their normalized evidence. The resulting procedure is able
to cope with non-reliable stages by properly quantifying the
evidence they provide, instead of using their shear scores as
an indicator.

In the remainder of this section, we begin by specify-
ing our notations and using them to describe in a unified
manner the CCAL, DBP and SPRT algorithms discussed
in Section 2. We then introduce our own Entropy Driven
Evaluation (EDE) approach to making early decisions and
the algorithm that implements it.

3.1. Notation

For a given sample, let x ∈ RD be its feature vector and
Y ∈ {−1, 1} its label. We take F : RD → {−1, 1} to be
an ensemble classifier of the form

F (x) = sign

(
K∑
k=1

gk(x)

)
, (1)

where
gk : RD → R, (2)

is a stage score at stage index k. In BS classifiers [9, 13],
a stage is defined as gk(x) = αkhk(x) where hk is a weak
learner and αk its weight. Similarly, in BT and RF clas-
sifiers [5], gk is a decision tree. In the remainder of this
paper, we will assume that F has been trained using a ded-
icated training set and that {gk}Kk=1 are known and fixed.
Let Gk(x) = (g1(x), . . . , gk(x)) and

fk(x) =

k∑
m=1

gm(x), (3)

be the sum of the first k stage scores. Fig. 1 depicts
this sum for a few examples from a validation set V =



Table 1. Summary of Notation
x ∈ RD Sample feature vector
Y ∈ {−1, 1} Sample class label
V Validation set
N Number of validation samples
φ Stopping criterion
k∗x Stopping stage for sample x
gk(x) Stage score k
Gk(x) k first stage scores
fk(x) Sum of k first stage scores
F (x) Ensemble classifier
εk kth posterior probability of positive class
δ Block offset
γ Entropy threshold
ε∗ Probability threshold

{(xn, yn)}Nn=1. In this figure, each curve shows the sum
of stage scores of a BS face classifier for an example face
(green) or non-face (red). Note that we consider the valida-
tion set to be disjoint from the classifier training set.

3.2. Framework

For a given test sample x, we want to evaluate as few
stages as possible for a classifier of the form given in
Eq. (1). Let the number of stages to evaluate be

k∗x = argmin
k=1,...,K

{φ (g1(x), . . . , gk(x)) ≥ 0} , (4)

where the φ function is a stopping criterion. As discussed
in Sec. 2, what differentiates earlier approaches is the way φ
is defined. In fact, in both [4] and [29], the stopping criteria
are of the form

φ (g1(x), . . . , gk(x)) = fk(x)− θk, (5)

where the θk ∈ R, k = 1, . . . ,K are thresholds estimated
from the validation set V .

The DBP algorithm [29] selects each threshold by com-
puting

θk = min
{n:yn=1,fK(xn)>τ}

fk(xn), (6)

where τ is a user specified threshold on the final sum
fK(x).

In the CCAL algorithm of [4], the thresholds are taken
to be θk = maxr∈R r such that∑

n

pred(fk(xn) ≤ r)yn ≤ pk|P |, (7)

where |P | is the total number of positive examples in the
validation set, pk is a user specified proportion and pred is a
function that returns one if fk(xn) ≤ r and zero otherwise.

Similarly, the SPRT stopping criterion in [23], is of the
form

φ (g1(x), . . . , gk(x)) = max{fk(x)− θk, θk − f
k(x)}, (8)
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Figure 1. Example of the sum of stage scores produced by a face
classifier as function of the stage index. Each green and red line
corresponds to a face and non-face sample from a validation set.
The jittery black line shows a typical set of rejection thresholds
produced by the CCAL procedure. Examples with sum of scores
that fall below the black line at any stage k are rejected early.

where (θk, θk) are upper and lower thresholds estimated
using the SPRT. However, in practice θk is always set to
be larger than fk(x), reducing Eq. (8) to the same form as
Eq. (5).

Clearly, the performances of these stopping criteria are
strongly dependent on the quality and representativity of the
validation set used, as their threshold values are explicitly
selected from examples.

3.3. Entropy Driven Evaluation

We define the stopping criterion φ in a significantly dif-
ferent way. First we consider that the sample to evaluate
is randomly selected, and hence we model the class la-
bel Y as a discrete random variable with probability dis-
tribution P (Y ), i.e. a Bernouilli random variable. After
each stage, we observe the value, gk(x), which we also
treat as a random variable and for which we can evaluate
P (gk(x)|Y = 1) and P (gk(x)|Y = −1). In addition,
we assume that gk(x) is conditionally independent from
gj(x), j < k given the class label, which leads to

P (Gk(x)|Y = y) =

k∏
m=1

P (gm(x)|Y = y). (9)

Unlike [23] which also assumes conditional independence
given the class label, this is our only assumption on the be-
havior of the stage scores. Given this, we take our stopping
criteria to be

φ (g1(x), . . . , gk(x)) = γ −H(Y |Gk(x)), (10)
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Figure 2. Example of EDE process. (top) Sum of stage scores,
fk(x) for a positive sample x0 (green) and negative samples x1
and x2 (red), as function of the stage index k. (bottom) Evolu-
tion of posterior distribution as a function of the index k for each
sample. The dotted line depicts a chosen entropy threshold γ, con-
verted to its corresponding probability thresholds ε∗ and 1− ε∗.

where H(Y |Gk(x)) is the conditional entropy of Y when
Gk(x) has been observed [7] and γ ∈ (0, 1) is a user spec-
ified threshold. In this context, the conditional entropy pro-
vides a measure of uncertainty on the class label, and hence
we look for k∗x such that it reduces the uncertainty below a
specified level γ.

We now show how to compute this conditional entropy.
First, note that for any value of k, we can compute the pos-
terior distribution of Y after evaluating k stages. To do this,
we observe that

P (Y |Gk(x)) =
1

Z
P (gk(x)|Y,Gk−1(x))P (Y |Gk−1(x))

=
1

Z
P (gk(x)|Y )P (Y |Gk−1(x)), (11)

where we have used Eq. (9) to derive Eq. (11). This recur-
sive form of the posterior is convenient as it allows for an
easy update rule for sequential observations. As such, if we

let εk = P (Y = 1|Gk(x)) then, for any stage k

εk+1 =
1

Z
P (gk+1(x)|Y = 1)εk, (12)

where

Z = εkP (gk+1(x)|Y = 1) + (1− εk)P (gk+1(x)|Y = −1).

As in [23], we can estimate the conditional likelihoods,
P (gk(x)|Y = 1) and P (gk(x)|Y = −1) using the valida-
tion set. To do this, we represent each distribution using a
histogram and use a Parzen window technique with a Gaus-
sian kernel to smooth the estimation. We choose our kernel
width to be: hos = 1.44σn−1/5 where n is the number
of examples used to estimate the density and σ is the sam-
ple standard deviation. Using such a kernel width has been
shown to be fairly stable for density estimation with rela-
tively few samples [23, 22].

Hence, the conditional entropy becomes

H(Y |Gk(x)) = H(εk) (13)
= −εk log2(εk)− (1− εk) log2(1− εk).

Note, that since the entropy H(εk) ∈ (0, 1) is a concave
and symmetric function (i.e. H(ε) = H(1 − ε), ε > 1/2),
we may use a threshold on the probability εk instead of
on the entropy. This can be achieved by solving: γ =
−ε log(ε) − (1 − ε) log(1 − ε) for ε ∈ (0, 1), which pro-
vides two probability thresholds: ε∗ and 1 − ε∗. In fact,
using the probability threshold is more efficient than using
the entropy threshold as the former only requires checking
an inequality between two scalars, while the latter also re-
quires computing Eq. (13).

To highlight the difference between our approach with
the methods described in Sec. 3.2, consider the following
example. As depicted in Fig. 2, let two samples, x1 and x2
have sum of scores fk

∗
(x1) = fk

∗
(x2), where k∗ = 5 is

the first stage where rejection takes place for both x1 and x2,
when using a method from Sec. 3.2. In this case, both x1
and x2 are rejected since rejection solely depends on fk

∗
(·).

In EDE however, early stopping depends on the posterior
distribution, which depends on the sequence Gk(x) and not
fk(·). That is, early stopping of our method depends on the
progression of values at each stage, and not on the sum of
stage scores. As such, x1 could be rejected earlier than x2.

Furthermore, our method normalizes each stage indi-
vidually, and estimates the reliability of individual stages.
To build some intuition about this fact, consider an ex-
treme example where a given stage computes a random
response that is completely unrelated to x. Such a stage
would strongly impact previous methods in a negative way,
as it would force the threshold at that stage to be unreli-
able. EDE on the other hand, would effectively ignore the
stage from the overall estimation, as it would weigh the in-
formation at this stage very poorly, since P (gk(x)|Y = 1)
and P (gk(x)|Y = −1) would be similar.



3.4. Block Evaluation

While in [23, 4, 29] the stopping criteria are evaluated
at each stage of the prediction procedure, this may not be
necessary in some cases. For this reason, we propose to
evaluate the stopping criterion at specific intervals of stages.

Let δ ∈ {1, . . . ,K − 1} be a block offset, then we can
update the posterior distribution and evaluate the stopping
criterion at every δ stages. In this case, the posterior can be
written as

εk+δ =
1

Z
P (gk′(x)|Y = 1)εk, (14)

where gk′(x) =
∑k+δ
m=k+1 gm(x) and note that when δ = 1,

Eq. (12) is recovered.
As will be shown in our experiments, this block eval-

uation of the stopping criterion is not only beneficial as it
reduces the need to update the posterior at each stage, but
also makes EDE less sensitive to noise contained in each
stage observation. While this may make evaluation slower
(i.e. more stages are evaluated), this typically improves ac-
curacy.

3.5. Algorithm

Our run-time algorithm is summarized by Alg 1. The
user provides a test example x with a prior on the label, ε1,
as well as the conditional distributions P (gk′(x)|Y = y),
the stopping threshold γ and the block offset δ.

Algorithm 1 Entropy Driven Evaluation (EDE)

Require: x, ε1, γ, δ, {P (gk′(·)|Y = y)}K/δk=1

1: k ← 1
2: while k ≤ K and H(εk) > γ do
3: Compute: gk′(x) =

∑k+δ
m=k+1 gm(x)

4: εk+δ =
1
ZP (gk′(x)|Y = 1)εk

5: k ← k + δ
6: end while
7: return y = sign(εk − 0.5)

In general, the only difference between our algorithm
and the evaluation of a typical ensemble classifier is the
update of the posterior distribution (line 4). This involves
executing two lookups to compute the likelihoods, three
multiplications, one division, addition and subtraction. For
most ensemble classifiers, the cost of line 4 is therefore far
smaller than that of evaluating a particular stage.

4. Experiments

We now demonstrate the efficiency of our proposed
EDE stopping criterion for three different tasks: face de-
tection, image classification and structure recognition.

As noted in [23, 29], comparing published results of
competing early stopping methods is difficult because they
are produced by pipelines that depend on training data, spe-
cific features being used, approach to non-maximal sup-
pression, and parameter settings among many other things.
Therefore, to compare our early stopping approach against
others as fairly as possible, we reimplemented the CCAL,
DBP and SPRT stopping criteria and evaluate each ap-
proach using the same classifier and validation set for each
task mentioned above.

In each of the following experiments, we estimated the
parameters of EDE by cross-validation on the validation
set. That is, to determine γ ∈ (0, 0.1), ε1 ∈ (0, 0.5) and
δ ∈ {1, ...,K−1}, we performed a brute-force search of the
parameter space, and selected the parameters that required
the smallest number of stage evaluations, and for which at
most 1% of the classification accuracy was incorrect when
compared to non-early-stopping prediction. For each triple,
this process was repeated 5 times over the validation set and
the best triple was selected.

In general, we are interested in observing how a method
performs in terms of the number of stage evaluations and
prediction accuracy. To compare performances between
methods, we will therefore specify and tune user parame-
ters to achieve either similar prediction accuracy or evaluate
a similar number of stages. By doing so, we may observe
if one method performs better on one performance criteria
while the other is fixed.

4.1. Face Detection

We begin by evaluating each approach on a face detec-
tion task. Here, we used 4000 positive and 5 million nega-
tive examples to train a BS classifier with 500 weak learn-
ers, as described in [2]. The validation set was comprised
of 4000 positives and 6000 negatives. This set was used to
compute both the CCAL, DBP and SPRT rejection thresh-
olds and the conditional probabilities P (gk(x)|Y = y) of
Section 3.3 that EDE requires.

For this experiment, we adjusted the number of stage
evaluations, or stumps, required by each early stopping
method to be approximately the same. We then compared
the accuracy performance of the four stopping criteria on
the MIT+CMU dataset [19], which consists of 130 images
containing a total of 507 labelled faces. To this end, we
used a detector window size of 30 × 30 pixels, a sliding
window of 1 pixel, a scaling factor of 1.25, and the same
non-maximum suppression parameters in all cases.

In Fig. 3, we report the accuracy and the distribution of
stage evaluations required by each method. Note that our
EDE method uses on average slightly under 10 stages, to
achieve near equal accuracy levels to traditional BS with
non-early stopping. For approximately the same average
number of stump evaluations, CCAL, DBP and SPRT per-
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Figure 3. (top) Face detection ROC curves for each early stopping
method evaluated and for non-early stopping on the MIT+CMU
face dataset. Each stopping criterion was re-implemented and
evaluated using the same Boosted Stumps (BS) classifier, train-
ing set and validation set. (bottom) Distribution of the number of
stage evaluations of test sample for each method. In this case, each
stage consists in the evaluation of a single stump.

form significantly worse than EDE.

4.2. Caltech Dataset

We also validated our approach on the Caltech-256 ob-
ject classification dataset [12], and chose the task of binary
classification of the form “object versus clutter” for differ-
ent object categories. Since a validation set is required to
estimate the rejection thresholds, we only evaluate object
categories for which enough positive samples are available
to form large enough training and validation sets. In this
case airplanes, motor-bikes, and easy faces.

We trained BS, BT, and RF classifiers for each task us-
ing a publicly available feature set [11]1, which consists of
several types of features such as SIFT, PHOG and Linear
Binary Patterns.

In each case, we used 250 positive and 250 negative ex-

1Caltech-256 features available at:
http://www.idiap.ch/%7Ettommasi/source code CVPR10.htm

Classifier & Object Category
Stopping Criteria Motorcycle Airplane Faces

Boosted
Stumps

None 500 (.993) 500 (.964) 500 (1)
EDE 47 (.992) 77 (.960) 31 (.999)
CCAL 232 (.981) 220 (.946) 110 (.992)
DBP 232 (.977) 223 (.938) 117 (.992)
SPRT 257 (.988) 281 (.959) 132 (.997)

Boosted
Trees

None 500 (.993) 500 (.960) 500 (1)
EDE 48 (.991) 100 (.957) 32 (.998)
CCAL 239 (.983) 215 (.935) 116 (.989)
DBP 237 (.978) 219 (.931) 120 (.990)
SPRT 253 (.979) 274 (.949) 143 (.997)

Random
Forest

None 500 (.990) 500 (.962) 500 (1)
EDE 52 (.988) 85 (.952) 32 (1)
CCAL 292 (.986) 259 (.933) 136 (.992)
DBP 282 (.982) 249 (.926) 142 (.992)
SPRT 316 (.986) 329 (.941) 157(.997)

Table 2. Average number of stage evaluations and best F-score
(in brackets) on object classification tasks for three Caltech-256
categories either without an early stopping criterion or with one of
the four discussed in this paper. Our EDE criterion, in bold, not
only provides the least number of stage evaluations but also the
best F-score when compared to other early stopping methods.

amples for training and validation, and used the remaining
examples for testing. In addition, for each classification
task and classifier, we also performed 10 independent train-
ing rounds, where we randomly chose 150 positive and 150
negative samples, and used the remaining 200 samples for
validation. The BS, BT and RF classifiers were constructed
using 500 stumps and trees, respectively.

For each classifier and stopping criterion pair, we report
in Table 2 both the average number of stage evaluations re-
quired and the best F-score (in brackets) for each classi-
fication task. The F-score [1] is computed as Fscore =
2 PrRe
Pr+Re , where Pr and Re are the precision and recall lev-

els for a given classifier threshold. The best F-score is cho-
sen over all classifier threshold values and gives a general
notion of classification performance.

In all evaluated cases, the EDE stopping criterion out-
performs the other three methods on both speed and accu-
racy. Furthermore by tolerating a small reduction in accu-
racy when compared to non-early stopping, EDE allows for
up to 15 fold speed increases.

To illustrate the effect of different parameter settings for
our method, as well as for others, Fig. 4 depicts the best
F-scores of each early stopping method as a function of the
average number of evaluations when using a BT classifier
on the Airplane classification task. Here, we have evaluated
each approach with different parameters. That is for EDE,
each blue circle represents the best F-score and number of
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Figure 4. Best F-score as function of number of stage evaluations
required for a Boosted Tree (BT) classifier with different stopping
criteria for Caltech-256 Airplane classification. Each method uses
the same classifier and validation set and each point shows the
average performance for a stopping method when used with a spe-
cific set of parameters. For EDE, in blue, we show the effect of
selecting different values of γ and δ.

stages evaluated when using a specific value of γ and δ.
Similarly, each point for the other methods represents their
performances using different values for their respective pa-
rameters.

4.3. Path Classification

Lastly, we evaluate our method on a biomedical clas-
sification task. In [25], the authors proposed an approach
to classifying tubular paths, such as the one depicted in
Fig. 5(top), as truly corresponding to linear structures or
not. These paths are obtained by selecting pairs of 3D points
that appear to be on the centerlines of linear structures and
connecting them to form paths. Consequently, certain paths
generated by this process belong to linear structures while
others do not. To assess which is which, their algorithm
computes a feature vector based on gradient histograms for
each path and classifies it as a path or not.

We constructed our training and validation set by com-
puting the gradient histogram features described in [25] for
5000 positive and 5000 negative randomly selected samples
from two different volumes2. Similarly, a 30’000 path test
set was generated.

From the training and validation set, half the samples
were randomly selected to train a BS classifier with 500
stumps and the other half to learn the early stopping cri-
teria. We repeated this 10 times and evaluated the resulting
classifiers and corresponding stopping criteria on the test
set. Fig. 5(bottom) depicts our results. In general, EDE de-
livers virtually the same accuracy as the non-early-stopping
approach in a fifth of the time, and is more than twice as fast

2Volumes are available at: http://cvlab.epfl.ch/data/delin/
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Figure 5. (top) Classification of positive (green) and negative (red)
tubular linear structures. (bottom) Best F-score as a function of the
number of stage evaluations required for a Boosted Stump (BS)
classifier on the above classification task. Each point shows the
average performance for a stopping method when used with dif-
ferent sets of parameters values.

as CCAL, DBP, and SPRT.

Finally, in Fig. 6 we demonstrate that EDE performs
well even for small validation sets, whereas other ap-
proaches require much larger ones. To this end, we trained
a BS classifiers with 500 stumps and re-learned the thresh-
olds and probability distributions using ever smaller vali-
dation sets. Even by the time the number of positives in
the validation set has dropped from 2500 to 200, the perfor-
mance of EDE is barely affected, while that of the others
have degraded substantially.

5. Conclusion

This paper addressed the problem of speeding up the pre-
diction of binary classification when using ensemble classi-
fiers. Our proposed solution uses Bayesian inference to es-
tablish and track the probability of a samples class label as
stage evaluations are computed. Our early stopping criteria
is to terminate the prediction process when the uncertainty
of the class label, measured by its Shannon entropy, falls
below a chosen level. We showed through extensive exper-
imentation on several classification tasks that our approach
provides significant accuracy and speed improvements over
state-of-the-art early stopping methods. In our future work,
we plan to investigate the feasibility of using our approach
in the context of SVM classifiers and the many kernels they
may make use of.
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Figure 6. Size of the validation set. (top) Best F-score and (bottom)
number of stage evaluations as a function of the number of posi-
tives used in the validation set on a logarithmic scale. EDE quickly
reaches its peak performance whereas the other approaches require
far more to do so.
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