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This  paper  summarizes  a study  undertaken  to reveal  potential  challenges  and  opportunities  for  integrat-
ing optimization  tools  in  net zero  energy  buildings  (NZEB)  design.  The  paper  reviews  current  trends  in
simulation-based  building  performance  optimization  (BPO)  and  outlines  major  criteria  for  optimization
tools  selection  and  evaluation.  This  is based  on  analyzing  user’s  needs  for tools  capabilities  and  require-
ment  specifications.  The  review  is  carried  out  by  means  of  a literature  review  of 165  publications  and
interviews  with  28  optimization  experts.  The  findings  are  based  on  an inter-group  comparison  between
experts.  The  aim  is  to assess  the  gaps  and  needs  for integrating  BPO tools  in NZEB  design.  The  find-
ings  indicate  a breakthrough  in using  evolutionary  algorithms  in  solving  highly  constrained  envelope,
aps
eview

nterview

HVAC  and  renewable  optimization  problems.  Simple  genetic  algorithm  solved  many  design  and  oper-
ation  problems  and allowed  measuring  the  improvement  in  the  optimality  of  a  solution  against  a  base
case. Evolutionary  algorithms  are  also  easily  adapted  to  enable  them  to  solve  a  particular  optimization
problem  more  effectively.  However,  existing  limitations  including  model  uncertainty,  computation  time,
difficulty  of  use  and  steep  learning  curve.  Some  future  directions  anticipated  or needed  for  improvement

nted.
of current  tools  are prese

. Introduction

During the coming years, the building design community at
arge will be galvanized by mandatory codes and standards that
im to reach net zero energy buildings (NZEBs) [1–3]. The recast of
he European Performance of Buildings Directive (EPBD) requires

ll new buildings to be “nearly zero energy” buildings (nZEB)
y 2020, including existing buildings undergoing major renova-
ions. As building performance objectives become more ambitious

Abbreviations: AEC, architectural, engineering, construction; ACOA, ant colony
ptimization algorithm; BPO, building performance optimization; BPS, building
erformance simulation; DOE, Department of Energy; EPBD, energy performance
uilding directive; GA, genetic algorithms; GUI, graphical user interface; HVAC,
eating, ventilation and air conditioning; IBPSA, international building performance
imulation association; IEA, international energy agency; NSGA, non-dominated
orting genetic algorithm; NREL, national Renewable Energy Laboratory; nZEB,
early zero energy building; NZEB, net zero energy building; MPC, model predicted
ontrol; SQP, sequential quadratic programming; WWR,  window-to-wall ratio.
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and absolute, the number and complexity of energy use-reducing
measures, implemented in design, and tend to increase [3,4]. The
building performance objectives have raised the bar of building
performance, and will change the way buildings are designed and
operated. This means that evaluating different design options is
becoming more arduous than ever before. The building geome-
try, envelope and many building systems interact, thus requiring
optimizing the combination of the building and systems rather
than merely the systems on an individual level [5].  One promising
solution is to use automated mathematical building performance
optimization (BPO) paired with building performance simulation
(BPS) as a means to evaluating many different design options and
obtain the optimal or near optimal (e.g., lowest life-cycle cost, low-
est capital cost, and highest thermal comfort) while achieving fixed
objectives (e.g., net zero energy) [6–10].

Despite optimisation’s potential in NZEB design, it largely
remains a research tool and has yet to emerge in common industry
practice. As this paper reports, major obstacles to BPO in industry
include lack of appropriate tools, lack of resources (time, expertise),

and the requirement that the problem be very well defined (e.g.,
constraints, objective function, and finite list of design options).
The objective of this paper is to document the current state-of-
the-art in terms of NZEB optimization tools and practice. With

dx.doi.org/10.1016/j.enbuild.2013.01.016
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
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his information disseminated, it is anticipated that software deve-
opers will be better informed of the needs of building design
rocessionals.

Major components of the paper include a literature review of
ore than 150 publications on BPO and existing optimization tools,

ollowed by the results of an interview that was used to gain an
nderstanding of how people currently use optimization tools,
hich tools they use, the major limitations they have encountered,

nd their vision for the future of optimization. A qualitative study
esign was employed, using semi-structured interviews. Opti-
ization experts working in academia or practice were recruited.

xperts were identified as researcher or professional who has at
east three or more publications in the field of BPO. The partici-
ants were identified from the IBPSA International and Regional
onference Proceedings between 1995 and 2010 [11]. A sampling
ramework was developed to include experts in the study from
sia, Europe and North America. These groups represented the
ange of possible optimization users, from researchers and design-
rs considering optimization in the design of net zero or high energy
erformance buildings. A list of potential optimization experts was
reated (40 potential experts) and circulated between the IEA Task
0 Subtask members [3].  Every interviewed expert was  asked to
evise the list and add any potential candidate to be interviewed.
ecruitment continued until experts from different countries had
een represented and thematic saturation had been attained for the
ample as a whole. An additional group of experts had been invited
uring IBPSA 2011 Conference in Sydney. In total, 28 experts were

nterviewed between January and November 2011.
The interview questions were formulated by the authors and

lassified under five categories namely, background, methodology,
utput, integration in design and shortcomings and needs. The
uestionnaire aimed to probe the user’s experience with compu-
ational optimization tools and techniques for the design of NZEBs.
rior to interviewing the experts, the authors set up a pilot study to
ests and improve the questionnaire reliability and internal validity.
omments and suggestions were requested from peer reviewers.
eviewers were asked to revise the questionnaire and provide crit-

cal feedback in order to optimize the clarity and relevance of the
uestionnaire.

The scope of the study is limited to nZEBs, NZEBs and high
nergy performance buildings. Those building types are emerging
s a quantifiable design concept and promising solution to minimiz-
ng the environmental impact of buildings sector. These buildings,

hich minimize energy consumption and optimally use renewable
esources, both passively and actively are usually defined as those
hich export as much energy as they import, over the course of a

ear (also known as net zero site energy by Torcellini et al. [12]. The
erm ‘net zero’ is used for identifying those buildings connected to
he grid. The grid is used both as an ideal source and an ideal stor-
ge medium and energy losses are not taken into during the energy
upply from the grid to the building, and the energy feeding from
he building into the grid. The issues of modelling, design and opti-

ization of such buildings are being addressed by Subtask B (STB)
f the IEA SHC Task 40/ECBCS Annex 52 [1].

Key results of the interview indicate that optimization tools
hat do exist are primarily catered to research, and consequently,
hey do not reflect the needs of industry (fast turn-around, high
eturn on invested time, ease of use, shallow learning curve, user-
riendly interfaces). Some future directions anticipated or desired
y those who were surveyed faster computing (e.g., cloud comput-

ng and real-time feedback of results), improved visualization of
esults, improved methodologies (e.g., automated error-checking,

alidation, and uncertainty analysis) and standardized costs and
erformance databases.

This paper is organized into six sections. The first section iden-
ifies the research problem within the BPO community. The second
ings 60 (2013) 110–124 111

section is a literature review that defines the simulation based
BPO and illustrated various related studies, methods and tools to
support it. The literature review forms the basis for the interview
questions. The interview results and analysis are discussed in Sec-
tions 3 and 4. The final two  sections are discussing the interview
findings and providing feedback to tool developers and to the archi-
tectural, engineering and construction communities.

2. Literature review

This section presents the state-of-the-art with respect to build-
ing design optimization tools and optimization algorithms coupled
to building simulation tools. The content is intended to aid the
reader in better understanding areas of active research in build-
ing optimization as well as tools and methods commonly used by
researchers and industry.

2.1. What is BPO?

Automated building performance optimization is a process that
aims at the selection of the optimal solutions from a set of available
alternatives for a given design or control problem, according to a set
of performance criteria. Such criteria are expressed as mathemat-
ical functions, called objective functions. Automated optimization
is a combination of different types of optimization algorithms, set-
ting each algorithm to optimize one or various design functions.
The optimization objectives are to identify the cost or energy or
environmental impacts.

Therefore, an objective function is defined as a mathematical
function subjected to optimization. Optimization is a process that
searches for the optimal solution with respect to the objective
functions to be maximized or minimized, possibly subjected to
some constraints of the dependent variables. If the constraints are
not specified, the problem is denoted unconstrained optimization
problem. A constraint limits the problem space to a subset of ele-
ments [13]. If the optimization problem aims at minimizing a single
objective function, it is called single objective optimization prob-
lem, otherwise if the objective functions are more than one, it is
called multi objective optimization problem.

Visualization techniques are essential to facilitate the extraction
of relevant information regarding performance trade-offs, prop-
agation of uncertainties and sensitivity analysis. By allowing for
visualization during the optimization process, it is possible for the
designer to interact and inform the optimization process.

2.2. Brief history of BPO

Automated optimization has become increasingly popular in
a wide variety of application domains, as reflects a book entirely
devoted to this topic [14]. In the late 1980s, a large group of tech-
nologically savvy engineering, mathematics and scientific groups
tackled the application of automated optimization in the field
AEC industry aiming to optimize building design and operation.
By the end of 1990s decade, many scientific groups that have
well-used BPS made a transition and coupled their simulation
work to mathematical optimization models. Through the 2000s,
the development of mathematical and algorithmic techniques and
the advancement of BPS tools gave way  to BPO tools that could
solve multi objective optimization problems of a design. Mechan-
ical and structural engineers working on complex buildings have
been among the early adopters of BPO techniques, but architects
and other engineers now start using these techniques as well.

Today, there is a strong trend towards population-based search
algorithms such as evolutionary algorithms and particle swarms.
These algorithms have been proven to be very successful in opti-
mizing one or many performance criteria while handling search
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onstraints for large design problems [15–17].  It has now become
ommon practice for populations of building simulations to be car-
ied out simultaneously on multi-core processors and distributed
omputing to greatly reduce the time needed for an optimization
tudy (GenOpt [18], modeFrontier [19], and Phoenix Integration
20]). Researchers have found success in combining deterministic
earches and population-based searches to improve search reso-
ution and the reproducibility of optimal solution sets in building
esign problems.

.3. Importance of BPO

In the architectural, engineering and construction (AEC) indus-
ry there is a growing research trend for automated optimization
pproaches to be used to map  out and find pathways to buildings
esigns with desirable qualities, be it aesthetics, geometry, struc-
ure, comfort, energy conservation or economic features, rather
han focusing on one particular outcome. Although optimization
tudies are most commonly performed in the early-design stage,
here the majority of design decisions have yet to be made, opti-
ization approaches can be equally useful in the late-design stages

or selecting and fine-tuning control strategies and HVAC design
nd during building operations to best select building control based
n model-predictive control strategies [21–24].  The most appropri-
te search algorithms and modelling approaches vary depending on
he application area, but the suitable application area for optimiza-
ion methodologies related to building design and control is vast
nd constantly evolving.

Moreover, the use of optimization as a means of providing input
o energy policy, incentive measures is one of its most important
sages in the recent years. For example, using the building energy
ptimization model (BEopt) developed by the national renewable
nergy laboratory (NREL) to evaluate the energy and cost sav-
ngs potential from constructing more efficient new homes and
et zero-energy homes in the USA [25]. Also this includes the call
f the European Commission for implementing a methodology to
alculate cost-optimal levels in the EPBD framework. European
ember States are required to define cost-optimal levels of mini-
um  energy performance according to their specificities [26].

.4. Combination of BPO and simulation

Inevitably, optimization is coupled to BPS tools. BPS tools are
ssential in the process of building design aiming to assess their
nergy performance, environmental impacts, costs, etc. [27,28]. A
umber of energy simulation engines exist and are often used in
ifferent stage of the design process of a building [29,30]. Out of
he 406 BPS tool listed on the DOE website in 2012, less than 19
ools are allowing BPO as shown in Table 1 and Fig. 1 [31–33].

When designers decide to improve the building performance,
hey usually make estimation for various values of the design
ariables to be modified in the building envelope, the heating venti-
ating and air-conditioning (HVAC) system and the types of energy
eneration and run the simulation many times. Then, designers will
ry to find the effect of the design changes on the simulation results
nd to conclude a relation between those variables and the objec-
ives of the simulation. This is an inefficient procedure in time and
abour. Besides, the relation between the simulation variables and
he objectives may  not be simply understood, especially when there
re many parameters to be studied, and possibly due to the non-
inearity of the problem. Therefore a better design is not always
uaranteed. To overcome such difficulties, automated simulation

ased BPO search techniques are applied. Progressions in building
imulation tool development and in coupling complimentary BPS
ools at run-time expand domains where BPS optimization studies
an occur.
ings 60 (2013) 110–124

In order to automate and make more efficient the testing
and comparison of several design building variants, a number of
researchers have coupled energy simulation tools with optimiza-
tion techniques through self-produced tools, commonly based on
MATLABTM [34], or other dedicated software [35].

2.5. Optimization design variables

The most common design variables in BPO studies are either
energy related or economic related. Multiple objectives can simul-
taneously be considered through weighting strategies or by using
a multi-objective optimization algorithms which preserves trade-
offs between two or more conflicting search objectives [36]. Before
conducting an optimization search, first the designer must iden-
tifying which input design variables should be included in the
optimization search. Designers can perform a sensitivity analysis
to identify which inputs have the largest impact on an objective.
An alternative is to refer to previous research to aid in identify-
ing influential input variables. In the recent years, several studies
applied BPO techniques in order to optimize a specific aspect of the
building design or operation. A list follows disaggregated by the
objective of the optimization:

• Building layout and form [37–41].
• Geometry, position and density of fenestration [42].
• Building envelope and fabric constructions [15,43–51].
• Daylighting performance [52,53] and automated control of solar

shadings [54,55].
• Natural ventilation strategies [56,57].
• Shape and functional structure of buildings as well as heat source

utilization [58].
• Heating, ventilating, and air-conditioning (HVAC) systems sizing

[59–63].
• HVAC system control parameters and/or strategy [64–68].
• Thermal comfort [69–75].
• HVAC system configuration synthesis [76,77].
• Managing of energy storage [78,79] and automated model cali-

bration [80,81]
• Simultaneous optimization of building envelope and HVAC ele-

ments [7,15,16,65,82–90].
• Simultaneous optimization of building construction, HVAC-

system size, and system supervisory control [91–93].
• Simultaneous optimization of building construction, HVAC ele-

ments and energy supply system including RES [94–98].

Also several PhD work approached BPO including the work of
Caldas [99], Nielsen [100], Wetter [101], Wang [102], Pedersen
[103], Verbeeck [104], Choudhary [105] and Hopfe [106].

However, there are significant disparities between the above
BPO applications. Some of them apply multi-objective optimization
while the others do single objective ones. The implemented opti-
mization algorithms range from enumerative to stochastic ones.
The size and complexity of the addressed solution spaces are quite
different. Some studies used detailed BPS tools while others used
simplified ones. In order to reduce the simulation time, three strate-
gies are common:

• Custom simplified thermal model are developed and used instead
of existed detailed BPS software [77,100,107–109].

• Detailed BPS tools are used for simulating geometrically simpli-
fied models: e.g. a single zone model is used for representing

one floor single family house [85], a two  zones model for a two-
story house [17], a simplified model for representing a 200 m2

house [110], and two  representative zones are used to evaluate
the thermal performance of one floor in office building [111].
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Table  1
Classification of BPO tools.

Simulation based optimization Optimization packages Tailor made-programming

Public TRNOPT (2004)
BeOpt (2005)
OptiMaison (2005)
OptiPlus (2006)

Private/commercial ARDOT (2002) MATLAB optimization toolbox (1990) Topgui (1990) C++
Polysun (2006) Phoenix integration (1995) GenOpt 2001 Cygwin
GENE  ARCH (2008) GAlib (1995) Paradiso EO 2003 Java
Lightsolve (2008) modeFrontier (1999) ThermalOpt 2011 R
ParaGen (2011) Homer (2000) Visual Studio
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Detailed BPS tools are used for simulating a model only for a rep-
resentative period: e.g., few days are used as a weather samples
[112,113] and 6 months is used as a representative period [111]
for the whole year weather conditions (temperature, humidity,
wind speed and solar radiation).

.6. BPO objectives (single-objective and multi-objective
unctions)

Generally speaking, optimization can be either single-objective
r multi-objective according to the number of objective functions
hat define the optimization problem. In the case of optimizing a
ingle-objective function, an optimum solution of the problem is
ither its global maximum or minimum, depending on the pur-
ose. In general, it is a convention in mathematical optimization,
hat optimization problems are commonly defined as minimiza-
ions of the quantity, instead, if an optimization problem consists in
he maximization of an objective function, it is sufficient to minimize
ts opposite [114]. In many real problems, it is required to satisfy
imultaneously more than one objective function. Such problems
re denoted multi-objective optimization problems.

In multi-objective optimization problems, a single solution
ould not be able to minimize (or maximize) simultaneously each
bjective function. Rather, when searching for solutions, one comes
o limit variants such that, a further improvement towards the min-

mum value of one of the objective function causes a worsening
f the closeness to minimum of the others. Therefore, the aim of

 multi-objective optimization problem consists in finding such
ariants and possibly in quantifying the trade-off in satisfying the

Fig. 1. The evolution of building performance
individual objective functions. The role of the optimization algo-
rithm is to identify the solutions which lie on the trade-off curve,
known as the Pareto Frontier, which is in words, a set of optimal
solutions plotted in the form of a curve (named after the Italian-
French economist, Vilfredo Pareto, see Fig. 10.5). These solutions all
have the characteristic that none of the objectives can be improved
without prejudicing another. The variants of a Pareto Frontier are
defined as elements that are better than others in relation to, at
least, one objective function and simultaneously not worse con-
cerning all other objective functions.

2.7. Algorithms used in BPO

Optimization of a building as a whole is a complex problem due
to the amount of design variables as well as the discrete, non-linear,
and highly constrained characteristics. The popular optimization
methods for solving multi-objective optimization problems are
generally classified into three categories: (1) enumerative algo-
rithms, (2) deterministic algorithms, and (3) stochastic algorithms.

The enumerative methods search in a discrete space. They eval-
uate all the solutions and choose the best. These algorithms are
computationally expensive and consequently they are not suitable
for exploring wide solution spaces. Two  types of methods can be
found: (1) gradient and (2) gradient-free deterministic. The gra-
dient ones use the gradient of the evaluation functions either by

going in the direction where the gradient is the smallest or by
searching solutions that have a gradient vector equal to zero. The
gradient-free ones such as Hooke–Jeeves direct search [115], con-
structs a sequence of iterates that converge to a stationary point if

 simulation and optimization tools [33].
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he cost function is smooth and coercive. Emmerich et al. [116,117]
sed the Hooke–Jeeve algorithm is used to minimize the energy
onsumption considering different building scenarios and charac-
eristics. A gradient-free sequential quadratic programming (SQP)
lter algorithm is proposed and test in Pedersen’s PhD work [103].
he algorithm can converge fast and in a stable manner, as long as
here are no active domain constraints.

Generally, the deterministic algorithms need that the evalu-
tion functions have particular mathematical properties like the
ontinuity and the derivability [15,82]. Therefore, they are not the
est choice for handling discontinuous building and HVAC prob-

ems with highly constrained characteristics and multi-objective
unctions. On the other hand, the advantage of the stochastic algo-
ithms is that they do not have much mathematical requirements
or solving the optimization problem [118]. Examples of stochastic
lgorithms that are designed to deal with highly complex opti-
ization problems are [119]: annealing [120–122], tabu search

123], ant colony [124], particle swarm [125] and genetic algo-
ithms [126–128].

Stochastic element was added to pattern search algorithm for
ptimizing the topological design of the bracing system for a free-
orm building [129]. Ant colony optimization algorithm (ACO) was
sed to search for a trade-off between light intake, thermal per-
ormance, view, and cost for a panelled building envelope for a

edia centre in Paris [130]. A strength multi-objective particle-
warm optimization (S-MOPSO) was used for the optimization of

 heating, ventilation, and air conditioning (HVAC) system in an
ffice building [131].

Instead of the above algorithms, the last 10 years has seen
n increasing interest in using genetic algorithms (GAs) for opti-
ization of building and HVAC systems. The GAs are the most

fficient stochastic algorithms when the optimization problem is
ot smooth or when the cost function is noisy [132,133].  The GAs
onsider many points in the search space simultaneously, not a
ingle point, thus they have a reduced chance of converging to
ocal minimum, in which other algorithms may  end up [107]. The
As with the Pareto concept are used widely in energy and build-

ngs studies [7,16,40,41,47,48,92,94,102,110,134–136].  According
o the studies of Zitzler [137] and Deb [128], the elitist non-
ominated sorting genetic algorithm (NSGA-II) seems to be the
ost efficient GAs. The NSGA-II is implemented to find trade-off

elations between energy consumption and investment cost or
hermal comfort level of buildings [70–72,86,106,111,138,139]. The
SGA-II [128] could be one of the most suitable optimization algo-

ithms to handle multi-objective multivariate building and HVAC
esign problems with discrete, non-linear, and highly constrained
haracteristics. However because its stochastic behaviour, it could
ccasionally fail to get close to the pareto-optimal front, partic-
larly if low number of evaluations is implemented [86,87]. The
igh number of iterations is chosen to avoid the early breakdown
f the optimization [106]. Since building simulation is often very
ime-consuming, a large number of iterations could not be practical.
eterministic optimization phases and archive strategies are added

o the original NSGA-II in order to perform rapid optimization –
sing a low number of simulation runs – and/or to guarantee opti-
al  or close-to optimal solution set for building design problems

17,87,98]. The proposed algorithms/approaches (PR GA, GA RF,
R GA RF, and a NSGA-II) reduce the random behaviour of the origi-
al NSGA-II enhancing the repeatability of the optimization results.

.8. Tools of BPO
As shown in Table 1, BPO tools can be classified into two  main
roup’s stand-alone optimization packages and simulation based
ptimization tools. The list of stand-alone optimization tools is
ot very long, however we chose to present the most frequently
ings 60 (2013) 110–124

mentioned tools in literature namely GenOpt®, MATLAB®,
modeFrontier® and Topgui®. However, in the past 10 years,
several advances have been made to develop building simulation
tools that are driven by feedback from performance objectives.
Largely these tools are directly towards industry to dramatically
decrease the energy footprint of new buildings. Consider the most
mentioned two tools in literature that attempt to merge both
optimization and simulation techniques developed at national
renewable energy laboratories (NREL): BeOptTM and Opt-E-PlusTM.

2.8.1. GenOpt®

GenOpt® is stand-alone optimization software developed at
Lawrence Berkeley National Laboratory (LBNL). GenOpt is a generic
optimization programme that can be used with any simulation
programme that has text-based input and output, such as Energy-
Plus, DOE-2, IDA-ICE, SPARK, BLAST, TRNSYS, or any user-written
code [140]. It is suitable to be coupled with any text-based simula-
tion programme. This tool is able to access a library of different
optimization algorithms, and can use either continuous or dis-
crete variables. The modularity, flexibility, and ability to select
from a range of optimization strategies make GenOpt a robust
platform, but its visualization capabilities are limited. The tool is
aimed to solve problems where the objective function is com-
putationally expensive and its derivatives are not available or do
not exist, thus it is not suitable for linear programming problems,
quadratic programming problems and problems where the gradi-
ent of the objective function is available. The independent variables
can be continuous, discrete or both. Constraints on dependent
variables can be implemented using penalty or barrier func-
tions. GenOpt® provides multidimensional and one-dimensional
optimization algorithms. However, its library does not include
multi-objective algorithms.

The algorithms for multidimensional optimization are: (i) gen-
eralized pattern search methods for continuous independent
variables (the coordinate search algorithm and the Hooke–Jeeves
algorithm), which can also be run using multiple starting points,
(ii) discrete Armijo gradient for continuous independent variable,
(iii) particle swarm optimization algorithms for continuous and/or
discrete independent variables, which can be used in the ver-
sions with inertia weight or with constriction coefficient and with
a modification that set the continuous independent variables on
a fixed mesh in order to reduce computational time, (iv) hybrid
generalized pattern search algorithm with particle swarm algo-
rithms for continuous or/and discrete independent variables, and
(v) simplex algorithm of Nelder and Mead for continuous inde-
pendent variables [141,142].  On the other hand, the algorithms
for one-dimensional optimization are: (vi) the golden section
interval division and (vii) the Fibonacci division. GenOpt® auto-
matically allows parallel computing if the computer has multiple
CPUs, significantly reducing computational time [143]. The modu-
larity, flexibility and wide availability of optimization techniques
make GenOpt® a robust optimization environment, but its post-
processing capabilities are limited [47].

In the field of BPO, GenOpt has been used by several researchers
including Coffey et al. [144,145],  Congradac and Kulic [107],  Corbin
et al. [22], Djuric et al. [146,147],  Jacob et al. [148], Hasan et al. [85],
Kummert [149], Magnier et al. [150,151],  Palonen et al. [86], Park
et al. [152], Henze et al. [153], Stephan et al. [57], Wetter and Wright
[15] and Wright and Farmani [91].

2.8.2. MATLAB

For less simulation efforts and feasible optimization results, it

is essential to develop the link between existent building simula-
tion tools and trusted optimization tools. In environmental design
of buildings, since the number of design variables is usually large
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it is important to question the statistical significance of the inter-
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nd the true nature of solution space (linear or non-linear) can-
ot be known, optimization tool has to provide access to different
ypes of algorithms to suit problem needs. This aspect is provided
nto MATLAB which is trusted tool comprises a lot of optimization
olvers able to deal with different types of optimization problem.
dditionally, with this approach, the user can utilize all MATLAB

unctions which provide significant tools to attain and analysis the
ptimal results

MATLAB Optimization ToolboxTM provides a variety of algo-
ithms for optimization problems. These algorithms solve con-
trained and unconstrained continuous and discrete problems.
ATLAB includes functions for linear programming, quadratic

rogramming, binary integer programming, nonlinear optimiza-
ion, nonlinear least squares, systems of nonlinear equations, and

ulti-objective optimization. This allows finding optimal solutions,
erforming trade-off analyses, balancing multiple building design
lternatives, and incorporating optimization methods into algo-
ithms and models [34].

In the field of BPO, MATLAB has been used by several researchers
ncluding Bucking [9],  Choudhary [105], Coffey et al. [144,145],
acob et al. [148], Hasan et al. [85], Hamdy et al. [87], Henze et al.
153], Kummert [149], Park et al. [152], Shea et al. [130], Wetter
101], Wright and Farmani [91].

.8.3. modeFRONTIER
modeFRONTIER is a multidisciplinary and multi-objective soft-

are that allows complex algorithms to spot the optimal results,
ven conflicting with each other or belonging to different fields.
he tool be coupled to different other software packages in different
nput/output interchange formats including: EnergyPlus, ESP-r Flu-
nt, and MATLAB. Once data have been obtained, the user can turn
o the extensive post-processing features to analyze the results. The
oftware offers wide-ranging toolbox, allowing the user to perform
ophisticated statistical analysis and data visualization.

The tool has been used by Xing [154] find the best insulation
trategy to minimize the space conditioning load of an office build-
ng while keeping the insulation usage at minimum. Also the tool
as been used by the unit of building physics and systems, Eind-
oven University of Technology in the Netherlands, including the
ork of Hoes et al. [138] and Loonen et al. [139].

.8.4. Topgui
Topgui is a MATLABTM graphical user interface (GUI) programme

riginally developed to be coupled with finite element analy-
is models for executing topology optimization. In the current
ersion, it provides several single-objective and multi-objective
ptimization techniques: Hooke–Jeeves algorithm, generalized
attern search methods, particle swarm optimization algorithms,
volutionary strategy, non-dominated sorting genetic algorithm
I (NSGA-II), s-metric selection evolutionary multi-objective opti-

ization algorithm (SMS-EMOA).
In the field of BPO and according to the literature review, Topgui

as been used mainly by Hopfe [106] and Emmerich et al. [116,117]
iming to evaluate optimization methodologies for future integra-
ion in BPS tools.

.8.5. Opt-E-PlusTM

Opt-E-Plus is a tool developed by NREL that uses EnergyPlus
imulation engine. Opt-E-Plus utilizes various search routines to
dentify optimal buildings designs for energy usage [155]. The
ramework consists of a collection of EnergyPlus input and output
les, system directories, and computer routines that use an XML

ata model to transfer information among the various components.
he user is able to modify parameters in a .xml file, rather than
irectly modifying the EnergyPlus input files. This application inte-
rates with multiple data sources, is modular to allow distributed
ings 60 (2013) 110–124 115

programming, and supports selection of automation and optimiza-
tion strategies. Although this is not a stand-alone optimization tool,
it is developed to guide the user, through the comparison of vari-
ous design options, towards the most economical energy savings.
The structure of the programme is modular to allow distributed
programming [155]. Visualization of the trade space however is
limited, and it does not support multidisciplinary optimization.
Also the programme is restricted to North American context. Opt-
E-Plus has been used by NREL researchers and others including the
work of Herrmann et al. [156] and Long et al. [157].

2.8.6. BEoptTM

BEoptTM is a tool developed by NREL and is designed to identify
optimal building design variants on the path to net zero energy
target. The software allows the user to select discrete options
for various building variables regarding building envelope and
HVAC systems and calculates energy savings with respect to a
user-defined reference case or a climate-specific Building Amer-
ica Benchmark [158,159].  Regarding energy simulation, BEoptTM

can use as simulation engine either DOE-2 [160] or TRNSYS [161]
and the optimization is executed by a sequential search technique
in order to find the most cost effective combination of energy effi-
cient measures and photovoltaic systems [8].  The software rapidly
provides the user a design space (or problem space); however the
proposed design space and the selectable objective functions are
limited. Also the programme is restricted to North American con-
text.

Construction variables such as window and wall types were
used as inputs for a DOE-2.1 energy model and TRNSYS was  used
to implement solar modules. More recently, the energy model has
been update to use EnergyPlus for both building and solar compo-
nent simulations. An objective of BEopt’s approach is not to focus on
one final optimal solution, but on pathways to optimal designs such
that the user can select designs which best suit their financing avail-
able for the housing project. Integration with SketchUp, a computer
aided design tools, greatly simplify the creation of building models
used for building simulation. Opt-E-Plus is a commercial building
optimization tool which uses sequential searches and EnergyPlus
for building simulations. Opt-E-Plus also integrates with SketchUp
to create building models used for optimization studies. The appli-
cation includes a graphical user interface (GUI) that allows the
user to select from a range of predefined and discrete building
alternatives to be used in the optimization process. BEopt allows
the user to rapidly generate and visualize the design space through
a browser, but its flexibility is limited as a result of having prede-
fined building alternatives and its inability to consider a wide range
of objective functions.

BEopt has been used by NREL researchers and others including
the work of Anderson et al. [162], Givler [163] and Polly et al. [164].

3. Interview results and analysis

The previous section was  a literature review that defined BPO
and illustrated its history, methods, characteristic and tools to sup-
port it. This section presents some of the interview results that
interviewed optimization experts in 2011. Each interview included
25 questions available in the final study report [165].  For this paper,
representative questions that reflect the most important findings
are selected. The complete results are presented and can be found in
the final study report [165]. Prior to analysing the interview results,
view sample. In fact, 28 participants were interviewed from a list of
40 potential users. The list was developed by the IEA task 40 mem-
bers and the interviewed experts themselves. Thus the interview
sample is highly representative of researchers.
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systems and in particular model predictive control was considered
as one of the most complex and dynamic design variables there-
fore, design optimization was  necessary. Renewable systems were
optimized by 50% of the interviewees. Thermal storage, layout and
Fig. 2. Field of discipl

.1. Interviewee’s background

What is your major field of discipline (architecture, engineering,
omputer science other)?

28 experts were interviewed where 26 had their background
n engineering, 2 had their background in physics, one in architec-
ure and one in computer science (Fig. 2). Among the 28 experts 26
dentified themselves as researchers and 2 identified themselves
s practitioners (Fig. 2). The affiliation of the interviewed experts
hows that they are mostly located in universities or research labs
n the Northern Hemisphere. The majority of interviewees work in
he United States (29%), the UK (18%), Canada (14%), Finland (10%),
he Netherlands (7%), Germany (3%), Switzerland (3%) and Japan
3%).

How many projects or case studies have you performed and how
ong does each project or case study take?

In average 40% of all interviewees (11) conducted between 5
nd 10 optimization cases or projects, 32% (9) conducted less than 5
ases or projects and 11% (3) conducted between 10 and 15 optimi-
ations while only 14% (4) conducted more than 15 optimisations.
ost interviewees mentioned that they start with the model devel-

pment and calibration followed by linking the simulation tool to
he optimization tool, and then run the optimization. Fig. 3 shows
he time for each case or projects. Interviewees mentioned that
he development and calibration of the simulation models are one
f the time consuming steps, requiring in average 2–3 weeks of
ork. However, the running time of the optimization simulations

s the most time consuming process and depending on the model
esolutions the time required for every case varies significantly.

What kind of tools do you use for optimization (MATLAB, GENOPT,
thers)? To which simulation tool do you couple it?

Fig. 4 reveals that MATLAB toolbox and GenOpt are the most
sed optimisations tools. The left figure indicates that the most
sed simulation tools among interviewees is (9) EnegryPlus and
7) IDA ICE followed by (5) TRNSYS and (3) Esp-r.

.2. Optimization methodology
Which building typologies have you used optimization for and in
hich climates? (Residential, offices, retail, institutional)

Fig. 5 shows the building typologies, construction types and cli-
ate were the projects were optimized.
 interviewed experts.

How many zones do you address in your model when running
optimisations? And what kind of design variables do you set for opti-
mization?

64% of the interviewees used multi-zone model while 36% used
single zones models. Interviewees indicated that the preference
of choice between the single and multi-zone modelling depends
on the model resolution (level of detail) and the expected inter-
actions between the each thermal zone and the systems. Also the
multi-zone model was used to differentiate between heated and
non-heated zones and between frequently and less frequently used
spaces of the building.

As shown in Fig. 6, the most optimized design variables by
the interviewed experts for NZEBs were systems and controls
(53%) followed by the envelope (50%). The optimization of control
Fig. 3. Average time per BPO case.
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Fig. 4. Optimization tools order by use (right) and simulation tools ordered

eometry was optimized by 25% of the interviewees followed by
nternal gains (18%). 11% of the experts optimized occupancy and
% optimized location and climate. The analysis of Fig. 6 shows that
he most optimized design variables where late design parameters.
ccording to the interviewees the choice of the design variable was
ased on the innovation of the design project and the complexity
f a particular design variable.

What kind of objectives do you set for optimization?
Common optimization criteria in building design are various

osts such as initial capital cost and annual operating cost, and

ife cycle cost, energy consumption and recently environmental
mpact. 70% of all interviewees do multi-objective optimization
ersus 30% who do single objective optimisations. Regarding the

Fig. 5. Building typologies, cons
e (left). The line thickness is proportional to the frequency of the pairings.

objectives, all interviewees (28) chose energy as the most used
optimization objective, while 64% (18) chose cost.

The cost objectives included the life cycle cost, initial cost, opera-
tion and maintenance cost. Comfort followed (10) as the third most
important objective while some interviewees indicated that they
consider comfort as a constraint so I wouldn’t call it an objective.
As shown in Fig. 7 carbon (5), lighting (2) and indoor air quality (1)
were ranked at the end.

What kind of constraints do you set for optimization?
As shown in Fig. 8, there was  agreement among most interview-
ees (22) to set thermal comfort as the main constraint followed
by cost (18). Interviewees refer to comfort conditions defined
by standards. There was  an agreement to consider constrains as

truction type and climate.
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Fig. 7. Participants’ choices of optimization objective functions.

rimarily to define the feasible domain. Also penalty terms are used
n the optimization work to both guide the optimizer away from
nfeasible regions and also to consider the impact of thermal com-
ort boundaries on the optimization. Constraints in this case were
oundary or equation based.

Under which setting you run you optimization what is your
ethodology? What kind of stopping criteria do you set for optimiza-
ion?
The answer to this question depended on the used algorithm.

nterviewees indicated that some algorithms have stopping crite-
ia built in, others run for a prescribed number of generations or

Fig. 8. Participants’ choices of optimization constraints.
Fig. 9. Participants’ choices of optimization stopping criteria.

simulations. However, as shown in Fig. 9 most interviewees (17)
set a number of generations as stopping criteria for their optimiza-
tion work. Some set a time limit (4), or no stopping criteria at all (4)
while few (3) set a number of simulations.

3.3. Output

Do you have GUI for your own optimization tool? And which kind
of output analysis visualization did you do using optimization tools
(1–14)?

75% of interviewees indicated that they do not have an environ-
ment or package with a GUI for output post processing and analysis
visualization. Most interviewees are forced to process and convert
the output data using different processing tools, such as DView,
Excell, gnuplot or writing scripts in MATLAB, in order to create
interpretable output results.

Fig. 10 illustrates the 14 most used output analysis graphs. 22 of
the interviewees use the graph Fig. 10.5 allowing plotting the solu-
tion space using the Pareto Front. Interviewees indicated that the
Pareto Front include many solution that they can pick from a vari-
ety of solutions. This was followed by Fig. 10.8 (15 interviewees)
that allows the visualization of energy, cost or carbon emissions of
different solution cases representing the basecase versus the opti-
mized case. Also Fig. 10.4 and 10.6 was  selected by 12 interviewees
to visualize the impact of any parameter variation. In general, every
respondent had his or her own custom visualization techniques, for
example line plots (Fig. 10.2) or time series (Fig. 10.7) are used for
controls and in the case of comfort scatter plots (Fig. 10.2) are used.

3.4. Integration of optimization with design process

This part of the interview was structured around a series of
open questions in order to get more insights on the integration
of optimization techniques in the design process. A selection of the
comments and their frequency is classified as follows:

What opportunities you see in integrating optimization techniques
in NZEB design process?

According to the interviewees BPO have been applied success-
fully in numerous NZEB projects. However the building simulation
community still rarely uses optimization and little investment has
been made to advance BPO. However, interviewees indicated that
many opportunities in integrating simulation based BPO in NZEB

design and operation. The most mentioned opportunities include:

• Support the decision making for NZEB design.  The rise of simulation
has been driven by many things, including government policy
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will raise the confidence in the optimization and lead to
ig. 10. The 14 different output analysis visualizations (1) solution fitness, (2) solu
6)  parametric weights, (7) time series, (8) solution comparison, (9) solution tree 

able,  (12) dendrogram (clustering of variables – Bucking [9]), (13) fitness and aver

that pushes the design of low energy buildings. At present, any
increase in the use of optimization will be driven by the extent
to which aids design decision making. In this respect, one of the
most powerful forms is multi-object optimization, since it gives
a set of solutions that lie on the trade-off between two or more
conflicting design objectives. The trade-off can be used to explore
the impact of say of less capital investment on the increase in
carbon emissions. This kind of information being useful in deci-
sion making of NZEB requiring little effort and generates different
ideas and alternatives.
Designing innovative integrated NZEBs and thermal (and visual)
comfort control systems are difficult to design because they involve
complex systems that interact dynamically. Optimization algo-
rithm can help in finding the optimal and near optimal solutions
regarding the design and sizing of passive and active energy sys-
tems and finding the balance between demand and production.
Achieving cost-effective NZEBs by analyzing and synthesizing
multi-physics systems that may  include passive and active
facades, lighting controls, natural ventilation, HVAC, and storage
of heat in the building structure combining advanced technolo-
gies such as micro-CHP, PV, PVT, solar collectors and micro-wind).
The complexity of such systems pose a serious challenge to
designers and using BPO is an opportunity for optimal and cost-
effective design decision during building design and operation
including the existing building stock.
Allow optimal systems scheduling through model predictive control
(MPC) taking into account the dynamics of NZEB systems and
anticipated future energy load. When solving the optimal control
problem using MPC  algorithm, it determine near-optimal control
settings during design and operation and improve the NZEB load
matching problem.

How can it be integrated into the decision making? How should

ptimization become more practically applied during early design
hases?

There was an agreement among interviewees that prior to any
ntegration effort there must be first commercial tools available
probabilities, (3) solution range, (4) solution line, (5) solution space (Pareto Front),
rom – Hale and Long [166]), (10) linear trade off – Hopfe and Hensen [167]), (11)
ness, and (14) thermal contour plot).

with integrated simulation and optimization that allow seamless
link between the simulation model and the optimization process.
Currently, the time and knowledge required implementing sepa-
rate simulation models and optimization algorithms is limiting the
use of BPO in practice. However, on the long term the integration
of BPO can be achieved through:

• Requiring optimization as a standard activity during NZEBs design
and operation. BPO can be integrated and become standard
in practice. Consequently BPS tool will integrate optimization
techniques and the number of users will increase dramatically.
In the coming year, I expect it to be a standard feature in
NZEBs.

• Planning optimization early in the design process.  BPO should
be introduced in early phases of design as part of the inte-
grated design process (IDP). The use of optimization should
be during schematic design stages. Models should be simple
with some geometrical zoning simplification. Using a standard
reference building and testing all kind of technologies can
help in establishing initial design concepts and solutions which
can have an impact on all stakeholders. Showing results from
the starting point can have a strong impact on cost, energy
and thermal comfort and will allow a range of ideas and
solutions.

• Informing all building stakeholders on the importance of opti-
mization. Comparison studies on buildings with optimization
and buildings without optimization will inform designers and
clients. The optimization community should show designers
that the use of optimization tools produce better results.
By providing demonstration projects and real physical build-
ings beside the optimization models for simulation users. This
more detailed and accurate and certain optimization models
with operation patters and hours. Education in academia and
practice has a key in guiding professionals how to perform
optimization.
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.5. Optimization shortcomings

What are the major practice obstacles of integrating optimization
echniques in NZEB design?

The major obstacles of integrating optimization techniques in
ZEB design can be classified under two main categories: (1) soft
bstacles and (2) hard obstacles. The main four soft obstacles and
heir frequency is listed as follows:

Low return and the lack of appreciation among the AEC industry
(19)
Lack of standard systematic approach to perform optimization in
most cases researcher follow many different methods and ad-hoc
approaches without a structure and categorisation in use (16)
Requirement of high expertise (11)
Low trust in the results (5)

Interviewees’ indicated that in practice, there is a lack of aware-
ess and confidence on the use of optimization. Also it is very

mportant that users understand the optimization process. There
s a large educational need before BPO gets applied routinely in the
esign process.

Regarding the hard or technical obstacles, the interviewees’
omments and their frequency is listed as follows:

Uncertainty of simulation model input (27)
Long computation time (24)
Missing information on cost, occupancy schedules, etc. (19)
Difficulty of problem definition (objectives arrangement and con-
straint violation) (12)
Missing environments integrating and linking simulation and
optimization seamlessly (16)
Low interoperability and flexibility of models for exchange
between different design, construction, simulation, cost estima-
tion and optimization tools (11)
Lack of environment with friendly GUI allowing post processing
and visualization techniques (7)

Interviewees’ agreed that computation time is very long and this
ight well inhibit the initial take-up of optimization in practice.

he optimization processes also magnifies the idea of “rubbish-in-
ubbish-out” since rather than simulate a single design solution,
he errors or inaccuracies in a simulation are exposed across a wide
ange of the design space. This may  lead to a need for better educa-
ion and improved user interfaces for simulation, as well as more
ork on the uncertainty associated with simulation models.

Which tools would you recommend?
10 interviewees recommended GenOpt, 6 MATLAB, 4 BeOpt, 2

odeFrontier and 1 Topgui.
What features would you like to find in future tools?
Interviewees mentioned many ideas that contrast the hard

bstacles mentioned previously. However, some significant ideas
n future feature of optimization tools include:

Doing optimization in real time within a BIM model and allowing
adjustment on the fly
Allowing parallel computing to reduce computation time
Develop better GUI and model the building in 3D
Couple simulation and optimization
Connect real physical building components performance to opti-
mization models for better information on cost and occupancy
etc.

Allow automation of building simulation with some default tem-
plates and strategies
Profit from the gaming industry by developing interactive opti-
mization environments for example talking to an oracle friend
ings 60 (2013) 110–124

or wizard that guides the optimization process for better input
quality and error detection and diagnostics

4. Discussion

From the interview results three themes were identified: the
optimization context, the locus of optimization, and the factors that
inhibit the uptake of BPO as decision support in the design of NZEBs.

4.1. Summary of main findings

For most interviewed experts evolutionary algorithms were
found as a breakthrough that can help solving highly constrained
envelope, HVAC and renewable optimization problems, while con-
ventional algorithms just could not do it. Simple genetic algorithm
solved many design, operation and control problems with relative
ease. Evolutionary algorithms are adaptable and very powerful in
finding good solutions. It is difficult to know whether they have
found global minima, but this is not a critical flaw so long as they can
measure the improvement in the optimality of a solution against
a base case. It is also argued that the notion of trying to find an
optimum is nonsense because there is so much uncertainty in the
modelling that makes the simulation relates to reality. It is also
the case that optimization is not so much about finding the “best”
solution, but as much about exploring the design space for alterna-
tive solutions. Evolutionary algorithms are robust in exploring the
search space for a wide range of building optimization problems.
Unlike many other conventional or heuristic algorithms, Evolution-
ary Algorithms are also easily adapted to enable them to solve a
particular optimization problem more effectively. Moreover, the
rise of simulation has been driven by many things, including gov-
ernment policy that pushes the design of NZEBs. At present, any
increase in the use of optimization will be driven by the extent to
which aids design decision making. In this respect, one of the most
powerful forms optimization is multi-object optimization, since
this provides a set of solutions that lie on the trade-off between
two or conflicting design objectives. The trade-off can be used to
explore the impact of say of less capital investment on the increase
in carbon emissions (this kind of information being useful in deci-
sion making). However, decision support, time, knowledge, lack of
tools, and uncertainty were the themes that ran through the experi-
ences of the interviewed experts. The factors that inhibit the uptake
of BPO are not only related to the optimization techniques or the
tools themselves, but also to the simulation models inputs, causing
significant restrain in the AEC industry take-up. Interviewees’ opin-
ions about BPO, and their subsequent experiences, were found to
be mostly influenced by their research work and community. From
the evidence available, the optimization process did not, in general,
seem to be systematic and design centred, apart from a small group
of experts who used BPO in real design practice.

4.2. Strengths and limitations of the study

The methodology used in this study literature review and struc-
tured interviews was appropriate to generate hypotheses from a
large population sample. Verbatim transcriptions were undertaken
and selected quotations were not edited (Attia, 2012). There was
independent analysis of the data and concordance in the identi-
fication of themes. The choice of setting, IBPSA and IEA, allowed
experts to be recruited from practices who represent a range of
NZEB and simulation groups. Furthermore, the experts formed a
representative sample in terms of the outcomes related to BPO.

The experts were made aware at the beginning of the interviews
that the interviewer was a researcher, architectural engineer and
IEA SHC Task 40/ECBCS Annex 52 members. While this knowledge
may  have been helpful in allowing experts to feel comfortable in
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n AEC setting, thereby facilitating discussions about building per-
ormance related matters, this knowledge may  have had an impact
n the data. Specifically, the experts may  have felt obliged to align
heir views with what they perceived to be the established IBPSA
tandpoint, for instance offering a more positive opinion on BPO
han they would have done otherwise.

The number of the expert group means that statistical represen-
ation cannot be claimed. Furthermore, it was not possible to ensure
hat the expert represented a desired broad range of optimization
roups. The sampling strategy was therefore prospective rather
han purposive, and it would have been preferable to interview

ore experts who declined the test and experts who do not speak
nglish, as all of the interviewed were English speakers. Finally, it
ould have been preferable to interview more experts who work

n practice.

.3. Implications for practice and future research

The finding that BPO is surrounded by issues of uncertainty
mposes new obligations on researchers and software developers.
his involves embracing more design-centred optimization work in
ddition to setting systematic frameworks of performing optimiza-
ion for design decision support, uncertainty and communication,
nd optimization-based building solutions. Moreover, reliable and
ccurate information on building performance is crucial for experts
o create robust informed design choices. Optimization performed
or designers needs to explain the impacts on the design quality
oth before and after the use of optimization, and the associated
ncertainties need to be discussed.

Furthermore, recognition is needed that optimization is nec-
ssary for complex NZEBs. Designers do not rely on optimization
ufficiently due to the lack of public domain design packages inte-
rated with open domain, object oriented analysis tools. They
re also influenced, often strongly, by the design complexity,
imited time and investment pressure. Policymakers must there-
ore respond accordingly and recognize that BPO does not start and
nish in the research labs. BPO could be required as a standard
ctivity during NZEBs design and operation and made available in

 range of public NZEB design practice. The greatest possibilities,
owever, are afforded by the researchers. Notwithstanding the real

ssue of computation time and the seamless integration of simula-
ion and optimization model with design models. Ultimately in the
uture, all designers participating in the design (architects, engi-
eers, etc.) will be involved in using BPO techniques. Optimization

s about presenting design alternatives to the designer regardless
f whom they are. So it might be that the architect has a different
et of tools and it is a different optimization methodology but they
ill not be excluded from using optimization.

At present, the integration of BPO into the design process is
 research issue. While this sample of experts confirms that BPO
ill add value to the design we do not have the proof. If we have

olid proof designers will be very likely use optimization techniques
ecause it enhances the buildings they are designing, so they can
et better buildings. More research is needed on the experience of
esigners with BPO. Research has to show designers that the use
f BPO produce results better than their design. This would also
llow the development of better BPO tools that are both accurate
nd support the decision making.
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