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I. Introduction - outline

I vϕ and vpol are measured with eITBs for the first time on TCV
I Effects of ECH power, co-/cnt-CD and MHD activity on the barrier strength, v, Er and
ω
′
E×B profiles are presented

I E × B shearing is not the cause of eITBs (confirms main role of reverse q profile for
electron heating)

I Er proportional to ∇pi and ω̂

I Upgraded CXRS diagnostic on TCV with increased sensitivity and time resolution
enables acquisitions near fast events

II. CXRS diagnostic on TCV

I TCV is equipped with a Charge eXchange Recombination Spectroscopy (CXRS) diagnostic
I CX reaction: C6+ (plasma) + neutral H0 (low power Diagnostic Neutral Beam Injector, DNBI)
⇒ CVI line (n=8→7, λ =529.1 nm)

I Carbon main impurity in TCV (C wall) → thermalised with main ion species (D or H)
I Collected light spectroscopically analysed → Ti , nC, vϕ and vpol (vθ) profiles of C ions along the

vessel mid-plane
I DNBI injects 50 keV-H0 atoms in 10-30 ms bursts at z=0 cm (Act./Pas.: 5-100%)
I 3 CXRS observation systems covering

the plasma core and edge:
I Toroidal Low Field Side (TLFS)
I Toroidal High Field Side (THFS)
I Poloidal Low Field Side (PLFS)

I 3× 40 observation chords arranged in
pairs (Double Slit configuration)

I Toroidal systems radial resolution of
∼ 1.5 cm

I Standard Acquisition: tint= 10-30 ms
→ tresolution= 20-90 ms

I Plasmas vertically centered around
z=0cm

III. CXRS present state (2011-2012 upgrade)

I Installed 2 Andor TM iXon EM+ DU897D-CSO-BV cameras
I Back illuminated e2v CCD97 detectors with Electron Multiplying (EM)

gain up to 300
I PreAmplifier Gain: ×1−×5
I CCD image area 8.2× 8.2mm2 with 16 µm pixel size
I Quantum efficiency: 95 %
I Frame transfer time: 0.25 ms
I Integration time in 512× 20 frame transfer format: 1.7 ms

I Improved time resolution: 40 chords full range acquisition less than 2 ms!
I Increased sensitivity: ×8 better S/N ratio!

I TCV: low power DNBI perturbs only slightly the plasma (externally applied torque neglected)
I vC = intrinsic ion rotation (ITER like)
I Beam traverses the whole plasma BUT limited active signal intensity!

I Other devices: high power NBI perturbs vC profiles dominated by applied torque

I Standard triggering:
I CXRS acquisition synchronized with DNBI pulses (ramp up triggering)
I Real Time (RT) - control sawteeth (ST) trigger modulation to stabilise ST frequency

⇒ Enlarged CXRS exploitation: detect faster events (∼ few ms) in scenarios where beam
strongly attenuated and active signal weaker or much more irregular (eITBs or ne ramp in
H-modes)

IV. Electron Internal Transport Barriers (eITB) on TCV

I eITBs formed using Electron Cyclotron Heating and Current Drive (ECH/ECCD, X2 @ 82.7 GHz)
to create hollow or flat current profiles [1]

I TCV: key ingredient for eITB formation and sustainment is the degree of reverse shear [2]

I Other devices: rational q and/or the E × B shearing

I Study effect of ECH power, MHD activity on the barrier strength, v , Er and ω
′
E×B profiles

↪→ CXRS: v profiles during stationary pre-barrier, sustainment and rapid formation phases in
single discharge

V. eITB targets development at z=3 cm on TCV

CENTRAL INTERNAL
BARRIER TARGET (ICEC) [3]:
I Central cnt-CD with off-axis co-ECCD

I ∆z = 15 cm, ne = 1.8× 1019m−3

Te = 6 keV, HRLW = 2.9
I Barrier in Te but not ne

CO-ECCD eITB TARGET:
I Off-axis co-ECCD with central ECH &

central co-CD (stronger and more off axis
barrier than central eITB, 2300kW)

I ∆z = 15 cm, ne = 1.8× 1019m−3

Te = 4.5 keV, HRLW = 2.5 → 2.8
I RT IOH control dIOH/dt
I Reduce high ne & impurity in TCV

VI. Rotation, Er & E × B shearing rate profiles vs MHD activity

I Barrier destroyed by MHD
activity: MHD mode (2,1) @
7kHz + stronger mode

I Barrier ⇒ cnt-current (Ip)
toroidal rotation (vϕ)

I MHD mode ⇒ rotation
reversal co-Ip vϕ

I Strong mode ⇒ relaxation to
cnt-Ip vϕ (∼= OH) and
decrease in the core

I Er < 0 is inward during
barrier

I MHD mode causes Er sign
change in the core (outward)

⇒ MHD activity strong effect on vϕ and Er profiles

⇒ minimum Er (strong ω̂RB̃pol component) ↔ ω
′
E×B = 0 at midradius

VII.Effect of central ECH power on the central barrier strength

I Cnt-CD ↔ co-CD (similar to
central ECH): peaked cnt-Ip
vϕ in the core with doubled
vϕ and pe

I pe increases inside ρψ = 0.5
⇒ confinement improvement
(barrier) [4]

I pe ⇒ clear difference in the
electron transport!

I vϕ increases for ρψ < 0.45
I Er < 0 inward (-2 kV/m):

smaller for cnt-CD than
co-CD

I E × B shearing rate for
cnt-CD and co-CD is similar
in both cases

OH, central cnt-ECCD (central eITB) & co-CD (730kW)

⇒ E × B shearing rate not the cause of electron transport improvement
⇒ BUT increased vϕ profile for central eITB may result from improved confinement

VIII. Rotation, Er & E × B shearing rate profiles vs total power

I Central cnt-Ip vϕ
I Inboard-outboard vϕ

asymmetry
I vϕ increases & Er

decreases when reducing
the ECH power

I Er < 0 inward (-[1,4]kV/m)
and deeper in the core
(ω̂RB̃pol term)

I csi =
√

Ti0(500eV )
mD

∼=
1.5× 105m/s

I csi/R0
∼= 1.8× 105s−1

I TEM modes most instable
in TCV eITB plasmas

I γR0/csi = 0.4 [5]

ECH total power scan & OH

⇒ ω
′
E×B ∝ 104s−1 smaller compare to γ ∝ 105s−1 of TEM

⇒ Consistent with assumed negligible effect of ω
′
E×B on TEM in TCV reverse shear [6,7]

XI. Conclusions
I Effects of ECH power, co-/cnt-CD and MHD activity on the barrier strength, v, Er and ω

′
E×B

profiles are presented
I vϕ AND vpol are measured with eITBs for the first time
I E × B shearing is not the cause of eITBs (confirms main role of reverse q profile for

electron heating)
I Er ∼ ∇pi and ω̂

I Upgraded CXRS diagnostic on TCV enables acquisition near fast events

IX. upol indirect measurement, Er & E × B shearing rate

Tokamak Coordinate Conventions [8, 9]:
I COCOS=17
I Ip,B0,Bpol > 0
I ω̂ > 0, û > 0
I uϕ > 0, upol < 0

Poloidal and toroidal rotation indirect measurement (û(Ψ), ω̂(Ψ),K (Ψ) flux functions):

uσ = ûσ(Ψ)B + Rω̂σ(Ψ)eϕ
uσϕ = Rω̂σ(Ψ) + ûσ(Ψ)Bϕ

uσpol = ûσ(Ψ)Bpol = σρθϕσIpûσ(Ψ)B̃pol

where B̃pol =
∣∣∣Bpol

∣∣∣, Bϕ = F/R. Using RH & RL on the same flux surface:
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when impurity asymmetry can not be neglected:

n(Ψ, θ)û(Ψ, θ) = K (Ψ) =
1
F

(uϕ,H
RH

−
uϕ,L
RL

− σBp(2π)
eBp T

Ze
∂ln(nH/nL)

∂Ψ

)
×

(
nLnHR2

LR2
H

nLR2
L − nHR2

H

)
Radial electric field:
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]
RB̃pol Er (ρψ = 0) = 0

where dΨ = σBpσIpd |Ψ− Ψaxis|
E × B shearing rate [10]:

ω
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d
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X. Agreement between measured Vϕ,Vpol and indirect uϕ,upol

Calculated ω̂ & û (TCV 45371)
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