Journal article

Continuum radiative heat transfer modeling in media consisting of optically distinct components in the limit of geometrical optics

Continuum-scale equations of radiative transfer and corresponding boundary conditions are derived for a general case of a multi-component medium consisting of arbitrary-type, non-isothermal and non-uniform components in the limit of geometrical optics. The link between the discrete and continuum scales is established by volume averaging of the discrete-scale equations of radiative transfer by applying the spatial averaging theorem. Precise definitions of the continuum-scale radiative properties are formulated while accounting for the radiative interactions between the components at their interfaces. Possible applications and simplifications of the presented general equations are discussed.

Related material