1 Introduction

Reticulate porous ceramics (RPCs) exhibit favorable heat and mass transfer characteristics for high-temperature applications [1]. Examples are molten-metal and diesel-engine-exhaust filters [2,3], radiant burners [4], catalyst supports [5], and radiant absorbers in solar thermal and thermochemical reactors [6]. In the latter application, RPCs provide efficient absorption of concentrated solar radiation and large specific surface areas for heterogeneous chemical reactions [6–8]. The accurate knowledge of the RPCs’ effective heat and mass transport properties is crucial for their optimal design and operation. Computer tomography (CT) enables the digital geometrical representation of their complex porous structure, which is needed for the direct pore-level numerical simulations (DPLS).

Previous pertinent studies include the determination of the extinction coefficient, scattering coefficient, and scattering phase function of metal foams and RPCs for simplified geometries composed of pentagon dodecahedron or tetrakaidecahedric [9] and spherical voided cubic unit cells [10]. The effective thermal conductivity was determined for simplified foam geometries composed of tetrakaidecahedron [11], hexagonal [12], and spherical or cubical voided cubic unit cells [13]. Permeability has been determined by simplifying the foam structure by parallel conduits [14] or by empirical correlations for fibrous beds [15,16]. The exact geometry of a porous magnetic gel sample, obtained by microCT,

was used to compute the mean survival time, which was linked to the permeability by an empirical correlation [17]. More recently, CT-based methodology was applied to determine the effective transport properties of a Rh-coated SiC RPC used for the solar steam-reforming of CH4 [18–21] and for a packed bed of semitransparent, large CaCO3 particles [22].

In the present study, CT-based DPLS is applied to determine porosity, specific surface area, representative elementary volume, pore size distribution, extinction coefficient, scattering phase function, effective conductivity, heat transfer coefficient, permeability, Dupuit–Forchheimer coefficient, tortuosity, residence time, and dispersion tensor for an uncoated, nonhollow Si3C2RPC. This material was recently used in a solar reactor for the thermal decomposition of H2SO4 as part of a water-splitting thermochemical cycle [23].

2 Morphological Characterization

2.1 Low-resolution CT. The RPC foam sample, made of Si3C2, is shown in Fig. 1. Its nominal pore diameter is dnom =1.27 mm, corresponding to 20 pores per in. (ppi). The sample is exposed to an unfiltered polychromatic X-ray beam generated by electrons incident on a wolfram target. The generator is operated at an acceleration voltage of 60 keV and a current of 0.11 mA. A Hamamatsu flatpanel C7942 CA-02 protected by a 0.1 mm-thick aluminum filter is used to detect the transmitted X-rays. The sample is scanned at 900 angles (projections). Each projection consists of an average over six scans, each with an exposure time of 0.7 s. Low-resolution computer tomography (LRCT) is performed for voxel sizes of 30 µm and 15 µm and field of view of 2.3 × 2.3 × 1.2 cm3 and 1.2 × 1.2 × 0.6 cm3, respectively.

3D surface rendering of a sample subvolume, reconstructed...
from the resulting tomography data, is depicted in Fig. 1(b). The histograms of the normalized absorption values, as shown in Fig. 2, have a bimodal character for both scan resolutions. The mode method is applied for phase segmentation [24,25]. The normalized phase threshold values α_i/α_{max} are 0.39 and 0.23 for scans with voxel sizes of 30 μm and 15 μm, respectively. These results are comparable to $\alpha_i/\alpha_{max}=0.35$ and 0.20 for scans with voxel sizes of 30 μm and 15 μm, respectively, calculated using Otsu’s method [24]. α_i/α_{max} varies by ± 0.04, as corroborated for three selected tomograms divided into 36 subelements and for voxel sizes of 15 μm and 30 μm, shown in Fig. 3.

2.2 High-resolution CT. Figure 4(a) shows a tomogram of a single RPC’s strut obtained by high-resolution computer tomography (HRCT) of 0.37 μm voxel size and 0.76 \times 0.76 \times 0.62 mm3 field of view. The HRCT is performed on the TOMCAT beamline at the Swiss Light Source (SLS) of the Paul Scherrer Institute (Villigen, Switzerland) [26] for 14 keV photon energy, 400 μA beam current, 100 μm thick aluminum filter, 20\times geometrical magnification, 0.8 s exposure time, and 1501 projections. A magnified fragment of the strut edge is shown in Fig. 4(b). The strut surface is irregularly shaped. Irregular spatial distribution of SiC and Si within the strut leads to internal heterogeneity but no pores are observed inside the strut.

2.3 Porosity and Specific Surface. The two-point correlation function

$$s_2(r) = \frac{\int_{-\infty}^{\infty} \phi(r) \phi(r + s) d\Omega dV}{4\pi V}$$

with its properties $s_2(0)=e$ and $(ds/d\tau)|_{\tau=0}=-A_0/4$ [27] is applied. $s_2(r)$ is computed using the Monte Carlo method. A random point is chosen within the fluid phase. A second random point is chosen at distance r. If the second point belongs to the fluid phase, the integrand in Eq. (1) is equal to 1. Otherwise, it is 0. The computation is performed for 10^5 random points and for r varying between 0 cm and 1 cm. The resulting porosity is $e=0.91$. It compares well to the value obtained by weight measurement (0.90 ± 0.02) and it does not depend on the voxel size of the scan. In contrast, the specific surface area A_0 increases from 1367 m$^{-1}$ to 1680 m$^{-1}$ as the voxel size decreases from 30 μm to 15 μm because of the better resolution of surface irregularities for the smaller voxel size.

2.4 REV. The representative elementary volume (REV) is defined as the minimum volume of a porous material for which the continuum assumption is valid. It is determined based on porosity calculations for subsequent growing volumes until it asymptotically reaches a constant value within a band of $\pm \gamma$. The edge length of the cubic REV is defined by [18]

$$l_{REV,\gamma} = \min(l \leq l' \mid |e - \gamma < \varepsilon(S_{l'}) < e + \gamma|, \gamma < 1$$

where $S_{l'}$ is a sample subvolume of edge length l'. For $\gamma=0.02$, $l_{REV,\gamma}=3.50$ mm and 3.39 mm for the scans with voxel sizes 30 μm and 15 μm, respectively, corresponding to 2.76d_{nom} and 2.67d_{nom}, respectively. It is shown in the analysis that follows
where \(d_{\text{nom}} \) is required for computations of heat and mass transfer.

2.5 Porosity Size Distribution

An opening operation, consisting of erosion, followed by dilation with structuring sphere of diameter \(d \), is applied to compute the opening porosity \(e_{\text{op}} \) as a function of the diameter \(d \). \(e_{\text{op}} \) is then used to determine the RPC’s pore size distribution function \(f \) [18]

\[
f(d) = \frac{\int_0^d f(d')\,dd'}{\int_0^d f(d')\,dd'} = 1 - \frac{e_{\text{op}}(d)}{e_0}
\]

where \(e_0 = s_j(0) \). The resulting pore size distribution functions are shown in Fig. 5 for the 30 \(\mu \text{m} \) and 15 \(\mu \text{m} \) voxel size tomography data. Table 1 lists the median, mode, mean, and hydraulic (\(d_h = 4 e / A_0 \)) diameters resulting from the distributions in Fig. 5.

Good qualitative and quantitative agreement of porosity, specific surface area, and pore size distribution is obtained for voxel sizes of 30 \(\mu \text{m} \) and 15 \(\mu \text{m} \). Thus, the heat and mass transfer characteristics in Secs. 3 and 4 are computed by using the 30 \(\mu \text{m} \) resolution tomography data.

\[
\Phi(\mu_a) = \frac{2 \int_{\mu_a}^1 \int_{\mu_a}^1 \int_{\mu_a}^1 \int_{\mu_a}^1 \int_{\mu_a}^1 d\mu_a \, d\mu_b \, d\mu_c \, d\mu_d \, d\mu_e}{\int_{-1}^1 \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 \, d\mu_a \, d\mu_b \, d\mu_c \, d\mu_d \, d\mu_e} \frac{1}{(1 - \mu_a^2)(1 - \mu_b^2)(1 - \mu_c^2)(1 - \mu_d^2)(1 - \mu_e^2)} \cos \varphi_4 \cos \varphi_5 \cos \varphi_6 \cos \varphi_7
\]

Table 1

<table>
<thead>
<tr>
<th>Voxel size ((\mu \text{m}))</th>
<th>(d_{\text{min}}) (mm)</th>
<th>(d_{\text{mode}}) (mm)</th>
<th>(d_{\text{median}}) (mm)</th>
<th>(d_{\text{mean}}) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.64</td>
<td>1.74</td>
<td>1.69</td>
<td>2.76</td>
</tr>
<tr>
<td>15</td>
<td>1.55</td>
<td>1.65</td>
<td>1.62</td>
<td>2.24</td>
</tr>
</tbody>
</table>

3 Heat Transfer Characteristics

3.1 Radiative Properties

The complex refractive index of SiC is taken for the solid phase [28], which is assumed to be opaque in the visible and near infrared spectral region. The fluid phase is assumed to be radiatively nonparticipating. Hence, the governing equation of radiative transfer is [19, 22, 29, 30]

\[
\frac{dI_s(s, \hat{n})}{ds} + \beta_s I_s(s, \hat{n}) = \kappa_s \int_{4\pi} I_s(s, \hat{n}') \Phi_s(s, \hat{n}') \, d\Omega_n
\]

where \(I_s \) is spectral radiative intensity, \(\kappa_s \) and \(\beta_s \) are the spectral absorption, scattering, and extinction coefficients, respectively, and \(\Phi_s \) is the spectral scattering phase function. The spectral subscript \(\lambda \) is omitted in the following text for brevity. The characteristic size parameter \((d_{\text{ch}}/\lambda) \) is much larger than 1; thus, geometric optics is valid. Collision-based Monte Carlo method is applied to compute the cumulative distribution functions of the radiation attenuation path \(s \) and the distribution function of the cosine of incidence \(\mu_\text{in} \) at the solid wall \(G_s(s) \) and \(F_{\mu_\text{in}}(\mu_\text{in}) \), respectively

\[
G_s(s) = \int_0^s \sum_{N} \delta(s' - s) \, ds'
\]

\[
F_{\mu_\text{in}}(\mu_\text{in}) = \frac{1}{N} \sum_{N} \delta(\mu_\text{in} - \mu_\text{in})
\]

\[
G_s(s) \text{ and } F_{\mu_\text{in}}(\mu_\text{in}) \text{ are related to } \beta \text{ and } \Phi \text{ by [19, 22, 29]}
\]

\[
G_s(s) = 1 - \exp(-\beta s)
\]

\[
\Phi(\mu_a) = \frac{1}{(1 - \mu_a^2)(1 - \mu_b^2)(1 - \mu_c^2)(1 - \mu_d^2)(1 - \mu_e^2)} \cos \varphi_4 \cos \varphi_5 \cos \varphi_6 \cos \varphi_7 \int_{\mu_a}^1 \int_{\mu_a}^1 \int_{\mu_a}^1 \int_{\mu_a}^1 \int_{\mu_a}^1 \, d\mu_a \, d\mu_b \, d\mu_c \, d\mu_d \, d\mu_e
\]

1 - \(G_s(s) \) is plotted in Fig. 6(a) as a function of the normalized path length for two values of the threshold \(\alpha_s / \alpha_{\max} \): 0.31 and 0.39. A least-square fit to Bouger’s law (Eq. (7)), also shown in Fig. 6(a), yields a constant extinction coefficient \(\beta_{\text{Bouger}} = 628.4 \, \text{m}^{-1} \) with root mean square (RMS) of 0.014 \(\text{m}^{-1} \) for \(\alpha_s / \alpha_{\max} = 0.31 \), and \(\beta_{\text{Bouger}} = 430.8 \, \text{m}^{-1} \) with RMS=0.014 \(\text{m}^{-1} \) for \(\alpha_s / \alpha_{\max} = 0.39 \). Separate computations along preferred directions showed slight anisotropy of \(\beta \), as indicated in Table 2.

For assumed diffusely-reflecting surface of the solid phase, the scattering phase function is plotted in Fig. 6(b) as a function of the cosine of scattering angle. It is well approximated by (RMS = 0.010)

\[
\Phi = 0.5471 \mu_a^2 - 1.38838 \mu_a + 0.8176
\]

Also shown in Fig. 6(b) is the analytically determined scattering phase function for diffusely-reflecting large opaque spheres [31].
The RPC foam and identical overlapping transparent spheres (IOTS) [30] exhibit identical scattering behavior due to their morphological similarity. Compared with large diffuse opaque spheres, RPC exhibits enhanced scattering in backward direction and less in forward direction. For assumed specularly-reflecting surface, two exemplary scattering phase functions computed for $m_{S} = 0.47 \mu m$ and $m_{S} = 0.50 \mu m$ are shown in Fig. 6(b). Both exhibit nearly isotropic scattering behaviors with slightly increased backward scattering. Based on the irregular surface topography shown in Fig. 4, the solid phase is anticipated to show a dominant diffuse component in the reflection pattern.

The scattering albedo σ_{a}/β equals the surface reflectivity of the solid phase, assumed to be wavelength-independent and equal to 0.1 [32]. Hence, $\sigma_{a} = 43.1 \text{ m}^{-1}$ and 62.8 m^{-1} for $\alpha_{a} / \alpha_{max} = 0.31$ and 0.39, respectively.

The extinction coefficient is independently estimated based on experimental measurements by using the spectroscopy system shown in Fig. 7 [33]. The main hardware components of the setup are as follows: (1) a dual Xe-Arc/Cesilid-Glowbar lamp as a source of radiation, (2) a double monochromator (Acton Research Spectra Pro Monochromator SP-2355 series) with monochromator exit slit (2”), (3) and (5)) two imaging lens pairs (MgF2, focal lengths $f = 75 \text{ mm}$ and $f = 150 \text{ mm}$), (4) a sample holder, (6) a detector (Si/PC-HgCdTe sandwich with thermoelectric cooler), (7) an optical chopper to modulate the radiation leaving the monochromator, (8) a lock-in amplifier to measure the modulated signal, and (9) a PC data acquisition system. This setup enables measurements in the spectral range from 0.3 μm to 4 μm with a spectral resolution of $\pm 1 \text{ nm}$ and an angular resolution of 10 deg. The maximum acceptance angle for detection of an incoming ray measured with respect to the optical axis is less than 4 deg. Angular measurements are performed with two RPC foam samples of thicknesses 5 mm and 10 mm at radiation wavelengths of 0.3 μm, 0.6 μm, and 0.9 μm. The measured flux rapidly decreases with the increasing detection angle. At 10 deg, it is 10^3 smaller than that acquired in the forward direction. Since the reflectivity of the solid phase is comparable to that of SiC (0.1) [32] the contribution of the incoming scattering to the measured radiative fluxes is neglected. Thus, the extinction coefficient is estimated by assuming Bouguer’s law-type dependency of the measured radiative fluxes on the sample thickness.

For all radiation wavelengths, the extinction coefficient is approximately constant and equal to $\beta_{ex} = 673 \pm 30 \text{ m}^{-1}$. Thus, when measured and calculated porosities, $n_{ex} = 0.01$ and 0.06 for $\alpha_{a} / \alpha_{max} = 0.39$ and 0.31, respectively.

3.2 Effective Thermal Conductivity

The governing steady-state heat conduction equations within the solid and fluid phases are

\[0 = \nabla (k_{s} \nabla T_{s}) \quad (10) \]
\[0 = \nabla (k_{f} \nabla T_{f}) \quad (11) \]

The boundary conditions are

\[T_{s} = T_{f}, \quad \hat{n} \cdot k_{s} \nabla T_{s} = \hat{n} \cdot k_{f} \nabla T_{f} \quad \text{at solid-fluid interface} \quad (12) \]
\[q^{s} \cdot \hat{n} = 0 \quad \text{at the sample lateral walls} \quad (13) \]

Table 2: Mean values and standard deviations of the extinction coefficient along three directions

<table>
<thead>
<tr>
<th></th>
<th>x-direction</th>
<th>y-direction</th>
<th>z-direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{MC}, mean (m$^{-1}$)</td>
<td>400.6</td>
<td>411.0</td>
<td>439.8</td>
</tr>
<tr>
<td>S_{y} (m$^{-1}$)</td>
<td>35.8</td>
<td>37.5</td>
<td>28.4</td>
</tr>
</tbody>
</table>
The finite volume (FV) technique with successive over-relaxation (SOR) is applied to solve the Eqs. (10) and (11). The computations are performed with an in-house Fortran 95 code. A sample of 10.8 × 10.8 × 10.8 mm3, corresponding to 360 × 360 × 360 voxels, is investigated. Grid convergence with mesh element size of 21.5 μm. The boundary conditions Eqs. (12)–(15) lead to a quasi-1D temperature profile. A contour map of the normalized temperature distribution along the axis perpendicular to the temperature boundary condition is shown in Fig. 8(a). The nonlinear temperature profile in the sample is used to determine the heat flux across the sample at any given cross-sectional plane perpendicular to the main heat flow direction. By applying the one-equation average model describing the conduction heat transfer in porous media [14,20], the heat flux can be linked to the effective conductivity by

$$k_e = \frac{-\int_A k_s \nabla T \cdot \mathbf{n} dA_s - \int_A k_f \nabla T_f \cdot \mathbf{n} dA_f}{(T_f - T_s)(A_s + A_f)}$$

The effective sample conductivity as a function of the solid and fluid conductivity is shown in Fig. 8(b). It is compared with the parallel and serial slab assumptions (at $\varepsilon = 0.91$), which indicate minimal and maximal possible conductivities.

The computed k_e/k_s was fitted to the linear combination of thermal conductivities of parallel and serial slabs [14]

$$\frac{k_e}{k_s} = e_1 \frac{k_f/k_s}{e(1 - k_f/k_s) + k_f/k_s} + e_2 \left(\frac{k_f}{k_s} + 1 - e\right)$$

resulting in $e_1 = 0.753$ and $e_2 = 0.267$. e_1 and e_2 depend strongly on the morphology. This can be seen when comparing k_e of the 20 ppi and the 10 ppi foams analyzed in Ref. [20], both having the same ε and a rather sharp pore size peak (peak width $= 0.5d_{nom}$). The 20 ppi foam shows a larger A_s. For $k_f/k_s = 10^{-1}$ they differ by nearly 6% and at $k_f/k_s = 10^{-4}$ they differ by up to 40%. Obviously, the smaller k_f/k_s, the more important becomes the phase distribution. When using the RPC foam as solar absorber, larger k_e are preferred since they allow for faster heat transfer rate and a more uniform heating.

3.3 Interfacial Heat Transfer Coefficient.

The heat flux from the solid to the fluid phase is given by

$$T_s = T_f = T_1 \quad \text{at the sample inlet} \quad (14)$$

$$T_s = T_f = T_2 \quad \text{at the sample outlet} \quad (15)$$

The coupled continuity, momentum, and energy equations are solved within the fluid phase of a square duct containing a sample of the foam by using a computational fluid dynamics (CFD) code [34] to obtain the temperature distribution in the fluid phase and the heat fluxes through the solid-fluid interface.

The boundary conditions are

$$\mathbf{u} = 0, \quad T = T_s \quad \text{at the solid-fluid interface} \quad (19)$$

$$\mathbf{u} \cdot \mathbf{n} = 0, \quad \mathbf{n} \cdot \nabla T = 0, \quad \mathbf{q} \cdot \mathbf{n} = 0 \quad \text{at the sample later walls} \quad (20)$$

$$\mathbf{u} \cdot \mathbf{n} = -u_0, \quad T = T_0 \quad \text{at the inlet} \quad (21)$$

$$p = p_{atm} \quad \text{at the outlet} \quad (22)$$

h_{id} is then determined as a function of Pr and Re by using

$$h_{id} = \frac{\int_A \mathbf{g} \cdot \mathbf{q} dA_{id}}{A_{id} \Delta T_{lm}}$$

A sample with dimensions of 11.4 × 11.4 × 3.78 mm3, corresponding to 380 × 380 × 126 voxels, is investigated. Convergence was achieved for the termination residual RMS of the iterative solution below 10$^{-8}$ and for the maximal mesh element length of 90 μm (corresponding to 0.07d_{nom}), resulting in 5.6 × 107 tetrahedral elements. The mesh is generated with an in-house mesh generator for unstructured body-fitted grids. The mesh generator covers the domain by tetrahedral elements and subsequently refines the elements at the phase boundary. Finally, a rounding, cutting, and smoothing process is made to achieve an accurate domain representation [21]. Two quad-core Intel Xeon 2.5 GHz processors and 32 Gbytes RAM are used to solve the equations in approximately 10 h.

Nu is shown in Fig. 9 as a function of Pr and Re. Assuming a correlation of the form $Nu = a_0 + a_1 Re^{0.23} Pr^{0.3}$, least-square fitting leads to (RMS = 0.817)

$$Nu = 6.820 + 0.198 Re^{0.23} Pr^{0.606}$$

These results compare well to those obtained experimentally for a 10 ppi foam [35].

3.4 Influence of l_{REV}.

Normalized porosity, extinction coefficient, and conductivity are plotted in Fig. 10 as a function of
The continuity and momentum equations are solved subject to the boundary conditions to obtain the velocity and pressure distributions for the fluid phase of a square duct containing a sample of the foam to determine the tortuosity and residence time distributions. They are applied for a fluid flow in an averaged isotropic porous medium.

Darcy’s law [36] and its extensions [37,38] are applied for a fluid flow in an averaged isotropic porous medium

\[\nabla p = -\frac{\mu}{K} \bar{u}_0 - F_{DF} \bar{p} \hat{u}_0 \]

(25)

Nondimensionalization of Eq. (25) for the 1D case yields

\[\frac{\nabla p d^2}{\mu \hat{u}_0} = \Pi_{D} = -\frac{d^2}{K} \hat{u}_0 - c_0 \hat{u}_0 - c_1 \hat{u}_0 \]

(26)

The continuity and momentum equations are solved [34] within the fluid phase of a square duct containing a sample of the foam to obtain the velocity and pressure distributions for the following boundary conditions

\[\bar{u} = 0 \text{ at the solid-fluid interface} \]

(27)

\[\bar{u} \cdot \hat{n} = 0, \quad \hat{n} \cdot \nabla \bar{u} = 0 \text{ at the sample lateral walls} \]

(28)

\[\bar{u} \cdot \hat{n} = -u_0 \text{ at the inlet} \]

(29)

\[\frac{\varepsilon}{\varepsilon_{ex}}, \frac{\beta}{\beta_{ex}}, \frac{k_e}{k_e}, \frac{\kappa_e}{\kappa_e} \text{ calculated fit} \]

\[\tau = \frac{l_{\text{path}}}{l_{\text{sample}}} \]

(31)

\[t = \int_{l_{\text{path}}}^{l_{\text{path}}} d\hat{u} \]

(32)

4.3 Dispersion Tensor. The governing equation coupling the convection and diffusion in the fluid phase is [40]
\[
\frac{\partial c}{\partial t} + \nabla (c\bar{u}) - \nabla (D \cdot \nabla c) = 0 \quad (33)
\]

The dispersion tensor \(D \) in an isotropic medium can be decomposed in parallel and transverse components, \(D_{||} \) and \(D_{\perp} \), respectively. For zero molecular diffusion

\[
D_t = b_0 \operatorname{Re}^{b_1} \quad (34)
\]

with \(b_0 \) and \(b_1 \) constants. The solution of Eq. (33) links \(D \) to the standard deviation of the normally distributed concentration \(c \) [41]

\[
S_c = \sqrt{2} D_{||} \quad (35)
\]

\(D_t, D_{||}, \) and \(D_{\perp} \) are determined by following 2500 streamlines through the foam, registering their spatial displacement at a specific time instant (e.g., in z-direction: \(\Delta z = z(t) - z(t_0) \)), and subsequently fitting the registered distribution to a standard Gauss distribution. The normalized dispersion tensor components are shown in Fig. 14 as a function of \(\operatorname{Re} \). \(D_t \) and \(D_{\perp} \) are equal to the transverse component \(D_{\perp} \); \(D_{||} \) is equal to the parallel component \(D_{||} \). Fitting to Eq. (34) yields

\[
\frac{D_{||}}{\nu} = \begin{cases}
6.560 \times 10^{-3} \text{ Re} & \text{Re} \leq 5 \quad (\text{RMS} = 6.0 \times 10^{-6}) \\
4.896 \times 10^{-3} \text{ Re}^{1.104} & \text{Re} > 5
\end{cases}
\]

(36)

\[
\frac{D_{\perp}}{\nu} = \begin{cases}
6.297 \times 10^{-1} \text{ Re} & \text{Re} \leq 5 \quad (\text{RMS} = 4.2 \times 10^{-5}) \\
7.045 \times 10^{-1} \text{ Re}^{0.942} & \text{Re} > 5
\end{cases}
\]

(37)

5 Summary and Conclusions

We have numerically computed the effective heat and mass transport properties of a nonhollow RPC foam made of SiSiC, whose exact 3D geometry was determined by computer tomography. Computed porosity was 0.91 and compared well to experimentally measured value of 0.90 ± 0.02. Computed specific surface was 1367 m\(^{-2}\) and increased by 20% when increasing the scan resolution by a factor of 2 as smaller surface irregularities were resolved. Computed size distribution showed a sharp peak of approximately 0.5d\(_{\text{nom}}\) and a mean diameter of 1.3d\(_{\text{nom}}\). REV determined by porosity, extinction coefficient, and conductivity calculations on subsequently growing volumes was 87.8 mm\(^3\). Radiative properties were determined from the extinction length and cosine of incidence distributions by applying the collision-based MC method. The computed extinction coefficient of 431 m\(^{-1}\) agreed quantitatively to the experimentally measured one estimated by measuring the transmitted radiative flux with a spectroscopy system. Computed scattering functions showed a large backward scattering peak for diffusely-reflecting surfaces and isotropic scattering behavior for specularly-reflecting surfaces. The scattering coefficient was a function of the surface reflectivity and determined to be 63 m\(^{-1}\). The effective conductivity was calculated by solving the heat conduction equation within both phases by FV and fitted to a combination of parallel and serial slab models. For \(k_t/k_s < 10^{-4} \), \(k_s \) remained constant and approximately 0.022k\(_f\). The heat transfer coefficient was calculated by solving the continuity, momentum, and energy governing
equations within the fluid phase by FV. A Re and Pr dependent Nu correlation of the form $N_u=6.820+0.198Re^{0.788}Pr^{0.606}$ was fitted (RMS=0.817). This correlation strongly depended on the morphology. Computed permeability and Dupuit–Forchheimer coefficient, determined based on the pressure and velocity distribution within the fluid, were $K=5.67 \times 10^{-8}$ m^{-2} and $F_{DF}=519.0$ m^{-1} and compared well to the values found by applying different models available in the literature. Tortuosity distribution calculations resulted in a mean tortuosity of 1.07. Obviously, the mean residence time decreased with increasing Re. Neglecting molecular dispersion, a Re dependent function of the dispersion tensor was obtained by comparing the calculated spatial displacement distribution of streamlines within the foam to a Gaussian distribution.

The CT-based methodology is able to accurately account for the morphology of complex, porous media, and, when coupled to Monte Carlo and CFD numerical techniques, provides pore-level solutions of the energy and fluid flow governing equations. The effective transport properties can be used in a continuum-scale heat and mass transfer model, which, in turn, may be used for the design and optimization of components for high-temperature applications. A follow-up study will determine the limits of applicability of combined conduction-convection-radiation computations utilizing the effective thermal properties.

Acknowledgment

This work has been financially supported by the Swiss National Science Foundation under Contract No. 200021-115888 and by the European Commission under Contract No. 212470 (Project HYCycles). We thank C. Suter for the technical support with the spectroscopy measurements and F. Marone for the technical support at SLS.

Nomenclature

- $a_0, a_1, a_2, a_3 = $ constants
- $b_0, b_1 = $ constants in Eq. (34)
- $A = $ surface (m^2)
- $A_0 = $ specific surface (m^{-1})
- $c = $ concentration (kg/m^3)
- $c_0, c_1 = $ constants in Eq. (26)
- $D = $ dispersion tensor (m^2/s)
- $d = $ diameter, characteristic length scale (m)
- $d_h = $ hydraulic diameter (m)
- $d_{nom} = $ nominal diameter (m)
- $e_1, e_2 = $ constants in Eq. (17)
- $f = $ distribution function (m^{-1})
- $F = $ probability distribution function
- $F_{DF} = $ Dupuit–Forchheimer coefficient (m^{-1})
- $G = $ cumulative distribution function
- $h_{ad} = $ interfacial heat transfer coefficient (W/m^2K)
- $I = $ radiative intensity (W/m^3sr)
- $k = $ conductivity (W/mK)
- $k_e = $ effective conductivity (W/mK)
- $K = $ permeability (m^2)
- $l = $ length (m
- $m = $ complex refractive index
- $n = $ surface normal vector
- $N_i = $ number of rays
- $N_e = $ number of extinct rays
- $Nu = $ Nusselt number
- $p = $ pressure (Nm^{-2})
- $Pr = $ Prandtl number
- $q = $ heat flux vector (W/m^2)
- $q = $ heat transfer rate (W)
- $r = $ distance between two points in the sample (m)
- $r = $ position vector for spatial coordinates in the sample (m)
- $Re = $ Reynolds number
- $s = $ path length (m)
- $s = $ unit vector of path direction
- $s_2 = $ two-point correlation function
- $S = $ sample subvolume (m^3)
- $S_i = $ standard deviation of i (m)
- $t = $ residence time (s
- $T = $ temperature (K)
- $u = $ velocity (m/s)
- $u_{Dg} = $ Darcean velocity (supervisal volume averaged velocity) (m/s)
- $V = $ sample volume (m^3)
- $z = $ sample dimension in the z-direction (m)

Greek

- $\alpha = $ absorption values of tomographic scans (m^{-1})
- $\beta = $ extinction coefficient (m^{-1})
- $\delta = $ Dirac delta function
- $\gamma = $ half bandwidth for REV determination
- $\varepsilon = $ porosity
- $\kappa = $ absorption coefficient (m^{-1})
- $\lambda = $ radiation wavelength (m)
- $\mu = $ dynamic viscosity ($kg/m3$)
- $\mu_{in} = $ cosine of incidence angle
- $\mu_e = $ cosine of reflection angle
- $\mu_s = $ cosine of scattering angle
- $\nu = $ kinematic viscosity (m^2/s)
- $\varphi_d = $ difference azimuthal angle, $\varphi_d = \varphi_{in} - \varphi_{ex}$ (rad)
- $\rho^s = $ bidirectional reflectivity (sr)
- $\Pi_{rg} = $ dimensionless pressure gradient
- $\sigma_{e} = $ scattering coefficient (m^{-1})
- $\tau = $ tortuosity
- $\Phi = $ scattering phase function
- $\psi = $ pore-scale indicator function (1=void phase; 0=solid phase)
- $\Omega = $ solid angle (sr)

Subscripts

- $am = $ arithmetic mean
- $atm = $ atmospheric
- $b = $ blackbody
- $ex = $ experimental
- $f = $ fluid
- $in = $ incident
- $lm = $ logarithmic mean
- $mf = $ mean fluid
- $op = $ opening
- $s = $ solid
- $sf = $ solid-fluid boundary
- $t = $ threshold
- $tot = $ total
- $0 = $ initial

References
