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ABSTRACT. We consider processes which have the distribution of standard Brownian motion (in
the forward direction of time) starting from random points on the trajectory which accumulate
at −∞. We show that these processes do not have to have the distribution of standard Brownian
motion in the backward direction of time, no matter which random time we take as the origin. We
study the maximum and minimum rates of growth for these processes in the backward direction.
We also address the question of which extra assumptions make one of these processes a two-
sided Brownian motion.

1. INTRODUCTION

This article is devoted to forward Brownian motions, i.e., processes defined on the whole
real line which appear to be Brownian motions when observed from random points in space-
time in the forward time direction. More precisely, we will say that {Xt, t ∈ R} is a forward
Brownian motion (FBM) if there exists a sequence {Sn, n ≤ 0} of random times such that
limn→−∞ Sn = −∞, a.s., and for every n, the process {XSn+t − XSn , t ≥ 0} is standard
Brownian motion on [0,∞).

A simple example of FBM is two-sided Brownian motion, i.e., the process {Xt, t ∈ R} such
that {Xt, t ≥ 0} and {X−t, t ≥ 0} are independent standard Brownian motions.

We will address several families of questions. It is natural to start with the very general
question of whether there are any forward Brownian motions that are significantly different
from two-sided Brownian motion? The question is somewhat vague but we believe that the
answer is quite clear. We will exhibit a number of FBM’s that are very different from two-sided
Brownian motion by any measure.

We will say that {Xt, t ∈ R} is backward Brownian motion if {X−t, t ∈ R} is FBM. If a
process is both a forward Brownian motion and a backward Brownian motion, is it necessarily
two-sided Brownian motion (or a very similar process)? The answer is no — we will present
an example to this effect.

It is easy to see that some FBM’s can be constructed by concatenating pieces of independent
standard Brownian motions. We will show that the family of FBM’s constructed in this way is
very rich. One could hope that every FBM may be represented this way — that would provide
a convenient technical tool. Somewhat disappointingly, this turns out to be false. This leaves
open the question of characterizing all FBM’s. This problem is vague but we can indicate what
we mean by invoking well known “characterizations” of some families of stochastic processes.
Lévy processes are characterized by the Lévy-Khinchin exponent; Gaussian processes are char-
acterized by the mean and covariance functions; one-dimensional diffusions are characterized
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by the scale function and speed measure. So far, we have not found a similar characterization
for FBM’s.

We will start our rigorous study of FBM’s by presenting several results on their path behav-
ior. We will show that FBM trajectories can be extremely different from those of two-sided
Brownian motion.

The paper has two disparate sources of inspiration. On the technical side, FBM’s arise natu-
rally in the study of skew-Brownian motion (we will be more specific below). On the philosoph-
ical and scientific side, one may ask what can be said about a stochastic process representing
a natural phenomenon which can be observed effectively only in one direction of time. If it
appears to be Brownian motion, does it necessarily imply that the trajectories of this process
have to be Brownian-like in the opposite direction of time? The motivation for this question is
provided by processes that occur on a scale that is borderline feasible for effective observations,
such as the evolution of species.

The topic of our paper has a vague resemblance to “entrance laws” (see, e.g., [1]) but we did
not find any useful connection at the technical level.

The rest of the paper is organized as follows. Section 2 presents basic definitions and ex-
amples. The minimum and maximum rates of growth of FBM trajectories in the backward
direction are studied in Sections 3 and 4. We analyze the question of which extra assumptions
make a decomposable FBM a 2-sided Brownian motion in Section 5. We show that a process
that is simultaneously a forward Brownian motion and a backward Brownian motion is not nec-
essarily a 2-sided Brownian motion in Section 6. Finally, we list some open problems in Section
7.

2. DEFINITIONS AND BASIC EXAMPLES
sec:def

The sets of real numbers, non-negative natural numbers, strictly positive natural numbers and
integers will be denoted R,N0,N and Z, respectively.

Unless stated otherwise, the terms standard Brownian motion and Brownian motion will be
treated as synonyms and we will assume that these processes start at 0 at time 0.

2.1. Definitions.

d17.4 Definition 2.1. We will say that {Xt, t ∈ R} is a forward Brownian motion (FBM) if there
exists a sequence {Sn, −n ∈ N0} of random times such that limn→−∞ Sn = −∞, a.s., and for
every n, the process {XSn+t−XSn , t ≥ 0} is standard Brownian motion on [0,∞). We will say
that {Xt, t ∈ R} is backward Brownian motion (BBM) if {X−t, t ∈ R} is FBM. Further, we
call {Xt, t ∈ R} two-sided Brownian motion (2BM) if there exists a random time S such that
{XS+t −XS, t ≥ 0} and {XS−t −XS, t ≥ 0} are independent standard Brownian motions. If
we can take S ≡ 0 in the last definition then the distribution of X will be denoted 2BM(0).

Note that the formal definition of two-sided Brownian motion given above is less restrictive
than the informal definition given in the introduction.

If X is 2BM then it is FBM. To see this, let Sn = S + n, −n ∈ N0, in Definition 2.1.
Similarly, if X is 2BM then it is BBM.

We will describe a general method of constructing forward Brownian motions.

d17.3 Definition 2.2. For each k ∈ Z, let {Bk
t , t ≥ 0} be a Brownian motion with respect to some

normal filtration {Fkt , t ≥ 0} and let Tk be a stopping time with respect to Fk. Assume that
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(Tk, {Bk
t , t ∈ [0, Tk]}), k ∈ Z are independent and, a.s., 0 ≤ Tk <∞, for k ∈ Z,

∑∞
k=1 Tk =∞

and
∑−1

k=−∞ Tk =∞. Let S0 = 0, and note that the conditions Sk+1 − Sk = Tk, k ∈ Z, define
uniquely Sk for all k ∈ Z. Let X be the unique continuous process such that X0 = 0 and
XSk+t − XSk

= Bk
t for t ∈ [0, Tk), k ∈ Z. If a process X ′ is such that for some random time

U , the process {Xt := X ′U+t − X ′U , t ∈ R} can be represented as above, then we will call
X ′ decomposable. If (Tk, {Bk

t , t ∈ [0, Tk]}), k ∈ Z, are i.i.d. then X ′ will be called strongly
decomposable.

A decomposable process is the concatenation of a countable number of independent (but not
necessarily identically distributed) pieces of Brownian trajectories. It follows from the strong
Markov property that {XSn+t − XSn , t ≥ 0} is standard Brownian motion for every n ∈ Z.
Hence, a decomposable process is FBM.

d18.5 Remark 2.3. Recall the condition limn→−∞ Sn = −∞ that appears in Definition 2.1. The
following list contains this condition and its alternatives (all conditions are supposed to hold
a.s.).

(i) limn→−∞ Sn = −∞.
(ii) limn→−∞ Sn = −∞ and Sn ≤ Sn+1 for all −n ∈ N.

(iii) limn→−∞ Sn = −∞ and Sn+1 is a stopping time relative to the filtration generated by
{XSn+t −XSn , t ≥ 0}, for all −n ∈ N.

(iv) lim infn→−∞ Sn = −∞.
Clearly a process satisfying (iii) satisfies (ii), and (ii) is stronger than (i). On the other hand, (iv)
is weaker than (i). It is easy to see that (iii) is equivalent to the process X being decomposable.

It is natural to ask if all conditions are in fact equivalent. Proposition 6.2 (ii) shows that not
all FBM’s are decomposable, so (iii) is not equivalent to (i).

The equivalence of (i) and (ii) would be proved if we could show that if {Xt, t ∈ R} is a
process and S and T are random times such that both {XS+t−XS, t ≥ 0} and {XT+t−XT , t ≥
0} are Brownian motions, then {X(S∧T )+t − XS∧T , t ≥ 0} is Brownian motion. This is not
true—not even if we assume that X is two sided Brownian motion. As an example, let X
be two sided Brownian motion with X0 = 0, S ≡ 0 and Ω0 := {ω : X1(ω) > 0}. Let
N = sup{n ∈ N : X−k+1 − X−k > 0 for all k ∈ {1, ..., n}} with the convention sup ∅ = 0.
Define T to be 1 on Ω0 and −N otherwise. It is easy to check that both XS+t − XS and
XT+t −XT are Brownian motions but X(S∧T )+t −XS∧T is not (nor is X(S∨T )+t −XS∨T ).

d18.6 Remark 2.4. It is not true that for every FBMX there exists a random time T such that {XT+t−
XT , t ≥ 0} and {XT−t − XT , t ≥ 0} are independent and {XT+t − XT , t ≥ 0} is standard
Brownian motion. A counterexample is given in Proposition 6.2 (i). See Example 2.10 for a
weaker, but much easier to prove, claim.

Sometimes it will be convenient to work with the discrete version of FBM, i.e., forward
random walk defined as follows.

d18.7 Definition 2.5. We will say that an integer valued process {Zn, n ∈ Z} is forward random
walk (FRW) if there exists a sequence {Sn, −n ∈ N0} of integer valued random times such
that limn→−∞ Sn = −∞, a.s., and for every n, the process {ZSn+k − ZSn , k ∈ N0} is simple
symmetric random walk. We will say that {Zn, n ∈ Z} is backward random walk (BRW) if
{Z−n, n ∈ Z} is FRW. We call {Zn, n ∈ Z} two-sided random walk (2RW) if there exists a
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random time S such that {ZS+k − ZS, k ∈ N0} and {ZS−k − ZS, k ∈ N0} are independent
simple symmetric random walks. If we can take S ≡ 0 in the last definition then the distribution
of Z will be denoted 2RW(0).

Decomposable and strongly decomposable FRW are defined in a way analogous to that in
Definition 2.2.

d18.10 Remark 2.6. We will now discuss the relationship between forward Brownian motion and for-
ward random walk.

(i) Suppose that {Zk, k ∈ Z} is an integer valued process with the property that |Zk+1−Zk| =
1 for all k ∈ Z, a.s. We do not assume that the distribution of Z is that of random walk but our
construction will be easiest to understand if one keeps in mind a particular example, namely,
that of 2RW(0).

Let {Ut, t ∈ [0, τU ]} be one dimensional Brownian motion starting at 0, conditioned to stay
positive and stopped at the hitting time of 1. In other words, U is Doob’s h-process in [0, 1],
starting from 0 and conditioned to converge to 1. Yet another way to think about U is that it is
3-dimensional Bessel process stopped at the hitting time of 1. The process {UτU − UτU−t, t ∈
[0, τU ]} has the same distribution as {Ut, t ∈ [0, τU ]}. See [9] for a justification of these claims.

Suppose that {Bt, t ≥ 0} is standard Brownian motion starting from 0 and let τB = inf{t ≥
0 : |Bt| = 1} and σB = sup{t ≤ τB : Bt = 0}. Excursion theory easily shows that the
processes {Bt, t ∈ [0, σB]} and {BσB−t, t ∈ [0, σB]} have the same distribution.

Let {Uk
t , t ∈ [0, τ kU ]}, k ∈ Z, be i.i.d. copies of {Ut, t ∈ [0, τU ]} and let {Bk

t , t ∈ [0, σkB]},
k ∈ Z, be i.i.d. copies of {Bt, t ∈ [0, σB]} (also independent of Uk’s). We will write Uk

t =
Uk(t) for typesetting reasons, and similarly for other processes. Let M0 = 0 and define Mj

for j ∈ Z by Mj+1 −Mj = σjB + τ jU . For t ∈ R, a.s., there exists a unique j ∈ Z such that
Mj ≤ t < Mj+1. For such t and j, let{

Xt = Zj +Bj(t−Mj) for t < Mj + σjB,

Xt = Zj + (Zj+1 − Zj)U j(t−Mj − σjB) otherwise.

It is routine to check that if, for a random integer valued time S, {ZS+k − ZS, k ∈ N0} is
simple symmetric random walk then {XS+t − XS, t ≥ 0} is Brownian motion. Hence, if Z
is FRW then X is FBM. Moreover, time reversibility of the processes used in the construction
explained above implies that if, for a random integer valued time S, {ZS−k − ZS, k ∈ N0} is
simple symmetric random walk then {X(S+σSB−t)−X(S+σSB), t ≥ 0} is Brownian motion.
It follows that if Z is BRW then X is BBM.

(ii) We will present a relationship between 2BM and 2RW that goes in the opposite direction,
i.e., we will define 2RW starting with 2BM.

Suppose that X is 2BM and S is such that {XS+t − XS, t ≥ 0} and {XS−t − XS, t ≥ 0}
are independent standard Brownian motions.

Let U0 := S and for k ≥ 1, let Uk := inf{t ≥ Uk−1 : |Xt −XUk−1
| = 1}. For k ∈ Z, k < 0,

we let Uk := sup{t ≤ Uk+1 : |Xt −XUk+1
| = 1}. Let Zk = XUk

−XS for k ∈ Z.
It follows from the strong Markov property of 2BM that Z is 2RW(0).

2.2. Basic examples. We start with elementary examples of FBM’s.

ex1 Example 2.7. (i) Suppose that X is FBM and recall the random times Sn in Definition 2.1.
Suppose that for every n ∈ N0, there exists a (non-random) real number sn such that Sn = sn,
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a.s. ThenX is 2BM. To see this, note that since the Sn’s are deterministic, the finite dimensional
distributions of {Xt −X0, t ∈ R} are Gaussian with mean equal to 0 and the same covariance
function as for Brownian motion.

(ii) A slightly more general example than that in part (i) is the following. We will use the
notation of Definition 2.2. Suppose that there exists a sequence of (non-random) real numbers
tk > 0 such that

∑∞
k=1 tk = ∞ and

∑−1
k=−∞ tk = ∞, and Tk ≡ tk for all k. If X is a

decomposable FBM corresponding to the Tk’s then X is 2BM.

The following example is the starting point of our project, in a sense. We will construct an
FBM which is not two-sided Brownian motion. We will also introduce an idea that will be the
basis of a number of our arguments.

d17.1 Example 2.8. Recall the notation from Definition 2.2. Suppose that X is strongly decompos-
able, X0 = S0 = 0 and Tk = inf{t ≥ 0 : Bk

t = −1} for all k. Note that Xt ≥ −k for all
t ≤ Sk, k ∈ Z, a.s. It follows that limt→−∞Xt =∞, a.s. Hence, Xt is not backward Brownian
motion and, therefore, it is not two-sided Brownian motion.

We will show that {X−t, t ≥ 0} is 3-dimensional Bessel process. By the strong Markov
property, for k < 0, the process {XSk+t − XSk

, t ∈ [0,−Sk]} is Brownian motion stopped at
the first hitting time of k. By [9, Thm. 3.4], the time reversed process {X−t, t ∈ [0,−Sk]} is
3-dimensional Bessel process stopped at the last exit time from −k. Since k is arbitrary and
Sk → −∞, a.s., we conclude that {X−t, t ∈ [0,∞)} is 3-dimensional Bessel process.

The following example provided the original motivation for this project. In a sense, it is a
generalization of Example 2.8.

d17.2 Example 2.9. Given a standard Brownian motion B and −1 ≤ β ≤ 1, the equation

Zt = Bt + βLZt , t ≥ 0,d18.1d18.1 (2.1)

has a unique strong solution (see [4, 6]). Here LZ is the symmetric local time of Z at 0. The
process Z is called skew Brownian motion.

Let T = inf{t ≥ 0 : LZt = 1} and let {(Bk, Tk)}k∈Z be an i.i.d. family with elements
distributed as (B, T ). We now define an FBM X as a strongly decomposable process based on
{(Bk, Tk)}k∈Z, as in Definition 2.2.

We can write as in (2.1),

Zk
t = Bk

t + βLkt , t ≥ 0.

Let LXt = Lkt +kβ for t ∈ [Sk, Sk+1], k ∈ Z. The analysis of the excursion process of Zk above
0 shows that the process {Yt := X−t + 2βLX−t, t ≥ 0} is Brownian motion. The distribution of
LZt is the same as that of max0≤≤tBt (see [4]) so ELZt =

√
2t/π. Hence, for t ≥ 0,

EX−t = EYt − E(2βLX−t) = 2β
√

2t/π.d18.3d18.3 (2.2)

This shows that for different values of the parameter β, the distributions of FBM’s X are dif-
ferent. Moreover, (2.1) and (2.2) show that X is two sided Brownian motion if and only if
β = 0.

For β = 1, Xt is the same as in Example 2.8 because, in this case, Z is reflected Brownian
motion and LZt = min0≤s≤tBs (see [4]).
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If we let Su = inf{t : LXt = u} for u ∈ R then for integer u, this definition of Su agrees
with the definition of Sk given in Definition 2.2. It is easy to see that Su < Sv for u < v and
{XSu+t − XSu , t ≥ 0} is Brownian motion for every u ∈ R. In other words, the process X
is Brownian motion as viewed from a family of random points (Su, XSu) in space time; the
cardinality of this family is the same as that of R. We do not believe that such a family can be
constructed for every FBM. For example, we doubt that it can be constructed for FBM presented
in Section 6.

Since Example 2.8 is the “extreme” case of Example 2.9, one may wonder whether properties
of trajectories of Xt in Example 2.8, when t → −∞, display “extreme” possible behavior for
trajectories of any FBM. In other words, are path properties of 3-dimensional Bessel process
extreme among path properties of all FBM’s? The answer is negative in every conceivable
sense—see Sections 3-4.

d18.11 Example 2.10. We will show that if Z is a strongly decomposable FRW and T is a random time
such that {ZT+n, n ∈ N0} is a simple symmetric random walk then this does not imply that the
increments of Z to the right and to the left of T are independent. Let Y be simple symmetric
random walk starting from Y0 = 0 and let S = inf{n ∈ {2, 3, ...} : Yn−Yn−1 = Yn−1−Yn−2}.
Let Z be strongly decomposable FRW constructed as a concatenation of independent copies of
(Y, S). It is easy to see that if T ≡ −1 then {ZT+n, n ∈ N0} is a simple symmetric random
walk and that the increments of Z before and after time T are not independent. Specifically,
ZT −ZT−1 and ZT −ZT+1 are fully correlated. We note parenthetically that {X−1−n, n ∈ N0}
is not a simple symmetric random walk in this example. If X is the FBM constructed from Z
as in Remark 2.6 and T ≡ −1 then {XT+t − XT , t ≥ 0} and {XT−t − XT , t ≥ 0} are not
independent because if the first process hits 1 before hitting −1 then the opposite is true of the
second process. This is a much weaker claim than that in Remark 2.4.

3. MAXIMUM ASYMPTOTIC RANGE
maxrange

The main result of this section, Theorem 3.3, states that the lim sup of FBM in the backward
direction can be arbitrarily large. By symmetry, the lim inf can be arbitrarily small. Moreover,
both assertions can be true simultaneously. As a warm up, we present two simple results that
have short proofs.

LIL Proposition 3.1. Let X be a decomposable FBM with associated sequence Sk, k ∈ Z, in the
notation of Definition 2.2. Then we have

LILSLILS (3.1) lim sup
n→−∞

XSn√
2|Sn| log log |Sn|

≤ 1 a.s.

By symmetry, an analogous inequality holds for lim inf.

Proof. Define

X t := XSn+Sn−1+t −XSn −XSn−1 if Sn−1 ≤ −t ≤ Sn, −n ∈ N0,

and observe that {X t, t ≥ 0} is standard Brownian motion because, for each −n ∈ N0, we
shifted the graph of X between Sn−1 and Sn by (−Sn−1 − Sn,−XSn −XSn−1). Since X−Sn =
−XSn for all −n ∈ N0, (3.1) follows from the usual law of the iterated logarithm for Brownian
motion. �
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d22.5 Proposition 3.2. Let X be FBM. Then we have

lim inf
t→−∞

Xt√
2|t| log log |t|

≤ 1 a.s.

Proof. Note the it will suffice to prove the claim for Xt − X0 in place of Xt. Let Sn be as in
Definition 2.1. Fix an arbitrarily small ε > 0 and let

pn := P(XSn −X0 ≥ (1 + ε)
√

2|Sn| log log |Sn|).
By the LIL and the fact that Sn → −∞ it follows that pn → 0. Passing to a subsequence, if
necessary, for which the sum of pn’s is finite, we see that, by the Borel-Cantelli Lemma, we
have almost surely,

XSn −X0 < (1 + ε)
√

2|Sn| log log |Sn|
for infinitely many n, so the proposition follows. �

d18.12 Theorem 3.3. For each increasing function f : [0,∞)→ [0,∞) there exists a strongly decom-
posable FBM X for which, a.s.,

lim sup
t→−∞

(Xt − f(−t)) ≥ 0 and lim inf
t→−∞

(Xt + f(−t)) ≤ 0.

Proof. We will assume without loss of generality that

loglogloglog (3.2) f(x) ≥ 2

√
2x log+ log+ x, x ≥ 0,

where log+ x := max{log x, 1}.
Our construction of X will be based on a random variable Y whose distribution will be

specified in several steps. Suppose that Y and a Brownian motion B are defined on the same
probability space and are independent. Let

T := inf{t ≥ 1 : Bt −Bt−1 = Y }.
Let (Yk, B

k, Tk), k ∈ Z, be independent copies of (Y, B, T ) and define the Sk’s and X as in
Definition 2.2.

We will later specify a sequence {nk}k∈N0 of non-negative real numbers strictly increasing to
∞. We define the distribution of Y by

P(Y = nk) = P(Y = −nk) = 2−k
2−1 =: pk, k ∈ N,

P(Y = 0) = 1− 2
∞∑
k=1

pk =: p0.

Let K(m) be the largest negative integer k for which |Yk| = nm and define the events

Cm := {K(m) > max
j>m

K(j)}.

Let qm =
∑

j>m pj . It is elementary to see that P(Cm) = pm/(pm + qm) so

P(Cc
m) =

qm
pm + qm

≤ qm
pm

=

∑
j>m 2−j

2−1

2−m2−1
≤ 2 · 2−(m+1)2−1

2−m2−1
= 2−2m.d19.1d19.1 (3.3)
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Hence,
∑∞

m=1 P(Cc
m) < ∞ and, by the Borel-Cantelli Lemma, almost surely, all but finitely

many of the Cm occur. This means that there exists almost surely some random m0 such that
K(m+ 1) < K(m) for all m ≥ m0.

We will show that, for suitably chosen {nk}k∈N0 , each of the inequalities

ypsilonypsilon (3.4) Y−k ≥ 2f(−S−k+1 + 1) and Y−k ≤ −2f(−S−k+1 + 1)

holds for infinitely many k ∈ N almost surely. Once we have shown this, then the theorem
follows from Proposition 3.1 and (3.2). By symmetry, it suffices to show the first of the two
inequalities in (3.4).

For a given function f , we will define the numbers nk inductively, starting with n0 = 0. Note
that the law of SK(m)+1 conditioned on Cm does not depend on the choice of {nk}k≥m. For
m ∈ N, let nm be so large that nm > nm−1 and

P(nm ≥ 2f(−SK(m)+1 + 1) | Cm) ≥ 1− 2−m.

Define
Am := {nm ≥ 2f(−SK(m)+1 + 1)}.

Then,
P(Am) ≥ P(Am | Cm)P(Cm) ≥ (1− 2−m)P(Cm)

and, therefore, in view of (3.3),
∞∑
m=1

P(Acm) ≤
∞∑
m=1

(1− P(Cm) + 2−mP(Cm)) =
∞∑
m=1

(P(Cc
m) + 2−mP(Cm)) <∞,

which implies, by the Borel-Cantelli Lemma, that all but finitely many of the events Am occur.
Next, let

Vm := {YK(m) ≥ 0} = {YK(m) = nm}.
Then

AmAm (3.5) Am ∩ Vm ⊆ {YK(m) ≥ 2f(−SK(m)+1 + 1)}.
Since the Vm’s are i.i.d. and P(Vm) = 1/2, almost surely infinitely many of the Vm’s occur and,
therefore, infinitely many of the Am∩Vm’s occur. Together with (3.5) this implies (3.4) and the
theorem is proved. �

4. MINIMUM ASYMPTOTIC RANGE
minrange

In the previous section, we showed that the lim sup of an FBM, as t → −∞, can be
“arbitrarily large.” In this section we will show that the lim inf of an FBM in the back-
ward direction cannot be arbitrarily large. We will consider regions in space-time of the form
R := {(t, x) : t < 0, c1

√
|t| < x < c2

√
|t|} into which paths of an FBM may fit, at least

asymptotically. Roughly speaking, there exist FBM’s whose paths stay inside R as t → −∞
if and only if c1 and c2 are not too close to each other. Here, being “close” is a condition more
complicated than a bound on c2− c1. Examples of “critical pairs” of (c1, c2) are (1,∞), (−1, 1)
and (0, 2.12) (the last number is approximate). On the technical side, this section is closely
related to the problem of slow points for Brownian motion studied in [2, 3, 7]. We will mostly
cite [7].
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d23.2 Remark 4.1. In this remark, we collect some results from [7, p. 371]. Let

C = {(c1, c2) : −∞ ≤ c1 < c2 ≤ ∞},

A =
1

2

(
d2

dx2
− x d

dx

)
,

and m(dx) = 2e−x
2/2dx. For each (c1, c2) ∈ C , there is a complete orthonormal system in

L2([c1, c2],m) of eigenfunctions of the Sturm-Liouville problem

Aψ = λψ, ψ(ci) = 0, i = 1, 2, if |ci| <∞,

whose corresponding eigenvalues are simple and non-positive. Let −λ0(c1, c2) denote the
largest eigenvalue. The corresponding eigenfunction ψ(c1, c2, x) can be assumed to be strictly
positive on (c1, c2).

The function λ0 is continuous on C and strictly positive on C \ {−∞,∞}. The function
λ0( · , c2) is strictly increasing on [−∞, c2) and λ0(c1, · ) is strictly decreasing on (c1,∞].

d27.1 Remark 4.2. For our results, just like for many results in [2, 3, 7], the critical value of λ0 is 1,
so it is of interest to know for which values of c1 and c2 we have λ0(c1, c2) = 1. Some examples
of such pairs are (−∞,−1), (−1, 1) and (1,∞) (see [7, Prop. 1]). It is natural to ask what c′2
satisfies λ0(0, c′2) = 1. The approximate value of such c′2 is 2.12411. We found this value as
follows. Observe that

ψ(x) = 2 exp(x2/2)x+
√

2π erfi(x/
√

2)−
√

2πx2 erfi(x/
√

2)

satisfies the equation (1/2)(ψ′′(x)−xψ′(x)) = −ψ(x) and ψ(0) = 0. Here erfi(x) = −i erf(ix)

and erf(x) = (2/
√
π)
∫ x

0
e−t

2
dt. The function ψ is strictly positive on an interval (0, c′2) and

vanishes at the endpoints of this interval. We determined that c′2 ≈ 2.12411 by solving ψ(x) = 0
numerically.

We note that c′2 appears to be the same as c(3) on page 376 in [7]. We offer an informal expla-
nation for the coincidence. The constant c(3) corresponds to 3-dimensional Bessel process stay-
ing under a parabola. This problem can be equivalently represented as that about 1-dimensional
Brownian motion staying between 0 and the same parabola, because 1-dimensional Brownian
motion conditioned not to hit 0 is 3-dimensional Bessel process.

d30.5 Theorem 4.3. (i) If λ0(c1, c2) ≥ 1 and X is FBM, then

P
(
{lim sup
t→−∞

Xt/
√
|t| ≥ c2} ∪ {lim inf

t→−∞
Xt/

√
|t| ≤ c1}

)
= 1.

(ii) If λ0(c1, c2) ≤ 1, then there exists a decomposable FBM X such that

P
(
{lim sup
t→−∞

Xt/
√
|t| ≤ c2} ∩ {lim inf

t→−∞
Xt/

√
|t| ≥ c1}

)
= 1.d26.4iid26.4ii (4.1)

(iii) If c1 ≤ 0 ≤ c2 and λ0(c1, c2) < 1, then there exists a decomposable FBM X such that

P
(
{c1

√
|t| ≤ Xt ≤ c2

√
|t| ∀t ≤ 0}

)
= 1.d26.4iiid26.4iii (4.2)
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Proof. (i) Fix−∞ < c1 < c2 <∞ such that λ0(c1, c2) > 1 and letB denote standard Brownian
motion. For a ≥ 0 and n ∈ N0, let

F (n, a) := {B(s) ∈ [c1

√
s− a, c2

√
s+ a]∀ 0 ≤ s ≤ n},

r(n, a, c1, c2) := P(F (n, a)).

We will show that if λ0(c1, c2) > 1, then for any a > 0,

∞∑
n=1

r(n, a, c1, c2) <∞.d23.1d23.1 (4.3)

By the continuity of λ0( · , · ) (see Remark 4.1), we can choose δ > 0 such that λ0(c1−δ, c2 +
δ) > 1. Let A > 0 be such that a+ c2

√
s ≤ (c2 + δ)

√
s and −a+ c1

√
s ≥ (c1 − δ)

√
s hold for

all s ≥ A. Then, using Brownian scaling, we obtain

r(n, a, c1, c2) ≤ P{B(s) ∈ [(c1 − δ)
√
s, (c2 + δ)

√
s]∀A ≤ s ≤ n}

= P{B(u) ∈ [(c1 − δ)
√
u, (c2 + δ)

√
u] ∀1 ≤ u ≤ n/A}

∼ K1(c1 − δ, c2 + δ)
(n
A

)−λ0(c1−δ,c2+δ)

,

whereK1(c1−δ, c2 +δ) ∈ (0,∞) and the asymptotic equivalence follows from [7, Lem. 10(b)].
Since the right hand side is summable the proof of (4.3) is complete.

For a, b ≥ 0, let

Ta,b,c1,c2 := inf{t ≥ a ∨ b : B(s) ∈ [B(t) + c1

√
t− s, B(t) + c2

√
t− s]∀ 0 ≤ s ≤ t− b}.

We will show that,

lim
b→0

P(T2,b,c1,c2 <∞) = 0.d24.1d24.1 (4.4)

For 0 ≤ b1 < b2, the (random) sets

Λ(b1, b2) := {t ∈ [0, 1] : B(s) ∈ [B(t) + c1

√
s− t, B(t) + c2

√
s− t] ∀s ∈ [t+ b1, t+ b2]}

are compact and for every b2 > 0,
⋂
b1∈(0,b2) Λ(b1, b2) = ∅, a.s., by [7, Thm. 2(a)]. Therefore,

there exists a random b0 = b0(b2) > 0 such that Λ(b1, b2) = ∅ for all 0 ≤ b1 < b0. Hence, if we
write q(b1, b2, c1, c2) = P(Λ(b1, b2) 6= ∅) then

qq (4.5) lim
b1→0

q(b1, b2, c1, c2) = lim
b1→0

P(Λ(b1, b2) 6= ∅) = 0.

For each n ∈ N, n ≥ 2, the processes {B′t := Bn+1−t − Bn+1, t ∈ [0, 2]} and {B′′t :=
Bn−1−t − Bn−1, t ∈ [0, n− 1]} are independent Brownian motions. Note that for b ∈ [0, 1) we
have

{T2,b,c1,c2 ∈ [n, n+ 1)} ⊂ {Λ(b, 1, B′) 6= ∅} ∩ F (n− 1, (|c1|+ |c2|)
√

2, B′′),
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where Λ(b, 1, B′) and F (n−1, (|c1|+ |c2|)
√

2, B′′) denote Λ(b, 1) and F (n−1, (|c1|+ |c2|)
√

2)
defined relative to the processes B′ and B′′, resp., in place of B. We obtain,

P(T2,b,c1,c2 <∞) =
∞∑
n=2

P(T2,b,c1,c2 ∈ [n, n+ 1))

≤
∞∑
n=2

r(n− 1, (|c1|+ |c2|)
√

2, c1, c2) q(b, 1, c1, c2)

= q(b, 1, c1, c2)
∞∑
n=2

r(n− 1, (|c1|+ |c2|)
√

2, c1, c2).

The last sum is finite (and independent of b) by (4.3). We conclude that (4.4) holds in view of
(4.5).

Assume that

P
(
{lim sup
t→−∞

Xt/
√
|t| ≤ c2} ∩ {lim inf

t→−∞
Xt/

√
|t| ≥ c1}

)
=: q > 0.d24.2d24.2 (4.6)

To prove part (i) of the theorem, it will suffice to show that this assumption leads to a contra-
diction.

Recall that we have chosen δ > 0 such that λ0(c1 − δ, c2 + δ) > 1. Assuming (4.6), we can
find some M ∈ (−∞, 0) such that

P
(
{sup
t≤M

Xt/
√
|t| ≤ c2 + δ} ∩ { inf

t≤M
Xt/

√
|t| ≥ c1 − δ}

)
≥ q

2
.d24.5d24.5 (4.7)

Consider M̃ < M , whose value will be specified later. Since X is FBM, there exists a random
time S such that P(S ≤ M̃) ≥ 1− q

4
and {XS+t −XS, t ≥ 0} is Brownian motion. Then,

P
(
{sup
t≤M

Xt/
√
|t| ≤ c2 + δ} ∩ { inf

t≤M
Xt/

√
|t| ≥ c1 − δ}

)
d24.3d24.3 (4.8)

≤ P(S > M̃) + P(T−M̃,−M,c1−δ,c2+δ <∞)

≤ P(T−M̃,−M,c1−δ,c2+δ <∞) +
q

4

= P(T−αM̃,−αM,c1−δ,c2+δ <∞) +
q

4
,

for any α > 0, where the last equality follows from Brownian scaling. By (4.4), we can make
α > 0 so small that P(T2,−αM,c1−δ,c2+δ < ∞) < q/8. Then we choose M̃ so that −αM̃ = 2.
The left hand side of (4.8) is therefore less than 3q/8, which contradicts (4.7). This proves part
(i) in case λ0(c1, c2) > 1 and −∞ < c1 < c2 <∞.

If λ0(c1, c2) = 1 and −∞ < c1 < c2 < ∞, then λ0(c1 + ε, c2 − ε) > 1 for every ε ∈
(0, 1

2
(c2 − c1)), by Remark 4.1. We have already shown that, for every ε > 0,

P
(
{lim sup
t→−∞

Xt/
√
|t| ≥ c2 − ε} ∪ {lim inf

t→−∞
Xt/

√
|t| ≤ c1 + ε}

)
= 1.
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This implies that

P
(
{lim sup
t→−∞

Xt/
√
|t| ≥ c2} ∪ {lim inf

t→−∞
Xt/

√
|t| ≤ c1}

)
= 1,

and completes the proof of part (i) in case −∞ < c1 < c2 <∞. The case c2 =∞ is treated by
applying the previous result to a sequence c2,n →∞ (and similarly for c1 = −∞).

(ii), (iii) According to [7, Thm. 2(a)],

P(∃t ≥ 0, ∆ > 0 : B(t+ h)−B(t) ∈ [c1

√
h, c2

√
h] ∀h ∈ [0,∆]) =

{
0 if λ0(c1, c2) > 1,
1 if λ0(c1, c2) < 1.

d26.5d26.5 (4.9)

First suppose that c1 ≤ 0 < c2 and λ0(c1, c2) < 1. By Remark 4.1 it suffices to prove (4.1)
and (4.2) in case c1 > −∞ and c2 < ∞. These assumptions, (4.9), invariance of Brownian
motion under time reversal, support theorem, and standard arguments imply that

P(∃t ∈ [1, 2] : B(t− s)−B(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [0, t]) > 0.

Another easy application of the support theorem and Brownian scaling allows to strengthen the
above claim to the following. If λ0(c1, c2) < 1 and δ ∈ (0, c2) then there exists p1 > 0 such that
for every a ∈ (0,∞),

P
(
∃t ∈ [a/2, a] : B(t)−B(0) ∈ [−δ

2

√
t,−δ

4

√
t]d25.1d25.1 (4.10)

and B(t− s)−B(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [0, t]

)
= P

(
∃t ∈ [1, 2] : B(t)−B(0) ∈ [−δ

2

√
t,−δ

4

√
t]

and B(t− s)−B(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [0, t]

)
= p1 > 0.

Let un = exp(exp(exp(n))) for n ∈ N. Note that for large n (depending on δ),

(δ/4)
√

(un+1 − un)/2 ≥ (δ/8)
√
un+1 ≥ un > 3

√
2un log log un.d25.3d25.3 (4.11)

The processes {Y n(t) := B(un + t) − B(un), t ∈ [0, un+1 − un]} are independent Brownian
motions. The events

Fn :=
{
∃t ∈ [(un+1 − un)/2, un+1 − un] : Y n(t)− Y n(0) ∈ [−δ

2

√
t,−δ

4

√
t]

and Y n(t− s)− Y n(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [0, t]

}
are independent and each one of them has probability p1, by (4.10). Hence, infinitely many
events Fn occur, a.s. By the law of the iterated logarithm, a.s., for all sufficiently large n,

sup
0≤s≤un

|B(s)| < 2
√

2un log log un.LiLLiL (4.12)

If (4.11), (4.12) and Fn hold then the following event occurs,{
∃t ∈ [(un+1 + un)/2, un+1] : B(t)−B(0) ∈ [−δ

√
t, 0]

and B(t− s)−B(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [0, t]

}
.
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Since infinitely many events Fn occur, a.s., we conclude that if λ0(c1, c2) < 1, δ > 0 and a <∞
then,

P
(
∃t ≥ a : B(t)−B(0) ∈ [−δ

√
t, 0]d25.2d25.2 (4.13)

and B(t− s)−B(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [0, t]

)
= 1.

We recall the definition of decomposable FBM X from Definition 2.2. Given (Bk, Tk), k ∈
Z, let S0 = 0, and use the conditions Sk+1 − Sk = Tk to define Sk for k ∈ Z. Let X be the
unique continuous process such that X0 = 0 and XSk+t −XSk

= Bk
t for t ∈ [0, Tk), k ∈ Z.

Suppose that {Bk
t , t ≥ 0}, k ∈ Z, are independent Brownian motions. Let Tk ≡ 1 for k ∈ N0.

To define Tk for negative k, observe that for given −∞ < c1 < c2 <∞ satisfying c1 ≤ 0 < c2

and λ0(c1, c2) < 1 we can find some ε > 0 such that c2 − ε > 0 and λ0(c1, c2 − ε) < 1 by
Remark 4.1. For −k ∈ N, let

c2(k) := c2 − ε+
ε

|k|
, δ(k) := ε

( 1

|k|
− 1

|k − 1|

)
.

For −k ∈ N, we define

Tk := inf{t ≥ 1 : Bk(t)−Bk(0) ∈ [−δ(k)
√
t, 0]

and Bk(t− s)−Bk(t) ∈ [c1

√
s, c2(k)

√
s] ∀s ∈ [0, t]},d30.1d30.1 (4.14)

and note that Tk <∞ a.s., by (4.13).
By construction, we have for −k ∈ N0 and s ∈ [Sk−1, Sk]:

Xs ≤
−k∑
i=1

δ(−i)
√
S−i+1 − S−i + c2(k − 1)

√
Sk − s

≤

(
−k∑
i=1

δ(−i) + c2(k − 1)

)
√
−s = c2

√
−s,

and Xs ≥ c1

√
−s for all s ≤ 0, so (4.2) and hence (4.1) follow in case c1 ≤ 0 < c2 and

λ0(c1, c2) < 1.
Now assume that λ0(c1, c2) = 1 (and still c1 ≤ 0 < c2). Then, by Remark 4.1, λ0(c1, c2+ε) <

1 for every ε > 0. Consider the FBM X constructed in the previous paragraph but with (c1, c2)
replaced by (c1, c2 + 1) and ε = 1. Let c2(k) := c2 + 1

|k| and δ(k) := 1
|k| −

1
|k−1| . Then, we have

for fixed −m ∈ N0 and k ≤ m and s ∈ [Sk−1, Sk]:

Xs ≤
−k∑

i=−m+1

δ(−i)
√
S−i+1 − S−i + c2(k − 1)

√
Sk − s

≤

(
−k∑

i=−m+1

δ(−i) + c2(k − 1)

)√
Sm − s = c2(m− 1)

√
Sm − s,

and hence
lim sup
s→−∞

Xs√
|s|
≤ c2(m− 1),

for every −m ∈ N0. Since c2(m) converges to c2 as m → −∞ and since Xs ≥ c1

√
−s for all

s ≤ 0, the proof of (ii) and (iii) is complete in the case c1 ≤ 0 < c2.
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Next we consider the case when λ0(c1, c2) < 1 but it is not true that c1 ≤ 0 < c2. By
symmetry, we may and will assume that 0 < c1 ≤ c2 ≤ ∞ and (again by Remark 4.2) we can
and will assume that c2 < ∞. In this case the reasoning in the previous case will not work
because the region {(s, x) : c1

√
s < x < c2

√
s, s ≥ 0} is not convex. Consequently, our

argument is more complicated in the present case.
By Remarks 4.1 and 4.2, c1 < 1 and c2 > 2.
Suppose that δ, φ, a > 0. Let c′′1 be any number such that c1 < c′′1 < 1, c′′1 − c1 < δ/4 and

λ0(c′′1, c2) < 1. We will prove that for every b ∈ (a,∞),

P
(
∃t ≥ b : B(0)−B(t) ∈ [c1

√
t, (c1 + δ)

√
t]d27.5d27.5 (4.15)

and B(t− s)−B(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [a, t]

and B(t− s)−B(t) ∈ [c′′1
√
s, c2

√
s ∧ (c′′1

√
s+ φ)] ∀s ∈ [0, a]} = 1.

In the proof we will need several strictly positive constants, namely c′1, c
′
2, ε and ε̂. We suppose

that they satisfy the following constraints:

c′′1 < c′1 < 1 < 2 < c′2 < c2, c
′
1 − c′′1 < δ/4 and λ0(c′1, c

′
2) < 1,firstfirst (4.16)

2ε+ φ+ c′′1
√
a+ ε̂− c′1

√
a ≤ 0,thirdthird (4.17)

(c′′1 − c1)
√
a ≥ 2ε,fourthfourth (4.18)

(c′′1 − c′1)
√
a ≥ ε+ c1

√
2a+ ε̂− c′1

√
2a.fifthfifth (4.19)

It is easy to see that these constraints can all be fulfilled provided that φ is sufficiently small
which we can and will assume without loss of generality. One can first choose c′1 and c′2 satis-
fying (4.16). Then one can choose φ, ε, ε̂ > 0 such that conditions (4.17)-(4.19) hold.

Let κ := δ/2. The following claim can be proved in the same way as (4.10). There exists
p1 > 0 such that for every u ∈ (0,∞),

P
(
∃t ∈ [u/2, u] : B(t− s)−B(t) ∈ [c′1

√
s, hu(s)] ∀s ∈ [0, t]

)d30.10d30.10 (4.20)

= P
(
∃t ∈ [1, 2] : B(t− s)−B(t) ∈ [c′1

√
s, (c′2

√
s) ∧ (c′1

√
s+ κ)] ∀s ∈ [0, t]

)
= p1,

where hu(s) := (c′2
√
s) ∧ (c′1

√
s+ κ

√
u/2). Let u > 4a and define

U = inf{θ ∈ [
u

2
− 2a, u− 2a] : ∃x ∈ R

such that B(θ + 2a− s)− x ∈ [c′1
√
s, hu(s)] ∀s ∈ [2a, θ + 2a]}.

Note that U is a stopping time for B (with the convention that inf ∅ =∞) and that

P(U <∞) ≥ p1d27.7d27.7 (4.21)

for all u > 4a by (4.20).
On the set {U < ∞} define X∗ as the largest number x such that B(U + 2a − s) − x ∈

[c′1
√
s, hu(s)] for all s ∈ [2a, U + 2a] and let X∗ := ∞ on {U = ∞}. Observe that X∗ is

FU -measurable.
On the set {U <∞} let V (t) := B(U + t)−B(U) for t ≥ 0. Since B(U)−X∗ is bounded

from above and below by a deterministic constant (which does not depend on u) there exists
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p2 > 0 (not depending on u) such that for all u > 4a, on {U <∞},

erstenserstens (4.22) P

(∣∣∣∣∣V (s)− (B(U)−X∗ − c′1
√
a)

√
2a− s−

√
2a

√
a(
√

2− 1)

∣∣∣∣∣ ≤ ε ∀s ∈ [0, a] | FU

)
≥ p2.

Further, there exists some p3 > 0 (which does not depend on u) such that for all u > 4a we
have

P
(
∃τ ∈ [2a, 2a+ ε̂] : V (τ − s)− V (τ) ∈ [c′′1

√
s, c2

√
s ∧ (c′′1

√
s+ φ)] ∀s ∈ [0, τ − a] | FU+a

)zweitenszweitens (4.23)

≥ p3 on {U <∞}.

Let G1 be the intersection of the set {U < ∞} and the two sets inside the conditional proba-
bilities in (4.22) and (4.23). By the strong Markov property we have P(G1) ≥ p1p2p3 for all
u > 4a. Define

G2 := {∃t ∈ [
u

2
, u+ ε̂] : B(0)−B(t) ∈ [c1

√
t, (c1 + δ)

√
t]

and B(t− s)−B(t) ∈ [c1

√
s, c2

√
s] ∀s ∈ [a, t]

and B(t− s)−B(t) ∈ [c′′1
√
s, c2

√
s ∧ (c′′1

√
s+ φ)] ∀s ∈ [0, a]}.

Once we know that (for a given u > 4a) we have G1 ⊆ G2 then we obtain P(G2) ≥ p1p2p3.
To see that G1 ⊆ G2 let τ be as in (4.23) and t := U + τ . Then the last property of G2 clearly
holds and the second one holds at least for s ∈ [a, τ − a]. Now let s ∈ [τ − a, τ ]. Then

B(t− s)−B(t) = B(t− s)−B(t− τ + a) +B(t− τ + a)−B(t)

= [V (τ − s)− V (a)] + [B(t− τ + a)−B(t)]

≤
[
2ε+ (B(U)−X∗ − c′1

√
a)

√
s− τ + 2a−

√
a

√
a(
√

2− 1)

]
+ [c′′1

√
τ − a+ φ]

≤ 2ε+
c′2
√

2− c′1√
2− 1

(
√
s− τ + 2a−

√
a) + c′′1

√
τ − a+ φ

≤ c′2
√
s− τ + 2a

≤ c2

√
s.

The second to last inequality holds for s = τ by (4.17). Since the derivative with respect to
s of the left hand side is greater than that of the right hand side, the inequality holds for all
s ∈ [τ − a, τ ]. Further,

B(t− s)−B(t) = B(t− s)−B(t− τ + a) +B(t− τ + a)−B(t)

= [V (τ − s)− V (a)] + [B(t− τ + a)−B(t)]

≥
[
−2ε+ (B(U)−X∗ − c′1

√
a)

√
s− τ + 2a−

√
a

√
a(
√

2− 1)

]
+ [c′′1

√
τ − a]

≥ −2ε+ c′1(
√
s− τ + 2a−

√
a) + c′′1

√
τ − a ≥ c1

√
s.

The last inequality holds for s = τ − a by (4.18). Since the derivative of the left hand side with
respect to s is greater than that of the right hand side for s ≥ τ − a, the last inequality holds for
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all s ∈ [τ − a, τ ]. Next, we consider the case s ∈ [τ, t]. We claim that

B(t− s)−B(t) ≥ X∗ + c′1
√

2a− τ + s−B(t)

≥ B(U + a)− c′1
√
a− ε+ c′1

√
2a− τ + s−B(t)

≥ c′′1
√
τ − a− c′1

√
a− ε+ c′1

√
2a− τ + s

≥ c1

√
s.

The first inequality follows from the definition of X∗. The second inequality follows from
the condition in (4.22) applied with s = a. The third inequality follows from (4.23) applied
with s = τ − a. The last inequality holds for s = τ by (4.19). It holds for s ≥ τ because
the derivative of the left hand side is greater than that of the right hand side for s ≥ τ . The
following inequalities hold for similar reasons,

B(t− s)−B(t) ≤ X∗ + hu(2a− τ + s)−B(t)

≤ B(U + a)− c′1
√
a+ ε+ hu(2a− τ + s)−B(t)

≤ c′′1
√
τ − a+ φ− c′1

√
a+ ε+ hu(2a− τ + s)

≤ c′′1
√
a+ ε̂+ φ− c′1

√
a+ ε+ c′2

√
s

≤ c2

√
s.

The last inequality holds by (4.17) since s ≥ τ ≥ 2a. Finally, for s = t, we obtain in the same
way

B(t− s)−B(t) ≤ c′′1
√
τ − a+ φ− c′1

√
a+ ε+ hu(2a− τ + t)

≤ c′′1
√
τ − a+ φ− c′1

√
a+ ε+ c′1

√
2a− τ + t+ κ

√
u/2

≤ c′′1
√
a+ ε̂+ φ− c′1

√
a+ ε+ c′1

√
t+ κ

√
t

≤ (c1 + δ)
√
t.

The last inequality can be derived from (4.17) and the following facts: c′1 − c1 ≤ δ/2 and
κ = δ/2.

We have verified that all conditions in the definition of G2 hold. Therefore G1 ⊆ G2 and the
proof that P(G2) ≥ p1p2p3 (for all u > 4a) is complete.

The rest of the proof of (4.15) is analogous to the argument showing that (4.10) implies (4.13)
in the case c1 ≤ 0 < c2 and we therefore omit it.

We will construct a decomposable FBM X , using the notation as in Definition 2.2. Let δ, φ
be strictly positive numbers such that δ < φ ≤ 1/4. Suppose that {Bk

t , t ≥ 0}, k ∈ Z, are
independent Brownian motions and let ak ≥ 1, k < 0 be numbers which we will specify later.
Recall all the conditions that we imposed on c1, c2, c

′′
1, etc. in this part of the proof. Let Tk ≡ 1

for k ∈ N0 and for −k ∈ N define

Tk := inf{t ≥ ak+1 : Bk(0)−Bk(t) ∈ [c1

√
t, (c1 + δ)

√
t]d29.4d29.4 (4.24)

and Bk(t− s)−Bk(t) ∈
[
c′′1
√
s, c2

√
s ∧
(
c′′1
√
s+ φ

)]
∀s ∈ [0, ak+1]d30.2d30.2 (4.25)

and Bk(t− s)−Bk(t) ∈
[
c1

√
s, c′2
√
s
]
∀s ∈ [ak+1, t]},d30.3d30.3 (4.26)
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and note that Tk < ∞ a.s., by (4.15). By construction, the associated FBM X satisfies Xs ≥
c1

√
|s| for all s ≤ 0.

It remains to show that if the ak are suitably defined then we also have lim supt→−∞Xt/
√
|t| ≤

c2 almost surely.
We will define ak for k ≤ 0 inductively starting with a0 = 1. Suppose that the aj’s have been

defined for all j > k for some k < 0. This determines Sk and Xt, t ≥ Sk. Let Vk > 0 and
−∞ < Rk < −1 be such that P(|XSk

| ≥ Vk or Sk < Rk) ≤ 2k. Then we fix ak ∈ (−Rk,∞)
such that for all t1 ∈ [Rk, 0] and t ≤ t1 − ak,

Vk + c′2
√
|t− t1| ≤ c2

√
|t| and Vk + (c1 + δ)

√
|t− t1| ≤ (c′′1 + φ)

√
|t|.d29.3d29.3 (4.27)

Since
∑

k≤1 2k <∞, we see that, a.s., there exists a (random) k∗ ≤ −1 such that |XSk
| ≤ Vk

and Sk ∈ [Rk,−1] for all k ≤ k∗. If XSk
≤ Vk and Sk ≥ Rk for some −k ∈ N, then it follows

from (4.27) and (4.26) that for t ∈ [Sk−1, Sk − ak], we have

Xt ≤ XSk
+ c′2

√
Sk − t ≤ Vk + c′2

√
Sk − t ≤ c2

√
|t|.29.529.5 (4.28)

Further, if XSk
≤ Vk and Sk ≥ Rk for some−k ∈ N, then it follows from (4.27) and (4.24) that

XSk−1
≤ XSk

+ (c1 + δ)
√
Sk − Sk−1 ≤ Vk + (c1 + δ)

√
Sk − Sk−1 ≤ (c′′1 + φ)

√
|Sk−1|

ganzneuganzneu (4.29)

and, for t ∈ [Sk−1− ak−1, Sk−1], using (4.29), (4.25), c′′1 ≤ 1, c2 ≥ 2, the elementary inequality
3
2

√
a+
√
b ≤ 2

√
a+ b for a, b ≥ 0 and φ ≤ 1/4 ≤

√
|Sk−1|/4 we have

Xt ≤ XSk−1
+ (c2

√
Sk−1 − t) ∧ (c′′1

√
Sk−1 − t+ φ)

≤ (c′′1 + φ+
1

4
)
√
|Sk−1|+ c′′1

√
Sk−1 − t ≤ c2

√
|t|.

Thus we have shown that Xt ≤ c2

√
|t| holds for all t ∈ (−∞, Sk∗−1]. This completes the

proof of part (ii) in the case λ0(c1, c2) < 1.
It remains to prove part (ii) in the case 0 < c1 < c2 ≤ ∞ when λ(c1, c2) = 1. In this

case we proceed as above except that we replace c1 in the definition of Tk by c1,k such that c1,k

approaches c1 from below as k → −∞. This requires to let also c′′1 and c′2 (but not c2) depend
on k. We leave the details to the reader.

This completes the proof of the theorem. �

In a particular case, we can construct an FBM which always lies above a parabolic boundary,
and which is even strongly decomposable.

Proposition 4.4. For each ε > 0, there exists a strongly decomposable FBM X such that

inf
t<0

Xt/
√
|t| ≥ 1− ε, a.s.

Proof. Fix an arbitrarily small ε > 0. Let B be standard Brownian motion and

T := inf{t ≥ 1 : B(s) ≥ B(t) + (1− ε)
√
t− s for all s ∈ [0, t]}.

Since λ0(1,∞) = 1, it follows from (4.13) that P(T < ∞) = 1. Let X be the strongly
decomposable FBM based on i.i.d. sequence (Bk, Tk), with elements distributed as (B, T )
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above and X0 = 0. For Sn−1 ≤ t ≤ Sn, −n ∈ N0, a.s.,

Xt ≥ XSn + (1− ε)
√
Sn − t

≥ XSn+1 + (1− ε)
√
Sn+1 − Sn + (1− ε)

√
Sn − t

. . .

≥ (1− ε)

(
−1∑
k=n

√
Sk+1 − Sk +

√
Sn − t

)
≥ (1− ε)

√
−t.

�

5. A SUFFICIENT CONDITION FOR FBM TO BE 2BM
sec:2BM

Two sided Brownian motion (2BM) is the most generic example of FBM but it is far from
being a unique example of FBM, as the previous sections show. It is natural to ask what extra
assumptions on an FBM make it necessarily 2BM. We will present a sufficient condition for
this to be true. We will also show that some other “similar” conditions fail to force an FBM to
be 2BM.

Recall the notation used in Definition 2.2.

d20.1 Theorem 5.1. If X is strongly decomposable and ETk <∞ then X is 2BM.

Proof. Assume that X is strongly decomposable and ETk < ∞ for the Tk’s introduced in
Definition 2.2. We will assume without loss of generality that X0 = S0 = 0.

According to [5, Lemma 11.7] (see also Theorem 11.4 in [5] or Sections 4.1-4.2 and 8.1-
8.2 in [8]), there exists a random variable Θ such that the distribution of {S∗n, n ∈ Z} :=
{Sn − Θ, n ∈ Z} is stationary. Moreover, we can and will choose Θ so that it may depend
on {Sn}n∈Z but does not depend on {Xt}t∈R in any other way. It will suffice to show that the
distribution of {X∗t , t ∈ R} := {Xt+Θ −XΘ, t ∈ R} is 2BM(0).

Suppose that a > 0, let Ua be a uniform random variable on [a, 2a], independent ofX , and let
{San, n ∈ Z} = {Sn−Ua, n ∈ Z}. Then it follows from [5, Thm. 11.8 (i)] that the distributions
of {San, n ∈ Z} converge to the distribution of {S∗n, n ∈ Z} in the total variation norm, as
a→∞. Let Xa

t = Xt+Ua −XUa for t ∈ R.
The conditional distribution of X given {Sn, n ∈ Z} can be described as follows. Suppose

that s = {sn, n ∈ Z} is a deterministic sequence of real numbers such that sn < sn+1 for all n,
limn→−∞ sn = −∞ and limn→∞ sn = ∞. Let Q be the distribution of a pair (Tk, B

k) used in
the construction of the strongly decomposable process X (note that Q does not depend on k).
LetQt be the distributionQ conditioned by {Tk = t} and let Q̃t be the distribution of the second
element in the pair (stochastic process) under Qt, stopped at t. Let {B̃n, n ∈ Z} be independent
processes, such that the distribution of B̃n is Q̃sn+1−sn for all n. Let X̃ be the unique continuous
process such that X̃t+sn − X̃sn = B̃n

t for all t ∈ [0, sn+1 − sn) and all n ∈ Z. Let D(s) denote
the distribution of X̃ . Then the distribution ofX isD({Sn, n ∈ Z}). Similarly, the distributions
of X∗ and Xa areD∗ := D({S∗n, n ∈ Z}) andDa := D({San, n ∈ Z}), resp. In other words, the
conditional distributions ofX∗ andXa given {S∗n, n ∈ Z} and {San, n ∈ Z}, resp., are identical.
Since the distribution of {San, n ∈ Z} converges to the distribution of {S∗n, n ∈ Z} in the total
variation norm, Da converge to D∗ in the total variation norm, as a→∞.
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It follows from the definition of a decomposable FBM that {Xt, t ≥ 0} is standard Brownian
motion. Hence, for every fixed s ∈ [a, 2a], the distribution of {Xt+s − Xs,−a ≤ t ≤ a} is
that of 2BM(0) with time restricted to the interval [−a, a]. Since Ua is independent of X , the
distribution of {Xa

t ,−a ≤ t ≤ a} is also that of 2BM(0) restricted to [−a, a]. This in turn
implies that for any fixed b > 0 and all a ≥ b, the distribution of {Xa

t ,−b ≤ t ≤ b} is that of
2BM(0) restricted to [−b, b]. In other words, for any fixed b > 0 and all a ≥ b, the distribution
Da restricted to [−b, b] is that of 2BM(0). Since Da converges to D∗ in the total variation norm,
as a→∞, we conclude that for any fixed b > 0, the distribution D∗ restricted to [−b, b] is that
of 2BM(0). The constant b > 0 is arbitrarily large so the distribution D∗ is that of 2BM(0) on
the whole real line. �

In contrast to Theorem 5.1, we will show that if Tk’s are not i.i.d. then the condition
supk ETk < ∞ does not guarantee that the corresponding FBM is 2BM. Moreover, even if
supk ETαk <∞ for some α <∞, the FBM is not necessarily 2BM.

Theorem 5.2. For any α ∈ (0,∞), there exists a decomposable FBM X satisfying supi ETαi <
∞ which is not a BBM.

Proof. Assume that pj ∈ (0, 1), kj ∈ N, and cj > 0 for each j ∈ N (we will specify the values
of these parameters later in the proof). For i ∈ N let j(i) be the unique integer j satisfying∑j−1

m=1 km + 1 ≤ i ≤
∑j

m=1 km. For each i ∈ N toss a coin which comes up heads with
probability pj(i) (independently of everything else) and define T−i := inf{t ≥ 1 : B−it −B−it−1 =
cj(i)} if coin i comes up heads and T−i = 0 otherwise. Further, for i ∈ N0, we define Ti ≡ 1.
For c > 0 and a Brownian motion B, let λ(c) := E(inf{t ≥ 1 : Bt − Bt−1 = c})α. It is
easy to see that inf{t ≥ 1 : Bt − Bt−1 = c} is stochastically majorized by a constant plus an
exponential random variable so λ(c) is finite for every c <∞ and α ∈ (0,∞).

We now define the numbers pj, kj, cj recursively starting with c1 = 1. Given the numbers
c1, ..., cm, p1, ..., pm−1, and k1, ..., km−1, we define pm := 1/λ(cm). This implies that ETαm = 1
for all m ∈ Z. Let km := d1/pme. This implies that

∑
j∈N kjpj = ∞ and therefore guarantees

that infinitely many of the T−i, i ∈ N, are at least 1. Let um be a positive number such that

P

(
k1+...+km∑

i=1

T−i + 1 ≥ um

)
≤ 2−m.

Then, choose cm+1 so large that for a Brownian motion B we have

P(inf{t ≥ 1 : Bt −Bt−1 = cm+1} < um +m) ≤ 1/2.

This completes the definition of pj’s, kj’s and cj’s.
Let X be the decomposable FBM associated to the sequence (Bi, Ti). Assume that X is a

BBM. We will show that this assumption leads to a contradiction. Suppose that S is a random
variable such that {Y (t) := X(S − t)−X(S), t ≥ 0} is a Brownian motion. We have

P( inf{t ≥ 1 : Y (t)− Y (t− 1) = cm+1} ≥ um +m)

≤ P(S ≥ m) + P

(
S ≤ −

k1+...+km∑
i=1

T−i

)
+ P

(
k1+...+km∑

i=1

T−i + 1 ≥ um

)
.
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Note that each probability on the right hand side converges to 0 as m→∞. On the other hand,

P(inf{t ≥ 1 : Bt −Bt−1 = cm+1} ≥ um +m)

= 1− P(inf{t ≥ 1 : Bt −Bt−1 = cm+1} < um +m) ≥ 1/2,

for each m, so Y and B cannot have the same law and the proof of the theorem is complete. �

6. A PROCESS THAT IS AN FBM AND BBM BUT NOT A 2BM
sec:FBMBBM

“Most” local path properties of every FBM are the same as those of standard Brownian mo-
tion. For example, FBM paths are continuous, non-differentiable and satisfy the local law of
the iterated logarithm at almost all (with respect to Lebesgue measure) times. We said “most”
properties because there are some clear exceptions, for example, Xt > 0 for t ∈ [−ε, 0), for
every ε > 0, if X is constructed as in Example 2.8. Needless to say, standard Brownian motion
does not have this property. However, this exception is clearly an artifact of the construction
given in Example 2.8 and does not characterize a “typical” local behavior of the paths of X in
that example.

The definition of FBM implies that the global path properties of FBM, such as the global
law of the iterated logarithm, are identical to those of standard Brownian motion in the forward
time direction. If we now assume that a process is both FBM and BBM, then this process has
the same global path properties as standard Brownian motion in the forward and backward time
directions. Hence, such a process has the same (or very similar) local and global path properties
as 2BM. It is tempting to conjecture that this process is a 2BM because it is hard to guess in
what way this process might be different from 2BM. Nevertheless, it turns out that there exists
a process that is FBM and BBM but not 2BM. The reason why this is possible is, roughly
speaking, that the increments of this process are heavily correlated on scales that are “invisible”
if we observe the process from the viewpoints set at some random times.

The presentation of our construction will be discrete in nature. See Definition 2.5 for the
definitions of FRW, BRW and 2RW.

d22.2 Theorem 6.1. There exists a process X which is FBM and BBM but not 2BM.

Proof. We will first construct a process {Vk, k ∈ Z}, taking values in {−1, 1}, which is the
increment sequence of a process which is FRW and BRW but not a 2RW. The construction will
be inductive. At the n-th step, we will define the values of Vk for k ∈ [an, bn], where an and bn
are random integers satisfying an+1 < an < 0 < bn < bn+1 for all n ∈ N, a.s.

We will call a sequence of random variables coin tosses if they are i.i.d., taking values 1 and
−1 with equal probabilities.

For n = 1, we take a1 = −1, b1 = 1 and we let Vk, −1 ≤ k ≤ 1, be coin tosses.
Suppose that [an, bn] and {Vk, k ∈ [an, bn]} have been defined.
Let cn ∈ N be a constant so large that

P(|an| ∨ bn ≥ cn) < 1/n2.j6.3j6.3 (6.1)

Let dn ∈ N be so large that (4cn + 1)22−dn < 1/n2.
Let {Vk, k ∈ [bn + 1, bn + dn]} be coin tosses independent of {Vk, k ∈ [an, bn]} and let

Vk = Vk−an+dn+bn+1 for k ∈ [an − dn, an − 1]. If we set a′n = an − dn and b′n = bn + dn then
we see that {Vk, k ∈ [a′n, b

′
n]} has been defined.
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Let {Un−
k , k < a′n} and {Un+

k , k > b′n} be two sequences of coin tosses independent from
each other and jointly independent of {Vk, k ∈ [a′n, b

′
n]}. Let an+1 be the largest integer of the

form an+1 = j(b′n − a′n + 1) + a′n for some j < 0, with the property that Un−
k+an+1−a′n = Vk for

all k ∈ [a′n, b
′
n]. Since {Un−

k , k < a′n} are coin tosses, it is easy to see that such an integer an+1

exists. By analogy, we define bn+1 as the smallest integer of the form bn+1 = j(b′n−a′n+1)+a′n
for some j > 0, such that Un+

k+bn+1−b′n = Vk for all k ∈ [a′n, b
′
n].

We let Vk = Un− for k ∈ [an+1, a
′
n − 1] and Vk = Un+ for k ∈ [b′n + 1, bn+1]. We have

thus defined [an+1, bn+1] and {Vk, k ∈ [an+1, bn+1]}. This completes the inductive step and the
definition of {Vk, k ∈ Z}.

Let Z0 = 0 and Zk+1 − Zk = Vk for k ∈ Z. We will argue that Z is FRW and BRW but not
2RW.

Fix any m ∈ N and a deterministic sequence s ∈ {−1, 1}m. Let Qs be the distribution of
the sequence of m coin tosses conditioned not to be equal to s. The probability that a sequence
of m coin tosses is not equal to s is pm := 1 − 2−m. Let α1 and α2 be independent geometric
random variables with parameter pm, that is P(αi = k) = pkm(1− pm) for i = 1, 2 and k ∈ N0.
Let {Y i,j

n , n ∈ [1,m]}j=1,...,αi
, i = 1, 2, be i.i.d. sequences with distribution Qs, independent

of each other and of α1 and α2. If α1 > 0, let R(j−1)m+n = Y 1,j
n for j = 1, . . . , α1 and

n = 1, . . . ,m. Let {Rn, n = α1m + 1, . . . , (α1 + 1)m} = s. If α2 > 0, let R(α1+j)m+n = Y 2,j
n

for j = 1, . . . , α2 and n = 1, . . . ,m. Let {Rn, n = (α1+α2+1)m+1, . . . , (α1+α2+2)m} = s.
Let {Rn, n ≥ (α1 + α2 + 2)m + 1} be a sequence of coin tosses independent of {Rn, n =
1, . . . , (α1 + α2 + 2)m}. It is elementary to see that {Rn, n ≥ 1} is a sequence of coin tosses.

Since the distribution of {Rn, n ≥ 1} does not depend on m or s, we see that if m ∈ N and
s ∈ {−1, 1}m are chosen in an arbitrary random way, the distribution of {Rn, n ≥ 1} is still
that of a sequence of coin tosses.

Let S−n = an+1 + b′n − a′n + 1 for n ∈ N. We will argue that {Vk, k ≥ S−n} is a sequence
of coin tosses. If we take m = b′n − a′n + 1 and s = {Vk, k ∈ [a′n, b

′
n]} then it follows from

our constructions of {Vk, k ∈ Z} and {Rn, n ≥ 1} that the distribution of {Vk, k ≥ S−n} is
the same as that of {Rn, n ≥ 1} and hence it is the distribution of a sequence of coin tosses.
Since S−n → −∞, we conclude that Z is FRW. The process Z is BRW by the symmetry of our
construction.

We will now assume that Z is 2RW and we will show that this leads to a contradiction. Let S
be such that {ZS+k−ZS, k ∈ N0} and {ZS−k−ZS, k ∈ N0} are independent simple symmetric
random walks. If Wk = ZS+k+1 − ZS+k for k ∈ Z then {Wk, k ∈ Z} is a sequence of coin
tosses. For an arbitrarily large m, we can find n > m so large that P(|S| ≥ cn) < 1/m2. Recall
that P(|an| ∨ bn ≥ cn) < 1/n2. Hence,

P({|S| ≥ cn} ∪ {|an| ∨ bn ≥ cn}) < 1/m2 + 1/n2 ≤ 2/m2.d21.1d21.1 (6.2)

If a∗ and b∗ are fixed integers such that a∗ < b∗ then the probability that Wk = Wk−a∗+dn+b∗+1

for k ∈ [a∗ − dn, a∗ − 1] is 2−dn . The probability that there exist integers a∗, b∗ ∈ [−2cn, 2cn]
such that a∗ < b∗ and Wk = Wk−a∗+dn+b∗+1 for k ∈ [a∗ − dn, a

∗ − 1] is bounded above by
(4cn + 1)22−dn < 1/n2 < 1/m2. The series

∑
m 3/m2 is summable so the last estimate, (6.2)

and the Borel-Cantelli Lemma imply that there exist infinitely many n such that |S| < cn,
|an|∨bn < cn and there are no a∗, b∗ ∈ [−2cn, 2cn] such that a∗ < b∗ and Wk = Wk−a∗+dn+b∗+1
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for k ∈ [a∗ − dn, a∗ − 1]. This contradicts the fact that for every n > 1, Vk = Vk−an+dn+bn+1

for k ∈ [an − dn, an − 1].
Let X be defined in terms of Z as in Remark 2.6 (i). We have indicated in that remark that

the fact that Z is FRW and BRW implies that X is FBM and BBM. It remains to show that X
is not 2BM.

Let εn > 0 be so small that for standard Brownian motion B and any x ∈ R,

P(∃t ∈ [1− εn, 1 + εn] : |Bt − x| ≤ 2εn) ≤ 1/n2.j6.2j6.2 (6.3)

We can find sn ∈ (0, εn) so small that

P(∃s, t ∈ [1− sn, 1 + sn] : |Bt −Bs| ≥ εn) ≤ 1/n2.j6.9j6.9 (6.4)

This and (6.3) imply that if B and B′ are independent Brownian motions then

P(∃s, t ∈ [1− sn, 1 + sn] : |Bt −B′s| ≤ εn) ≤ 2/n2.j5.1j5.1 (6.5)

Note that in the first part of our proof, we can take dn arbitrarily large relative to cn. Hence,
we can and will assume without loss of generality that

dn
dn + cn

≥ 1− sn/4.j6.1j6.1 (6.6)

We make dn larger, relative to cn, if necessary, so that

4d−1/2
n cn ≤ εn/2.j6.7j6.7 (6.7)

The random variables Mj+1 − Mj defined in Remark 2.6 (i) are i.i.d. They represent the
time Brownian motion starting from 0 takes to hit 1 or −1. It is well known that these random
variables have mean 1 and exponential tails. This, (6.1), (6.6) and the law of large numbers
imply that

P
(∣∣∣∣Man−dn

dn
− 1

∣∣∣∣ ≥ sn/2

)
≤ 2/n2, P

(∣∣∣∣Mbn+dn

dn
− 1

∣∣∣∣ ≥ sn/2

)
≤ 2/n2.j6.4j6.4 (6.8)

Suppose that a random time S is such that {XS+t − XS, t ≥ 0} and {XS−t − XS, t ≥ 0}
are independent standard Brownian motions. We can make dn’s larger, if necessary, so that the
products dnsn are so large that for k ∈ N we can find nk > k ∨ nk−1 so large that

P (|S/dnk
| ≥ snk

/4) ≤ 1/k2.

This and (6.8) yield

P
(∣∣∣∣Mank

−dnk
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2

)
≤ 2/nk

2 + 1/k2 ≤ 3/k2,j6.5j6.5 (6.9)

P
(∣∣∣∣Mbnk

+dnk
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2

)
≤ 3/k2.

Let

Gk =

{∣∣∣∣Mank
−dnk
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2,

∣∣∣∣Mbnk
+dnk
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2

}
.

It follows from (6.9), summability of
∑

k∈N 3/k2 and Borel-Cantelli Lemma that only a finite
number of events Gk occur.
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For any k ≥ 1, the processes

{B(k)
t := d−1/2

nk
(X(S + tdnk

)−X(S)), t ≥ 0},

{B[k]
t := d−1/2

nk
(X(S − tdnk

)−X(S)), t ≥ 0}
are independent Brownian motions. Let

Fk = {∃s, t ∈ [1− snk
, 1 + snk

] : |B(k)
t −B[k]

s | ≤ εnk
}.

By (6.5), P(Fk) ≤ 2/n2
k < 2/k2. Since

∑
k∈N 2/k2 < ∞, only a finite number of events Fk

occur.
It follows from (6.1) that only a finite number of events {|an| ∨ bn ≥ cn} occur. Assuming

that |an| ∨ bn ≤ cn,

|Zan−dn − Zbn−dn| ≤ 2cn.

It follows that, for sufficiently large n,

|X(Man−dn)−X(Mbn−dn)| ≤ 2cn,

and, therefore, for all sufficiently large k,

|B(k)((Mank
−dnk
− S)/dnk

)−B[k]((Mbnk
+dnk
− S)/dnk

)| ≤ d−1/2
nk

2cnk
≤ εnk

/2,j6.8j6.8 (6.10)

where the last inequality holds by (6.7). Recall that only a finite number of events Gk occur. If
Gk does not hold then, because of (6.10), Fk holds with

t = (Mank
−dnk
− S)/dnk

, s = (Mbnk
+dnk
− S)/dnk

.

This contradicts the fact that only a finite number of events Fk hold. �

d22.1 Proposition 6.2. (i) There exists an FBM X such that there is no random time T such that
{XT+t − XT , t ≥ 0} and {XT−t − XT , t ≥ 0} are independent and {XT+t − XT , t ≥ 0} is
standard Brownian motion.

(ii) There is an FBM X that is not decomposable.

Proof. (i) First, we will show that for the FRW Z constructed in Theorem 6.1, there is no
stopping time S such that {ZS+k−ZS, k ∈ N0} and {ZS−k−ZS, k ∈ N0} are independent and
{ZS+k − ZS, k ∈ N0} is simple symmetric random walk. We will apply the same argument as
in the part of the proof of Theorem 6.1 showing that Z is not 2RW. We replace the paragraph in
that proof containing (6.2) with the following.

Let S be such that {ZS+k − ZS, k ∈ N0} and {ZS−k − ZS, k ∈ N0} are independent and
{ZS+k−ZS, k ∈ N0} is simple symmetric random walk. IfWk = ZS+k+1−ZS+k for k ∈ Z then
{Wk, k ∈ Z} is a sequence of coin tosses. Let c0 = 1 and recall that ak+1 < ak < 0 < bk < bk+1

for all k ∈ N. For m ∈ N, we can find nm > m so large that P(|S| ≥ cnm−1) < 1/m2 and
cnm−1 ≤ |anm | ∧ bnm . Recall that P(|ak| ∨ bk ≥ ck) < 1/k. Hence,

P({|S| ≥ cnm−1} ∪ {cnm−1 ≤ |anm| ∧ bnm ≤ |anm| ∨ bnm ≥ cnm}) < 1/n2
m + 1/m2 ≤ 2/m2.

d22.3d22.3 (6.11)

If a∗ and b∗ are fixed integers such that a∗ < 0 < b∗ then the probability that the events
{Wk = Wk−a∗+dnm+b∗+1} hold for k ∈ [a∗ − dnm , a

∗ − 1] is 2−dnm . The probability that
there exist integers a∗, b∗ ∈ [−2cnm , 2cnm ] such that a∗ < b∗ and Wk = Wk−a∗+dnm+b∗+1 for
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k ∈ [a∗ − dnm , a
∗ − 1] is bounded above by (4cnm + 1)22−dnm < 1/nm

2 < 1/m2. The series∑
m 3/m2 is summable so the last estimate, (6.11) and the Borel-Cantelli Lemma imply that

there exist infinitely many nm such that |S| < cnm , |anm| ∨ bnm < cnm and there are no a∗, b∗ ∈
[−2cnm , 2cnm ] such that a∗ < 0 < b∗ and Wk = Wk−a∗+dnm+b∗+1 for k ∈ [a∗ − dnm , a

∗ − 1].
This contradicts the fact that for every n > 1, Vk = Vk−an+dn+bn+1 for k ∈ [an − dn, an − 1].

This completes the proof that for the FRW Z constructed in Theorem 6.1, there is no stopping
time S such that {ZS+k−ZS, k ∈ N0} and {ZS−k−ZS, k ∈ N0} are independent and {ZS+k−
ZS, k ∈ N0} is simple symmetric random walk.

Suppose that there exists a random time T such that {XT+t−XT , t ≥ 0} and {XT−t−XT , t ≥
0} are independent and {XT+t−XT , t ≥ 0} is standard Brownian motion. Then we can proceed
as in the proof of Theorem 6.1, staring with the paragraph containing (6.3). Note that for (6.4),
we only need to know that the process B is a.s. continuous (we do not have to assume that it is
Brownian motion). The rest of the argument applies and thus we complete the proof of part (i)
the proposition.

(ii) Suppose that the FBM X considered in part (i) is decomposable. Then, in the notation of
Definition 2.2, there is a random variable U such that {XU+t−XU , t ≥ 0} and {XU−t−XU , t ≥
0} are independent and {XU+t − XU , t ≥ 0} is standard Brownian motion. This contradicts
part (i) so we conclude that FBM X is not decomposable. �

7. OPEN PROBLEMS
sec:open

The following list is rather eclectic but we hope that the reader will find at least some of the
problems intriguing.

pr1 Problem 7.1. Assume that X is a decomposable FBM which is also a BBM (we may or may
not assume that the BBM is decomposable). Do these assumptions imply that X is 2BM?

pr2 Problem 7.2. Assume that X is an FBM and BBM and there exists a random time T such that
the processes XT+t−XT , t ≥ 0 and XT−t−XT , t ≥ 0 are independent. Do these assumptions
imply that X is 2BM?

pr3 Problem 7.3. Assume that X is an FBM and there exist random times S and T such that the
processes XT+t − XT , t ≥ 0 and XT−t − XT , t ≥ 0 are independent and such that XS−t −
XS, t ≥ 0 is Brownian motion. Do these assumptions imply that X is 2BM?

Note that an affirmative answer to Problem 7.1 implies the same for Problem 7.2 and, simi-
larly, an affirmative answer to Problem 7.2 implies the same for Problem 7.3.

Problem 7.4. Consider a decomposable FBM X and assume that is is constructed from Brow-
nian pieces of length 1, most of the time, but occasionally (more and more rarely as we move to
the left) we insert “Bessel” pieces, i.e., we use the stopping times Tk := inf{t ≥ 0 : Bk

t = −1}.
Under which conditions (concerning the frequency of the Bessel pieces) is the resulting FBM a
BBM (or 2-sided BM)?

Problem 7.5. Is it true that for any process {Xt, t ≥ 0} whose law is equivalent to BM, we can
find some random piece which we can put in front of X such that the new process is Brownian
motion?
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Remark 7.6. Consider a strongly decomposable FBM X with ETk = ∞. In this case X may
or may not be a 2BM. If, for example, Tk is a positive random variable which is independent
of Bk and has an infinite expected value, then X is clearly 2BM (even without shifting). Now
let us assume that ETk = ∞ and that the process {Sn, n ∈ Z} is identifiable in the sense that
there exists a measurable function that maps {BT+t − BT , t ∈ R} onto {Sn − T, n ∈ Z} for
an arbitrary random time T . If X was 2BM, then this process would have to be stationary seen
from the random time which turns X into 2BM(0). But for a renewal process with infinite
expected interarrival law there does not exist any shift which will make it stationary.

Problem 7.7. Does there exist a decomposable FBM X satisfying supk |Tk| < ∞, a.s., which
is not a BBM?

Problem 7.8. Can one generalize Theorem 4.3 from parabolas to other space-time shapes?

Problem 7.9. Analyze “forward Lévy processes”. In particular, find analogues of all theorems
in this article for forward Lévy processes.
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