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Abstract

MEMS technology has exerted a significant impact on sensing practices as more

complex and sophisticated devices are developed in response to emerging needs

in a wide range of industries. The introduction of microsystems into the biomed-

ical and health sciences can substantially contribute to significant advancements

in the biomedical tools while reducing healthcare costs. Therefore, this thesis

will focus in three applications of BioMEMS: (i) smart medical instrumentation,

(ii) sensors for artificial knee implants and (iii) catheter pressure sensors.

In the first application, we have developed a smart medical instrumentation

that has its direct utilization in ligament balance during total knee arthroplasty

(TKA) procedure. The "instrumented distractor" proposed in this thesis can

assist surgeons in performing ligament balance by measuring the distraction

gap and applied load. Also, the device allows the determination of the liga-

ment stiffness which can contribute for a better understanding of the intrinsic

mechanical behavior of the knee joint. The smart medical instrumentation

involved the use of Hall sensors for measuring the distractor displacement and

strain gauges to transduce the force. The sensors were calibrated and tested to

demonstrate their suitability for surgical use. Results show that the distraction

gap can be measured reliably with 0.1 mm accuracy and the distractive loads

could be assessed with an accuracy in the range of 2 N. These characteristics

fill the need surgeons have for a device to perform ligament balance while

enabling the surgeon’s evaluation based on his experience. Preliminary results

from in vitro tests were in accordance with expected stiffness values for medial

collateral ligament (MCL) and lateral collateral ligament (LCL).

ix



ABSTRACT x

The second application of BioMEMS is focused on the development of a

polyimide-based MEMS strain-sensing device capable of measuring forces

in an artificial knee implant. Finite element analysis was used to investigate

an artificial knee implant, assist on the design of the sensor and optimize

sensing characteristics. The sensing element of the device was fabricated using

polyimide micromachining with embedded thin metallic wires and placed into

a knee prosthesis. The device was evaluated experimentally in a mechanical

knee simulator using static and dynamic axial load conditions similar to those

encountered in vivo. Results indicate the sensor is capable of measuring the

strain associated to the total axial forces in the range of approximately 4 times

body weight with a good sensitivity and accuracy for events happening within

1s time window.

In the third application, we describe the development of a polyimide/SU-8

catheter-tip MEMS gauge pressure sensor. Finite element analysis was used

to investigate critical parameters, impacting on the device design and sensing

characteristics. The sensing element of the device is fabricated by polyimide-

based micromachining on a flexible membrane, using embedded thin-film

metallic wires as piezoresistive elements. A chamber containing this flexible

membrane was sealed using an adapted SU-8 bonding technique. The device

was evaluated experimentally and its overall performance compared with a

commercial silicon-based pressure sensor. Furthermore, the device use was

demonstrated by measuring blood pressure and heart rate in vivo.

Keywords: MEMS, BioMEMS, Biomedical Devices, Bioengineering, Biome-

chanics, Implantable sensor, Metal thin-film gauges, Metallic thin films, Mi-

cro strain sensor, Microfabricated strain gauges, Microsensors, Polymers,

Real-time monitoring, Strain gauge, Strain gauges, Strain measurement, Strain

sensors, Thin film metal strain gauges.



Résumé

La technologie MEMS devient de plus en plus utilisés pour créer des capteurs

sophistiqués pour des applications émergeantes. L’utilisation de la micro et

nanotechnologie en science de la vie et dans la science biomédicale permettra

des avances techniques impressionnantes et réduira le prix des soins médicaux.

Cette thèse présente le développement de trois dispositifs BioMEMS : (i) un

outil chirurgicale doté d’un capteur de force (ii) un prothèse de genou contenant

un capteur de force intégré, (iii) une sonde de pression miniaturisé et monté

dans un cathéter.

Le premier dispositif est un distracteur chirurgicale doté d’un capteur de force

intégré. Cet outil a été développé pour faciliter les arthroplasties du genou.

Pendant cette forme d’arthroplastie, le chirurgien doit équilibrer la tension des

ligaments et contrôler l’espace entre le fémur et le plateau du tibia. Le capteur

permet de vérifier ces valeurs de manière quantitative. En plus, le dispositif

peut mesurer la tension des ligaments, qui permettra de mieux comprendre

le comportement mécanique de ce joint compliqué. Des capteurs de force

flexibles du type "Hall" ont été développés utilisant des procédés de fabrication

MEMS. Après leurs calibration et caractérisation dans le distracteur, l’outil était

capable de mesurer des distances de distraction avec une précision de 0.1 mm

et des forces de distraction avec un précision de 2 N. Cette outil permettra aux

chirurgiens de vérifier l’emplacement des prothèses pendent des arthroplasties.

Le distracteur a été testé dans des genoux cadavériques. Les valeurs mesurés de

la tension des ligaments collatérales latérales et médiales étaient équivalentes à

celles de la littérature.

Le deuxième dispositif développé dans le cadre de cette thèse est un capteur de

contraintes en polyimide, encore fabriqué utilisant des procédés de fabrication

MEMS polymeriques. Le but du développement de ce capteur c’était de pouvoir

xi



RÉSUMÉ xii

l’utiliser dans une prothèse de genou. L’implant à été modellisé par éléments

finis pour étudier sa comportement mécanique, et pour guider le développement

et emplacement du capteur. Le capteur comprenait des méandres métalliques

recouverts par des lamelles de polyimide et à été monté dans un prothèse de

genou. La prothèse a été testée dans un simulateur de mouvement mécanique.

Des charges axiales dynamiques et statiques ont été appliqué à la prothèse et

démontrent qu’elle est capable de mesurer des forces en excès de 4x le poids

humain avec une bonne sensibilité et précision.

Le troisième dispositif développé dans le cadre de cette thèse est une sonde

de pression en polyimide et SU-8 intégré dans un cathéter. Premièrement une

analyse par éléments finis a permis d’évaluer des paramètres critiques de la

sonde pour optimiser sa sensibilité. La sonde elle-même a été fabriquée par

un procédé de fabrication MEMS. La partie active de la sonde est un méandre

métallique qui fonctionne par principe piezoresistive. Le méandre est encapsulé

dans une membrane de polyimide et capte la pression relative à une chambre à

air. La chambre est formée par un procédé de lamination adapté au SU-8. Des

testes du sonde ont démontré qu’elle est comparable à une sonde en silicone

déjà commercialisé. Finalement, le fonctionnement du dispositif a été démontré

en mesurant la tension sanguine dans un modèle animal.

Les mots clés: MEMS, BioMEMS, Biomedical Devices, Bioengineering, Biome-

chanics, Implantable sensor, Metal thin-film gauges, Metallic thin films, Mi-

cro strain sensor, Microfabricated strain gauges, Microsensors, Polymers,

Real-time monitoring, Strain gauge, Strain gauges, Strain measurement, Strain

sensors, Thin film metal strain gauges.
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CHAPTER 1
Introduction

If you knew what you were doing

it wouldn’t be called research.

- Albert Einstein

1
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The roots of microelectromechanical systems (MEMS) technology go back to

the early development of process techniques for microelectronics. The origins

of what we know as MEMS technology can be traced back to 1954 when,

for the first time, certain stress-sensitive effects in silicon and germanium

was characterized as piezoresistance [1]. In the 1970s, the advancement of

semiconductor microelectronics processing allowed the formation of three

dimensional silicon geometries [2]. In the 1980s, the Metal-Oxide-Semiconductor

(MOS) process, that uses the silicon dioxide as a sacrificial layer material [3], led

to the development of surface micromachined devices such as electrostatically

actuated motors [4], and interdigitated finger capacitive sensors and resonators

[5]. In the 1990s, many commercially successful MEMS products began to

appear in the market and substantial sub-domains of MEMS appeared [6],

including optical MEMS [7], RF MEMS [8], MEMS for harsh environments

[9], power MEMS [10], NEMS [11] and BioMEMS [12, 13]. Over the last 40

years, such evolution in the fabrication techniques at small scale has stepped up

from being one of the several segments of microelectronics and has emerged

as a separate global industry, taking advantage of flourishing semiconductor

technology. Nowadays, MEMS market is on path to reach $20B in 2016, with

major classes of devices being: inertial sensors, microfluidics, pressure sensors

and inkjet heads.

The last decade has been an exciting period for people working in the fields of

micro and nanosystems technology and the keen explosive growth of MEMS

has introduced a variety of promising products in major disciplines [14], from

microelectronics [15] and micro-fabrication technology [16] to life sciences

[17]. In recent years, MEMS applications in biology and biomedicine have

rapid evolved and their combination created a common term of "biological-

microelectromechanical systems" (BioMEMS); the synergy between these topics

yielded completely new devices with numerous applications in biochemistry

[18], biology [19] and medicine [20]. The healthcare implications expected

after the successful development of BioMEMS technology is enormous, and

include early disease diagnostics, more accurate assessment on risk conditions,

less physical trauma, short recovery times, and more accessible healthcare

monitoring and delivery at a lower total cost [21].
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Analytical and therapeutic micro/nanosystems will be mandatory for med-

ical doctors and biologists in the long run, in order to obtain insight into

morphology and the interactive processes of the living system. BioMEMS

in combination with low-power integrated circuits and biomaterials has the

potential to provide many of the future tools for life science and in particular

miniaturized therapeutic and diagnostic devices, less invasive, more precise

and suitable even for long-term implantation. Micro and nanofabrication tech-

niques also offer different types of advantages for implantable devices, such as

higher surface-area-to-volume ratio, reduced size, enhanced geometrical control

during manufacturing, batch processing, high throughput and relatively easy

integration with conventional electronics [22].

1.1 Advances in biomedical microsystems

1.1.1 Diagnostic microsystems

Diagnostics has been subjected to continuous improvement due to the progress

of science and technology over the last years. A lot of effort is put into research

to develop personalized diagnostic tools that are highly sensitive and capable

of early detection of diseases. Some devices are already available in consumer

friendly packages such as the home pregnancy tests and hand held glucose

monitoring systems, introducing substantial diagnostic advancement [13].

Point of care diagnostics

The scaling of diagnostic tools was made a reality by the engineering advances

in surface and material science. MEMS use several of the techniques employed

in the microelectronic industry in order to build single electronic chips that

are able to characterize samples and run an entire diagnostic operation. Such

systems are also known as µTAS (micro Total Analysis Systems) or LoC (Lab-on-

Chip) devices. For the determination of a specific type of disease, multiplexing

of tests can be required and each component can have different MEMS stages

such as cell separation [23], cell lysis [24] and sensing elements [25]. The

potential application of such devices in blood analysis and drug screening
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systems can revolutionize our healthcare system [26].

Other MEMS based diagnostics

Other remarkable advances of BioMEMS include the development of devices for

measuring physiological parameters such as temperature, pressure and pulse-

rate. MEMS techniques have been used to develop devices for applications such

as intracranial pressure monitoring in case of head trauma [27], intraocular

pressure evaluation for glaucoma [28], blood pressure and heart rate monitoring

for cardiovascular assessment [29]. More exotic MEMS applications include

sensors embedded into smart textiles or wearable cardiovascular monitoring

systems, such as wearable electrocardiography (ECG) foils [30].

1.1.2 Therapeutic microsystems

Drug Discovery

Drug discovery process is organized into different phases starting with the

identification of drug targets, a process known as target identification, wherein

the biomolecules that play significant role in diseases are identified. Next, from

a library of a large number of chemical compounds, the ones that have the

potential to treat the disease by interacting with the drug targets in a desirable

way are identified. These compounds undergo optimization to become a

possible clinical candidate followed by a testing phase to ensure that it is safe

to be administered to the patients.

Microarrays, created using photolithographic method, have extended the ca-

pability of target identification, reducing its development time and cost and

thus resulting in enhanced throughput [31]. The lead identification and opti-

mization process (identification and optimization of chemical compounds that

can interact with the target molecules to produce drug like effect) was revolu-

tionized with the creation of microchip patch clamp [32]. Also, laboratory tests

conducted on the investigational drug to see its effects both in living organism

(in vivo) and cells (in vitro) was improved with the creation of microfluidic

structures mimicking the actual in vivo environment [33].
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Drug Delivery

A variety of devices and components has been developed using MEMS tech-

niques that are able to release drugs, e.g. of different dosages. One of the

first proposed methods for drug delivery was throughout microneedles, e.g.

hollow microneedles have been fabricated and used to flow drug solutions

through the skin [34]. Also, for an implantable drug delivery system, a drug

reservoir or supply is required. This drug reservoir has to protect the drug

from the body until needed and also allow delivery in a controlled dosage.

MEMS fabrication techniques have been explored to form reservoirs with good

biocompatibility [35] and despite research on microfabricated drug delivery

devices has rapidly expanded, much research still has to be done to optimize

the size, shape, number, volume, and surface characteristics of the drug delivery

systems [36].

1.1.3 Surgical applications

Minimally invasive surgery

Medical procedures are evolving into the use of minimally invasive methods and

new assessment tools to reduce trauma from surgery. The main advantages are

to decrease post-operative pain and improve recovery time. MEMS technology

has played an important role in the evolution of these minimally invasive

procedures and assessment tools, by allowing surgical devices downscale to the

size of individual cells, thus providing access to areas of the body previously

inaccessible. With the aid of microfabrication techniques researchers have

developed tools such as micro-grippers, micro-tweezers, micro-forceps and

micro-scissors that can now explore previously inaccessible areas with high

spatial resolution [37, 38].

Tactile sensing

Following the trends of minimally invasive surgeries, a major challenge faced

by surgeons is the lack of sense of touch. To overcome this limitation mi-

crofabricated devices capable of restoring and enhancing tactile sensation are

being developed [39]. Tactile sensors typically consisting of piezoelectric or
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piezoresistive elements embedded at critical locations along the structure of a

mechanical device have been developed to provide three-dimensional mapping

of the mechanical deformations in the device. In addition to these sensing

mechanisms, various other methods have also been investigated. MEMS sensors

for monitoring mechanical properties of tissues, such as the elastic modulus,

have also been developed [40].

MEMS Cutting tools

The miniaturization enable the utilization of ultra small cutting tools to make

smaller incision and, therefore, less bleeding. The development of these sharper

devices can be made by etching silicon precisely along its crystal planes [41].

Also, the utilization of vibratory mechanism for cutting tissues have been

demonstrated [42]. Some of the sensing mechanisms added to this devices

are pressure sensors, temperature sensors as well as impedance sensors for

measuring tissue impedance.

Endoscopy

The advancement of BioMEMS allowed the reduction of endoscopy systems

to fit into a drug capsule, permitting the monitoring of the gastrointestinal

tract [43]. These capsules consist of image sensors, LED illumination devices,

telemetry units for signal transmission and control electronics, all combined

into micro-devices by microfabrication techniques. Still, a limitation of these

capsule endoscopes is their dependency on the peristaltic waves, therefore, their

active interaction capabilities are very restricted. To overcome such limitations,

researchers are looking into the possibility of making capsular endoscopy active

through the use of micro robots [44]. The field of micro robotics for locomotion

inside the human body is yet another interesting for the application of MEMS

in biomedical technology.
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1.1.4 Implantable devices

Neuro prosthesis

Neural implants are technological devices that allow the connection between

the brain and a computational system. Its main functions are to record brain

activity and perform electrical stimulation to circumvent damaged or disabled

nervous system attempting to restore functions. The neural probe, from a

biological standpoint is considered as a foreign body, therefore, biocompatibility

issues have to be taken into consideration. For this reason, polymers such as

polyimide have also been looked into for developing neural probes [45]. One

of the focus of current research in MEMS technology is to miniaturize such

devices for the purpose of stimulating or recording from a neural population

with reduced potential damage to the tissues. Also, miniaturization of neural

implants promote the integration with circuitry for amplification, multiplexing,

spike detection, and wireless transmission of power and bidirectional data that

facilitates prosthetic devices for many debilitating neurological disorders [46].

Retinal prosthesis

Certain diseases that cause blindness have the potential of being managed using

retinal prosthesis. MEMS technology provides means for developing these

prosthetic devices since the stimulation of the ganglion cells produce visual

sensations in the brain. The main function of retinal implant is that it should be

capable of detecting light and transform this information into artificial electrical

stimulus, thus mimicking the damaged photoreceptor cells. Several approaches

such as epiretinal, subretinal, optic nerve and cortical visual stimulations have

been proposed, and examples of such prosthesis are the flexible electrodes

based on polymers such as parylene and polyimide [47].

1.2 Motivation and scope of this thesis

Overall, MEMS technology has exerted a significant impact on sensing practices

as more complex and sophisticated devices are developed in response to emerg-

ing needs in a wide range of industries. The introduction of such microsystems
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in the biomedical and health sciences substantially contributed to significant

advancements in biomedical tools while reducing healthcare costs.

The scope of this research is to investigate, design, fabricate, characterize

and test novel microsystems (combining micro/nanofabrication technologies,

microelectronics and biomaterials) for the assessment of medical devices and

implants. This thesis will focus in three applications of BioMEMS: (i) smart

medical instrumentation, (ii) artificial knee implants and (iii) catheter pressure

sensors. Despite the broad range of applications, the key common element in

all these devices is a MEMS strain gauge sensor fabricated using polyimide

micro-machining (PM) process.

1.3 Organization of this thesis

In Chapter 2 the state of the art and MEMS technology of the devices employed

in this thesis are described, while in Chapter 3 the selected biomedical ap-

plications for the developed BioMEMS are presented. Next chapters will be

dedicated to present individually each of the developed devices. In Chapter 4

we present a smart medical instrumentation to be used in total knee arthroplasty

in order to improve surgical outcome without changing surgical procedures or

impose to surgeons new surgical techniques. In Chapter 5 we demonstrate a

polyimide-based MEMS strain-sensing device for monitoring knee implants,

and in Chapter 6 a polyimide/SU-8 catheter-tip MEMS gauge pressure sensor

is presented. This thesis is concluded in Chapter 7 with a discussion about

future steps and potential of this technology for other applications.
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2.1 Micro-/Nano-sensors

In abstract terms, a transducer is a device that transforms one for of energy

(e.g. a physical variable of interest) into another (e.g. a quantity suitable

for recording). The deformation of a piezoelectric crystal under an applied

electric field is one example of how this occurs. Sensors are special types of

transducer that convert one physical or chemical quantity into an electrical one

for processing by the microsystem. On the other hand, an actuator is a device

that converts an electrical quantity into a physical or chemical one [1].

One typical element in a MEMS/NEMS device is the sensor, which has the

function of converting the physical variable input into a signal variable output.

Signal variables can be manipulated in a electrical or mechanical circuit and

be transmitted to an output or recording device that can be remote from the

sensor. In electrical circuits, voltage is a common signal variable. In mechanical

systems, displacement or force are commonly used as signal variables [2]. If

the signal output from the sensor is small, it is sometimes necessary to amplify

the output signal to be transmitted or recorded, depending on the particular

measurement application. In the case a computer-based data acquisition or

communications system is used (display and/or store the data) the sensor has

to provide a digital signal output. If the sensor does not inherently provide a

digital output, then the analog output of the sensor is converted by an analog

to digital converter (ADC). In principle, a sensor can be regarded as a black

box that relates the input signal with the output signal. This relationship is

made throughout a transfer function that establishes the dependence between

the output electrical signal and the input variable [3].

2.1.1 Mechanical sensors

Generally there exists two different types of mechanical sensors. The first uses

physical mechanisms to directly sense the parameter of interest (e.g., distance

and strain). The second uses microstructures to enable the mechanical sensors

to detect parameters of interest (e.g., acceleration) that cannot be measured

directly with the first type of sensor [1]. The most relevant transduction

mechanisms in mechanical sensors include the following effects: piezoresistivity,
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piezoelectricity, capacitance, magnetic and inductive sensing, and resonant

techniques.

Piezoresistive sensor

Piezoresistivity is an effect exhibited by various materials that exhibit a change

in resistivity due to a mechanical stress. The effect was first discovered by Lord

Kelvin in 1856, who noted that the resistance of copper and iron wires increased

when mechanically stretched. Despite this early discovery of the piezoresistive

effect its first applications only came out about 70 years later, in the 1930s,

with the invention of the strain gauge [4]. These devices (strain gauges) were

initially made from a thin metal foil that could be glued onto surfaces, and just

afterwards metal wires started to be used.

Piezoelectric sensors

Certain classes of materials exhibit the property of producing an electric charge

on its surface when deformed (direct effect). They also deform in response

to an externally applied electric field (inverse effect). This unusual effect

make piezoelectric materials to be used both as sensor and actuator. It was

first discovered in quartz by Jacques and Pierre Curie in 1880. The origin of

piezoelectricity phenomenon arises due to the charge asymmetry within the

crystal structure of the materials. Common piezoelectric materials used for

microengineered devices include zinc oxide and PZT (PbZrTiO3 - lead zirconate

titanate), which can be deposited on microstructures and patterned.

Capacitive sensors

The conceptual physical structures of capacitive sensors are relatively simple.

The simplest capacitive sensor consists of two parallel plates separated by a

gap and its output capacitance is a function of the area of the conductors

and the distance (gap) between them. More elaborate structures, such as

interdigitated capacitors, are also used, and the effects of the fringing fields

have to be considered during the design of such sensors. The membrane-type

devices are often used as the basis for pressure sensors and microphones.

Capacitive techniques are less noisy than those based on piezoresistance since
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thermal (Johnson) noise is not present. However, for micromachined devices

the inherent small capacitance (in the range of femto- to attofarads), and the

additional noise from the interface electronic circuits, make its usage more

costly then resistance-based system.

Magnetic and inductive sensors

In magnetic or inductive sensors the measurement system is composed of an

emitter and a receiver. The emitter generates a magnetic field and is usually

mounted on a movable part of the sensing device while the receiver is placed on

a fixed reference part and measures the variation of the magnetic field induced

by the emitter displacement. In magnetic sensors the emitter is a permanent

magnet and the receiver is a magnetic field detector based on the Hall effect.

The Hall effect is the production of a potential difference (the Hall voltage)

across an electrical conductor, transverse to an electric current in the conductor

when a magnetic field is applied perpendicularly to the current. This effect

was discovered by Edwin Hall in 1879. In its simplest form, when a electrical

current traverses a metallic plate, submerged in a magnetic field, the electrons

going through the plate experience a Lorentz force perpendicular to the current

direction. Due to this effect the voltage that appear on the conductor border

has its amplitude varying proportionally to that of the magnetic field crossing

the plate. On the other hand, in inductive sensors the emitter is a coil powered

by an alternating current, thus generating an oscillating magnetic field. The

receiver is also a coil, into which the emitted magnetic field induces a current.

The amplitude of the induced current varies with the magnetic field amplitude

[5].

Resonant sensors

A resonator is a mechanical structure designed to vibrate at a particular reso-

nant frequency. A resonant sensor is designed such that its natural frequency is

a function of the physical variable of interest. This physical variable typically

alters the stiffness, mass, or shape of the resonator, hence causing a change in

its resonant frequency. Resonators can be fabricated in micron-sized dimen-

sions using various micromachining processes and having very stable resonant
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frequencies [6]. Due to its stability some resonators can be used as a time base

element or as the sensing element in a resonant sensor. In a well-designed

resonator the resolution can easily reach 1 part in 108, which is at least three

orders of magnitude higher then a piezoresistive and capacitive sensor. How-

ever, the fabrication of such devices is more complex and the requirements for

packaging such devices are extremely demanding.

2.2 Previous research in MEMS strain and pressure

sensors

Previous work in the area of sensors for the measurement of strain and pressure

has used mostly capacitive and piezoresistive sensors, and less often optical

and resonant devices. A lot of research has been done in the past, for example,

on the development of fluid shear stress sensors which were mainly used

in aerodynamics for flow measurements [7] and in composite materials to

determine the stress [8, 9]. More recently, there has been a growing interest on

measuring the pressure exerted by the limbs and prosthesis. [10]. This section

will provide an overview on MEMS strain and pressure sensors.

2.2.1 MEMS pressure sensors

The literature contains several references to the application of MEMS for the

measurement of strain and pressure. Much of the early development on bulk

micromachined silicon, diaphragm-based, sensors was performed at Motorola

[11]. These were silicon diaphragm-based MEMS pressure sensors for the sens-

ing of gas and liquid pressures. These devices consist of single sensors and

are primarily designed to measure the air pressure in automobile tires or the

pressure in a compressed gas cylinder or lines. They may have piezoresistive

strain gauges implanted in the membranes or measure the capacitance be-

tween the diaphragm and the surface below. Recently, MEMS pressure sensors

are approaching maturity for some applications in automotive industry and

aerospacial [12, 13].

Pressure is one of the important parameters to diagnose many diseases in body.
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Since much of our body is a complex system which consist of pumps, valves,

vessels and interconnects, pressure sensors can be used to measure blood pres-

sure, bladder pressure and cerebral spinal fluids. With help of MEMS or NEMS

technology the size of pressure sensor inserted in the body can be made small

and disposable. A commercially successful low cost disposable medical pres-

sure sensor was developed by General Electric (NovaSensor medical pressure

sensor NPC-100 - Fig. 2.1). In these sensors, generally silicon micromachined

sensing element can be used to complete the industry requirements such as

sensitivity and linearity. Recently, MEMS based absolute micro pressure sensor,

functioning on the principle of piezoresistive effect, has been designed and

fabricated [14], which could be used as a blood pressure sensor.

Figure 2.1: NovaSensor medical pressure sensor NPC-100. http://www.ge-
mcs.com/en/pressure-mems.html.

2.2.2 Micromachined strain sensors

Microfabricated systems consisting of layers of thin films of various materials

deposited under a variety of thermal conditions are subject to distortion due

to coefficient of thermal expansion (CTE) mismatch effects. Residual strain

existing in the thin films affects the device performances and is one of the most

common properties to be characterized. Damage to microdevices may be caused

by unacceptably high residual strains by buckling or warping, or other damage.

A measurement device to monitor and characterize residual strain during

microfabrication is crucial for sensitive applications. These sensors decrease
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required die size and may simplify integration with electronics, however at the

cost of reduced sensitivity and reproducibility of mechanical properties [15]. A

vernier mechanical amplifier approach has been developed by Lin and Pisano

from University of California at Berkeley whereby surface residual stress causes

movement in a surface micromachined lever [16]. More recently, this concept

for measuring chip surface strain in air was extended by the Berkley researchers

using a double ended tuning fork resonant technique capable of nanostrain

resolution [17].

2.2.3 Robotic tactile sensors

Researchers in the field of robotics have been interested in developing tactile sen-

sor arrays to determine the forces exerted by robotic grippers, tele-operational

manipulators, and haptic interfaces. A group of researchers at Stanford Uni-

versity led by Prof. Gregory Kovacs has developed a tactile sensing array

for such an application. This array was fabricated on a silicon wafer using

CMOS-compatible fabrication processes, uses four piezoelectric sensors per

array element, and includes digital control circuitry fabricated in conjunction

with the sensor elements [18]. Researchers at the University of Illinois have

developed a polyimide-based, flexible sensor array with nickel-chrome resistors

capable of measuring normal displacements [19]. Recently, the University of

Tokyo has developed a single-axis, flexible, pressure-sensing array based on

organic field-effect transistors for artificial skin applications [20]. A picture of

such device is presented in Fig. 2.2 An extensive review on the subject can be

found in [21].

2.2.4 Orthopedic load determination

The ability to determine in vivo forces is necessary in order to predict the perfor-

mance of new orthopedic implant designs, to determine the effects of orthopedic

procedures and surgical parameters, and to understand the biomechanics of

the limbs. Studies employing instrumented prosthetics and incorporating data

telemetry produce the most direct method of determining implant loads. In the

past, these devices were expensive and not approved for use in a wide range
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Figure 2.2: single-axis, flexible, pressure-sensing array based on organic field-
effect transistors for artificial skin applications [20].

of subjects [22]. The first use of telemetry to measure hip forces measured

peak loads of 2.56 times body weight during gait, but published data is not

extensive [23]. Another pioneer of in vivo force sensing using telemetry was

German researcher Georg Bergmann. Bergmann has published research on hip,

spine and knee loadings using strain gauges. A picture of a knee instrumented

prosthesis is shown in Fig. 2.3. The instrumented prosthesis is powered using

an inductive coil, and the measurements are sent to a personal computer using

an RF telemetry system [24]. The power for this system is transmitted inside

the limb using an inductive coil worn around the patient’s leg during testing.

Similar research has been performed by Davy and Kotzar where they implanted

a hip prosthesis in two patients that measured peak loads of 2.1 - 2.8 times

body weight during gait and a maximum value of 5.5 times body weight during

periods of instability during single leg stance [25].

The earliest work on measuring femoral loads was an extrapolation of the work

performed on hip implants using massive femoral implants. Bassey, Littlewood,

and Taylor instrumented a titanium implant which replaced the hip and the

proximal half of the tibia. This implant used four foil strain gauges bonded

to a proximal internal cavity in two half-bridge configurations and a distal,

intramedulary (inside the bone canal) extension to the prosthesis. The distal-

femoral, intramedulary extension was the earliest attempt to measure loading

near the knee joint. This implant was powered using inductive coupling and

allowed for the axial strain in the femoral prosthesis to be measured. Implant
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Figure 2.3: Knee instrumented prosthesis proposed by Bergmann’s group.
http://jwi.charite.de/en/research/.

forces were measured at 2.5 up to 4 times body weight during for jumping

activities, 1.2 times body weight for treadmill gait activities, and about 1.4 times

body weight for stair climbing and descending activities [26].

Darryl D’Lima and Clifford Colwell have recently published information regard-

ing a tibial prosthesis instrumented with strain gauges and telemetry. This was

a ten-year project performed in collaboration with several industrial partners.

For this project, a tibial tray was modified by DePuy and instrumented by Mi-

crostrain, Inc. and Kenton Kaufman of NK Biotechnical [27]. The portion of the

tibial tray comprising the tibial plateau was modified to function as a load cell

(Fig. 2.4). The tray was separated into upper and lower halves connected by four

short rods. Material was removed from areas in the lower portion of the tray to

form four diaphragms, and strain gauges were attached to these areas, which
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resemble four load cells at the anteriomedial, anteriolateral, posteriomedial,

and posteriolateral corners of the implant. The hollow portion of the stem of

the tibial tray enclosed the electronics for this system. This system was powered

using inductive coupling, and power was transmitted using a coil worn around

the leg of the subject. This device appears to have been fabricated using off-the-

shelf surface-mount electronic components [28]. In a recent publication on the

follow-up of the implantation procedure, they showed peak forces during gate

averaged 2.2 times body weight. Stair climbing averaged 1.9 times body weight

six days following the procedure and increased to 2.5 times body weight six

weeks following the initial procedure [29].

Figure 2.4: Knee instrumented prosthesis proposed by D’Lima [28].

2.2.5 MEMS strain and pressure sensors summary

Previous researchers investigating miniaturized sensors for the measurement of

strain, pressure, and displacement have performed excellent work. However,
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in the case of MEMS devices mentioned, the measurement range has been

several orders of magnitude smaller than those required for the measurement

of orthopedic loads. Also, previous work on orthopedic load determination,

despite being extensive, has not provided a pathway to low-power long-term

exchangeable biocompatible implantable sensors for measuring the dynamic

loads in orthopedic components.

2.3 Stress/Strain measurements

The terms stress and strain are used to describe loads on and deformations

of solid materials. The description of stress/strain is simpler in a solid that is

homogenous and isotropic. Homogeneous means that the material properties

do not differ at different locations and isotropic means the material properties

are independent of direction in the material.

The concepts of stress and strain are introduced in the context of a long homo-

geneous isotropic bar subjected to a tensile load. The stress σ is the applied

force F divided by the cross-sectional area A0. The resulting strain ε is the

length change ∆l divided by the initial length l0. The bar elongates in the direc-

tion the force is pulling (longitudinal strain ε l) and contracts in the direction

perpendicular to the force (transverse strain εt).

A good way for describing stresses is by means of the method of analysis used

in the mechanics of materials, assuming the equilibrium of forces. Therefore we

have:

ΣF = 0 (2.1)

F − σA0 = 0 (2.2)

σ =
F

A0
(2.3)

where engineering (average) stress can be calculated by dividing the applied

tensile force (normal to the cross section) by the area of the original cross-
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sectional area. In this description the following stress convention is used:

tensile stresses are positive and compressive stresses are negative.

As the applied force F increases, the length l also increases. For a force increase

∂F, the length l increases by ∂l. The normalized (per unit length) increase in

length is defined by the following equation following equation:

∂ε =
∂l
l0

(2.4)

Upon integration of the equation above the engineering (average) strain in the

direction of the tensile load can be found by dividing the change in length, ∂l

by the original length l0,

ε =
∫ l

l0

∂l
l0

=
l − l0

l0
(2.5)

The sign convention for strains is the same as that for stresses: tensile strains are

positive, compressive strains are negative. When the strain is reasonably small,

several solid materials behave like linear springs; that is, the displacement is

proportional to the applied force.

Elastic material properties are defined in terms of stress and strain. In the linear

range of material response, the stress is proportional to the strain, following

Hooke’s law. This law postulates the stress varies linearly with strain, and the

Young’s modulus E may be determined from the slope of a stress-strain curve

or by dividing stress by strain,

E =
σ

ε
(2.6)
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Several types of sensors are used to measure strain, e.g. piezoresistive and

piezoelectric sensors. Each type of sensor requires its own specialized signal

conditioning. Selection of the best strain sensor for a given measurement is

based on many factors, including specimen geometry, temperature, strain rate,

frequency, magnitude, as well as cost, complexity, accuracy, spatial resolution,

time resolution, sensitivity to transverse strain, sensitivity to temperature, and

complexity of signal conditioning [2].

2.3.1 Strain gauges

Strain gauges transduce a mechanical signal into an electrical one by measuring

the change in resistance of a strained metallic conductor. The stress acting on

the strain gauge (area = A, length = L, resistivity = ρ) will cause the strain

gauge to either elongate or shorten, inducing the change of resistance according

to the equation below.

R =
ρL
A

(2.7)

∆R
R

=
ρ

A
∆L
L

(2.8)

The quantity ∆L/L is a measure of the strain applied to the strain gauge, and is

usually expressed in microstrains (1 µε = 106m/m).

Piezoresistive foil and wire gauges comprise: a thin insulating/encapsulating

substrate (usually made of polymers), a foil or wire grid (usually made of

metallic components) bonded to the substrate, and lead wires to connect the

grid to a resistance measuring circuit. The grid (wire meandering) is typically

made in a single direction so that strain will stretch the meandering strip of the

strain gauge in the length direction (parallel to the direction of the meandering

strip). The gauges are designed so that strain in the width (transverse direction)

can be neglected. This makes the strain gauge sensitive to strain along its length.

A typical metal foil strain gauge is depicted in Fig. 2.5.
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Figure 2.5: Strain gauge.

When piezoresistive foil or wire strain gauges are bonded to a specimen and the

specimen is strained, the strain gauge strains as well. The resistance change is

related to the strain by a gauge factor or strain factor of a strain gauge defined

by equation 2.9, the ratio of relative change in electrical resistance to the applied

strain ε, which is the relative change in length, and a dimensionless quantity.

GF =
relative change in electrical resistance

applied strain
=

∆R
R

∆L
L

=
∆R
R
ε

(2.9)

In practice, the resistance is also dependent on temperature. The total effect

is given below, with α being the temperature coefficient and ∆T being the

temperature change.

∆R
R

= GFε + α∆T (2.10)

Strain of piezoresistive materials produces a relative resistance change. The

resistance change is the result of changes in resistivity and dimensional changes.

Consider a single leg of the grid of a strain gauge with a rectangular cross-
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section (Fig. 2.6).

Figure 2.6: A single leg of a piezoresistive gauge is used to explain the source
of the relative resistance change that occurs in response to strain.

Assuming this block is made of resistive material then its resistance is given by

the equation below,

R =
ρl
A

=
ρl
wt

(2.11)

where ρ is the bulk resistivity of the material (Ωcm), l is the length, and A is

the cross-sectional area (i.e., the product of width w and thickness t).

Differentiating the equation above gives

∂R =
l

wt
∂ρ +

ρ

wt
∂l − ρl

w2t
∂w − ρl

wt2 ∂t (2.12)

hence

∂R
R

=
∂ρ

ρ
+

∂l
l
− ∂w

w
− ∂t

t
(2.13)
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By definition, ε = ∂l/l, so the following equations apply in the assumption we

are dealing with small changes, and hence ∂l = ∆l, ∂w = ∆w, and ∂t = ∆t:

∆w
w

= εw = −νε (2.14)

∆t
t

= εt = −νε (2.15)

where ν is Poisson’s ratio. The minus signs indicate the width and thickness are

both under compression. The Poisson’s ratio is a measure of the Poisson effect

happening when a material is expanded in one direction; it usually tends to

contract in the other two directions perpendicular to the direction of expansion.

Therefore, the relative resistance change is given by the following equation:

∆R
R

=
∆ρ

ρ
+

∆l
l
(1 + 2ν) (2.16)

The contribution to the overall resistance change can be found in terms of

strain using the elastic constitutive law [30]. The results lead to an elastic

gauge factor just over 2 for microfabricated strain gauges, since the geometric

effect dominates the piezoresistive effect. If the applied strain is too large,

the foil or wire in the gauge will experience plastic deformation. When the

deformation is plastic, the resistivity change is negligible and the dimensional

change dominates. When metals undergo plastic deformation, they do not

unload to the initial strain. This shows up as hysteresis in the gauge response,

that is, upon withdrawing the load, the resistance does not return to its initial

value.

2.3.2 Measuring force and pressure

Strain gauges are devices commonly employed to measure pressure and force.

However in order to obtain an accurate and reliable data from the measurements
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the strain gauge needs to be properly installed, placed satisfying the sensor

geometry requirements, and calibrated. A block diagram of this process is

shown in Fig. 2.7. The strain gauge measures force indirectly by measuring

the strain due to the deflection of a calibrated carrier (e.g., parts such as torque

shafts, crankshafts, gears, bearings, balances, and membranes). Pressure can

also be converted into a force using transducers, meaning that strain gauges can

be used to measure pressure. A range of sensing elements designed to deform

under applied pressure can be fabricated using micromachining techniques, the

most common by far being the diaphragm. The performance the device will

depend upon the behavior of the sensor element, the influence of the material

from which it is made, and the nature of the transduction mechanism. Another

important aspect of such devices that define the most appropriate type of sensor

for a particular application are the specifications (e.g. operating range of the

sensor and temperature drift).

Figure 2.7: Block diagram of force/pressure sensor components.

2.3.3 Electronic interfacing - The Wheatstone bridge

The Wheatstone bridge offer a good method for measuring small changes in

resistance. It was named after the inventor Charles Wheatstone for being the

first to use this configuration for performing highly accurate measurement of

electrical resistance. The basic Wheatstone bridge consists of four resistors

connected in a square circuit, as shown in Fig. 2.8, and the bridge equation is

presented below.

Voutput =

[
R4

R4 + R3
− R2

R1 + R2

]
Vinput (2.17)

For a system employing the Wheatstone bridge the deviation of one or more

resistors in the arrange will affect the output voltage. Due to the usually small
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Figure 2.8: Basic Wheatstone bridge.

resistance changes, the output voltage change may be as small as tens of milli-

volts, therefore signal conditioning are generally used coupled with Wheatstone

bridges. The changes in resistance, in the majority of the applications, is an

indirect indication of the magnitude of the variable under investigation (e.g.

force). The relative resistance change of a piezoresistive gauge is generally

measured using such Wheatstone bridge, and by calibrating the Wheatstone

bridge it is possible to measure small changes in resistance relative to an initial

zero value, allowing measurements with better resolution.

There are four commonly used Wheatstone bridge configurations suitable for

sensor applications. These configurations are presented in Fig. 2.9 (A to D)

as well as the equations relating the bridge output voltages to the excitation

voltages and the bridge resistance values [31]. The Wheatstone bridge is also

a versatile electronic circuit since it can be used to directly cancel the effect of

thermal drift. For example, by using two or four strain gauges in a Wheatstone

bridge its possible to minimize the effect of temperature. With all strain gauges

in a bridge at the same temperature and mounted on the same material, any

changes in temperature will likely to affect all gauges in the same way. Because

the temperature changes are identical in the gauges, the ratio of their resistance

does not change, and the output voltage of the gauge does not change.

In certain application, such as force and pressure measurements, the Wheat-

stone bridge is used to provide a highly sensitive output from transducers
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Figure 2.9: Four commonly used bridge configurations suitable for sensor
applications [31].

(when using transducers as one or more elements of the Wheatstone bridge).

Considering the full-scale outputs of such devices are small voltages, currents,

or resistance changes, it is required that the output signals to be conditioned

before any performing analog or digital processing. These circuits are known

as signal-conditioning circuits. Examples of such circuits are amplification,

linearization, and filtering. However, the performance of the sensor will mainly

depend on the electrical character of the sensor and its output.

Signal conditioning

There exist many data acquisition boards and units that can be readily inter-

faced to a computer, providing analog and digital inputs and outputs, however
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it is still necessary to use signal-conditioning circuitry to either drive a MEMS

device or to amplify and filter the signal received from a sensor. The challenge

of selecting the right amplifier for a particular signal-conditioning applica-

tion is complicated by the wide selection of processes, architectures, and such

amplifiers. One of the most used amplification devices is the instrumenta-

tion amplifier, which is a type of differential amplifier that eliminate the need

for input impedance matching due to the additional input buffers making

the amplifier particularly suitable for use in situations in which a differential

measurement is preferable to an absolute measurement. The instrumentation

amplifier configuration is basically a closed-loop gain block, which is single-

ended with respect to a reference terminal (Fig. 2.10). The input impedances

are balanced and have high values. Unlike an operational amplifiers an instru-

mentation amplifier uses an internal feedback resistor network that is isolated

from its signal input terminals. An important aspect of the instrumentation am-

plifier is that it is capable of amplifying microvolt signals, while simultaneously

rejecting volts of common mode signals of its inputs.

Figure 2.10: Instrumentation amplifier schematics.
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2.4 Release and Detachment

At the end of the fabrication process the devices need to be detached without

damage from the fabrication support in order to be used. Device detachment

has been extensively studied since it is a common and repetitive problem in

micromachining. Many detachment or release procedures involve the use of a

sacrificial material, which can be removed by wet chemical etching, dissolution

in an appropriate solvent, dry etching or heating. A wide variety of sacrificial

materials have been demonstrated for microstructure detachment, such as

silicon-based materials, metals, photoresists, and polymers [32]. The major

problem with sacrificial materials is that for releasing large devices the under

etch distances are very large and the structures might be exposed to the etchant

for a considerable amount of time and decrease the yield. In flexible polymer-

based devices, structures can be detached by using a special surface treatment on

the fabrication support, by using the crack propagation at the interface between

the fabrication support and the flexible device, and by using different kinds

of sacrificial materials. In the case of polyimide-based devices an interesting

method for the detachment of microfabricated structures is the anodic metal

dissolution of an Al sacrificial layer in a saline solution.

2.4.1 Anodic dissolution

Anodic metal dissolution is based on the principle of electrochemical metal

removal from the working electrode, which constitutes the anode in an elec-

trolytic cell. A non-toxic salt solution is used as electrolyte and an external

current is applied to control the material removal rates. Several metallic films of

interest in the microelectronics industry can be anodically dissolved in neutral

salt solutions (e.g. sodium chloride), allowing for an environmentally friendly

fabrication procedure [33]. Aluminum is well suited as sacrificial layer and it is

fully compatible with the clean room process. In order to perform an anodic

dissolution of Al a potential of at least 0.7 V is applied to the electrochemical

cell so that the dissolution of Al occurs at reasonable speed. Another important

aspect is the selection of an appropriate metal as cathode and anode back

electrode that is stable at a potential needed for Al dissolution (0.7 V), other-



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY 34

wise contaminants might pollute the system and prevent its usage, specially

in biomedical applications. To avoid such problems Pt and W:Ti10% can be

used as cathode or anode back electrode since they are known to be stable

material that are not easily dissolved by chemicals used during microsystems

fabrication.

The schematic of an electrochemical cell used for the anodic dissolution of Al

and detachment of polyimide-based microdevices is presented in Fig. 2.11. In

this process the wafers with the devices to be released are immersed into a

saturated NaCl solution. A constant positive potential of 0.7 V is applied to the

aluminum layer by a voltage supply while another wafer with sputtered plat-

inum layer is used as counter electrode. After the detachment, the microdevices

become available in the electrolyte solution and can be retrieved for subsequent

rinsing and drying.

Figure 2.11: Schematic of an electrochemical cell used for the anodic dissolution
of aluminum [33].

2.5 Finite Element Analysis

Finite Element Analysis (FEA) was first developed in 1943 to obtain approxi-

mate solutions to vibration systems and, shortly thereafter, in 1956 a broader

definition of numerical analysis was stablished in a scientific article centered

on the "stiffness and deflection of complex structures". By the early 70’s, FEA

expanded but was still limited to expensive mainframe computers generally
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owned by the aeronautics, automotive, defense, and nuclear industries. How-

ever, with the rapid decline in the cost of computers and the phenomenal

increase in computing power, FEA has been developed to to produce accurate

results for all kinds of problems.

FEA consists of a computer model of a material or design that is stressed and

analyzed for specific results by using numerical techniques for finding approxi-

mate solutions to partial differential equations. In solving partial differential

equations, the primary challenge is to create an equation that approximates the

equation to be studied, but is numerically stable, meaning that errors in the

input and intermediate calculations do not accumulate and cause the resulting

output to be meaningless. This method is often used in new product design,

and existing product refinement, since it is able to verify a proposed design

will be able to perform to the desired specifications prior to manufacturing or

construction. Also, FEA is employed in existing product or structure to help

determine the design modifications to meet new conditions.

There are generally two types of analysis: 2-D modeling, and 3-D modeling.

2-D modeling conserves simplicity and allows the analysis to be run relatively

fast to obtain information on the problem under investigation, however it tends

to yield less comprehensive results, since a level of abstraction is necessary to

understand the results. 3-D modeling, on the other hand, produces more com-

prehensive results while sacrificing the speed. Within each of these modeling

schemes, the programmer can insert numerous algorithms which may make the

system behave linearly or non-linearly, depending on the desired analyses that

need to be performed. Linear systems are far less complex and generally do

not take into account plastic deformation while non-linear systems do account

for plastic deformation, and can analyze a material all the way to fracture.

In spite of the great power of FEA, the disadvantages of computer solutions

must be kept in mind when using this and similar methods, since errors in

input data can produce wildly incorrect results that may be overlooked by the

investigator. Perhaps the most important function of theoretical modeling is

that of sharpening the designer’s intuition; users of finite element codes should
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plan their strategy toward this end, supplementing the computer simulation

with as much closed-form and experimental analysis as possible.

2.6 Biocompatibility

The importance of implantable devices in medicine is growing. Due to in-

creasing life expectancy, there is a increasing number of devices to monitor

the evolutions of disease conditions or even substitute deteriorating or failing

body parts. Examples of implants are orthopedic joint prostheses, cardiovascu-

lar devices, dental implants, brain implant and others. Implants do not only

comprises devices located inside de body, but also percutaneous devices, such

as catheters for the infusion of fluids.

The most external part of implants are made from materials that have a common

property: biocompatibility. Although biocompatibility is a difficult term to

define, it is strongly related to the success of an implanted device in fulfilling

its intended function while being harmless to the body. This implies that a

biomaterial used for the manufacturing of a medical device or a implant, that

is classified as biocompatible, cannot be used for the manufacturing of other

devices with different functions. Therefore, if the same biomaterial is used in

devices with different functions, extended tests and clinical trials are mandatory

in order to guarantee de device safety and obtain its usage approval from the

regulatory agencies.

For any new devices intended for use in vivo the biocompatibility has to be

evaluated at several different levels. A first level is to identify any acute reaction

that may immediate affect the host tissue. At a second stage it is necessary to

evaluate the longer-term responses of the host tissue caused by the prolonged

presence of the devices. Another important aspects to be evaluated during this

stage, for example, is whether such materials promote excessive coagulation

or elicit undesirable immunological responses. In applications in which non-

biocompatible materials are necessary, the devices can be alternatively coated

with some biomaterials in order to be used in vivo [33].
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CHAPTER 3
Selected Biomedical Applications

The art of medicine consists in amusing

the patient while nature cures the disease.

- Voltaire
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3.1 Orthopaedic surgery

Orthopaedic surgery is a branch of surgery concerned with injuries and dis-

orders of the musculoskeletal system. The early development of orthopaedic

surgery can be traced back to the usage of tourniquets and suturing of large

vessels for amputations, associated with the development of artificial limbs

using iron or wood. The modern orthopaedics is considered to have started

on the last century with the development of X-rays and also with the fact that

orthopaedics became a specialty in its own. Since then, the surgical techniques,

the tools for diagnosis and the instrumentation have been continuously im-

proved with the objective of obtaining predictable and satisfying outcome of

orthopaedic interventions. Nowadays, the large majority of the instrumenta-

tion for orthopaedic surgery consists in mechanical tools (e.g. saws, drillers,

and mechanical ancillaries) that provide the surgeon with instruments to at-

test morphological parameters of bones as well as to correct and repair bony

structure.

To improve the surgery outcome and the safety of orthopaedic interventions

sensors can be used to give real-time feedback to the surgeons in the operating

room. Despite of the great number os possibilities provided by the introduction

of "smart instrumentation" current systems are mainly limited to the control

of geometrical parameters while important biomechanical parameters such as

stress in soft-tissue or forces applied by the surgeon still remain unknown.

Measurement of forces with smart instrumentation and modified prosthesis can

therefore improve the quality of orthopaedic surgery.

Some of the benefits includes the detection of possible damage of healthy

tissues, force monitoring of surgical actions for optimal adjustment of soft-

tissue, assistance for optimal implant placement and lifetime monitoring of

prosthesis. To achieve a satisfying stability and improve the lifetime of the

prosthetic joint, the alignment of the bones and the forces experienced by the

surrounding soft-tissue must be optimally corrected at the time of the surgery.

The intraoperative use of instrumented tools or specific force-sensing devices

embedded on the prosthesis could provide valuable measurements to assist



CHAPTER 3. SELECTED BIOMEDICAL APPLICATIONS 42

the surgeon in optimally balancing the soft-tissue tensions as well as to give

reliable post-surgery feedback on the implant evolution.

3.1.1 Total knee arthroplasty

Total Knee Arthroplasty (TKA) is a widely used surgical procedure to replace a

damaged knee joint by an artificial knee implant with the main goal of relieving

the pain and restoration of motion [1, 2]. Total knee arthroplasty (TKA) is

nowadays a standard procedure for the treatment of degenerative diseases and

injuries at the knee joint, and due to the increase in population and life time

expectancy the number of TKA has been continuously increasing over the last

years [3]. Moreover the age at the time of primary TKA is decreasing therefore

it is critical to ensure operation success and to access the status of the artificial

knee implant along its lifetime aiming to minimize the possibilities of revision

surgery and to maximize the longevity of the implant [4].

Despite knee prostheses having been used for more the 100 years the intensive

development of TKA started around the 1950’s. Design limitations in those

early days included improper sizing, no provision for replacing the patello-

femoral joint, lack of rotational freedom and improper stem fixation. Design of

condylar knee replacement and polycentric knees were developed by the 1970’s,

while the 1980’s and 1990’s were spent for design improvements, thus allowing:

better fixation with or without cement; reduced wear; enhanced kinematics and

increased range of motion [5]. The standard modern artificial joint is composed

of three parts being two metallic parts (femoral and tibial components) and

a polyethylene inlay. Fig. 3.1 presents a modern artificial knee comprising

the Cr-Co-Mo femoral and tibial components, and an Ultra High Molecular

Weight (UHMW) Polyethylene (PE) insert, as well as an illustration of the knee

structure before and after TKA. In the current age of technological advances,

reproducing knee kinematics, minimizing wear and increasing range of motion

with proper alignment and stability have become the major goals of TKA.
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Figure 3.1: Modern artificial knee comprising the Cr-Co-Mo femoral and tib-
ial components and an Ultra High Molecular Weight (UHMW) Polyethylene
(PE) insert, and an illustration of the knee structure before and after TKA
(picture modified from A.D.A.M., Inc. - http://www.healthcentral.com/rheumatoid-
arthritis/9494-146.html).

Knee anatomy

The knee is the largest and most complex joint in the human body. It combines

two major functions: one allowing the transmission of large forces required

for stability supporting nearly three to four times the body weight during stair

climbing, or even higher forces during jumping that can reach fifteen times the

body weight, and a second providing a high degree of flexibility with a range of

motion of up to 140 ◦C in flexion. The combination of these two functionalities

is only possible throughout a perfect interplay between all the components of

the knee.

Fig. 3.2 presents the anatomy of the knee. The knee is a two-joint structure

composed of the tibio-femoral and patello-femoral joints. The bones of the knee

(femur and tibia) meet to the knee joint. The joint is protected by the patella in

the frontal part. It is also composed by an articular cartilage that wrap the ends

of the femur and the tibia, as well as the underside of the patella. The lateral

meniscus and medial meniscus are protections of cartilages that acts as shock

absorbers between the bones.

Ligaments help to stabilize the knee. The collateral ligaments (medial and
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lateral) limit the abduction-adduction rotation movements (medio-lateral trans-

lation from the tibia with respect to the femur). The anterior cruciate ligament,

or ACL, connects the tibia to the femur at the center of the knee and limits

rotation and forward motion of the tibia. The posterior cruciate ligament, or

PCL, limits backward motion of the tibia and it is located behind the ACL.

The patello-femoral joint consists of the femur and the patella, which is a flat

bone placed as a cap to the knee. The patella is held by the patellar tendon on

the tibial side and by the quadriceps, the most effective active knee stabilizers,

on the femoral side. The patellofemoral joint supports the extension of the knee

and works as a sagittal stabilizer. The patella is also a protection for the knee in

the frontal plane.

Figure 3.2: Anatomy of the knee. Reprinted from Tandeter H.B., Shvartzman
P., Stevens M.A.. Acute knee injuries: use of decision rules for selective radiograph
ordering. Am Fam Physician 1999; 60:2600.

All these components are the basis of the six degrees of freedom (DOF) motion

of the knee (Fig. 3.3). Three of these DOF are translations along the anterior-

posterior, medial-lateral, and inferior-superior axes defined at the joint, whereas

the other three DOF are rotations around each axis. Because of the deformable
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nature of joint soft tissues and the inherent laxity within joints, movement

occurs in all six DOF during physiologic motion (although most joints have a

limited number of DOF with a large range of motion).

Figure 3.3: The six degrees of freedom motion of the knee joint.

Alignment and stability

A successful TKA produces a well-aligned prosthesis with good ligament

balance. The success crucially depends on preoperative assessment of the

deformity and the soft-tissue situation (extrinsic stability), the correct choice of

implant (intrinsic stability), which also depends on the former, and the adequate

intraoperative treatment of the soft-tissue stabilizers.

It is possible to achieve excellent overall alignment and still fail to achieve

ligament balance. If the alignment is suboptimal, the distribution of the load

created by the body weight is not homogeneously distributed and may pro-

voke postoperative complications. Misalignment has four basic consequences:
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interface overload results in prosthesis loosening, lastic overload accelerates

prosthesis wear, ligament overload produces pain and/or limit overall motion,

and knee instability. By understanding the normal alignment of the human

knee, its relationship to normal ligament function and kinematics, and the

consequences of misalignment, the surgeon will be well positioned to achieve a

high degree of accuracy in both alignment and balance [6].

Implant constraint failures are the consequence of inadequate balance between

the given, intrinsic stability of the implant replacing a joint and the extrinsic

stabilization provided by the soft-tissues enveloping the joint. In the knee, the

stability of the joint is realized by a complex ligament structure. At the time of

arthroplasty, this stability must be reevaluated and, if necessary, corrected to

ensure a successful outcome. Although it is clear that the forces and moments

transmitted across the patello-femoral and tibio-femoral joints affect metabolism

of articular cartilage in the normal knee, and wear of joint replacements, very

little is known about the magnitude and direction of these forces in vivo. In

part, this is because the tools that are currently available permit only accurate

measurement of displacements and rotations in vivo; they do not permit quan-

tification of the forces and moments. A force-sensing device that can precisely

measure intraoperative medial-lateral imbalance of the compressive forces of the

knee joint could assist the surgeon in this delicate phase of ligament balancing.

This would guarantee an optimal distribution of the compressive forces, leading

to an increased lifetime of the prosthetic implants.

3.2 Cardiac Catheterization

The modern concepts of heart disease are based on the physiologic and anatomic

knowledge investigated in the past 70 years of experience in the cardiac catheter-

ization laboratory. The very first cardiac catheterization was first performed

in a horse subject, by Claude Bernard in 1844. By using an approach from

the jugular vein and carotid artery he was able to enter both the right and

left ventricles. Afterwards, investigation of cardiovascular physiology in ani-

mals was intensive followed, resulting in the development of many important

techniques and principles (e.g., pressure manometry) which looked for direct
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human application in patients with heart disease [7].

The development of catheterization continued in the 1950’s and 1960’s. The

percutaneous technique was developed in 1953, and was soon applied to cardiac

catheterization. Afterwards, the coronary angiography was modified for a

percutaneous approach in 1962, and already in 1970 catheterization was made

using a balloon-tipped catheter. The flow-guided catheter technique was also

developed in the 1970s thus enabling the application of catheterization outside

the laboratory environment.

As performed today, cardiac catheterization is a combined hemodynamic and

angiographic procedure undertaken for diagnostic and often therapeutic pur-

poses. The basic principle is that cardiac catheterization is recommended to

confirm the presence of a clinically suspected condition, define its anatomic and

physiologic severity. The most common indication for cardiac catheterization

today thus consists of a patient with an acute coronary ischemic syndrome (un-

stable angina or acute myocardial infarction) in whom an invasive therapeutic

intervention is necessary as well as for pressure monitoring in patients under

intensive care.

3.2.1 Pressure monitoring

Anesthesiologists and clinicians requiring accurate, continuous monitoring

of intravascular pressures such as those of radial artery, pulmonary artery,

and central vein regard direct measurement to be of fundamental importance.

Invasive vascular pressure monitors are systems designed to record, analyze

and display pressure information. There are a variety of invasive vascular

pressure monitors and they are commonly used in trauma, critical care, and

operating room applications for measurement and follow-up of arterial, venous,

atrial, and intracranial pressures.

Arterial blood pressure (BP) is most accurately measured when performed

invasively. Invasive arterial pressure measurement is performed by placing an

intravascular catheter into an artery (usually radial, femoral, dorsalis pedis or

brachial). The monitoring of arterial blood pressure is necessary to determine
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the "health" of the circulatory system. If blood pressure is too low it can lead

to things like fainting and can be a simple sign of dehydration, however if

combined with inactivity, the presence blood clots might investigated. Low

BP, is a medical concern only if it causes signs or symptoms, such as fainting

and dizziness, or when arterial pressure decreases beyond a certain point that

can prejudice the perfusion of the brain. If a high blood pressure is identified

it can lead to many complications including aneurysms, kidney damage, eye

damage and stroke, or even be an indication of certain tumors. High BP can be

an indicator of other problems that can lead to long-term adverse effects, since

it can damage the arterial walls due to mechanical stress. Higher pressures

increase heart workload and promote unhealthy tissue growth within the walls

of arteries, and persistent hypertension is a risk factors for heart attacks, heart

failure, arterial aneurysms and strokes, and it is also the leading cause of

chronic renal failure. Another condition possible to be identified with the

catheterization is the fluctuating blood pressure. If fluctuations are significantly

high it can be associated with reduced local cerebral blood flow and be an

indication of cerebrovascular disease.
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Smart Instrumentation for TKA

This Chapter is based on the following article:

W. Hasenkamp, et. al.,

"Smart Instrumentation for Determination of Ligament Stiffness and

Ligament Balance in Total Knee Arthroplasty",

Medical Engineering Physics (accepted).

The important thing in science is not so much to obtain

new facts as to discover new ways of thinking about them.

- Sir William Bragg

50



CHAPTER 4. SMART INSTRUMENTATION FOR TKA 51

4.1 Introduction

To maximize the surgical outcome, the TKA procedures rely on the surgical

principle of soft-tissue balance (or ligament balance) to manage post-operative

knee stability and mobility, and avoid early implant failure [1, 2]. Despite all

the efforts on developing the set of instruments for TKA, ligament balance is

still difficult to measure objectively during the operation, leaving its evaluation

much to surgeon experience, feel and opinion [3].

The ligament balancing in TKA has the objective of distributing the tibiofemoral

compressive forces symmetrically between the medial and lateral compartments

as well as to reestablish an equivalent tibiofemoral gap in both flexion and

extension [4]. Inadequate ligament balance can lead to unequal load distribu-

tion at the tibial-bearing surface consequently increasing prosthesis wear and

resulting in early surgical revision [5, 6]. Ideally an instrument that measures

simultaneously tibiofemoral forces and flexion-extension gaps could assist sur-

geons to determine the optimal balance for the artificial knee. Also, it could

provide information in order to the surgeon perform corrections on the liga-

ments to restore some laxity characteristics similar to the natural intact knee

[7]. Also a device that allows the determination of the soft-tissue biomechanical

properties, such as ligament stiffness, can contribute a better understanding of

the intrinsic mechanical behavior of the individual knee joint and benefiting

the post-operative outcome [8].

To help improve ligament balance a number of techniques and devices have

been developed for assessing soft-tissue stiffness (i.e. distractor, tensers, spacer

blocks, trial components, electric instruments, and navigation system) [1, 7, 9–

14] but, to the best of our knowledge, there are no TKA instrumentation that

simultaneously allow a manual loading control by the surgeon while providing

tibiofemoral force measurement and flexion-extension gap information. In fact,

previous devices are either autonomous, making it impossible for the surgeon

to experience a direct force feedback of the measurement, or they are manually

controlled and provide rudimentary quantitative information.

This chapter is dedicated to describe the development and test of a smart
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instrumentation for TKA. The approach is to expand the capabilities of a

standard manual distractor provided by Symbios Orthopédie SA, currently used

in orthopedic surgery, while maintaining the instrument shape and usage. The

concept is based on the description of a similar tool used in human lumbar spine

surgery [15]. The modified distractor allows the measurement of tibiofemoral

forces and flexion-extension gaps during the TKA procedure, and estimation of

ligament stiffness.

4.2 Materials and methods

The specifications of the device were defined in a collaboration with surgeons

and consist of force measurement independent of the surgeon’s hand position

on the distractor and of the position of the applied load in the tip of the tool,

displacement measurement ranging between 13 mm and 27 mm with accuracy

of 0.1 mm and force assessment up to 500 N with accuracy of 2 N. The first

specification provides the practitioner a freedom to operate, while maintaining

the measurement reliability. The force and displacement accuracy are also

important in order to provide measurements within expected readouts from

the knee structure.

The distractor to be modified was provided by Symbios Orthopédie SA (Switzer-

land) and is part of the current instrumentation set provided to the hospitals

to perform a TKA. The distractor’s prototype is presented in Fig.4.1 and it

is capable of continuous and real-time measurements of tibiofemoral forces

and flexion-extension gaps. Our method for measuring tibiofemoral forces

is to detect mechanical deformations in the distractor, and for measuring the

flexion-extension gap, to track the distance between the tips of the distractor.

The detection of mechanical deformations is made by strain gauges. The

strain gauge positioning on the distractor was chosen based on finite element

analysis (FEA) performed with the current distractor’s shape and material

properties. Also, the position of the strain gauges was chosen to minimize the

dependency of the force on the variable position of the hands of the surgeon

on the distractor handles and on the position of the applied load in the tip of
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Figure 4.1: Instrumented distractor prototype capable of continuous and real-
time measurements of (A) tibiofemoral forces and (B) flexion-extension gaps.

the tool (Fig.4.1A). The strain gauges are connected to a Wheatstone bridge in

a half-bridge configuration (Fig. 2.9B). The half-bridge configuration is used

to compensate for overall temperature drifts and it’s resistance is a standard

120 Ω. The Wheatstone bridge is powered with 2.5 V and the output signal

amplified using an instrumentation amplifier INA 114 (Texas Instruments).

In order to measure displacement an off-the-shelf Hall sensor (Asahi Kasei Mi-

crodevices Corporation, HW-322B) is positioned on one shaft of the instrument

in front of a magnet positioned on another shaft on the opposite side (Fig.4.1B).

The Hall sensor is powered with a transconductance amplifier which provides a

constant current of 10 mA. This configuration was chosen to provide a reliable

measurement of the Hall sensor signal output. The signal output is connected to

another instrumentation amplifier INA 114. Both signals from the strain gauges

and the Hall sensor are sampled to a computer with a National Instruments

data acquisition board (NI-6259). For displaying real-time measurements a
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LabView (National Instruments) interface was used.

The instrumented distractor calibration consists of a semi-automated procedure.

The displacement sensor is calibrated after assembly to the distractor. It is

performed once and the data saved to file which will be used to extract the

coefficients based on a third order exponential decay curve fit. The strain sensors

are initially calibrated using a load cell and afterwards, mainly due to drift,

necessary corrections can be performed using shunt resistors. Shunt calibration

is a standard method accepted throughout the industry as means of periodic

calibration of signal conditioners and transducers. The signal conditioner’s

gain and span controls are set to obtain a full-scale electrical output signal.

The shunt calibration procedure is short and simple but it must be performed

before each surgical procedure to ensure the accuracy of the instrument and

the measurements reliability.

Once the distractor is calibrated, it can be used for measurements. During the

measurement, the surgeon can see the force and displacement values on the

computer screen through the Labview interface. The surgeon can manually set

the ligament balance with the help of his expertise and feeling as well as the

displayed values. This manual control provides a safe surgical procedure since

the measurement can be stopped at any time by the surgeon.

4.3 Results

In order to perform the calibrations and test of this device, the distractor tip

(part will be in contact with the bones) was fixed to a bench such that the

instrumented arm was free to be operated. The Hall sensor calibration was

performed statically using a digital caliper fixed to the tip of the distractor

while the signals were sampled to the computer. The calibration curve, distance

measured by the caliper as a function of the voltage output of the Hall sensor,

and the achieved fitting is shown is Fig.4.2. The fitting was performed with a

third order exponential decay function (residual sum of squares = 0.0802 mm

and adjusted R-square = 0.9998) and the extracted coefficients updated in the

Labview algorithm for real-time calculation of the displacement. For large
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displacements (average 25.3 mm) the standard deviation was 1.6 × 10−2 mm

and for small displacements (average 15.3 mm) the standard deviation was

2.9 × 10−4 mm.

Figure 4.2: Data acquired for the static calibration of the Hall sensor represented
by the dots and the third order exponential decay fit to the data represented by
the line. The graph presents the distance as a function of the voltage output of
the Hall sensor. Error bars are plotted, however they are not visible because it
is within the size of the black dots.

The calibration of the strain gauges was performed statically with a load cell

positioned at the tip of the distractor. The calibration curve, force output given

by the load cell as a function of the voltage output of the Wheatstone bridge

after amplification, and correspondent fitting is presented in Fig. 4.3. The

fitting was performed with a linear function (residual sum of squares = 7.808 N

and adjusted R-square = 0.9995) and the extracted coefficients also updated

in Labview for automatically converting voltage into force. For small forces

(average 36.3 N) and higher forces (average 399.5 N) the standard deviation

was 1.13 N and 1.95 N, respectively. The precision of the measurement for both,
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displacement and forces, are in accordance with de desired specification for the

distractor.

Figure 4.3: Data acquired for the calibration of the strain sensors to transduce
the force represented by the star points and the correspondent linear regression
to the data. The curve presents the Force as a function of the output of the
Wheatstone bridge. Error bars are plotted, however they are not visible because
it is within the size of the star points.

To assess the suitability of the device for the purpose of ligament balancing,

a control experiment with a spring simulating the ligaments was performed.

The spring (with a spring constant of 13 N/mm) was fixated to the tip of

the distractor and a series of dynamic movements of opening and closing the

instrument was completed. The measurement was repeated several times with

the spring attached to the tip of the distractor to assure repeatability of the

load readings. The measured displacement and forces are presented in Fig. 4.4

showing the force as a function of distance. As expected, when loading the

instrument to distract the spring the force increases linearly with the distance,

with a measured spring constant of 13.1 ± 0.34 N/mm. The shift in the curve for

unloading is a consequence of the mechanical friction imposed by the distractor



CHAPTER 4. SMART INSTRUMENTATION FOR TKA 57

construction. Overall the measurements demonstrate the device suitability for

estimating the force and distance and can assist surgeons when performing

ligament balance during the TKA.

Figure 4.4: Control experiment with a spring attached to the tip of the distractor.
The graph shows the force as a function of the distance.

4.3.1 In vitro measurements

After approval of the local ethical committee we were able to test the device

in vitro, in two cadaveric legs. The goal was to prove the device concept and

verify if the acquired parameters were in accordance with expected stiffness

values for medial collateral ligament (MCL) and lateral collateral ligament

(LCL). The measurement protocol consisted of distracting the MCL and LCL

7 to 10 consecutive times by controlling the loading and unloading rate while

recording the force and distance. Fig. 4.5 shows the recorded signals, force and

distance, as a function of time for one of the experiments. Each measurement

was repeated 3 times for each compartment (medial and lateral) and took about

1 min.
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Figure 4.5: Experiment for determining the ligament stiffness which consists of
recording the force and distance in a series of consecutive loading and unloading
of the distractor. The graph presents the measured Forces and distances as a
function of the time.

Two ex vivo measurements are presented in Fig. 4.6. The graph shows the force

as a function of the distance for determining the stiffness of a MCL for the two

cadaveric legs. The stiffness can be estimated by the slope of a linear regression

fitting the data. The results from the ex vivo experiments to determine the

ligament stiffness are summarized in Table 4.1 together with recently reported

MCL and LCL stiffness [8]. They represent the average and standard deviation

of three consecutive measurements performed in each compartment (medial

and lateral) for the two cadaveric legs.

4.4 Discussions

In this application of MEMS to medical instrumentation we sought to provide a

ligament balance tool to be used during TKA surgery. A commercially available

TKA distractor has been instrumented with sensors to indicate distraction forces
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Figure 4.6: Results of two ex vivo experiment for determining MCL stiffness.
The graph presents the Force as a function of the distance. The stiffness of the
ligament can be estimated by the slope of a linear regression fitting the acquired
data.

Table 4.1: Summary of the results from the two ex vivo experiments to determine
the ligament stiffness and previous reported MCL and LCL stiffness [8].

Experiments Ligament Stiffness [N/mm]

Cadaveric leg 1 MCL 62.7 ± 1.37
LCL 57.6 ± 1.43

Cadaveric leg 2 MCL 47.5 ± 2.29
LCL 40.1 ± 1.94

Reported values [8] MCL 63 ± 14
LCL 59 ± 12

and displacement. TKA imposes significant demands on ligament balance to

stabilize the artificial knee [6]. The difficulty in judging ligament balance and

excessive tightness or release may lead to knee instability leading to abnormal

motion that increase prosthesis wear and can result in early surgical revision

[5]. In order to simulate the environment encountered by the surgeons we have
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tested the device using spring to simulate the ligaments and characterized the

distractor behavior during dynamic loading and unloading. Also the distractor

was tested ex vivo in two cadaveric legs. The knee is a complex joint, and there

are many factors that can affect the measurements, however the determined

ligament stiffness are in accordance with recent studies performed in dissected

medial collateral ligament (MCL) and lateral collateral ligament (LCL) [8]. The

small discrepancy (smaller values of MCL and LCL) observed in Table 4.1 for

the "cadaveric leg 2" is attributed to the storage conditions of this particular

cadaveric leg. However, the values are still close to the lower boundary deviation

expected for MCL and LCL ligament stiffness. We believe that the procedures

followed during the in vitro tests do not differ significantly from what the

surgeon will encounter during TKA.

There are several limitations in the current study, i.e. static calibration and shifts

imposed by the mechanical friction, but results demonstrated that the distraction

gap can be measured reliably and with 0.1 mm accuracy. The distractive loads

could be assessed accurately in the range of 2 N, attending the desired surgeon

specification for such device. Also, loads as high as 300 N can be measured

and are within the linear range of the instrument. The ligament behavior of

the knee can be quantified by measuring the tibiofemoral force in the medial

and lateral ligaments. Despite the lack of a gold standard for ligament balance,

meaning how strong the tension of soft-tissue in total knee arthroplasty is made

with respect to the distraction, it would be very helpful if a set of numerical

values could be determined that would serve as a reference for the appropriate

soft-tissue balance in total knee replacement. Considering the errors, given

by the manual operation of the distractor in the ex vivo experiments, it can

be stated that the ligament stiffness could be assessed with good reliability.

The developed tool provides surgeons with data to assist their intra-operative

decisions and we believe it can help to improve the implantation technique

to increase TKA post-operative results. Also, such tool can be of great help

if introduced during training of young surgeons to improve their learning

experience by having a quantitative feedback of their correspondent feeling.

Before being tested in vivo, we need to establish the measurement protocol and
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test the robustness and durability of the device. Also the inclusion of a passive

telemetry system is being studied which we believe will improve the usage of

the device. We are also addressing technical issues of autoclave sterilization,

storage and manufacturing costs.

4.5 Conclusion

Extending the capabilities of current available surgical instruments is a ver-

satile and easy way to improve surgical outcome without changing surgical

procedures or impose to surgeons new surgical techniques. In contrast with

the existing ligament balance tools the developed instrumented distractor al-

lows a manual loading control by the surgeon while providing both real-time

measurements of tibiofemoral forces and flexion-extension gaps. The determi-

nation of ligament stiffness could also be achieved with good reliability. The

quantification of such parameters can possibly contribute to validate the way

surgeons implant prosthesis at the same time that it can provide useful in vivo

information for a better understanding of the complex knee joint.
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Strain Sensors for Knee Prosthesis

This Chapter is based on the following article:

W. Hasenkamp, et. al.,

"Design and Test of a MEMS Strain-Sensing Device for Monitoring

Artificial Knee Implants",

Biomedical Microdevices (submitted).

Never leave that till tomorrow

which you can do today.

- Benjamin Franklin

64



CHAPTER 5. STRAIN SENSORS FOR KNEE PROSTHESIS 65

5.1 Introduction

The knee is a complex joint that is difficult to model accurately, however

mathematical models are commonly used as initial screening tools for evaluating

the prosthesis design. Finite Element Analysis (FEA) is the most frequently used

technique to evaluate the artificial implants, mainly to investigate the influence

of load application and identify fragile regions to avoid premature prosthesis

failure [1]. If FEA contributes to extend the life of the orthopedic implant other

factors significantly impact on the prosthesis lifetime. Several different artificial

knee implant designs are commercially available but misalignment, leading to

knee imbalance, and wearing are still the major reasons for revision. Forces

acting directly on the artificial joint affect the knee balance and induce wear of

the bearing surface, which is associated to prosthesis loosening, consequently

impacting on the implant lifetime [2].

One of the most affected components of the artificial knee implant is the ultra-

high-molecular-weight polyethylene (UHMWPE) insert, due to its geometry and

the high forces acting upon it [3]. Therefore monitoring the strain, associated

to knee imbalance and forces acting upon the prosthesis, can help on the

development of new articulating components, lead to a better understanding of

the artificial knee biomechanics, support improvements on the mathematical

models that describes the constitutive model of the materials and the knee

behavior, improve prosthesis alignment during surgery and give continuous

feedback on the status of the artificial knee implant.

Valuable efforts have been made to design implantable systems for monitoring

biomedical implants, either using strain gauges, fiber Bragg gratings or Tekscan

sensing systems [4–7]. Though the systems have their specific advantages

many require alterations of the current prosthesis designs or can only be

used during surgery not being suitable for implantation. To overcome these

limitations sensors can be fabricated using biocompatible materials, such as

polyimide, and embedded into the polyethylene insert without introducing

design changes [8, 9]. Polymer-based microelectromechanical systems (MEMS)

are increasingly being used in biomedical applications [10] and, recently, micro-
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machined polyimide sensors have been used as sensing elements in a broad

range of biomedical applications, e.g. deep brain recording and stimulation

[11] and contact lens pressure sensors for glaucoma [12].

In this chapter we present a versatile MEMS strain-sensing device for the

monitoring of loads acting upon an artificial knee implants, at the level of the

UHMWPE insert. The goal of evaluating the strain is to help surgeons on the

alignment of prosthesis, which can improve the knee balance and provide a

follow-up tool to help monitoring the artificial knee along its lifetime assuring

the overall integrity of the prosthetic limb. Likewise, the strain monitoring,

which is associated to loads acting upon the prosthesis, can lead to a better

understanding of the artificial knee biomechanics and help in the development

of new generation of implants. Moreover, the continuous monitoring of the

strain evolution can be used to track the wear of the UHMWPE insert. The

basic design and working principle of the sensors are presented as well as

results of the preliminary bench tests. The manufacturing process is based on

polyimide micro-machining, which allows to adapt the shape and design of the

micro-devices. The sensors are based on polyimide-metal-polyimide sandwich

structures that are embedded into the UHMWPE part.

5.2 Finite element analysis

Finite Element Analysis (FEA) is an effective tool to investigate the distribution

of the stress and strain in various kinds of engineering structures [13]. In this

article, FEA was used to investigate the distribution of strain in an artificial

knee implant and assist on the strain gauges placement inside the ultra-high-

molecular-weight polyethylene insert (UHMWPE). The Computer Aided Design

(CAD) model was obtained from the manufacturer of an artificial knee, Symbios

Orthopédie SA (Yverdon-Les-Bains, Switzerland), and the 3D finite element

model built into a commercial FEA software, COMSOL Multiphysics (v4.2).

The components of the CAD model are presented in Fig. 5.1, and comprise the

femoral component (FC), the UHMWPE insert, the tibial component (TC) and

the guide pin. The location of the strain sensors in a cross-sectioned UHMWPE

insert is also depicted in Fig. 5.1. The original CAD description of the prosthesis
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is overly complicated, therefore simplifications were made to generate a 3D

model suitable for computing. The simplified 3D model is sketched in Fig. 5.2.

Figure 5.1: Components of the CAD model comprising the femoral component
(FC), the UHMWPE insert, the tibial component (TC) and the guide pin, and a
UHMWPE insert cross-section depicting the location of the strain sensors.

FEA was modeled in the structural mechanics module of COMSOL in station-

ary mode assuming a linear elastic behavior for all parts. The fundamental

considerations of this approach are to assume a small strain (or stress) and the

linear relationship between components stress/strain (i.e. Young’s modulus).

The material properties (Young’s modulus E and Poisson constant ν) used in

the FEA are the following: for the FC and TC (made of a Co-Cr-Mo alloy)

E = 115 GPa, ν = 0.3, and for the UHMWPE E = 0.34 GPa, ν = 0.4.

To establish boundary conditions for the simulation the following constraints

were added to the model. Between the FC and the UHMWPE insert a contact

interface is established. A surface constraint is defined on the guide pin hole

to keep the alignment between the UHMWPE insert and the TC. Boundary
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condition uniaxial loads acting on the prosthesis were applied to the upper flat

area of the FC, in the z-axis direction, varying from 200 N up to 3100 N, and

defined as such to be in accordance with the biomechanical conditions in the

human body. To complete the model, a fixed constraint is defined at the bottom

surface of part of the TC to avoid overall implant displacement which can

introduce discrepancies in the simulations. Unstructured progressive triangular

meshing algorithm, to form tetrahedral elements, was utilized for meshing

the model. The minimum and maximum element size was defined as 0.1 mm

and 1 mm, respectively. The meshed structure consisted of 116933 tetrahedron

elements and the convergence criteria for simulations was established by a

MUMPS solver. FEA was used to investigate the distribution of strain inside the

UHMWPE insert and to identify regions for placement of strain gauges sensors.

In order to comply with implant regulatory standards the sensors where placed

in the xy-plane at 6 mm from the FC/UHMWPE bearing surface (refer to Fig.

5.1).

Figure 5.2: Simplified 3D CAD model used in the FEA.

5.3 Results of finite element analysis

Fig. 5.3 shows the evolution of the x-component strain, in the previously defined

xy-plane (at 6 mm from the FC/UHMWPE bearing surface), for different applied

loads. Highly positive strain values, associated with tensile strain in the x-axis

direction, are visible under the contact points of the FC/UHMWPE bearing
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surface. Negative strain values, associated with compressive strain in the x-axis

direction are also visible on the surroundings of the tensile region. Moreover,

from this investigation we could identify a xz-plane with good strain symmetry

at nearly 1/3 of the UHMWPE height (14 mm), therefore these region is suitable

for positioning the sensors.

Figure 5.3: Evolution of the x-component strain, in the xy-plane at 6 mm from
the FC/UHMWPE bearing surface, for different applied loads.

At the intersection between the defined xy- and xz-plane a line is defined and

used to position and orient the strain sensors. Fig. 5.4 presents the evolution

of the x-component strain at the intersection of xy- and xz-planes, along the

UHMWPE width, for different applied loads. The insert in Fig. 5.4 shows the

line of intersection between the xy- and xz-planes where the strain values were

taken. Highly compressive strain is visible in a region that extends roughly

for 6 mm, having its maximum nearly 13 mm along the UHMWPE width.

Therefore, the strain sensors were defined to be located in the compressive
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strain region with their center located at 13 mm along the UHMWPE insert

width, while passive strain sensors were located in regions of zero strain to

compensate for overall temperature variations.

Figure 5.4: Evolution of the x-component strain at the line of intersection
between the xy- and the xz-planes, along the UHMWPE width, for different
applied loads.

5.4 Sensor design, fabrication and packaging

The strain sensors resistance was defined to be 3.2 kΩ in order to decrease

power consumption and facilitate readout by the Sensimed wireless telemetry

chip. The strain sensors to be embedded into the UHMWPE were built in

polyimide-metal-polyimide sandwich structures by dry etching, using standard

photolithography manufacturing processes. Polyimide (PI) is an excellent

material for biomedical microdevices due to its chemical and thermal stability,

low water uptake and biocompatibility [14]. Such PI properties are crucial

because the sensors are placed under bearing surfaces which are prone to wear
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and it will not risk patients health. Furthermore, PI is widely used in MEMS

devices, therefore suitable for mass production. The total thickness of the

sensor is about 10 µm. A cross-sectional view of the microfabrication process is

presented in Fig. 5.5.

Figure 5.5: Cross section view of the fabrication process.

The detailed microfabrication process comprises the following steps: A sacrifi-

cial layer of tungsten (100 nm) and aluminum (1 µm) is first deposited through

thermal evaporation onto a carrier silicon wafer (Fig. 5.5(a)). A 5 µm layer of PI

(PI2611, HD Microsystems) is applied on top of the aluminum by spin-coating

and cured at 300 ◦C for 1 h in nitrogen atmosphere (Fig. 5.5(b)). A titanium

adhesion layer (20 nm) and platinum layer (180 nm) are then sputtered onto

the cured polyimide. The strain gauges are patterned by reactive ion etching in

Cl2 using a patterned photoresist as an etch mask (Fig. 5.5(c)). A second layer

of PI, 5 µm in thickness, is spin-coated and likewise cured (Fig. 5.5(d)). An

etch mask of sputtered SiO2 (500 nm) is deposited onto the sandwich structure

and then patterned by reactive ion etching using a photoresist etch mask. This

oxide layer is then used as hard mask during the subsequent oxygen-plasma

etch of the polyimide to define both the structure outline and open contact
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pads to the strain gauges (Fig. 5.5(e)). The polyimide devices are detached

from the silicon carrier wafer by anodic metal dissolution in a 10 wt% sodium

chloride solution: the substrates are immersed in the salt solution at room tem-

perature with a platinum counter electrode, and a constant positive potential

(0.7 V) is applied to the aluminum layer. The anodic metal dissolution process

dissolved the aluminum, leaving the tungsten on the substrate and releasing

the polyimide-metal-polyimide structures (Fig. 5.5(f)).

Figure 5.6: Polyimide-metal-polyimide micro-machined structure.

The packaging of the device consists of bonding a surface-mount connector

(Samtec, Inc.) to the contact pads using a conductive epoxy. The connector

provides the link between the strain gauges and the electronic circuitry. Despite

the fact that the utilization of a connector prevents the usage of this device in

vivo, the technology versatility allows for design changes without prejudicing

the device feasibility. A fabricated polyimide-metal-polyimide structure is

shown in Fig. 5.6. It consists of four strain gauges, two active gauges positioned

(according simulation results) under the contact bearing surfaces, and two

passive gauges towards the center of the artificial knee in regions of zero stain

(according simulations).

To complete the fully packaged strain-sensing device the sensors are embed-

ded into the UHMWPE insert. For that, the UHMWPE insert is sectioned

in two parts, the polyimide-metal-polyimide sandwich is positioned, and the

UHMWPE parts re-joined and sealed using a biocompatible epoxy glue. A
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cross-sectioned UHMWPE insert with the strain sensors positioned for final as-

sembly is presented in Fig. 5.7A and the complete packaged device is shown in

Fig. 5.7B. The packaged device is capable of continuous real-time measurement.

The built strain-sensing devices are versatile, simple, cost effective, and are

ready to be integrated with implantable wireless telemetry, which can increase

monitoring efficiency outside healthcare facilities.

Figure 5.7: (A) A cross-sectioned UHMWPE insert with the strain sensors
positioned for final assembly and (B) the complete packaged device re-joined
and sealed using a biocompatible epoxy glue.

5.5 Experimental setup and results

The experimental study was carried out in a mechanical knee simulator (MTS

Bionix Servohydraulic Test Systems). The tests were performed using static

and dynamic axial load conditions (perpendicular to the referred xy-plane)

similar to those encountered in vivo. The strain-sensing device is attached to

the knee simulator and subjected to loads varying from 200 N up to 3100 N.

The applied forces are close-loop controlled by a load cell, attached underneath

the strain-sensing device, and connected to the knee simulator controller.

The fully packaged strain-sensing device is connected in a Wheatstone bridge

configuration using external standard resistors with similar impedance to those

in the polyimide-metal-polyimide sandwich. The bridge is DC powered with
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2.5 V. The output signals are recorded with a National Instruments acquisition

board (NI-Daqpad-6015) through a signal conditioning unit (SC-2345) connected

to a full-bridge input channel (SCC-SG04). For displaying and recording the

measurements a LabView (National Instruments) interface is configured. The

signal conditioner’s gain and span controls for the strain-sensing devices are

set to obtain a full-scale electrical output signals.

Results for the identification (fitting) of parameters of the strain-sensing device

are presented in Fig. 5.8. The curve presents both the expected strain (simulated

x-component strain) and the measured strain as a functions of applied loads.

The measured strain was calculated from the output voltage of the Wheatstone

bridge, according the equation presented in Fig. 2.9B, being the input voltage

2.5 V and the gauge factor 2. These results indicate that the measured strain

is in accordance with the simulated strain, and that applied forces can be

estimated from measured strain. Therefore, validating the results obtained from

the numerical model. Despite the overall non-linear behavior of the device,

the measured data presents a linear region within forces varying from 0 N up

to 1500 N. This is the range of forces exerted upon the knee during normal

walking activities. A linear regression in this range of forces (from 0 N to 1500 N)

indicates an average device sensitivity of 2.4 µV/N (adjusted R-square = 0.99).

Tests of the assembled device were also carried out dynamically. Fig. 5.9 shows

a series of slow (Fig. 5.9A) and fast (Fig. 5.9B) dynamic loading/unloading

and the sensor’s output as a function of time. The influence of the UHMWPE

viscoelastic behavior on the measurements can be verified in Fig. 5.9A, where

non-linearities, i.e. creep, can be observed in the measurements. Creep has an

undeniable influence on the repeatability of the measurements affecting device

accuracy in long-term measurements. A good sensor response to fast dynamic

loading can be verified in Fig. 5.9B, thus allowing the sensor to be used for

measuring knee forces during walking.
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Figure 5.8: Simulated x-component strain and measured strain as a functions of
applied loads.

Figure 5.9: Series of slow (A) and fast (B) dynamic loading/unloading and
respective sensor’s output as a function of time.
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5.6 Viscoelasticity and Creep

Viscoelasticity is the study of materials with mechanical characteristics of both

solid and fluid materials, and as such it implies that its properties are function of

time, with the material possessing a "memory" of past events [15]. A Viscoelastic

material exhibit time dependent strain, since it has elements of both elasticity

and viscosity. The elasticity (in an ordered solid) is usually the result of the

elongation of chemical bonds along the crystallographic planes. The viscosity,

whereas, can be defined as a result of the diffusion of atoms or molecules inside

an amorphous material.

These materials can be modeled to establish their stress or strain behavior, and

time dependency. These models are used to estimate a material’s reaction under

a variety of loading conditions. The most employed models are: the Maxwell

model, the Kelvin-Voigt model, and the Standard Linear Solid (SLS) Model [16].

In Fig. 5.10 we present these models with it respective constitutive equations. In

these models the viscoelastic behavior is represented as a linear combinations

of springs and dashpots. The springs represents the elastic component while

the dashpots represents the viscous components of the model. Each model

is different in the arrangement of the components and can be represented by

an equivalently electrical circuits. Stress is represented by voltage, while the

derivative of strain by current. The springs are represented by capacitors, since it

stores and restores energy, while the dashpots are represented by resistors, since

it dissipates energy. By analogy the elastic modulus of a spring is equivalent to

the capacitance of the circuit, while the viscosity of a dashpot is equivalent to

the resistivity.

The most widely used among these models is the SLS model because it can

describe stress relaxation and creep behavior. In this approach the springs

represents deformations due to bending and stretching of intermolecular bonds,

and the dashpot represents deformation due to viscous effect. In the SLS

model, the total stress is decomposed into rate dependent stress component

in the spring E2 and the dashpot η, and rate independent equilibrium stress

in the spring E1. The governing equation for the total stress in the SLS can
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Figure 5.10: Most common viscoelastic models employed to predict material’s
response under different loading conditions [16].

be solved to define the stress-strain relationship at constant strain rate where

creep and stress relaxation can be modeled. Despite this approach provides

a model for the behavior of viscoelastic material its application to dynamic

systems is cumbersome and analytical relationships are preferred. For the

case of many plastics the creep and stress relaxation behavior is subject to an

empirical approach employing the following equation:

ε(t) = ε0 + m ∗ tn (5.1)

where ε0 is the instantaneous strain and, m and n are material constants which

depends on the applied stress.
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In our experiments with the strain gauge sensors embedded in the UHMWPE,

when applying a static force, a drift of the recorded values is observed over

time and a similar behavior appears when releasing the force, affecting the

measurements. In Fig. 5.11 and 5.12 we present the response over time when

applying and releasing forces on the implant, respectively, showing the necessity

to model these phenomenons in order to gain insight on the behavior of the

strain sensors inside the UHMWPE insert.

Figure 5.11: Sensor’s response over time for several constant forces applied.

A first attempt to model this creep and relaxation, is to assume that the sensor

response and the creep or relaxation can be separated in two phases, the

immediate sensor response due to the application or the release of the force,

and the creep or stress relaxation. The goal would be to fit the creep and stress

relaxation part for each force and therefore being able to build a model to

remove it. The point that identifies the transition between the two phases is

selected manually and a step function for the force is assumed to be the input.

This procedure must be followed because the MTS Load frame is not able to

generate this kind of ideal patterns. The hydraulic actuator is relatively slow
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Figure 5.12: Sensor’s response over time when the applied constant forces are
released.

and the PID controller is a trade-off between decreasing the time response of

the output and avoiding side effects such as overshoots of the signal or loss of

stability.

For modeling this creep and stress relaxation, the curves presented in Fig. 5.11

and 5.12 are fitted with a power function ( f (x) = a ∗ xb), according recent work

by H. Liu et. al. [17], therefore following a traditional empirical approach.

Using the power function model the evolution of the parameters "a" and "b" as

a function of the force is shown for creep and stress relaxation in Fig. 5.13.

The model presented for fitting the creep and stress relaxation signals provides

an initial approach towards understanding creep and stress relaxation on the

knee implants. It is difficult to build an accurate and reliable model using this

approach, at least with the experimental set-up used. The ideal goal would

be to compensate on-line the effect of the creep and relaxation. However, the

main issue for performing an on-line compensation is that the model for creep

and stress relaxation is self-dependent, meaning it is dependent on the applied
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Figure 5.13: Evolution of the fitting parameters "a" and "b", for both creep and
stress relaxation, as a function of the force.

force which has to be measured. Moreover, creep and stress relaxation are

dependent on the history of the forces which were previously applied on the

material. Furthermore, if a small error is computed using the model it will be

propagated over time making the predictions unreliable. The future work is

to explore more complex models to model creep and stress relaxation. These

models should be then tested on new recordings to be validate as well as the

setup needs to be modified.

To analyze the influence of the creep on the measurements the experimental

creep curve was extracted from the data. Fig. 5.14 shows the experimental creep

curves for different loading levels. The creep is plotted versus the logarithm of

time. The experimental curves indicates the creep is dependent on the applied

load as well as on the time. When analyzing Fig. 5.14 we are able to determine

the proposed sensor is accurate for measuring events happening within a
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1s time window, with errors below 8% the applied load. For measurements

lasting 10s and 100s the creep introduces substantial drift on the measurement,

respectively, 38% and 85% the applied load. However, in slow pace walking

a single load cycle is within a 1s time window, therefore in gait studies it is

important to monitor events happening bellow a 0.1s time window, region

where errors are below 3%.

The developed device has thus the potential to measure in vivo activity and

help to improve TKA surgery and postoperative follow-up. In TKA surgery the

device can be used to assist in the ligament balance, which is currently only

qualitatively assessed, and is crucial for the stability and lifetime of implants.

During the postoperative physical therapy the device can provide information

regarding the artificial knee implant function and help to improve overall

rehabilitation and treatment of patients with total knee implants.

Figure 5.14: Experimental creep curves for different loading levels versus the
logarithm of time.
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5.7 Discussion

In this chapter, a polymer-based strain-sensing device was developed for mon-

itoring an artificial knee implant. The experimental data demonstrates the

sensor is capable of measuring the strain associated to the total axial forces

exerted on the UHMWPE insert in the range of approximately 4 times body

weight with a good sensitivity and accuracy for events happening within 1s

time window. This device has been designed to monitor the total load and

simple alterations on the strain-sensor design can allow the measurements of

forces in each individual compartment of the UHMWPE insert, allowing for the

monitoring of instantaneous artificial knee balance. Other alterations can also

be made in the design to allow the measurement of other force components (e.g.

momentum) and temperature monitoring, to investigate the effect of different

activities, such as walking and cycling, on the implant wear rate. Improvements

on the sensors design and packaging, as well as increasing the number of

strain-sensors on the device can allow the mapping of strain in other regions of

interest in the UHMWPE.

Although, in vivo measurements of the knee joint forces are broadly available,

very little is know on the evolution of artificial knee implants after TKA and

the aging of such prosthesis, hence the proposed device will allow studies

of biomechanics on the prosthetic knee and improve implant design. The

results demonstrated that the proposed strain-sensor represents a promising

new system for in vivo load monitoring of medical implants with the advantage

that this device can be introduced into the surgery procedure with minimal

disruption to usual protocols. Also we expect this sensor could be used to

investigate the creep deformation on the UHMWPE. Creep is a property of

viscoelastic materials [18] which introduces non-linearities on the system and

are a cause for errors in long-term measurements. The understanding of

the creep behavior of the UHMWPE can also help on accurate quantify the

prosthesis wear [19].

The strain-sensing device is simple to package and represents a cost effective

solution since it does not imply changes on current artificial knee implant
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designs. Future applications include the ability to validate mathematical models

that describes the knee biomechanics, the capability to study the effect of

postoperative physical therapy and evaluate the knee balance to improve overall

rehabilitation. Moreover, it can be customized for different models of prosthesis

combined with various materials, therefore the proposed autonomous sensor

can lead to new redesigns regarding the function of knee implants and the

treatment of patients with total knee implants. Additionally, the device could be

integrated with low-power wireless telemetry, which will allow for long-term

measurements in vivo.

5.8 Conclusion

We demonstrated a polyimide-based MEMS strain-sensing device for moni-

toring knee implants. Throughout the design process, FEA modeling results

were used to optimize device placement inside an artificial knee component

(UHMWPE). The PI-based technology is well suited for biomedical applications

and can provide a significant cost advantage since it does not imply changes

on current prosthesis. The device was subjected to tests in a mechanical knee

simulator using static and dynamic axial load conditions similar to those en-

countered in vivo. Results indicated the measured strain is in accordance with

simulated strain and that the applied forces can be estimated from measured

strain. The experimental data demonstrates the sensor is capable of measuring

the strain associated to the total axial forces in the range of approximately 4

times body weight with a good sensitivity and accuracy for events happening

within a 1 s time window.

Compared with the current available technology either using strain gauges, fiber

Bragg gratings or Tekscan sensing systems [4–7] or even most recent solutions,

such as the one provide by OrthoSensor (which followed a similar approach

though providing a disposable instrument) the system developed in this thesis

provides a suitable solution for implantation while the available solutions can

only be used during surgery. This advantage comes at the cost of having

sensors embedded on the UHMWPE insert which is a viscoelastic material and

therefore are prone to creep and stress relaxation. In the current application,
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where high forces can be exerted, the UHMWPE may be deformed beyond the

limit where linear viscoelasticity is accurate, and traditional plasticity models

are not accurate since the applied loads are not monotonic. To overcome these

limitations it is necessary to developed an advanced thermo-mechanical consti-

tutive model for UHWMPE where the developed sensors can provide valuable

information on the behavior of the material. Afterwards, the constitutive model

could be used to perform real-time estimation and compensation of creep and

stress relaxation.
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CHAPTER 6
Catheter Pressure Sensor

This Chapter is based on the following article:

W. Hasenkamp, et. al.,

"Polyimide/su-8 catheter-tip mems gauge pressure sensor",

Biomedical Microdevices (published).

The human mind treats a new idea the same way

the body treats a strange protein; it rejects it.

- P. B. Medawar
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6.1 Introduction

Silicon strain-gauge, metal-diaphragm sensors were first introduced commer-

cially in 1958. In these early stage, due to its high-cost and low-volume man-

ufacturing possibilities, biomedical and aerospace applications were targeted.

This trend continued into the 1970s [1] when microsensor companies began to

move toward higher-volume, lower-cost applications [2], in particular, the auto-

motive industry [1]. From the 1980s to the present, biomedical and automotive

applications are some of the most widely reported in the literature, however

new market applications and technologies are constantly being developed.

Currently, polymer-based microelectromechanical systems (MEMS) are increas-

ingly being used in biomedical applications [3]. Inexpensive well-established

micromachining techniques, material versatility, robustness and biocompatibil-

ity constitute some of its potential advantages over conventional biomedical

device fabrication methods [4]. A number of polymer-based devices has been

realized including implantable microelectrodes [5], microsystems for neural

prostheses [6], microfluidic devices [7], temperature sensors [8], humidity sen-

sors [9], sensors for orthopedic implants [10], tactile sensors [11] and pressure

sensors [12–15].

In general, equipment requirements for polyimide/SU-8 MEMS processing are

similar to those of conventional microfabrication techniques, hence commonly

available cleanroom equipment and materials can be utilized for processing

without extensive development. We have chosen to integrate polyimide and SU-

8 into the fabrication of a catheter-tip MEMS gauge pressure sensor. Polymer-

based pressure sensors have many in vivo applications such as intracranial

pressure monitoring in case of head trauma [16], intraocular pressure evaluation

for glaucoma [17], blood pressure and heart rate monitoring for cardiovascular

assessment [3].

In biomedical research, genetically modified mice are seen with growing interest,

since diseases can be expressed and studied in a convenient platform, creating

needs for more compact and precise devices. Miniaturized pressure sensors

offer potential improvement over fluid-filled catheters [18], as they can be
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mounted on the catheter-tip directly which avoids signal damping due to

pressure dynamics. In fluid-filled systems, the catheter is inserted into the

target site and transmits the pressure to a remote sensor through the fluid

column - effectively creating a low-pass filter impairing the monitoring of

rapid fluctuations [19]. Furthermore, miniaturize sensors can decrease the risk

of thrombosis, embolism and infections since common available commercial

sensors are oversized and will not fit into specific small vessels or cavities [13].

This chapter presents the development of a 400 µm-wide hybrid polymer-based

(polyimide/SU-8) strain gauge pressure sensor mounted at the tip of a Pe-

bax catheter (inner diameter/outer diameter: 0.20/0.48 mm). Finite Element

Analysis (FEA) was used to investigate the distribution of the stress and strain

on the polyimide membrane and to evaluate the device dimensions and the

appropriate locations for the placement of the sensing elements. The sensing

elements consist of piezoresistive thin-film metallic wires embedded in a flexible

polyimide membrane. A sealed pressure chamber is created upon the poly-

imide membrane using an adapted bonding technique, commonly employed to

fabricate microchannels [7]. The sealing is made at ambient temperature in air

which becomes the permanent internal reference pressure of the sensor. Next,

the device is evaluated experimentally. First, its performance is compared with

a commercial silicon-based pressure sensor. Next, the response of both sensors

are compared when exposed to high-speed pressure fluctuations. Finally, the

device is used in vivo to measure blood pressure of a mouse.

6.2 Finite element analysis of the UHMWPE insert

and sensing element placement

The chosen method for measuring the pressure is to detect mechanical deforma-

tions in a thin polyimide membrane supported by a sealed pressure chamber

made in SU-8. In this development, FEA was used to investigate the stress

and strain in the polyimide (PI) membrane in order to determine the appropri-

ate membrane thickness, to assure no plastic deformation occurs during the

operation of the device, and to assist with the placement of the strain gauges



CHAPTER 6. CATHETER PRESSURE SENSOR 90

within the device. A 2D Computer Aided Design (CAD) model was built into

a commercial FEA software, COMSOL Multiphysics (v4.2a). The 2D CAD

model is presented in Fig. 6.1, and comprises a PI membrane, platinum wires

as the piezoresistive element and a pressure chamber made of SU-8, which

is an epoxy-based negative photoresist. The total width of the device was

limited to 400 µm in order to match the tip-width of a Pebax catheter (inner

diameter/outer diameter: 0.20/0.48 mm). The 100 µm-wide, 50 µm-thick SU-8

pressure chamber was designed to prevent deformations other than those of

the PI membrane. Other geometrical dimensions (i.e. membrane thickness and

strain gauge line length) were chosen from the results of the simulation.

Figure 6.1: CAD model comprising the polyimide membrane, the platinum as
piezoresistive material and the SU-8 enclosed chamber (cross-section along the
device width).

The FEA was modeled using the Structural Mechanics module of Comsol in

stationary mode assuming a linear elastic behavior for all parts. The funda-

mental considerations in this approach are to assume a small strain (or stress)

and a linear relationship between the components stress/strain (i.e. Young’s

modulus). Moreover, the results are valid only for stress states that do not

produce plastic deformation, therefore stresses above the yield point (YP) of the
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materials will be discredited. The material properties necessary to perform the

FEA are: density (ρ), Young’s modulus (E) and Poisson’s ratio (ν). The assumed

values are presented in Table 6.1.

Table 6.1: Material properties used in the FEA.

Material ρ [kg/m3] E [Pa] ν

Polyimide 1400 8 × 109 0.2
Platinum 21450 145 × 109 0.38

SU-8 1200 4.4 × 109 0.22

The following constraints were added to the model. A boundary condition

load was applied around the device to account for pressure changes outside

the device. Another boundary condition load was defined inside the device,

corresponding to the inner part of the SU-8 pressure chamber. This constraint

accounts for pressure changes inside the device due to changes in the cross-

sectional area of the pressure chamber induced by the external change in

pressure. Equation 6.1 defines the pressure change as a function of the cross-

sectional area, where ∆p corresponds to the pressure change inside the device,

p0 is the gauge pressure inside the pressure chamber (considered to be the

ambient pressure in which the the device was fabricated), A0 is the pressure

chamber cross-sectional area at ambient pressure (105 µm2), A is the pressure

chamber cross-sectional area induced by the external changes in pressure and γ

is the adiabatic index (1.4 for air). To complete the model, a fixed constraint is

defined at the bottom of the device to avoid overall device displacement which

can introduce discrepancies in the simulation.

∆p = p0

((
A0

A

)γ

− 1
)

(6.1)

Unstructured progressive triangular meshing algorithm was utilized for mesh-

ing the model with minimum and maximum element size of 8 nm and 4 µm,

respectively. The total number of elements generated by the meshing was 34088.

The convergence criteria were establish by a MUMPS solver.
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6.3 Results of the finite element analysis

FEA was first used to evaluate the acceptable thickness values for a PI membrane

closing the SU-8 chamber. The PI has a yield point (YP) of approximately 65 MPa

and larger values of stress result in plastic deformation of PI, permanently

damaging the device. The simulation was performed in a simplified model

using a monolitic PI membrane without platinum tracks and exposed to a

pressure of 350 mmHg, corresponding to more the twice the blood pressure for

mice. Fig. 6.2 shows the evolution of the x-component of the membrane stress

with the membrane thickness, along the device width and in the location where

the membrane stress is maximum (in the transverse plane situated at the top

of the PI membrane). Clearly visible is the presence of high values of stress

where the PI membrane is attached to the SU-8 chamber, and the limit of plastic

deformation of PI is reached at those locations for membranes thinner than

3 µm. For the fabrication of the device, PI membranes were therefore chosen to

be 5 µm in total thickness.

The PI membrane deflection was also analyzed, both in width and in length,

for different values of pressures. These pressure variations were added to

the atmospheric pressure of 1 atm. Fig. 6.3 presents the results for a 5 µm

thick PI membrane deflection in response to applied pressure, in the transverse

plane situated at the top of the PI membrane. Fig. 6.3(a) shows the deflection

in a cross-section along the width of the device and Fig. 6.3(b) presents the

deflection in a cross-section along the length of the device. Both graphs in

Fig. 6.3 show no deflection of the PI membrane at 0 mmHg (corresponding

to the atmospheric pressure). This is expected since the pressure inside the

sensor’s pressure chamber was set to 1 atm (matching the packaging ambient

pressure). At the pressure of 300 mmHg the computed deflection of the mem-

brane is approximately 2.1 µm with the two graphs in Fig. 6.3 showing a linear

deformation of the membrane with the applied pressure. In Fig. 6.3(b) we verify

a constant strain region in the center of the membrane along approximately

0.6 mm in length. Therefore, we chose to fabricate strain gauges having a

maximum width of 600 µm to fit into a 1 mm long membrane.
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Figure 6.2: x-component of the membrane stress along the device width as a
function of the membrane thickness, in the transverse plane situated at the top
of the PI membrane.

To define the line length of the active strain gauge a FEA simulation was

performed to investigate the strain on the PI membrane. Fig. 6.4 shows the

x-component of the strain of a 5 µm thick membrane as a function of the applied

pressure, in the transverse plane situated at the top of the PI membrane, along

the device width. Highly strained regions are present in the middle of the

device (mostly compressive) and close to the SU-8 walls (both compressive and

tensile), however the central part of the membrane sustains the strain over a

longer region, without changing from compressive to tensile strain. Therefore,

the active strain gauge of the device was placed in the central part of the

membrane. To avoid tensile strain and keep a safe margin for alignment during

fabrication, a line length of 90 µm was chosen for the active strain gauge. To

fit the defined maximum strain gauge area width of 600 µm and simplify the
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(a) Cross-section along the device width

(b) Cross-section along the device length

Figure 6.3: PI membrane deflection with the applied pressure, in the transverse
plane situated at the top of the PI membrane. (a) Width cross-section and (b)
Length cross-section.
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photolithography process during device fabrication the line width of the strain

gauges was defined to be 4 µm with line spacing of 6 µm.

Figure 6.4: x-component of the membrane strain with the applied pressure,
in the transverse plane situated at the top of the PI membrane and along the
device width. 2D model without platinum trace.

Having defined the location and dimensions of the active strain gauge to be

placed as sensing element in the PI membrane, a second FEA modeling step

was performed using a model in which the metal tracks are considered in order

to evaluate their effect on the PI membrane strain and stress. The platinum

metal tracks were inserted 2 µm from the bottom of the PI membrane. Fig. 6.5

presents the impact of the 90 µm line length strain gauge on the x-component

of the strain (Fig. 6.5(a)) and stress (Fig. 6.5(b)) in the PI membrane with the

applied pressure, in the transverse plane situated at 2 µm from the bottom of

the PI membrane and along the device width. The highly strained regions seen

close to the metal line (at 160 µm and 240 µm in width) are artifacts due to
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the interactive convergence and discretization methods governing the algebraic

expressions in a discrete domain (e.g. finite-element). The stiffening effect of

the piezoresistive material embedded in the PI membrane is clearly visible in

the central part of the graph. When compared to the results from Fig. 6.4 a 32 %

reduction of the strain was found as a consequence of the presence of the metal

tracks in the PI membrane. In Fig. 6.5(b) the stress on the platinum domain is

much higher than in the PI material, however the YP of platinum is ∼1 GPa.

Therefore, no plastic deformation is expected in the device since results show a

maximum stress of 55 MPa for 350 mmHg. Also, from Fig. 6.5 we can derive

the expected sensitivity of the modeled device to be ∼1 µV/mmHg.

Another important information on the membrane is the resonant frequency,

which was calculated to be around 80 to 100 kHz. This is an important pa-

rameter to be verified in order to consider the measurements to be reliable.

Consequently, the resonant frequency of the membrane should higher (at least

three to five times) than the highest frequency of the dynamic pressure under

investigation.

6.4 Sensor design, fabrication and packaging

The polyimide/SU-8 catheter-tip MEMS gauge pressure sensor contains 2

strain gauges, one active gauge positioned in the middle of the deformable PI

membrane and one passive gauge to account for temperature compensation,

positioned on the SU-8 wall where no deformation occurs. The resistance of

the strain gauges was designed to be 3.2 kΩ in order to facilitate readout and

decrease the power consumption, to be able to connect directly to a commercially

available passive telemetry chip. The membrane containing the strain gauges

was built in polyimide-metal-polyimide sandwich structures by dry etching.

The SU-8 pressure chamber was micromachined by standard photolithography

and an adapted bonding technique was used to close the chamber with a

SU-8 layer. The membrane thickness was selected from the results of the FEA

and defined to be 5 µm in order to have a good tradeoff between having a

good device sensitivity while safety operating to prevent plastic deformation.

The total thickness of the complete device is approximately 105 µm. A cross-
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(a) x-component of the membrane strain

(b) x-component of the membrane stress

Figure 6.5: x-component of the membrane (a) strain and (b) stress with the
applied pressure, in the transverse plane situated at 2 µm from the bottom of
the PI membrane and along the device width. 2D model including the defined
platinum line embedded into the polyimide membrane.
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sectional view of the microfabrication process is presented in Fig. 6.6.

Figure 6.6: Cross-section view of the fabrication process.

The detailed microfabrication process comprises the following steps: A sac-

rificial layer of tungsten (100 nm) and aluminum (1 µm) is first thermally

evaporated onto a carrier silicon wafer. A 2.5 µm layer of PI (PI2611, HD

Microsystems) is applied on top of the aluminum by spin-coating and cured

at 300 ◦C for 1 h in nitrogen atmosphere (Fig. 6.6(a)). A titanium adhesion

layer (20 nm) and platinum layer (180 nm) are then sputtered onto the cured

polyimide. The strain gauges are patterned by reactive ion etching in Cl2 using a

patterned photoresist as an etch mask (Fig. 6.6(b)). A second layer of PI, 2.5 µm

in thickness, is spin-coated and likewise cured. An etch mask of sputtered

SiO2 (500 nm) is deposited onto the sandwich structure and then patterned by

reactive ion etching using a photoresist etch mask. This oxide layer is then used

as hard mask during the subsequent oxygen plasma etch of the polyimide to

define both the structure outline and open contact pads to the strain gauges
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(Fig. 6.6(c)). A 50 µm layer of SU-8 (GM1070, Gersteltec Engineering Solutions)

is applied on top of the polyimide membrane by spin-coating and processed

according to the manufacturer specifications (Fig. 6.6(d)). The SU-8 wall that

will support the cover layer is made by photolithography, the development of

the SU-8 is performed in propylene glycol methyl ether acetate (PGMEA) after

which it is cured at 90 ◦C for 15 min (Fig. 6.6(e)). On a second carrier substrate,

two thin layers of Ordil™ and one layer of Mylar™ are made to adhere

temporarily to the carrier. Ordyl™ is negative tone resist while Mylar™ is a

polyester film, however their use in such combination, on a carrier, are made

to facilitate the lamination procedure. Afterwards, 50 µm of SU-8 is spun onto

the Mylar™ foil. The SU-8 is then pre-baked up to 65 ◦C, flipped onto the first

wafer, contacting the SU-8 sidewalls and then the Mylar™ is removed (Fig.

6.6(f)). The laminated SU-8 sandwich undergoes photolithography to define the

pressure chamber on the underlying device. Development is performed with

PGMEA, and laminate is heated up to 90 ◦C to ensure bonding and cure the

epoxy effectively, thus sealing the pressure chamber. The devices are detached

from the substrate by anodic metal dissolution in a 10 wt% sodium chloride so-

lution, dissolving the aluminum and releasing the devices (Fig. 6.6(g)). Optical

images of a released device comprising the enclosed SU-8 chamber, the active

and passive strain gauges, as well as the suspended PI membrane are shown in

Fig. 6.7. At this stage the device is ready to be packaged into a catheter.

The packaging of the device into the Pebax catheter consists of bonding 40 µm

diameter insulated copper wires to the device contact pads using a conductive

epoxy. This Pebax tube has an inner diameter of 0.20 mm and an outer diameter

of 0.48 mm. The copper wires provide the connection between the strain gauges

and the complementary electronic circuitry. They were wired through the inner

part of the catheter and connected to the rest of the circuit. To protect the

connections and attach the device to the tip of the Pebax catheter a standard

insulating epoxy was used. The assembled polyimide/SU-8 catheter-tip MEMS

gauge pressure sensor is shown in Fig. 6.8 in comparison with a commercial

Millar Mikro-Cath™ disposable pressure catheter fabricated using CMOS

technology.
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Figure 6.7: Optical images, respectively top-view and tilted-view, of a released
device comprising the enclosed SU-8 chamber, the active and passive strain
gauges, as well as the suspended PI membrane.

Figure 6.8: Assembled polyimide/SU-8 catheter-tip MEMS gauge pressure
sensor in comparison with a commercial Millar Mikro-Cath™ disposable
pressure catheter.
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6.5 Experimental setup and procedure

The calibration consists of measuring the voltage output of the device when it

is submitted to pressure changes. For this procedure the device and a reference

pressure sensor are inserted into a sealed rigid tube. The tube is plugged

to a relief valve, which will provide a constant value of pressure (PDC). The

relief valve is directly connected to a compressed air supply (Psupply). Pressure

variations (PAC) are generated with a pneumatic actuator also connected to the

rigid tube. The schematic diagram of the experimental setup is presented in

Fig. 6.9.

Figure 6.9: Schematic diagram of the experimental setup

The polyimide/SU-8 catheter-tip MEMS gauge pressure sensor is connected in

a Wheatstone bridge configuration using two external standard resistors with

similar impedance to strain gauges in the membrane. The bridge is powered

with 2.5 V and the output signals were recorded with a National Instruments

data acquisition board (NI-Daqpad-6015) and a signal conditioning unit (SC-

2345) connected to a full-bridge input channel (SCC-SG04). For displaying

and recording the measurements a LabView (National Instruments) interface

is configured. A calibrated pressure sensor (ENTRAN Pressure Transducer,

Model EPX-N01-0.7B) is also attached to the experimental setup and used as

reference sensing element for calibrating the device. The reference pressure

sensor is powered with 10 V and the signal is acquired using the National

Instruments electronic interface previously described, and adding a full-bridge

input channel (SCC-SG24). The signal conditioner’s gain and span controls for

both sensors are set to obtain a full-scale electrical output signal.
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6.6 Experimental Results

A time-dependent signal was acquired during the dynamic change in pressure

using both sensors, the Polyimide/SU-8 catheter-tip MEMS gauge pressure

sensor and the reference pressure sensor. The calibration curve (reference

pressure as a function of the voltage output of the gauge pressure sensor) is

shown in Fig. 6.10. The linear regression (adjusted R-square = 0.9982) shows

that the gauge pressure sensor has a sensitivity of 2.78 µV/mmHg. The sensor

response to changes in temperature is shown in Fig. 6.11 together with a linear

fit of the data (adjusted R-square = 0.9974). This fit implies a temperature

sensitivity of 90 µV/◦C, or approximately 30 mmHg/◦C.

Figure 6.10: Polyimide/SU-8 gauge pressure sensor calibration curve showing
reference pressure as a function of the voltage output of the gauge pressure
sensor and corresponding linear regression fitting the data.

Before in vivo testing, the performance of the packaged sensor was evaluated

in response to an external oscillating pressure. The pressure inside the rigid
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Figure 6.11: Polyimide/SU-8 gauge pressure sensor response to changes in
ambient temperature as a function of the voltage output of the gauge pressure
sensor and corresponding linear regression fitting to the data.

tube was varied at a frequency of ∼7 Hz to emulate the mouse heart beat while

the pressure was recorded using both the reference pressure transducer and the

polyimide/SU-8 gauge pressure sensors. Results are presented in Fig. 6.12. The

polyimide/SU-8 catheter-tip MEMS gauge pressure sensor performed similarly

to the commercial reference sensor. The time-delay observed between the

reference sensor and the polymer-based pressure sensor is due to the distance

between the sensors in the experimental setup.

6.7 in vivo experiment

The goal of the in vivo experiment was to prove the device concept and measure

mouse blood pressure and heart rate. A male C57BL/6J mouse (weighing
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Figure 6.12: Response of the reference pressure transducer and the
polyimide/SU-8 gauge pressure sensor as a function of the time for pressure
variations at a frequency of ∼7 Hz

45g) was anesthetized via inhalation of 1-2% isoflurane mixed with oxygen.

The left carotid artery was exposed for a length of 5 mm. The fabricated

polyimide/SU-8 catheter-tip MEMS gauge pressure sensor was inserted 4 mm

into the left carotid artery and tied. The pressure sensor wire was connected to

the data-acquisition system to record blood pressure (BP) and heart rate (HR)

for about 5 min at a sampling rate of 1 kHz. Anesthesia was maintained by

0.5-1% isoflurane inhalation mixed with oxygen.

Fig. 6.13 shows a trace of intra-arterial BP and HR for 2 seconds. HR is

450 beats/min, systolic BP is 129±1 mmHg and diastolic BP is 115±1 mmHg.

The waveform of blood pressure is similar to results obtained with fluid-filled

catheters and standard commercial sensors [19].
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Figure 6.13: Trace of carotid arterial blood pressure and heart rate in a male
C57BL/6J mouse during inhalation of 0.5-1% isoflurane.

6.8 Discussion

In this study, a polymer-based catheter-tip gauge pressure sensor was developed

for biomedical applications. Experimental results were in good agreement with

simulations regarding the device sensitivity. The experimental data demon-

strated the sensor has similar characteristics to commercial available devices

and can be used in selected biomedical applications (i.e. cardiovascular as-

sessments), and as an alternative to fluid-filled catheters or pressure sensors

catheters.

The sensitivity of the device can be improved by decreasing the PI membrane

thickness and by changing the placement of the strain gauges inside the PI

membrane. FEA indicates a nearly 10 fold increase in sensitivity when using a

4 µm thick PI membrane with platinum strain gauges positioned 500 nm from
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the bottom of the membrane. Optionally, in order to improve sealing of the

cavity a layer of Parylene could be evaporated on the device.

The polyimide/SU-8 catheter-tip MEMS gauge pressure sensor is simple to

package and represents a cost effective solution for certain in vivo pressure

monitoring applications. Adapting the design, improving the packaging and

further miniaturizing the pressure sensor will allow not only to insert the

device in the carotid artery of mice, but also to place it directly on the heart

of the mouse to measure the pressure in the ventricle. Moreover, the device

could be integrated with implantable wireless telemetry, which can increase

monitoring efficiency, allowing for long time measurements and permitting

pressure measurements in awake animals.

6.9 Conclusion

In this chapter, we demonstrated a polyimide/SU-8 catheter-tip MEMS gauge

pressure sensor. Throughout the design process, FEA modeling results were

used to optimize the device before fabrication. Compared to a silicon-based

pressure sensor the polymer-based device was found to show a similar per-

formance in terms of response and sensitivity, despite not being a true gauge

sensor neither an absolute pressure sensor. A good definition for this sensor

would be "sealed pressure sensor" since it is similar to a gauge pressure sensor

except that it measures pressure relative to some fixed pressure rather than

the ambient atmospheric pressure (which varies according to the location and

the weather). From the experimental results it is clear that the limitation of the

device relies on the thermal drift, which is mainly dominated by the thermal

expansion of the air inside of the cavity. However such limitation is not critical

in applications where the thermal drift is minimal such as in implantable de-

vices. Therefore, the polymer-based technology and SU-8 lamination step are

well suited for biomedical applications and provide a significant cost advantage

over silicon microfabrication techniques while also simplifying the packaging

os such devices. Finally, the in vivo use of this sensor was demonstrated by

measuring the heart rate and carotid blood pressure in mice.
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CHAPTER 7
Conclusion

Hell, there are no rules here,

we’re trying to accomplish something.

- Thomas A. Edison
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Along this thesis, it has been shown that the microfabrication technologies,

born out of the microelectronics industry, permitted the development of a

range of MEMS devices that can be employed in the medical field. As MEMS

manufacturing has developed, a broad spectrum of materials have been incor-

porated into devices and this evolution has promoted the development of a

variety of tools for producing a diversity of materials on different substrates,

and subsequently patterning techniques to fabricate the desired structures. The

contributions of this thesis can be summarized by three main applications of

MEMS. First, in the development of smart medical instrumentation. Second, in

the development of strain sensing elements for artificial knee implants. And

lastly, in the development of a catheter-tip pressure sensors. Despite the broad

range of applications, the key common element in all these devices is a MEMS

strain gauge sensor fabricated using polyimide micro-machining process. The

fabrication technology of our thin film strain gauge sensors is based on a

Polyimide-Platinum-Polyimide (PI-Pt-PI) sandwich with direct application in

the medical field due its biocompatibility. In the following sections a short

summary of the major results and accomplishments is given as well as an

outlook on future improvements and possible research directions.

7.1 Summary of results

In Chapter 4 we have extended the capabilities of a current available surgical

instruments, the distractor, to improve surgical outcome without changing

surgical procedures or impose to surgeons new surgical techniques. In contrast

with the existing ligament balance tools the developed instrumented distractor

allows a manual loading control by the surgeon while providing both mea-

surements of tibial-femoral forces and flexion-extension gaps. By bringing

quantitative information with regards to ligament stiffness, in real-time during

surgery, can improve ligament balance and consequently surgical outcome.

Also, the quantification of such parameters can possibly contribute to validate

the way surgeons implant prosthesis at the same time that it can provide useful

in vivo information for a better understanding of the complex knee joint.

In Chapter 5 we have demonstrated a polyimide-based MEMS strain-sensing
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device for monitoring knee implants. In this research a class of sensors were

embedded in the load-bearing materials used in orthopedic components for the

monitoring the state of strain and stress in that component. The challenge of

developing sensors which can monitor pressure or strain in soft materials while

having good response and a minimal effect on the state of stress in that material

is significant. Results indicated the measured strain is in accordance with

simulated strain and that the applied forces can be estimated from measured

strain. The experimental data demonstrates the sensor is capable of measuring

the strain associated to the total axial forces in the range of approximately 4

times body weight with a good sensitivity and accuracy for events happening

within 1 s time window.

In Chapter 6 we demonstrated a polyimide/SU-8 catheter-tip MEMS gauge

pressure sensor. The polymer-based technology and SU-8 lamination step are

well suited for biomedical applications and provide a significant cost advantage

over silicon microfabrication techniques. Compared to a silicon-based pressure

sensor the polymer-based device was found to show a similar performance

in terms of response and sensitivity, despite of being not a true gauge sensor

neither an absolute pressure sensor. Finally, the in vivo use of this sensor was

demonstrated by measuring the heart rate and carotid blood pressure in mice.

7.2 Future perspectives

The future of MEMS is very dependent on the market growth but the increasing

demand for controlling and monitoring our environment as well as the increas-

ing number of equipments and instruments we interact in our daily lives is

driving the MEMS expansion. Perhaps an even greater development of MEMS

is occurring on the usage of such devices on identification of the problems and

needs on our healthcare system, and which can be solved by this engineering

technology and systems methodology. Such increase in demand for MEMS

leads to the need for more sensors and devices that can make our healthcare

system more effective and efficient while improving the quality of life. Another

tendency in MEMS is to investigate production technologies that can be more

flexible and affordable, such as printed electronics, pushing the research into
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low cost and large surface area devices (e.g. disposable diagnostics devices and

solar cells). Last but not least, several devices and products will be developed

with the evolution of nanotechnologies, and MEMS will serve to connect the

"nano" world with human size world.

In order to avoid the need for wires, sensors must be self sustaining and able

to communicate wirelessly and, as a result, other types MEMS devices, such

as small energy generating and wireless modules, will need to be developed

therefore pushing the evolution of MEMS. As consequence, the increasing

number of devices will drive the scaling of MEMS components pushing higher

levels of integration. The big advantage of self sustained wireless systems is

that it allows the embedding of sensors in previously inaccessible locations as

well as it motivates the use of a large number of sensors since batteries are no

longer needed.

In the developed devices the data transfer from the strain-sensing element to the

computer could be improved by using a telemetry device, such as Triggerfish

from Sensimed, to reduce or avoid wires. Actually the devices were conceived

having this future integration in mind, therefore the immediate continuation of

this work wold be to connect our devices to the Sensimed wireless telemetry

chip, being one step closer to the end-user application of the devices developed

in this thesis.

The inclusion of multiple sensing elements that can simultaneously track geo-

metrical parameters, such as angles, lengths, axes, and mechanical parameters,

such as forces and moments, is another future perspective of current work.

These additional elements should improve the device capabilities and provide

more quantitative biomechanical interpretation. The precise and objective as-

sessment of biomedical parameters is a valuable complement to the medical

perception and should definitely lead to a significant benefit for the patient.

In addition, the fabrication technology provides assembly flexibility therefore

opening up new possibilities for the development of implantable microsystems

for human biometric parameters monitoring and animal long term monitoring

and testing, where small wireless sensors and no battery are demanded.
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Considering the developed devices, for example, the instrumented distractor

concept can be applied to other tools, such as screwdrivers that can be used in

other types of surgery, or even in production line manufacturing to measure the

tightness of a screws. The strain sensing device that monitor knee implants is

another potential concept that can be extrapolated to other kinds of prosthesis

or even for creating self-sensing devices. Specially with the development of

3D printing techniques that could allow the changing of the printed materials

during the printing process, similarly to a multi-head inkjet printer. This could

boost the development of a new class of objects capable of monitoring itself

and prevent failure at risky situations. The concept presented in the catheter-tip

pressure sensor could be applied to other diseases, such as in urinary retention

to monitor the bladder pressure. For example, our device could be coupled with

and electrode to stimulate the nerves that control the bladder and sphincter

muscles in order to empty the bladder at users will, therefore preventing the

increasing in bladder pressure that can cause infections and damage the kidneys

or the bladder itself. The device can be tuned to monitor other variables such

as flow velocity. By rearranging the device sensors on the membrane we can

build a hot-wire velocity probe to perform such task.

Thin film and integrated circuit type of micro-fabrication techniques enabled the

development of a large number of two- and three-dimensional micro-sensors

and sensor arrays. In combination with selective and protective bio-structures,

integrated circuit fabrication, and SU-8 and PI micromachining, the structures

developed in this thesis can be able to form the basis for cost-efficient, high-

quality BioMEMS devices. Particularly to this thesis, the key common element -

a MEMS strain gauge sensor fabricated using polyimide micro-machining (PM)

process - can be much further developed into an unforeseen and endless range

of medical and industrial applications.
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Technology

Microfabricated devices can be made of several miniature structures such as

cantilevers, diaphragms, resistors, transistors, flow channels, wells or even

proteins and cells. These parts (i.e. moving, static, electrical and chemical

sensitive surfaces) when employed in particular sequences can improve existing

devices or generate completely new devices with unforeseen applications.

The close relationship between microfabrication and conventional semiconduc-

tor fabrication allows the integration of conventional electronic components

with microfabricated systems. However, in order to achieve such integration

it is necessary to establish process steps that are mutually acceptable. MEMS

consolidates such integration by using fabrication processes taken from the

semiconductor industry and developing technology specifically for microma-

chining in a sequence of process steps (process flow) that allow the assemble

of several structures to produce a physical device [1]. The great diversity in

process steps and materials of the MEMS technology motivates the development

of a variety of devices with a large range of possible applications.

The MEMS/NEMS devices can generally be built with a combination of four

basic processes. The first is a film growth or deposition, in which different

materials can be grown or deposited onto a substrate (e.g. silicon wafer).

The second is photolithography, which allows the transfer of patterns into

a material. Etching is the third kind of process, which creates features by

selectively removing materials in defined patterns. And the fourth step is the

usage of techniques to perform the safe release of the microfabricated structures
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from the carrier, becoming ready to be used.

Materials growth and deposition

Different materials (i.e. organic and inorganic) are exploited for a variety of

distinct purposes in MEMS/NEMS (e.g. masking materials, structural materials,

sacrificial materials, and electrical devices), and two process, either chemical

or physical deposition, are usually used to deposit such materials on the

carriers. In chemically driven processes the formation of solid materials is

made directly from chemical reactions in gas and/or liquid compositions or

using the substrate material as a precursor. Examples of depositions that

happen because of a chemical reaction are: chemical vapor deposition (CVD),

electrodeposition, epitaxy and thermal oxidation. On the other hand, physical

depositions (e.g. physical vapor deposition (PVD) and spin coating) are defined

when no chemical reaction are involved on the process to form the material on

the substrate.

The most common deposition methods used in microelectronics are the low-

pressure processes such as sputtering and chemical vapor deposition, and they

are very important for the creation of MEMS/NEMS devices [2]. Inorganic

metallic materials such as Al, Ti and Pt are usually physically deposited by the

sputtering technique. Complementarily, deposition of organic materials such as

polyimide and SU-8 are made by the spin coating.

Sputtering

Sputtering is preferred over other methods such as evaporation due to the

wider choice of materials to work with, better step coverage, better uniformity

and better adhesion to substrates. During the sputtering, the target (material

to be deposited) is subjected to a highly negative potential and bombarded

with positive argon ions created in a plasma. Due to the impact of the ions

and momentum transfer the target material is ejected and the sputtered target

atoms are condensed onto the substrate (placed on the anode). The general

concept of the sputtering process is depicted in Fig. 1.
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Figure 1: General concept of the sputtering process.

Spin coating

Spin coating is intensively used in microfabrication in order to uniformly

deposit thin or thick organic films onto flato substrates. It is also an important

step in the photolithography process for depositing layers of photoresist. The

general steps of the spin coating process is depicted in Fig. 2. The process

consists of dropping an excess amount of a photoresist solution on the substrate,

which is rotated at high speed, so that excess of solution is pushed over the

edge of the wafer due to the centrifugal forces, while the residue of photoresist

solution on the substrate remains due to surface tension. The thickness of the

photoresist will depend on the rotation speed as well as on the concentration

of the photoresist solution and the solvent. Once spin coating is complete, the

wafer is placed quickly onto a hot plate and heated up to somewhere around

100 ◦C for several seconds or minutes to evaporate solvent and solidify the

photoresist coating.

Photolithography

Photolithography is a well-known, low-cost, mass-production process used

to transfer a pattern envisioned by the designer into a material. A general

photolithography process is presented in Fig. 3. A drawn pattern is transferred

onto a mask made of a glass plate that has a photo-definable opaque material
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Figure 2: General steps of the spin coating process.

(e.g. chrome). After mask preparation the pattern transfer begins by spin

coating a photosensitive material (photoresist) onto the substrate. After spin

coating, the substrate and the mask a brought into contact, and ultraviolet (UV)

light is shown through the mask onto the photoresist (photochemical cross-

linking). In a positive photoresist the transparent portions of the mask will be

exposed, causing it to become soluble in a developing solution, while negative

photoresist gives the inverse pattern. The wafer and mask are separated, and

the exposed photoresist is removed in the developing solution. The photoresist

can now be used as a protective mask to transfer the pattern into the underlying

material utilizing etching methods or as a shadow mask in a lift-off process.
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Figure 3: General photolithography process [3].

Etching

Etching techniques can be divided into wet (using liquid chemicals) or dry

(using gas-phase chemistry) etching. Either method can lead to isotropic or

anisotropic etching and the etch selectivity is defined as one film etching faster

than another film under the same etching conditions. Isotropic etching etches in

all directions equally, leading to mask undercutting and a rounded etch profile.

Anisotropic etching is directional leading to vertical wall. In general, wet

etching is more selective than dry etching and are most often used for isotropic

etching, whereas anisotropic etching is more common with dry etching. Dry

etching is done in a weakly ionized plasma at low pressure.

Chemical etch processes give good selectivity and isotropic profiles are obtained,

but physical etch processes have low selectivity and induce damage from ion

bombardment. However, physical etch processes give anisotropic etch profiles,

which are extremely important for sub-micrometer semiconductor fabrication.

In order to build a MEMS/NEMS device the aim is to find a complementary

set of materials and etchants, thus allowing selective pattern transfer.
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Surface micromachining

One of the most employed sensor fabrication technology is bulk micromachin-

ing using deep wet or dry etching below the surface of the silicon, surface

micromachining provides a complementary technique in which materials are

added above the surface. These materials often act as spacers or sacrificial

layers to be removed at a later stage to produce freestanding structures and

moveable parts. Typically surface-micromachined structures use silicon dioxide

as the sacrificial layer or hard mask and other materials, such as silicon or

metallic films, in the structural layer. In the most basic process the oxide is

usually deposited by CVD because this etches more rapidly than thermally

grown oxides. The desired patterns are etched in the oxide to form anchor

points for the structural layer or to serve a protective layer to remove materials

underneath. The challenges with surface micromachining are to control the

mechanical properties of the layers, trying to prevent the formation of internal

residual stresses and at the same time facilitating the released structures from

the surface of the wafer afterwards [4].
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