k-Quasi-Planar Graphs

A topological graph is k-quasi-planar if it does not contain k pairwise crossing edges. A topological graph is simple if every pair of its edges intersect at most once (either at a vertex or at their intersection). In 1996, Pach, Shahrokhi. and Szegedy [16] showed that every n-vertex simple k-quasi-planar graph contains at most O(n(log n)(2k-4)) edges. This upper bound was recently improved (for large k) by Fox and Pach [8] to n(log n)(O(log k)). In this note, we show that all such graphs contain at most (n log(2) n)2(alpha ck(n)) edges, where alpha(n) denotes the inverse Ackermann function and c(k) is a constant that depends only on k.


Editeur(s):
Vankreveld, M
Speckmann, B
Publié dans:
Graph Drawing, 7034, 266-277
Présenté à:
19th Symposium on Graph Drawing, Eindhoven, NETHERLANDS, SEP 21-23, 2011
Année
2012
Publisher:
Berlin, Springer-Verlag Berlin
ISSN:
0302-9743
ISBN:
978-3-642-25877-0
Laboratoires:




 Notice créée le 2013-02-27, modifiée le 2018-09-13


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)