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We have developed a method to analyze in detail, translocation events providing a novel and flexible

tool for data analysis of nanopore experiments. Our program, called OpenNanopore, is based on the

cumulative sums algorithm (CUSUM algorithm). This algorithm is an abrupt change detection

algorithm that provides fitting of current blockages, allowing the user to easily identify the different

levels in each event. Our method detects events using adaptive thresholds that adapt to low-frequency

variations in the baseline. After event identification, our method uses the CUSUM algorithm to fit the

levels inside every event and automatically extracts their time and amplitude information. This

facilitates the statistical analysis of an event population with a given number of levels. The obtained

information improves the interpretation of interactions between the molecule and nanopore. Since our

program does not require any prior information about the analyzed molecules, novel molecule–

nanopore interactions can be characterized. In addition our program is very fast and stable. With the

progress in fabrication and control of the translocation speed, in the near future, our program could be

useful in identification of the different bases of DNA.
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1. Introduction

Nanopores are nanometric holes in thin insulating membranes

existing in two modalities, protein/biological pores and solid-

state pores. Protein pores are made using a pore-forming protein

such as a-hemolysin1 that is inserted in a lipid bilayer whereas

solid-state pores are fabricated in an insulating membrane using

highly focused ions2 or electrons.3
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Nanopores are used as biosensors for single-molecule detec-

tion; they can detect unlabeled biopolymers such as DNA and

RNA,4–8 single proteins,9,10 ligand or protein–DNA

complexes11–13 and also RNA–antibiotic complexes.14The detec-

tion method is simple: when a molecule passes through the

nanopore the ionic current is significantly reduced because the

regular flow of ions passing through the pore is blocked. While

nanopore detection of those molecules has been extensively

studied and optimized, data analysis is still not standardized and

can be very challenging. As a preferred analyzing tool, most of

the groups use time distribution of ionic current to classify the

hundreds of events that are collected in a single experiment. Such

a histogram (called a point histogram here in the text) can be

used to identify peaks in the current signal.15 Once those peaks

have been identified, event extraction can be done with a

computer-based program using a threshold. Finally, the mean

blockage and the event duration (or dwell time) can be calcu-

lated. This method performs well and is commonly used but lacks

information on the different levels inside each event.

Using this method on data displaying low noise, Meller et al.7

were able to discriminate between single polynucleotide
M: Graf

Michael Graf (born 1989)

obtained his B.Sc. in Life

Sciences and Technology from

EPFL in 2011. He is currently

finishing his M.Sc. in bioengi-

neering with specialization in

biomedical technologies. His

research interests extend over

the areas of biophysics, infor-

matics, molecular biology and

genomics.

L: J: Steinbock

Lorenz Steinbock studied

Molecular Biotechnology

(B.Sc. & M.Sc.) at the univer-

sities in Heidelberg, Germany,

Waterloo, Canada and Cam-

bridge, UK. He graduated in

2006 followed by a Ph.D. in

physics at the University of

Cambridge, UK in Ulrich Keys-

er’s group. He worked on

rupture force experiments with

DNA aptamers, pioneered the

use of glass nanocapillaries for

the detection of DNA using the

resistive pulse technique and

coauthored the combination with

optical tweezers. He obtained prestigious scholarships e.g. from the

Deutsche Telekom Stiftung. His current research interest is single-

molecule detection with nanopores.

This journal is ª The Royal Society of Chemistry 2012
molecules using scatter plots, dwell time and current blockade

point histograms. Other studies16,17 successfully identified pop-

ulations amongst DNA translocations through small nanopores

(2–5 nm in diameter) and linked those populations with mole-

cule–nanopore interactions. Dwell time histograms have also

been used to perform molecule sorting,6 where l DNA and

fragments of l DNA digested by the restriction enzyme HindIII

can be differentiated. This work relies on the fact that those

DNA fragments have different lengths, hence shorter fragments

translocate faster than longer fragments. Since the speed at which

a DNA molecule translocates the pore varies significantly over

an experiment,18 finer analysis is required and it is typically

performed via examination of current blockages that a trans-

locating molecule produces. Here we list examples where the

existing method has been successfully applied: Skinner et al.19 for

example were able to distinguish between single and double

stranded nucleic acids using point histograms of current block-

ades in solid-state nanopores. Other groups were able to identify

nucleotides by immobilizing homopolymers or more complex

oligonucleotides in a-hemolysin.20,21

As pointed out above, the point histogram technique performs

well for current signals with low IRMS but analysis of noisier data

still lacks a fast and robust data processing technique. Some

commercial software solutions exist, such as pCLAMP from

Molecular Devices, Inc. Although pCLAMP is intended for

acquisition and analysis of electrophysiology data it can be also

used in nanopore data analysis. On the other hand, free software

packages such as QuB exist. QuB is based on Hidden Markov

Models22,23 and is intended for the analysis of generalized single-

molecule kinetics. Prior knowledge of the signal is required to

estimate the statistical model parameters. The group of

S. Winters-Hilt has also reported methods to classify and cluster

events using hidden Markov models (HMM).24 Those methods

give statistical models of resistivity and dwell times with rate

constants and transitions between states. There are other statis-

tical models that have been developed and applied to nanopore

data, for example, classification of events using support vector
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machines (SVM)25 or principal component analysis (PCA).26 In

both cases the information regarding the signal waveform is lost,

i.e. the shape of the event varying with time.

In this paper we report a novel method for the analysis of

signals acquired in nanopore sensing experiments. This new

method is fast, automated and requires little prior knowledge of

the input signal. So far one group has reported a fitting algorithm

to detect levels inside events.27 This algorithm fits the levels

closest to the maxima of a point histogram but the used algo-

rithm is not detailed in the paper and currently not made public.

Although the idea of using a change detection algorithm to

analyze nanopore data has been presented before28 it was used to

detect events but not to fit levels inside events.

We have chosen to test our method on prototypical trans-

location data such as the well-studied l DNA translocation

which generate signals that can be easily interpreted and the

levels generated have been extensively characterized.
2. Instrumentation and modelling of experimental
data

2.1. Experimental setup

The experimental setup is shown in Fig. 1a; this setup is standard

for nanopore sensing and is detailed in the ESI.† Our micro-

fluidics has two reservoirs, one on each side of the nanopore. A

bias voltage is applied across the nanopore using the electrodes

and the ionic current is monitored using an amplifier. Fig. 1b
Fig. 1 Schematic of a typical nanopore translocation event and results after

tration of a typical DNA translocation event in a nanopore. DNA is negati

positive electrode when a voltage is applied. (c) TEM image of the nanopore u

SiNx membrane. (d) Concatenation of detected events after rough event detect

CUSUM algorithm is displayed in red.

4918 | Nanoscale, 2012, 4, 4916–4924
illustrates a typical DNA translocation event. When the negative

DNA molecule translocates towards the positive electrode

through the nanopore, the base current is significantly reduced

because the DNA molecule blocks the regular flow of ions going

through the nanopore. The oval 7.2 nm pore used in the two sets

of experiments is shown in Fig. 1c. Signals were filtered at a cut-

off frequency of 10 kHz and sampled at 100 kHz. The ionic

current was amplified and monitored using an Axopatch 200B

(Molecular Devices, Inc. Sunnyvale, CA) in resistive feedback

mode. Our acquisition system is widely used for nanopore

sensing. This makes the acquired data prototypical within the

field of nanopore sensing and/or amongst nanopore users.
2.2. Experimental conditions

Prior to DNA translocation experiments, the nanopore was

characterized to check for linear current–voltage (I–V) charac-

teristics. The DNA was then introduced into the cis chamber and

a voltage of 100 mV was applied across the nanopore. All the

events were recorded using a custom LabVIEW program. This

recorded signal was analyzed using our CUSUM method

detailed in Section 3.

The results of two experiments are shown in Section 4: the first

experiment was recorded at a lower noise level than the second

one. Both measurements were done in the same nanopore, the

solution was kept at 1 M KCl and the applied voltage at 100 mV.

Solid-state nanopores can be reused many times, but after a while

the nanopore is more sensitive to the environment and the noise
CUSUM algorithm. (a) Schematics of the experimental setup. (b) Illus-

vely charged therefore it translocates through the nanopore towards the

sed for both measurements. The nanopore was fabricated in a 20 nm thick

ion and segmentation. The raw signal is shown in blue while the fit by the

This journal is ª The Royal Society of Chemistry 2012
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level changes. Variation of surface composition can induce

surface charge fluctuations and lead to higher 1/f noise.29–31 For

both measurements, we evaluated the current standard deviation

IRMS and found it to be 36.7 pArms and 55.3 pArms for the low

and high noise measurements respectively. Those two sets of

simple data enabled us to demonstrate the efficiency of our

CUSUM method for noisy data and also to compare it with the

widely used point histogram method.

2.3. Measurement model (ionic current model)

Our model is based on the premises that the measured signal can

be divided into three components using equation (1):

iðtÞ ¼ idðtÞ þ
XN

k¼1

ievent kðtÞ þ inðtÞ (1)

where i(t) is the measured signal, id(t) is the base current with

drift, ievent_k(t) are the events that are piecewise constant with a

given number of levels5 and in(t) is the noise component of the

signal.

Let us first discuss the base current id(t) which is proportional

to the applied voltage because the nanopore is a resistor like

component. The conductance of the nanopore is given by a

formula that depends on the conductance of the solution and the

dimensions of the nanopore.32 The base current has a quasi-

constant value, which drifts slowly compared to the typical

duration of an event. Changes in concentration, temperature or a

slow modification of the nanopore surface state can induce this

low frequency disturbance part.33–37

The most important components in our model are the events

ievent_k(t). Each event corresponds to the translocation of a DNA

molecule in a given configuration. Within the event there could

be different levels, for example, when a DNA molecule trans-

locates in a folded conformation.5 Depending on the size of the

translocating molecule, the current can have different piecewise

constant values that we call levels. With our CUSUMmethod we

make an automatic fit of those levels, even with a low signal to

noise ratio. An event is characterized by a start time and an end

time. The start time is defined when a first level is observed away

from the base current and the event end time is defined when the

signal crosses the base current value again.
Fig. 2 Histogram and power spectral density of low and high noise measurem

measurements respectively, both showing a Gaussian fit. (b) In blue and in red

respectively. The noise is decomposed in two main components, the flicker (1

This journal is ª The Royal Society of Chemistry 2012
Besides baseline and event components, the signal contains

noise. For example, the noise component in our two datasets

(low and high noise measurements) is displayed in Fig. 2. Fig. 2a

shows histograms of both measurements without events, both

display a Gaussian distribution. Next, we evaluate the current

standard deviation in the frequency domain by taking the square

root of the power spectral density (PSD). Both PSDs have been

computed usingWelch’s averaged modified periodogram applied

to the data without events (see ESI† for more details). We found

the values to be 36.9 pArms and 55.6 pArms for the low and high

noise measurements respectively. This is in good agreement with

the time domain current standard deviation. Fig. 2b shows the

superposed PSD plots of the two measurements; the low and

high noise measurements are the blue and red curves respectively.

The low-pass Bessel filter effect can be identified in both plots.

The high frequency noise rising with f2 also named Johnson

noise, originates from the thermal fluctuations of the charge

carriers.33 It is noticeable that this high frequency noise is the

same for both low and high noise measurements as it converges

around 10 kHz with exactly the same roll-off. The main differ-

ence between the low and high noise measurements is clearly the

1/f noise by two orders of magnitude. This strong variability of

the 1/f noise also named flicker noise has already been related to

nanopore experiments by Smeets et al.34 and Tabard-Cossa

et al.33
3. The CUSUM method

In the previous section, it has been shown that the measured

current can be modeled as a wide-band Gaussian noise added to

a piecewise constant signal due to translocation events. In this

section, we present a method which can detect such events, and

segment the different levels inside these events despite the pres-

ence of noise. In the following section, only the sampled version

i(k) of this signal will be used.
3.1. General structure

The problem considered in this paper is very similar to the one

studied in the statistical process/quality control area, where the

condition of a monitored system has to be sequentially
ents. (a) In blue and in red are the histograms of the low and high noise

are the power spectral densities of the low and high noise measurements

/f) and the Johnson f2 noise.

Nanoscale, 2012, 4, 4916–4924 | 4919

http://dx.doi.org/10.1039/c2nr30951c


Fig. 3 Flow chart of the OpenNanopore program. The raw signal is

processed by the event location subroutine, where a recursive low-pass

filter finds rough event locations. A vector with a startpoint and endpoint

for each event is then transferred to the CUSUM function. Here, event

startpoints and endpoints are detected in a more precise manner and the

events are fitted. Next all information from the fitted events is extracted in

an event database and finally plotted and saved in the last Open-

Nanopore subroutine.
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determined.38,39 Indeed, the state of a system is usually monitored

through segmentation of noisy piecewise constant fault indica-

tors. Therefore, numerous efficient algorithms have been devel-

oped in this community to sequentially detect abrupt changes in

signals. A comprehensive survey of this subject is given in Bas-

seville and Nikiforov40 and Lai.41The general structure of the

proposed CUSUM method is based upon such sequential algo-

rithms. As shown in Fig. 3 this method mainly consists of three

steps:

- the detection of translocation events,

- the segmentation of the detected events into different levels,

- the storage of events and levels information (dwell time,

amplitude, etc.) in a dedicated database.

These operations are detailed in the following paragraphs.

3.2. Event detection

The goal of the event detection step is to detect and roughly

localize translocation events in the measured current. The

approach usually applied to detect a translocation event is to

apply a threshold. If the baseline has low frequency variations

then a simple threshold is not sufficient. One way to avoid such

problems is to use adaptive thresholds. In the event detection

method detailed in the ESI,† this is realized by defining local

thresholds hS(k) and hE(k) through local estimates of the mean

m(k) and standard deviation s(k) of the current signal. Fig. 4a

and b show an example of results obtained with this event

detection method and compares the current signal in blue with

the local thresholds hS(k) in red and hE(k) in green. It is clear that

these two thresholds correctly adapt to the time evolution of the

current by following the very low frequency variations. This

detection method based on adaptive thresholds follows the low

frequency content of the current, and is much less sensitive to the

1/f noise than a classical threshold.

3.3. Event segmentation and level fitting

Once translocation events have been detected correctly, the

corresponding piecewise constant signals have to be segmented in

order to obtain the different levels and the corresponding change

times. The first important task consists in identifying impulsive

events. Indeed, such events are too short to be composed of

different levels and do not have to be further segmented. This

identification can be realized by calculating their length due to

the start and end samples previously obtained, and by comparing

this length with a given number of samples Nimp. If the length of

one event is less than Nimp, it is considered as an impulse and
4920 | Nanoscale, 2012, 4, 4916–4924
therefore it is not segmented in the next step. On the contrary, if

its length is greater than Nimp, it may contain different levels and

must be segmented. In our case, the maximum length of impulses

has been fixed to 0.1 ms, which corresponds toNimp¼ 10 samples

(see ESI† for more details). The impulse length can vary

depending on the translocation speed and the sampling

frequency.

The second important task is to determine the different levels

and change times contained in the events that are not impulsive.

The proposed segmentation method relies on a sequential

change detection algorithm: the cumulative sums or CUSUM

algorithm. The CUSUM algorithm was originally designed for

online applications to detect real time changes in production

datasets. It is Page42 who first proposed different forms of this

algorithm, direct or recursive, and one-sided or two-sided

forms. Later, several authors gave theoretical justifications and

foundations of this algorithm.40,41 Nowadays, this efficient

algorithm is widely used in the statistical process/quality control

area.38,39

This algorithm has been developed under the following

assumptions. Let x(n), n ¼ 0, ., k be a discrete random signal

with independent and identically distributed samples. Each of

them follows a Gaussian probability density function with an

expected value m and a standard deviation s. This signal may

contain one abrupt change occurring at the unknown change

time 1 # nc # k. This abrupt change is modeled by an instan-

taneous modification of m occurring at the change time nc.

Therefore, m¼ m0 before nc, and m¼ m0 + d from nc to the current

sample k, where d is the change in magnitude to be detected.

Under these assumptions, it has been shown by Page42 and

Basseville and Nikiforov40 that the recursive CUSUM algorithm

given in Algorithm 1 is a very efficient sequential algorithm to

detect the occurrence of an abrupt change in the signal, and to

estimate the corresponding change time nc.
In this algorithm, the instantaneous log-likelihood ratio s(k)

can be seen as a normalized difference between the current

sample x(k) and m0 þ
d

2
, the arithmetic mean of the expected

values before and after the change. The cumulative sum S(k)

cumulates these differences, and the decision function G(k)
This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c2nr30951c


Fig. 4 Event detection done with adaptive thresholding and CUSUM fit of a multi-level event. (a) Results obtained with adaptive thresholds, filter

parameters are set to a¼ 0.995, the threshold parameters S¼ 5 and E¼ 0. The low frequency variations around 1709 ms are not identified as events since

at the same time, the threshold value hS(k) sufficiently decreases (b) zoom in on the current trace marked with a dashed square displayed in (a) showing

that our event detection method correctly detects and localizes the two events occurring around 1609 ms. (c) A multi-level event obtained in l DNA

translocation experiment. One can notice 8 levels in the event that are without difficulty identified and fitted by the CUSUM algorithm.
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cumulates their positive part. When the decision function exceeds

a user defined positive detection threshold h, the algorithm

detects a significant abrupt change somewhere in the past

samples. The cumulative sum S(k) is then used to obtain an

estimate n̂c of the unknown change time nc. The detection

threshold h is an important parameter since it is related to the

algorithm sensitivity. Indeed, the decision function G(k) needs a

large number of samples in order to exceed a high threshold h. In

that case, the detection delay is long but the false detection rate is

low and the algorithm can be considered as ‘‘not sensitive’’. On

the contrary, when h is close to zero, G(k) can exceed this

threshold very quickly. The detection delay is then short but the

false detection rate increases and the algorithm is ‘‘very sensi-

tive’’. The approach used to correctly set the value of h is given

later in this section.

An important characteristic of this algorithm is its optimal

performance. Indeed, Lorden43and later Moustakides44 and

Ritov45 demonstrated by different approaches that the CUSUM

algorithm is the best sequential algorithm to detect and estimate

abrupt changes in discrete random signals with independent and

identically distributed Gaussian samples. This property makes

this algorithm an excellent fit to analyze translocation events.

Indeed, the current model developed in Section 2 with piecewise

constant translocation events and added Gaussian noise is very

close to these assumptions. However, the CUSUM algorithm

presented in Algorithm 1 is difficult to use in practice and had

to be adapted. First, the standard deviation s of the signal and

the expected value before change m0 have to be known to

calculate the instantaneous log-likelihood ratio s(k). This is
This journal is ª The Royal Society of Chemistry 2012
difficult in our application because these parameters may evolve

all along the course of the experiment. Calculating recursive

estimates of these two quantities through the past samples easily

solves this problem. Second, this algorithm is one-sided in

the sense that it detects either increases or decreases of the

expected value of the signal, depending on the sign of the

change in magnitude d. The simplest solution, already proposed

by Page,42 is to use a two-sided CUSUM algorithm. It is

constituted by two one-sided CUSUM algorithms running in

parallel and using the same positive change in magnitude d, one

using +d to detect an increase, and the other using �d to detect

a decrease in the expected value of the signal. Third, the algo-

rithm presented in Algorithm 1 stops as soon as an abrupt

change is detected. In order to segment multi-level events, it is

restarted each time a change is detected, until the end of the

event. After these three minor modifications, we obtain a simple

and efficient sequential change detection algorithm, which relies

on a double-sided CUSUM algorithm and has only two user-

defined parameters:

– d, the positive change in magnitude, corresponding to the

magnitude of the most likely encountered changes in the signal

which have to be detected quickly,

– h, the positive detection threshold, related to the algorithm

sensitivity.

These two parameters directly influence the global perfor-

mance of the algorithm, which is formally given by its average

run length (ARL) function. Page defined this quantity as

the expected number of samples before an action is taken when

m ¼ m0:
Nanoscale, 2012, 4, 4916–4924 | 4921
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ARL0(d,h) ¼ Em0[nd] (2)

In this equation, E[ ] is the expectation operator and nd is the

detection time of the algorithm. Therefore, this quantity corre-

sponds to the expected number of samples before a false alarm is

signaled, and can be viewed as the average time between two false

detections, or equivalently as the inverse of a false alarm rate. As

mentioned in chapter 2 of the book byHawkins and Olwell,46 this

ARL function can be used to set the parameters d and h as

follows:

– set d to the magnitude of the most likely change encountered

in the signal,

– choose ARL0(d,h) as the smallest acceptable number of

samples between two false detections,

– determine the value of h required for the two previous chosen

values thanks to dedicated codes or tables (see for example

chapter 3 of Hawkins and Olwell46).

In the context of our application, the following values lead to

good segmentation performance:

– change in magnitude: d ¼ 0.2 nA

– average run length function ARL0 ¼ 500 samples

By using these two values in the tables given in chapter 3 of this

book,46 we finally obtain a detection threshold h ¼ 1� d

s
with

s the standard deviation of the baseline.

As an example, the proposed segmentation algorithm is

applied with the previous settings to a multi-level event, and the

corresponding results are shown in Fig. 4c. As can be noticed in

this figure, segmentation results obtained with these settings are

quite satisfactory. All translocation events presented in this

paper are segmented by applying the CUSUM method and

above listed settings.
3.4. Event database

Once translocation events have been detected and segmented by

the two previous methods, important event information is stored

in a dedicated database:

– event nature (impulsive or not),

– event start and end,

– number of levels in the event,

– current values and dwell times of each level.

As shown in the next section, this database can be used to

further analyze each event independently, or to classify the

different events detected in the current signal regarding their

nature, their number of levels, etc. All described subroutines are

written in MATLAB and are part of the OpenNanopore soft-

ware package.
4. Results and discussion

Typical fitted results are shown in Fig. 1d. Impulses, one-level

events and two-level events are given as examples of events fitted

with the CUSUM method. We can clearly see that our program

fits all events including impulses. Fig. 5 displays the results of l

DNA translocation through the nanopore and compares data

analysis done using two approaches; the point histogram

approach is illustrated in grey and the level histogram approach

is illustrated in red, green and dark blue. In a point histogram,
4922 | Nanoscale, 2012, 4, 4916–4924
each point in the histogram is a point in the original signal

whereas in a level histogram, each point in the histogram is a level

in an event. The level histogram approach is the one developed in

this paper, where the event dwell time and the current blockage

values are given by the CUSUM algorithm. If there is more than

one level within the event then each level has its own dwell time,

current blockage and order in which it occurs. In order to

identify each sub-population we use a short MATLAB script

(also provided in OpenNanopore package) that extracts one, two

and multi-level events from the main table. Copies of those

events are then reported in separate tables. Using those tables, we

can easily work on a sub-population of events. In both level

histograms in Fig. 5 it is possible to identify the one-level events

in green, the shallow current blockage of the two-level events in

blue and the deep current blockage of the two-level events in red.

The CUSUM method performs well whether the noise is low

(Fig. 5a) or high (Fig. 5b), and it is easy to identify levels from the

level histogram; clearly this is not the case for high noise in the

point histogram (Fig. 5b).

Another level fitting method has been developed by Storm

et al.27where a point histogram of the recorded events is used to

find levels that are more likely to happen (peaks in the histo-

gram). The events are fitted to the closest level found in this

histogram. This method is easy to implement but requires some

knowledge on the levels prior to fitting, which is not the case for

the CUSUM method. In our method the main input parameters

are either straightforward or we propose a technique to calculate

them easily. Moreover, in the method developed by Storm et al.27

the user is limited to the resolution of the histogram and the levels

extracted from the peaks. Levels within three times the standard

deviation of each other are not visible in such a point histogram

because the populations overlap. Resolving of different pop-

ulations is hard when two Gaussian distributions have a distance

of less than four times the standard deviation between their mean

values. For example, in the experiments of Storm et al.,27 the

typical separation between peaks is six times the standard

deviation.

In order to compare our results to the related study performed

by Storm et al.,27we have calculated the SNR34 as a measure of

how well our method performs. This comparison can easily be

made since in both cases the salt concentration was 1 MKCl and

the applied voltage was 100 mV. The absolute current blockage

due to unfolded DNA translocation is DI ¼ 0.2 nA; this is the

minimal jump in the mean to detect. The RMS current noise

values are given in Section 2.2. Using those values we obtain for

the low noise measurement a SNR ¼ 5.42 and for the high noise

measurement a SNR ¼ 3.59. If we perform an estimate of the

SNR of Storm et al.’s27 measurements, assuming that their

distribution is Gaussian, we can evaluate their RMS current

noise value to 10 pA which means that they have a SNR¼ 15 for

an absolute current blockage of DI¼ 0.15 nA.With the CUSUM

method we can detect and fit events even if the SNR is close to 1

(see ESI† for more details). The lower the SNR, the longer the

event has to be in order to be detected.46

For impulses (10 samples ¼ 100 ms), the CUSUM algorithm

itself either does not detects the impulse or if it detects the

impulse, the fit is not accurate. We have created a workaround so

that those events are also fitted and listed in the event database

and it is part of the OpenNanopore package. Some of those short
This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 Scatter plots, point and level histograms of current blockages for (a) low noise (Irms ¼ 36.9 pA at 100 mV at 10 kHz low-pass filter) and (b) high

noise measurements (Irms ¼ 55.6 pA at 100 mV at 10 kHz low-pass filter). Scatter plots of one-level events (1LE) in green, deep in red and shallow in blue

current blockages of two-level events (2LE). Comparison of point histograms and level histograms with the same color code: point histograms of all

events (in grey) on top of level histograms of 1LE, high and low blockages of 2LE.
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events are also influenced by the filter; this effect has been

thoroughly studied by another group.47 The OpenNanopore

software package runs in 5.2 s per million data points where 3.6 s

are due to plotting; more detail on the performance of the soft-

ware and the minimal impulse length detected by the CUSUM

algorithm is given in the ESI.†

The main advantage and novelty of the OpenNanopore

package is that it does level detection. Other advantages are that

it is very fast, user-friendly, requiring a small number of user-

defined parameters, it performs under low SNR, and it is a free

and open-source software so it can be upgraded and modified. Its

disadvantages are that the input signal must have a stable

baseline (there is no pre-processing in OpenNanopore) and it has

a limited number of ready-to-use processing functions compared

to other software packages. Since our software is based on the

widely used MATLAB platform, it is easy with the given output

structure (the event database) to implement other post-process-

ing functions.

In conclusion, the CUSUMmethod was successfully tested on

l DNA translocation experiments in nanopores as well as in

nanocapillaries48 (data not shown). This experimental data was

used as a proof of principle experiment to demonstrate the
This journal is ª The Royal Society of Chemistry 2012
efficiency of this new method even on noisy datasets. The future

applications of this method, in combination with experimental

adjustments such as translocation in high viscosity solution,36,49

could be used to detect shorter levels in more complex signals.

This new method for detection of levels inside events could also

be used to study macromolecules such as protein–DNA

complexes.13 Evolution of the method could be used for smaller

molecules and, in the future, for analysis of DNA sequencing

experiments done by Derrington et al. and Clarke et al.50,51

All OpenNanopore MATLAB files and a GUI can be down-

loaded from our laboratory website at lben.epfl.ch.
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