Abstract

Two donoracceptor molecular tweezers incorporating the 10-(1,3-dithiol-2-ylidene)anthracene unit as donor group and two cyanoacrylic units as accepting/anchoring groups are reported as metal-free sensitizers for dye-sensitized solar cells. By changing the phenyl spacer with 3,4-ethylenedioxythiophene (EDOT) units, the absorption spectrum of the sensitizer is red-shifted with a corresponding increase in the molar absorptivity. Density functional calculations confirmed the intramolecular charge-transfer nature of the lowest-energy absorption bands. The new dyes are highly distorted from planarity and are bound to the TiO2 surface through the two anchoring groups in a unidentate binding form. A power-conversion efficiency of 3.7?% was obtained with a volatile CH3CN-based electrolyte, under air mass 1.5 global sunlight. Photovoltage decay transients and ATR-FTIR measurements allowed us to understand the photovoltaic performance, as well as the surface binding, of these new sensitizers.

Details

Actions