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Abstract A discrete element model is proposed to

examine rock strength and failure. The model is imple-

mented by UDEC, which is developed for this purpose.

The material is represented as a collection of irregular-

sized deformable particles interacting at their cohesive

boundaries. The interface between two adjacent particles is

viewed as a flexible contact whose constitutive law con-

trols the material fracture and fragmentation properties. To

reproduce rock anisotropy, an orthotropic cohesive law is

developed for the contacts, which allows their shear and

tensile behaviors to be different from each other. Using

a combination of original closed-form expressions and

statistical calibrations, a unique set of the contact micro-

parameters are found based on the uniaxial/triaxial com-

pression and Brazilian tension test data of a plaster.

Applying the obtained microparameters, joint specimens,

made of the same plaster, are simulated, where the com-

parison of the obtained results to laboratory data shows a

reasonable agreement.

Keywords Discrete element method � Orthotropic

cohesive contact model � Microparameter � Rock joint �
Degradation

1 Introduction

The Discrete Element Method (DEM) has been vastly used

to capture the sequences of separation and reattachment

observed in the fragmentation process of brittle materials.

Formulation and development of the DEM have progressed

over a long time since the pioneering study of Cundall

(1971). Recently, Jing and Stephansson (2007) have com-

prehensively provided the fundamentals of the DEM and

its application in rock mechanics.

According to the solution algorithm used, the DEM

implementations can be divided into two groups of explicit

and implicit formulations. The most popular representa-

tions of the explicit DEM are the computer codes of PFC

(ITASCA Consulting Group, Inc. 2008a) and UDEC

(ITASCA Consulting Group, Inc. 2008b).

One use of the explicit DEM is to model brittle material as

a dense packing of irregular-sized particles interacting at their

boundaries. The significant advantage of this type of simu-

lation, which has been predominantly implemented by PFC,

is to model the crack as a real discontinuity (Yoon 2007;

Potyondy and Cundall 2004; Cho et al. 2007; Diederich

2000). However, any DEM simulation crucially needs cali-

bration. Yoon (2007) showed that the PFC microparameters

can be calibrated to fit concurrently the Young’s modulus,

Poisson’s ratio, and uniaxial compressive strength of rock.

However, the predicted Brazilian tensile strength has been

approximately 0.25 of the uniaxial compressive strength

(Yoon 2007; Potyondy and Cundall 2004; Cho et al. 2007;

Diederich 2000). Comparing various types of rock, this value

is unrealistically high, where the ratio of the tensile to the

compressive strength is typically reported around 0.05–0.1

(Hoek and Brown 1998). Moreover, Potyondy and Cundall

(2004) reported that calibrating PFC to the uniaxial strength

gives a very low triaxial strength.
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Different solutions have been proposed to improve the

PFC results, e.g., the so-called cluster (Potyondy and

Cundall 2004) or clump logic (Cho et al. 2007). However,

in addition to execution difficulties, these logics are suf-

fering from some disadvantages. For example, since each

cluster or clump is composed of several particles, its size is

perforce much larger than that of rock mineral. Moreover,

some PFC microparameters, e.g., coefficient of friction,

contact modulus, and parallel bond modulus, show no

effect on the model response and consequently are

deprived of any physical sense (Yoon 2007; Potyondy and

Cundall 2004; Cho et al. 2007).

Some other DEM developments have been individually

provided, e.g., Wang and Tonon (2009) created a 3D DEM

code, based on the spherical particles, which was used to

reproduce the experimental triaxial test data of Lac du

Bonnet granite. Using a similar model in which rock was

represented by bonded spherical particles; Schöpfer et al.

(2009) investigated the dependence of elasticity, strength

and friction angle on rock porosity and crack density.

Lobo-Guerrero et al. (2006) developed a DEM simulation

to examine the effects of grain breakage in granular

materials subjected to uniaxial compression. Lobo-Guer-

rero and Vallejo (2010) applied this model on fiber-rein-

forced granular materials and reached promising results.

Mahabadi et al. (2010) used a coupled finite–discrete ele-

ment code to examine rock heterogeneity and rock ava-

lanche as well as the Brazilian test on homogeneous and

layered rock.

The validity of these DEM models is restricted, as they

only predict a limited number of rock experimental

behaviors. Hence, the necessity of developing a compre-

hensive model to involve a vast variety of rock physical

characteristics is deeply felt. The novelty of this research is

to develop a DEM model, which can concurrently predict

the compressive, tensile, and shear behaviors of rock. Since

finding the DEM microparameters is still an open question,

our objective also includes establishing a definite frame-

work for model calibration. Note that reproducing the

experimental data is not our major intention. In fact, we

aim at offer a physical interpretation for each DEM mi-

croparameter in terms of the standard laboratory properties.

These interpretations help understand how rock microme-

chanical properties controls its macroscopic response.

The model presented in this study was initially intro-

duced by the authors, where they successfully simulated

compressive and tensile behavior of hard and soft rocks by

employing polygonal rigid particles (Kazerani 2010). We

developed the model by adopting deformable particles and

an orthotropic cohesive behavior for contacts constitutive

law.

Laboratory tests on plaster samples are simulated to

verify the model validity. First, the standard experiments,

i.e., the uniaxial/triaxial compression and the Brazilian

tension, are modeled. The obtained results are shown to

lead a unique set of the model microparameters that fit the

material macroscopic responses in terms of the Brazilian

tensile strength, compressive strength, internal friction

angel, internal cohesion, Young’s modules, and Poisson’s

ratio. Using the obtained microparameters, plaster joint

specimens are ultimately simulated and the results will be

compared with those of laboratory.

2 UDEC Numerical Modeling

As a finite deference–discrete element coupled code,

UDEC permits two-dimensional plane-strain and plane-

stress analyses. As mentioned, rock material is to be

modeled as assemblage of distinct elastic particles inter-

acting at their contacts (Fig. 1), where each particle is

composed of the Constant-Strain Triangular (CST)

elements.

A perturbation within this particle assemblage, caused

by an applied excitation, propagates through the whole

system and leads to the particles movement. The solution

scheme is identical to that used by the explicit finite dif-

ference method for continuum analysis. Solving procedure

in UDEC alternates between the application of a stress-

displacement law at all the contacts, and the Newton’s

second law for all the particles. The contact stress-dis-

placement law is used to find the contact stresses from the

known displacements. The Newton’s second law gives the

particle motion resulting from the known forces acting on

them. The motion is calculated at the grid points of the

CST elements within each elastic particle. Then, applica-

tion of the material constitutive relations gives new stresses

within the elements. Figure 2 schematically presents the

calculation cycle in UDEC together with a brief review of

basic equations.

2.1 Orthotropic Cohesive Contact Model

The model failure behavior is controlled by the contact

constitutive law. Hence, failure characteristics of rock must

Fig. 1 A representative particle assemblage used for the Brazilian

test simulation, and configuration of model-constructing particles and

contacts

696 T. Kazerani et al.

123



be appropriately reflected in the contact law. A cohesive

contact model is developed for this purpose. It acts like

some glue cohering particles together, which also follows

an orthotropic behavior. It is assumed to have a decaying

stiffness in the pre-failure stage in order to represent the

damage behavior of the fracture process zone.

Depending on whether a contact undergoes tension or

shear, it endures either gradual or perfect stress softening after

its strength is exceeded. In tension, the supposed glue gradu-

ally loses its stress and is stretched up to a length called contact

cohesive displacement, beyond which the contact will no

longer endure stress. In shear, the contact stress abruptly

decreases to a residual frictional strength, which represents the

friction acting on the fractured surface.

The stress r applied on the contact surface is defined as

r ¼ rðdeff ; kt; ks; tc; cc;/c;DÞ ð1Þ

where deff is the contact effective displacement, and kt and

ks denote the contact initial stiffness coefficients in tension

and shear, respectively. The parameters tc, cc, and /c

characterize the strength of contact. They, respectively,

referred to as contact tensile strength, contact cohesion, and

contact friction angle. D is the contact damage variable. In

mixed-mode separation, i.e., concurrent existence of

normal and shear displacements, deff is defined as

deff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
n þ d2

s

q

dn� 0

ds dn\0

(

ð2Þ

where dn and ds are the normal separation and shear sliding

over the contact surface and dn is assumed positive where

the contact undergoes opening (tension).

2.1.1 Tensile Behavior of Contact

Contact cohesive stress in tension is expressed as

In hardening stage (deff B dct), the governing equation is

the exponential traction–separation law described by Xu

and Needleman (1996) (Fig. 3a). dct is the critical tensile

displacement of contact beyond which cohesive softening

happens, and dut is the ultimate tensile displacement of

contact at which contact entirely loses its cohesive

strength. In this stage, stress-displacement behavior is

elastic, i.e., the unloading and reloading paths are the same

and no energy dissipates in contact.

As illustrated in Fig. 3a, at the peak point r = tc and

deff = dct. Substituting these values in the first line of Eq. 3

and solving it for dct yields

dct ¼ e
tc

kt

ð4Þ

where e = exp (1) is the base of the natural logarithm.

In softening stage (dct \ deff B dut), contact is permitted

to release energy during unloading–reloading cycles. dmax

is then defined as the maximum effective displacement that

contact has ever undergone (Fig. 3a). dmax is deff, when

contact is increasingly opened, and held fixed as it under-

goes unloading and reloading until deff again reaches dmax.

The damage variable is defined as follows:

D ¼ dmax � dct

dut � dct

: ð5Þ

As contact undergoes softening, D irreversibly increases

from 0 to 1 or remains constant, even if multiple unloading–

reloading cycles happen.

Fig. 2 Calculation cycle in UDEC (ITASCA Consulting Group, Inc.

2008a)

(3)

A Discrete Element Model for Predicting Shear Strength and Degradation of Rock Joint 697

123



In unloading–reloading cycles (deff \ dmax), contact

follows a linear stress-displacement path, where kred is

defined as the secant stiffness at the point with an effective

displacement equal to dmax (see Fig. 3a).

2.1.2 Compressive-Shear Behavior of Contact

When contact is sheared under compression, the stress-

displacement law is described as

r ¼ ksdeff expð�deff=dcsÞ deff � dcs

rres ¼ �ktdn tanð/cÞ deff [ dcs

�

: ð6Þ

Similarly, the critical shear displacement of contact is

calculated as follows:

dcs ¼ e
cc

ks

: ð7Þ

The unloading–reloading path of contact is linear as

demonstrated in Fig. 3b, where the contact stress increment

is calculated as

Dr ¼ ksDdeff r\rres

0 r ¼ rres

�

: ð8Þ

Ultimately, the normal and shear components of contact

force are obtained as

Fn ¼ �r dn

deff
ac dn� 0

�ktdnac dn\0

�

and Fs ¼ �r
ds

deff

ac ð9Þ

where ac is the contact surface area.

2.1.3 Contact Fracture Energy

According to the Griffith–Irwin’s fracture criterion, the

condition necessary for fracture propagation is if sufficient

energy is provided to detach material thereby increase the

fractured surface. By definition, the Griffith’s fracture

energy, Gf is the rate of this energy per unit area along the

fracture edge. The area under the curve in Fig. 3a repre-

sents the energy needed to fully open the unit area of

contact surface. Since contact is the numerical represen-

tation of fracture, the area under the curve should be equal

to Gf:

Gf ¼
Z

dut

0

rddeff ¼ tcdctðe� 2Þ þ tc

dut � dct

2
: ð10Þ

2.1.4 Implementation of Developed Contact Model

in UDEC

The source code of UDEC should be developed to imple-

ment the proposed contact model. The flowchart presented

in Fig. 4 illustrates the algorithm used to carry out the

formulation. It merely includes those equations that are

related to the contact stress calculation.

2.2 Microparameters

The parameters involved in modeling are classified under

the term microparameter. Table 1 lists them along with the

analogous material properties.

Since the simulation is deeply affected by the micro-

parameters, they must be appropriately set such that the

model reproduces a response similar to that of physical

material. To reach this purpose, the relation between

the microparameters and the model behavior should be

investigated. This is done by establishing analytical and

statistical equations, which explicitly define and interpret

each model macroscopic response in terms of the micro-

parameters.

2.2.1 Physical Interpretation of Contact Stiffness

Coefficient

In numerical simulation of structures involving bodies in

contact, the effect of ill-conditioning may destabilize the

solution. Briefly speaking, this problem is raised due to the

lack of appropriate judgment about the contact stiffness. As

commonly thought, the ideal choice for the contact

Fig. 3 Stress-displacement

behavior of cohesive contact

model (arrows denote loading,

unloading and reloading paths)
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stiffness is to take it as infinite to prevent any reduction

in the global stiffness of the structure. However,

this assumption causes numerical inconsistencies within

the FEM solver or the DEM contact force algorithm

(ITASCA Consulting Group, Inc. 2008a; Babuska and Suri

1992; Chilton and Suri 1997). Therefore, contact stiffness

is arbitrarily reduced, but not so much as the structure

global stiffness is altered. That is why no exact suggestion

for the contact stiffness is provided yet, and it is always

assumed as an arbitrary parameter, which is usually esti-

mated by empirical formula (Zhai et al. 2004; Pinho et al.

2006; Elmarakbi et al. 2009).

We make use of the concept of fracture cohesive zone to

establish a physical interpretation for contact stiffness. The

fracture cohesive zone theory suggests that fracturing

process must be regarded as combination of material

detachment and the cohesive zone, i.e., the damaged area

surrounding the crack-tip. Since the model assumes no

damage or stiffness reduction for particles, contact stiffness

must represent the stiffness of the damaged material within

the cohesive zone. Thus, before fracture initiation, the

contact (initial) stiffness coefficient in tension and shear is

suggested as follows:

Fig. 4 Algorithm implemented

in UDEC to calculate contact

stress in terms of contact

separation mode and effective

displacement

Table 1 Material properties and model microparameters

Material property Model microparameter

Elasticity Particle

Young’s modulus (E) Young’s modulus (Ep)

Poisson’s ratio (m) Poisson’s ratio (mp)

Strength Contact

Fracture toughness in mode-I

(KIC)

Initial tensile stiffness coefficient

(kt)

Fracture toughness in mode-II

(KIIC)

Initial shear stiffness coefficient

(ks)

Brazilian strength (rt) Tensile strength (tc)

Internal cohesion (C) Cohesion (cc)

Internal friction angle (/) Friction angle (/c)

Uniaxial compressive strength

(rc)

Ultimate tensile displacement

(dut)
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kt ¼
E

w
and ks ¼

G

w
ð11Þ

where E and G are the Young’s and shear modulus of the

undamaged material, and w is the thickness of the cohesive

zone, perpendicular to the orientation of crack propagation.

Contact should gradually lose its stiffness upon opening

or sliding in order to represent the cohesive zone damage.

That is why the nonlinear (exponential) curves are adopted

for the contact hardening behavior (Fig. 3). At the origin,

the derivative of the curves equals the suggestions provided

by Eq. 11. The slope of the curves then gradually decays as

the contact displacement increases, and ultimately becomes

zero.

The usual assumption of huge contact stiffness leads to a

trivial thickness for the modeled cohesive zone. Therefore,

this assumption is not only needed but also incorrect.

Two closed-form expressions are provided in Appendix

for the cohesive zone thickness. Assuming them, the con-

tact initial stiffness coefficients in plane-stress are related

to material properties as follows:

kt ¼ 3b
E2rt

K2
IC

and ks ¼ 3b
GErt

K2
IIC

ð12Þ

and for plane-strain,

kt ¼ 3b
E2rt

ð1� m2ÞK2
IC

and ks ¼ 3b
GErt

ð1� m2ÞK2
IIC

ð13Þ

where b is a constant multiplier. The rest of the parameters

are defined in Table 1.

The ratio of the initial stiffness coefficients is therefore

ks

kt

¼ 1

2ð1þ mÞ
KIC

KIIC

� �2

: ð14Þ

2.2.2 Particle Elastic Properties

Particle stiffness and that of contact together determine the

model global stiffness. If contact stiffness is much higher

than that of particle, its effect can be neglected. As a

measure of particle deformability, E/dp can be compared

with the contact stiffness coefficients to examine the

validity of this condition, where dp denotes the particle

edge size. As presented in Sect. 3.1.2, kt, obtained from

Eq. 12, is 2.61 9 103 MPa/mm whilst E/dp = 6.50 9

102 MPa/mm.

Since the contact stiffness is one order greater than the

particle deformability ratio, contacts do not have consid-

erable effect on the model global elasticity. Therefore, the

Young’s modulus and the Poisson’s ratio of the particles

are assumed equal to those of the material.

Ep ¼ E and mp ¼ m ð15Þ

3 Model Calibration to Reproduce Compressive

and Tensile Data of Rock

Although the microparameters related to the model elas-

ticity, i.e., Ep, mp, kt, and ks, are explicitly calculated, the

others, i.e., tc, cc, and /c, are still unknown (note that given

Gf and kt, dut is related to tc and calculated through Eq. 10).

Therefore, a calibration process in which the model

response is compared with that of physical material is

required to obtain tc, cc, and /c. The calibrated micropa-

rameters should be unique and result in the best quantita-

tive and qualitative agreement between the model response

and that of tested rock in terms of the Brazilian tensile

strength (rt), uniaxial compressive strength (rc), internal

cohesion (C) and internal friction angel (/). Note that these

four parameters are dependent of each other. If having

three of them for a typical material, the forth is predictable

by the Mohr–Coulomb equations. Therefore, rt, C and /
are considered as the parameters characterizing the model

macroscopic response.

Since the model failure is controlled by contacts, rt, C, and

/ of modeled material are related to tc, cc, and /c of contact. If

finding these relations in an explicit form, we will have three

equations with the same number of unknowns (i.e., tc, cc, and

/c) that lead to a unique solution. The calibration process

estimates these equations by a statistical approach called

Design Of Experiment (DOE). The DOE provides a limited

number of suggestions for the microparameters to simulate the

laboratory tests. Using the results obtained from these simu-

lations, the DOE eventually offers the equations in polynomial

form of desirable order.

3.1 Numerical Simulation of Experiments

The following section describes material properties,

numerical loading process, discrete element mesh, and

boundary condition adopted to calibrate the model by

simulating laboratory experiments including the uniaxial/

triaxial compression and the Brazilian tension.

3.1.1 Material Properties, Boundary Condition,

and Geometry of Test Specimens

Plaster mortar was used to make the specimens in labora-

tory. The mortar is made of plaster and water mixed by

weight ratio of 1:0.65. All the specimens are cured for

5 days inside a chamber with the temperature of 25�C and

the relative humidity of 55%. Mechanical properties of the

plaster are measured as listed in Table 2. The details can be

found in (Chiang 1997).

The compressive specimen is cylindrical, 54 mm in

diameter, and 130 mm high. The Brazilian one is a disk
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with a diameter of 54 mm. They are placed between two

steel platens whose interfacial friction is assumed negligi-

ble. The upper platen moves downward with a certain

velocity, i.e., loading rate, while the lower one is fixed. The

geometry and boundary condition of the samples are

illustrated in Fig. 5.

3.1.2 Model Discretisation and Quasi-Static Analysis

The particle assemblage is generated arbitrarily to capture

material heterogeneity and irregular fracture pattern. Both

the samples consist of the triangular particles with an edge

size of dp = 2.0 ± 0.2 mm. Each particle consists of one

CST element.

According to the specimens’ geometry, a plane-strain

and a plane-stress analysis are adopted for the compressive

and Brazilian models, respectively.

Using Eq. 15, Young’s modules and Poisson’s ratio for

the particles are fixed at Ep = 1.3 GPa and mp = 0.2. Given

Eqs. 12 and 13, the tensile and shear initial stiffness

coefficients of contact are obtained as kt = 2.61 9

103 MPa/mm and ks = 7.27 9 102 MPa/mm for the com-

pressive sample, and kt = 2.50 9 103 MPa/mm and ks =

6.98 9 102 MPa/mm for the Brazilian one.

Since the solution algorithm of UDEC is dynamic, the

rate of loading must be always defined. Assumedly, it

should be the same as in practice, e.g., 0.02 mm/s, to

simulate the actual test condition. Considering that the time

step calculated by the code is about 10-7 s, one billion

steps are needed to move the platen for 2 mm, i.e., the

ultimate deformation of the plaster samples at compressive

failure. This approach makes the analysis quite inefficient.

The only way feasible to restore the solution efficiency

is raising the loading rate up to a reasonable level as well as

applying sufficiently high numerical damping, e.g., 80% of

the critical damping, to avoid any probable dynamic effect.

The loading rate is therefore set to 10 mm/s for both the

compression and tension tests.

Although the over damping removes the dynamic

oscillations, it causes the stress wave to decelerate. Thus, a

stress delay happens between two ends of the sample that

annuls the needed quasi-static equilibrium for each solution

step. To overcome this problem, we divide the loading

process into stages. During each stage, the upper platen

moves for 0.02 mm (i.e., 100th of the sample ultimate

deformation). Then, it stops and the DEM analysis con-

tinues to reach static equilibrium. These stages repeat until

the sample fails. During this process, reaction force at the

lower support is continuously recorded to generate stress–

strain curve and to estimate the sample strength.

3.2 Design of Experiment

Consisting of a group of statistical techniques, the DOE is

an efficient discipline to quantitatively evaluate the rela-

tions between the measured responses of an experiment

and the given input variables called factors (NIST/

SEMATECH 2011; Sall 2007). The DOE begins with defi-

nition of experiment objectives and selection of input/output

variables. In our purpose, the unknown microparameters and

Table 2 Mechanical properties of the plaster

Young’s modulus, E 1.3 GPa Internal cohesion, C 1.75 MPa

Poisson’s ratio, m 0.2 Internal friction angle, / 40�
Fracture toughness in mode-I, KIC 0.9 MPa.m0.5 Brazilian tensile strength, rt 1.6 MPa

Fracture toughness mode-II, KIIC 1.1 MPa.m0.5 Uniaxial compressive strength, rc 7.5 MPa

Fig. 5 Uniaxial compression and Brazilian tension models: geometry

and boundary condition before failure (left), and predicted failure

mode using calibrated microparameters (right)
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the model macroscopic response are chosen as the factors

and responses, respectively.

There are many different DOE methods, where the best

choice depends on the number of factors involved and the

level of accuracy required. Kennedy and Krouse (1999)

presented the details for different DOE methods and cate-

gorized them based on experimental objectives they meet.

Depending on the experiment condition, a complete

description of response behavior may need a linear, a

quadratic or even a higher-order model. The probability of

existing interaction between the microparameters makes us

believe that a linear design does not satisfy our objective,

and a quadratic model is strongly necessary.

3.2.1 Application of Central Composite Design

One of the DOEs used to predict the response quadratic

curvature, is the Central Composite Design (CCD) [NIST/

SEMATECH 2011]. It suggests defining the factors at five

coded levels, i.e., factorial (±1), center (0), and star (±a)

points. Each pair of the factorial points represents the upper

and lower bound expected for their corresponding factor. In

three-dimensional space, they denote the eight vertices of a

cube centered at the origin, with edges parallel to the

Cartesian axes representing the coded factors (x1, x2 and x3)

and with an edge length of 2. The center points are then

placed on the origin, and the star points are represented by

the intersection of the axes and the circumscribed sphere of

the cube. Therefore, a = 23/4 & 1.682. The levels 0, ±1,

±a and corresponding values for the microparameters are

presented in Table 3.

The CCD offers a limited number of combinations of the

factors at different coded levels. These combinations are

collected in a matrix called coded design matrix as listed in

Table 4. This matrix can be converted to the matrix of the

real factors, i.e., microparameters, by the transformation

formula expressed at the last column in Table 3. The

laboratory tests are then simulated using each set of

the CCD-suggested microparameters. These tests include

the Brazilian tension, uniaxial, and triaxial compression

tests on the samples shown in Fig. 5, where confining

pressures, r3 applied in triaxial modeling, equals 0.5 and

1 MPa. Finally, the model macroscopic results, in terms of

tensile strength, internal cohesion, and internal friction angle

are recorded as the DOE responses (Table 4), where internal

cohesion and internal friction angle are calculated based on the

obtained uniaxial and triaxial compressive strengths.

Note that the simulation is repeated for six times with

the same microparameters but different particle arrange-

ment (see 15th to 20th run in Table 4). This is because the

particle assemblage is generated arbitrarily and two UDEC

runs might produce slightly different results. Hence, the

CCD predictively carries out this repetition to minimize the

variability in modeling.

The targeted response parameters are statistically ana-

lyzed by applying the aforementioned data in the statistical

software of JMP (Sall 2007). The individual parameters are

evaluated using the Fischer test, and quadratic models of

the form

X ¼ gþ
X

i

kixi þ
X

i 6¼j

tijxixj þ
X

i

nix
2
i ð16Þ

are generated for each response parameter using multiple

linear regression analysis and analysis of variance. X stands

for the level of the measured response, i.e., rt, C and /
here. g is the intercept; ki, tij, and ni are the regression

coefficients. xi stands for the coded factors; xixj is the

interaction between the main effects; and x2
i denotes the

quadratic terms of the independent variables that are used

to simulate the curvature of the designed surface.

Predictor equations containing only the significant terms

are generated using a backward elimination procedure. A

numerical optimization procedure using desirability

approach is used to locate the optimal settings of the for-

mulation variables in view to obtain the desired response

(Park and Park 2010).

Using the data presented in Table 4, the following

equations between the model macroscopic response and the

coded factors are constructed:

rt ¼ 0:75þ 0:28x1 þ 0:14x2 þ 0:03x3 þ 0:11x1x2

þ 0:07x1x3 � 0:03x1x3 � 0:05x2
1 � 0:12x2

2 � 0:002x2
3

ð17Þ

C ¼ 1:80þ 0:48x1 þ 0:09x2 þ 0:15x3 � 0:15x1x2

� 0:10x1x3 þ 0:11x2x3 þ 0:04x2
1 � 0:37x2

2 � 0:12x2
3

ð18Þ

Table 3 Definition of factors and numerical value of microparameters at coded levels

Factor Corresponding microparameter Value of microparameter at coded levels Transformation formula

-a -1 0 ?1 ?a

x1 Contact tensile strength, tc 0.76 2.4 4.80 7.20 8.84 tc = 2.40 9 [coded level] ? 4.80

x2 Contact cohesion, cc 0.60 1.88 3.75 5.63 6.90 cc = 1.88 9 [coded level] ? 3.75

x3 Contact friction angle, /c 29.91 34.00 40.00 46.00 50.09 /c = 6.00 9 [coded level] ? 40.0
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/ ¼ 57:77� 5:53x1 þ 12:28x2 þ 4:17x3 þ 5:43x1x2

þ 1:47x1x3 � 2:82x2x3 � 0:75x2
1 � 1:77x2

2 þ 1:12x2
3:

ð19Þ

Equations 17–19 form a quadratic system of simultaneous

equations for the coded factors. Solving it for rt = 1.6 MPa,

C = 1.75 MPa and / = 40� of the plaster, x1 = 0.871,

x2 = 0.675, and x3 = -0.583. Using the transformation

equations, the uncoded factors (target microparameters) are

tc = 6.89 MPa, cc = 5.02 MPa, and /c = 36.50�.

3.2.2 Verification of Calibrated Microparameters

All the microparameters, calculated for simulation of the

plaster, are listed in Table 5.

Using these data, the tensile and compressive simula-

tions are again repeated for five times. The results in terms

of mean, standard deviation and relative error are listed in

Table 6, where they show perfect agreements with the

experimental measurements.

Figure 5 plots the model predictions for the failure mode

of the tensile and compressive samples. As seen, the sim-

ulation predicts that the compressive sample breaks in an

oblique shear surface. This is in agreement with the

experimental observations, e.g., Paterson (1978) indicated

the shear faulting as the characteristic failure process

observed in soft rocks and plaster. The Brazilian sample

also demonstrates typical splitting observed in laboratory.

3.3 Discussion

Comparing the multipliers in Eq. 17–19, the necessity of a

quadratic DOE is justified. Equation 17 shows that the

model tensile strength is more dependent on the contact

tensile strength than its cohesion, where it is not much

affected by the contact friction angle.

Table 4 CCD-suggested design matrix and model obtained results

Run Coded design matrix suggested by CCD Microparameters matrix Model predictions by using suggested microparameters

X1 X2 X3 tc cc /c rt C /

1 -1 -1 -1 2.5 10.0 10.0 0.38 0.69 49.58

2 ?1 -1 -1 7.5 10.0 10.0 0.47 1.91 21.78

3 -1 ?1 -1 2.5 30.0 10.0 0.38 0.60 69.79

4 ?1 ?1 -1 7.5 30.0 10.0 1.04 1.86 62.67

5 -1 -1 ?1 2.5 10.0 30.0 0.31 0.60 62.89

6 ?1 -1 ?1 7.5 10.0 30.0 0.81 2.09 39.91

7 -1 ?1 ?1 2.5 30.0 30.0 0.31 1.59 70.77

8 ?1 ?1 ?1 7.5 30.0 30.0 1.11 1.81 70.57

9 -1.682 0 0 0.8 20.0 20.0 0.07 1.15 61.35

10 ?1.682 0 0 9.2 20.0 20.0 1.14 2.55 50.97

11 0 -1.682 0 5.0 3.2 20.0 0.10 0.49 33.06

12 0 ?1.682 0 5.0 36.8 20.0 0.70 0.87 73.53

13 0 0 -1.682 5.0 20.0 3.2 0.70 1.10 56.53

14 0 0 ?1.682 5.0 20.0 36.8 0.76 1.68 66.39

15 0 0 0 5.0 20.0 20.0 0.70 1.71 57.46

16 0 0 0 5.0 20.0 20.0 0.63 1.77 60.41

17 0 0 0 5.0 20.0 20.0 0.80 1.93 56.67

18 0 0 0 5.0 20.0 20.0 0.90 2.14 53.39

19 0 0 0 5.0 20.0 20.0 0.71 1.53 60.82

20 0 0 0 5.0 20.0 20.0 0.79 1.71 57.67

Table 5 List of target microparameters for simulation of plaster

Ep (GPa) mp Compression (GPa/mm) Tension (GPa/mm) tc (MPa) cc (MPa) /c (�)

kt ks kt ks

1.30 0.20 2.61 0.727 2.50 0.698 6.89 5.02 36.50
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The first- and second-order variables in Eq. 18 show that

the model cohesion is more significantly related to the

contact tensile strength than its cohesion and friction angle.

Equation 19 presents that the contact tensile strength has

an important role on the model friction angle, although the

most significant effect comes from the contact cohesion.

These results indicate that contact tensile strength is the

critical microparameter, which dominates the global failure

of the simulation. This agrees with the experimental

observations by Hazzard and Young (2000) mentioning

that failure in rocks starts with creation of inter-mineral

tensile fractures in parallel with the applied load. The

coalescence of these microfractures creates a major failure

surface as observed in laboratory and in the numerical

modeling as well.

4 Reproduction of Shear Response of Rock Joint

Samples

Using the microparameters calculated based on the com-

pression and tension tests data, the shear behavior of joint

specimens made of the same plaster is examined. The

experimental results have been separately published, and their

details can be found in (Chiang 1997; Yang and Chiang 2000).

4.1 Specimen Geometry and Boundary Condition

The joint samples include the simple joints having one

single saw-tooth with an inclination of 30� and the com-

posite joints consisting of two teeth at 15� and 30�. In all

the samples, tooth height is fixed at 5.0 mm.

Figure 6 offers a schematic view of the joint samples

together with the assigned boundary condition. The joint

lower half is free to displace horizontally while vertically

restrained. Conversely, the upper part is quite bonded by a

rigid body prevented from any movement in the lateral

direction. The rigid body is to obstruct the upper half from

any global rotation. Consequently, dilation is allowed

while rotation is not.

As experimentally observed (Yang and Chiang 2000),

the material damage zone is limited to the joint tooth.

Hence, only the teeth are permitted to break and the other

parts of the specimen are assumed to behave elastically.

The damage zone, i.e., joint tooth, is discretized by

particles with the average edge size of 0.2 mm. Figure 7

illustrates the particle assemblage forming a 30� asperity.

A total of 393 and 1241 particles have been taken part in

the model A and AB, respectively.

The simulation proceeds by first compressing the joints

to reach the prescribed normal stress. Assuming plane-

strain condition, the joints are then sheared by a controlled

lateral displacement horizontally exerted to the lower half.

To limit the computation time, a rate of 2 mm/s has been

adopted.

4.2 Predictions and Discussion

Using the calibrated microparameters, the joints mechani-

cal response is examined under normal stress of 0.39 and

1.47 MPa. A Coulomb friction law is assigned to the joint

surface illustrated by a thick black line in Fig. 7. The

penalty parameter to control the surface interpenetration is

assumed to be equal to the contact tensile stiffness in plane-

strain. This value is large enough to avoid any excessive

overlap between the upper and lower parts of the speci-

mens. The shear stiffness coefficient for the joint surface is

fixed at 10 MPa/mm to best fit the elastic deformation of

the joint in the pre-failure region. The friction angle of the

joint surface is 35� (Chiang 1997).

4.2.1 Single-Tooth Joint

As shown in Fig. 8, the overall trend of the experimental

response of the discontinuity, in terms of the joint strength and

dilatancy, is satisfactorily reproduced, and the maximum and

tail values of the shear stress are properly predicted.

Every time that one or several contacts fail, a sudden

drop in the numerical response happens. However, the

initial normal stress compresses the particles at broken

contacts, and therefore the joint shear stress evolves again.

These sequences of the drop and evolution give an oscil-

lating appearance to the model shear response. Figure 9

demonstrates that the numerical and experimental failure

patterns eventually are fairly similar.

4.2.2 Double-Tooth Joint

Both the high and low values of the normal pressure are

applied on the composite joint. Although the peak shear

Table 6 Experimental

properties of plaster versus

model predictions

Property E (GPa) m rt (MPa) rc (MPa) C (MPa) / (�)

Experimental value 1.3 0.20 1.6 7.5 1.75 40.0

Numerical mean 1.3 0.20 1.6 7.4 1.77 40.3

Standard deviation 0.01 0.01 0.04 0.16 0.04 0.59

Relative error (%) 1.54 4.03 3.13 4.01 3.43 2.51
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strength is fairly reproduced under 1.47 MPa, there is a

qualitative difference between the laboratory results and

the numerical response in the post-failure stage (see

Fig. 10). Comparing the test measurement, the model does

not reproduce the flat zone and shows a larger drop in the

shear stress, after which stress increases again. This is

typical of a staggered contribution to the shear strength,

i.e., the 30� tooth breaks and subsequently the 15� one are

mobilized. This phenomenon causes a sudden fall in the

numerical response. On the contrary, the smooth inclina-

tion in the experimental observation suggests that both the

teeth are somehow sheared simultaneously. The reason of

this difference might be a matter of the experimental

boundary condition which is uncertain, or the 2D state of

the numerical simulation versus the 3D nature of the

experiment. Note that the numerical instabilities (mainly

the excessive particles interpenetration) caused the

calculation to stop after 5 mm of shearing. To overcome

this problem, we have to reduce the time step further,

which makes the solution inefficient.

As seen in Fig. 10, the laboratory measurements are

better predicted under 0.39 than 1.47 MPa, where both the

peak and the residual shear strength are properly

reproduced.

5 Conclusion

Using the discrete element code of UDEC, the compres-

sive, tensile, and shear behaviors of rock was studied. The

proposed numerical model considers the material as an

assemblage of elastic particles interacting at their cohesive

boundaries. These boundaries are viewed as flexible con-

tact points. To introduce rock anisotropy, UDEC’s contact

model was developed to follow an orthotropic cohesive

behavior, i.e., tensile and shear behavior of cohesive con-

tacts are assumed different from each other.

As a part of research novelty, the model global

responses, which represent the material macroscopic

properties, were expressed in terms of the model micro-

parameters. This was done by establishing original closed-

form expressions and the application of statistical methods.

The results of this part led to an ordered calibration pro-

cess, which provided a unique set of the microparameters

by which the model reproduced the standard compressive

and tensile test data of rock. This was achieved while no

Fig. 6 Schematic

representation of joint samples

and applied boundary condition

Fig. 7 Particle assemblage in a 30� joint asperity (units in

millimeter)

Fig. 8 Shear stress and dilation

versus shear displacement for

simple joint
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extra effort, e.g., applying clump or cluster logic, was

required.

The microparameters were calibrated for a tested plas-

ter. Then, the joints, made of this plaster, were modeled.

The results for the simple joint were excellent. The joint

shear strength, dilation and failure mode were properly

predicted. The model fitted the pre-failure response and the

peak strength for the composite joint as well. However,

there was a qualitative difference between the experiment

and the numerical reproduction for high value of the joint

normal pressure, where the model showed a significant

drop in the shear stress following the peak shear strength.

Nevertheless, the model succeeded to match the laboratory

results of the composite joint under low normal pressure.

The model reproduced the actual material fracture and

fragmentation while no plasticity, flow rule, or damage law

was required. These results encourage us in future appli-

cations of the DEM for simulating material failure and

fracture process.
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Appendix: Estimation of Cohesive Zone Thickness

This section provides an estimation for the cohesive zone

thickness in terms of the material mechanical properties.

Material Strength in Molecular Mechanics

A material cracks when the sufficient stress and energy are

applied to break the inter-molecular bonds. These bonds

hold the molecules together and their strength is supplied

by the attractive forces between the molecules. Many

equations have been proposed to formulate this force and

its potential energy. The Lennard-Jones potential is a

simple and extensively used function in this way (Griebel

2007),

W xð Þ ¼ ae
n
x

� �n

� n
x

� �m� �

ð20Þ

where m \ n. x denotes the separation distance between

two adjacent molecules, and

a ¼ 1

n� m

nn

mm

� � 1
n�m

: ð21Þ

This potential is parameterized by n and e. As depicted

in Fig. 11, e describes the depth of the potential and

thereby the strength of the repulsive and attractive forces.

The value n parameterizes the zero crossing of the

potential. The integer m and n are dependent of the

material molecular nature and are more commonly among

6–16.

As the potential derivative with respect to x, the inter-

molecular force P(x) is written as

PðxÞ ¼ oW
ox
¼ ae

x
�n

n
x

� �n

þm
n
x

� �m� �

: ð22Þ

The peak value of the intermolecular force, which is

called cohesive force, Pc, happens at xm as shown in

Fig. 11. Solving the derivative of P(x) for x,

xm ¼ n
n nþ 1ð Þ
m mþ 1ð Þ

� � 1
n�m

ð23Þ

Substituting xm into Eq. 22 leads to

Pc ¼ a
e
n
�n

n nþ 1ð Þ
m mþ 1ð Þ

� ��n�1
n�m

þm
n nþ 1ð Þ
m mþ 1ð Þ

� ��m�1
n�m

 !

: ð24Þ

Fig. 9 Numerical failure mode versus laboratory observation for

simple joint under 1.47 MPa

Fig. 10 Shear stress versus shear displacement for composite joint
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The equilibrium spacing between two molecules, xo

occurs when the potential energy is at a minimum or the

force is zero (see Fig. 11). Thus, if solving Eq. 22 for x,

x0 ¼ n
n

m

� 	 1
n�m

: ð25Þ

In unit volume of a perfect material, there should ideally

exist 1=x3
0 molecules and 3=x3

0 bonds. However, the number

of molecules and bonds in reality never reaches these

predictions because of material imperfections such as

molecular vacancies and voids. Therefore, the number of

existing bonds, nb, can be defined as

nb ¼ c
3

x3
0

ð26Þ

where c is a multiplier, smaller than one, that indicates the rate

of the existing bonds per unit volume of the physical material.

For perfect material, Pc=x2
0 estimates the material tensile

strength, rt. However, rt never reaches Pc=x2
0 again due to

material imperfections. Given the definition of c, rt can be

estimated as

rt ¼ c
Pc

x2
0

: ð27Þ

Material Fracturing

A tensile force is required to increase the separation dis-

tance from the equilibrium value. If this force exceeds the

cohesive force the bond is completely severed, and the

material starts cracking. The energy needed to break a

single bond, called bond energy, is calculated as follows:

U ¼
Z

1

x0

PðxÞdx ¼ WðxÞ�1x0
¼ �W x0ð Þ ¼ e: ð28Þ

After material cracked, a high-stress concentration will be

created at the areas close to the crack-tip. Therefore, bond

rupture takes place across an extended crack tip, i.e., fracture

process zone. As Fig. 12 suggests, the number of bonds

located at the cohesive zone, nbc can be estimated by the

multiplication of nb by the volume of the cohesive zone:

nbc ¼ 3c
waz

x3
0

ð29Þ

where w and az denotes the thickness and the surface of the

cohesive zone, respectively.

When a bond breaks, a quantity of energy equal to U is

dissipated. The accumulation of these energies over the

cohesive zone surface supplies the energy dissipation

through fracturing. Therefore, the Griffith’s fracture energy

Gf, defined as the rate of total energy release per unit

cracked area, is expressed as

Gf ¼
nbce
az

¼ 3c
we

x3
0

: ð30Þ

Substituting the parameter e obtained from Eq. 24 into

the above relation,

Fig. 11 Plots of Lennard-

Jones’ potential function (left)
and intermolecular force (right)

Fig. 12 Fracture representation

in simulation (left) and in

molecular-scale (right)
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Gf ¼ 3
c
a

wn

x3
0

Pc �n
n nþ 1ð Þ
m mþ 1ð Þ

� ��n�1
n�m

þm
n nþ 1ð Þ
m mþ 1ð Þ

� ��m�1
n�m

 !�1

ð31Þ

Substituting Pc by Eq. 27 and x0 by Eq. 25 into Eq. 31,

and solving it for w, the cohesive zone thickness is

estimated in terms of rt and Gf as follows:

w ¼ 1

3b
Gf

rt

ð32Þ

where

b ¼
1
m� 1

n

mþ1
nþ1

� 	
mþ1
n�m� mþ1

nþ1

� 	
nþ1
n�m

ð33Þ

depends on the integers m and n. Table 7 shows that b is

relatively constant at 0.25 for common values of m 2
½8; 12� and n 2 ½13; 18�.

In mixed mode fracturing, Gf is stated as

Gf ¼
K2

IC

~E
þ K2

IIC

~E
ð34Þ

where ~E ¼ E for plain-stress, and ~E ¼ E=ð1� m2Þ for

plain-strain. If contact undergoes pure tension,

w ¼ 1

3b
K2

IC

~Ert

ð35Þ

and in case of pure sliding

w ¼ 1

3b
K2

IIC

~Ert

ð36Þ
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