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Ferroelectric charged domain walls in an applied electric field
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The interaction of electric field with charged domain walls in ferroelectrics is theoretically addressed. A general
expression for the force acting per unit area of a charged domain wall carrying free charge is derived. It is shown
that, in proper ferroelectrics, the free charge carried by the wall is dependent on the size of the adjacent domains.
As a result, the mobility of such domain wall (with respect to the applied field) is sensitive to the parameters of
the domain pattern containing this wall. The problem of the force acting on a charged planar 180◦ domain wall
normal to the polarization direction in a periodic domain pattern in a proper ferroelectric is analytically solved
in terms of Landau theory. In small applied fields (in the linear regime), the force acting on the wall in such
pattern increases with decreasing the wall spacing. It is shown that the domain pattern considered is unstable in
a defect-free ferroelectric. The poling of a crystal containing such pattern, stabilized by the pinning pressure, is
also considered. Except for a special situation, the presence of charge domain walls makes poling more difficult.
The results obtained are also applicable to zigzag walls under the condition that the zigzag amplitude is much
smaller than the sizes of the neighboring domains.
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I. INTRODUCTION

Typically, at domain walls in ferroelectrics, the nor-
mal component of electrical polarization is conserved with
high accuracy. This is the so-called condition of electrical
compatibility.1 When a ferroelectric behaves as a perfect
insulator, any appreciable violation of this condition will imply
the appearance of bound charge at the wall and a macroscopic
electric field in the adjacent domains. Such a field, at best,
can strongly increase the energy of the system, but very often
this field is expected to be strong enough to fully suppress
the ferroelectricity in the sample. At the same time, the walls
with an essential violation of the electrical compatibility, the
so-called charged domain walls, have been observed in a
number of materials such as lead titanate PbTiO3 (PT),2–4

lead zirconate titanate Pb[ZrxTi1−x]O3 (PZT),5 lead germanate
Pb5Ge3O11 (PGO),6,7 and lithium niobate LiNbO3.8,9 It is
believed that such walls can exist due to the compensation
of their bound charge by ions8,9 or free electrons.2–4 Here,
the situation with the electron compensation is of special
interest. Specifically, as it was recognized many years ago,
the concentration of free carriers in properly compensated
domain walls can readily achieve the metallic level.10,11 Thus,
one can treat such a wall as a highly conductive interface.
In principle, one can tune its conductivity by controlling the
wall orientation12 and change its position in the crystal by the
application of a dc electric field. In this context, mobility of
charged domain walls is an important issue. Additionally, this
issue deserves attention in view of poling samples containing
charged domain walls.

The interaction of electric field with a charged domain wall
has not been completely understood and theoretical results
are limited. Here, one can mention only a classical paper by
Landauer13 and a recent paper by Mokrý et al.14 Landauer
indicated that the compensation of the bound charge on a
wall will lead to a reduction of the pressure acting on it
in the presence of a dc electric field, whereas Mokrý et al.
quantitatively described this effect in terms of Landau theory.

A closer analysis of the problem, however, shows that it
misses a more involved theoretical treatment. For example,
a straightforward application of the results by Mokrý et al.14

to the case of a zigzag charged wall leads to a paradox. Also a
free charge density on a domain wall was considered in Ref. 14
as an independent parameter, while in reality this charge is a
function of the sizes of the neighboring domains.

The goal of this paper is to revisit the problem of forces
acting at charged domain walls in an electric field. The paper
is organized as follows. In Sec. II, we discuss and solve
the aforementioned paradox. Here, we obtain the general
expression for the local force acting on the domain wall. It
is shown that not only the normal component of the force
(treated in Ref. 14), but also the tangential one should be
considered. In Sec. III, we consider the force acting on a
charged planar 180◦ domain wall normal to the polarization
direction in a periodic domain pattern in a proper ferroelectric.
We have shown that, for a fixed applied field, the force acting
on the domain wall is a function of the structure period. The
results obtained are applied to the analysis of poling of such
a structure. In Appendixes, supporting calculations for Sec. II
are presented.

II. LOCAL FORCE DENSITY ON A FERROELECTRIC
DOMAIN WALL

In this section, we will revisit the problem of the force
acting on a charged domain wall due to an electric field. After
Mokrý et al.,14 who originally addressed this problem, we will
use the following model. First, the internal structure of domain
wall is neglected. Second, the free charge is moving together
with the domain wall. Third, we will not consider the forces
arising due to an imbalance of the elastic energy, which is a
suitable approximation for nonferroelastic domain walls.

Mokrý et al.14 obtained a relation linking the pressure acting
on the wall (the surface density of the normal component of
the force) with values of polarization �P , electric field �E in the

104104-11098-0121/2012/86(10)/104104(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.104104
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adjacent domains, and surface density σf of the free charge
carried by the wall as

p = [[�(P )]] − Êi ([[Pi]] − σfni) . (1)

Here, � is a thermodynamic function characterized by the dif-
ferential d� = EidPi , [[Z]] = Z(2) − Z(1) denotes the jump
of the quantity Z on the domain wall, Ê = (E(1) + E(2))/2,
the upper suffixes are designating the domains, and nk is a unit
vector, normal to the domain wall, directed from domain (1)
to domain (2). The Einstein summation convention is used.
The positive sign of p corresponds to the force acting on the
domain wall from domain (1) to domain (2).15

However, a straightforward application of this result for
the case of the force acting on charged zigzag walls (Fig. 1),
which are typically observed in experiments,2–4,7 leads to a
paradox. This can be demonstrated in a simple model of
a fully compensated domain wall in the hard ferroelectric
approximation used by Mokrý et al.14 In this approximation,
the electrical displacement �D inside the domains is presented
as a sum of the constant spontaneous polarization �P0 and a
linear dielectric response to the electric field with permittivity
(εf)ij :

Di = (εf)ijEj + P0i . (2)

We will consider the zigzag wall in a parallel plate ferroelectric
capacitor with the polarizations inside the domains perpendic-
ular to the electrodes (Fig. 1). The bottom electrode of the
capacitor is grounded and a constant potential −U is applied
to the top electrode.

First, let us obtain the force acting on this wall using
Eq. (1). The free charge density on a fully compensated
head-to-head domain wall, which is equal to the jump of the
normal component of the spontaneous polarization, reads as

σf = [[Pi]] ni. (3)

By substituting Eq. (3) into Eq. (1), one can get the pressure
acting on an inclined flat segment of the zigzag domain wall
as

p = [[�(P )]] − Êi

(
[[Pi]] − [[

Pj

]]
njni

)
. (4)

In the considered model [[�(P )]] = 0, Êi = E0li , [[Pi]] =
−2P0li , where li = Ei/E0 is a unit vector in the direction of
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FIG. 1. Schematic of zigzag domain wall in ferroelectric capaci-
tor. The polarization vectors inside domains are perpendicular to the
electrodes. The bottom electrode is grounded and a constant potential
−U is applied to the top electrode. Directions of the electric field and
polarizations inside the domains are shown with arrows. The z axis
is parallel to the electric field.

the electric field. Thus, Eq. (4) can be rewritten as

p = 2P0E0(1 − lini lj nj ) > 0. (5)

According to Eq. (5), the z component of the force acting
on each segment of the zigzag domain wall is directed from
domain (1) to domain (2), thus the total force acting on the
wall is nonzero.

On the other hand, we can obtain this force directly from the
principle of virtual displacement. According to this principle,
the work δW done by the external force F is equal to the
variation of the proper thermodynamic function δG during a
virtual displacement δu:

δW = Fδu = δG. (6)

For considered system, in the hard ferroelectric approximation,
the thermodynamic function can be defined as14

G =
∫

V

1

2
(εf)ijEiEjdV + UQ, (7)

where Q is the charge on the top electrode, and E is the electric
field. Due to the full compensation of the bound charge on the
zigzag wall, the electric field inside the ferroelectric is equal
to U/h and does not change with the virtual displacement.
This means that the variation of the thermodynamic function
δG, produced by the virtual displacement δu, is given only by
the variation of the charge on the top electrode δQ. Since the
zigzag wall is electroneutral, the virtual displacement of this
wall will not affect the charges on the electrodes (see Fig. 1),
thus the thermodynamic function G will not change with the
virtual displacement. This implies that the force acting on the
wall is zero. Thus, we are in conflict with the result obtained
from Eq. (1).

The above paradox can be resolved if we take into account
the fact that the local force is not necessarily perpendicular to
the domain wall. Thus, to calculate the resultant force, acting
on an element of the domain wall, it is not sufficient to know
the pressure acting on it. The tangential component of the force
(with respect to the domain wall) should be taken into account.
As we will see later, in the case of the fully compensated zigzag
wall, the consideration of all components of the force will give
the resultant force equal to zero.

Let us obtain the general expression for the force density on
the domain wall using the principle of virtual displacement. We
can not use the formula for the generalized stress tensor from
textbook by Landau and Lifshitz,16 as was done in Ref. 14.
In fact, no derivation of this formula is available. In addition,
one can show that it leads to results which are in contradiction
with those obtained with the principle of virtual displacement
(see Appendix A).

In order to obtain a general formula for the local force
density on domain wall, we follow the principle of virtual
displacements, as applied to a domain wall of an arbitrary
shape. We will consider the electric field created by conductors
at fixed potentials. We will use the thermodynamic function G

of the general form14

G =
∫

V

[
�(P ) + 1

2
εbE

2

]
dV −

∑
i

ϕ
(i)
E Q

(i)
E , (8)

where the first term represents the part of the thermodynamic
function �(P ), associated with the ferroelectric part of
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polarization P , and the electric field energy integrated over
the volume V of the ferroelectric; the second term represents
the subtracted work of the electric sources (ϕ(i)

E and Q
(i)
E

are the potential and charge on the i-th conductor). Here,
εb is the background permittivity, which was for simplicity
taken as isotropic. Thus, in our notation, the vector of electric
displacement reads as

Di = εbEi + Pi. (9)

A straightforward analysis in terms of virtual displacement,
given in Appendix B, leads to the following expression for the
force acting on a unit area of the domain wall:

fk = [[�(P )]] nk − Êi [[Pi]] nk + Êkσf . (10)

The first two terms in Eq. (10) are the same as for the neutral
domain wall. The third term is the Coulomb force acting on
the free charge on the domain wall. We can rewrite Eq. (10) as
the sum of the tangential and normal components of the force
with respect to the domain wall as

fk = {[[�(P )]] − Êi([[Pi]] − σf ni)}nk

+{Êk − Êjnj nk}σf . (11)

The first term in the curly brackets is the pressure acting on the
domain wall, which was obtained earlier by Mokrý et al.,14,17

given by Eq. (1).
The second term in Eq. (11) represents the tangential

component of the force with respect to the domain wall

f|| = Ê||σf, (12)

where Ê||k = Êk − Êjnj nk is the tangential component of the
average electric field with respect to the domain wall. The force
f|| is the tangential component of the Coulomb force acting on
the free charges on the wall.

Let us use the above result to find the force acting on a
fully compensated zigzag domain wall, the situation where
we have come across the paradox. As before, we consider the
problem in the hard ferroelectric approximation. To exclude
an edge effect, we consider a parallel plate capacitor with
the thickness h, which is much smaller than the capacitor
width w:

h/w � 1. (13)

In this model, we will deal with the force per unit area of the
electrode in the limit of infinitely wide capacitor instead of the
total force acting on the wall.

Using Eqs. (3) and (10), one finds the force acting on a flat
segment of the domain wall in the form

Fk = fkS = (−Êi [[Pi]] nk + Êk [[Pi]] ni)S, (14)

where S is the area of the wall segment.
In the geometry of the considered problem (see Fig. 1),

Eq. (14) can be simplified as

Fk = fkS = 2P0E0[nk − lk(lini)]S. (15)

The vector nk − lk(lini) is the component of the nk parallel to
the electrodes. Thus, the force Fk is parallel to the capacitor
electrodes, and in accordance with the definition of nk acting
from domain 1 to domain 2. The absolute value of this force is
proportional to the area of the segment projected on the z axis,

i.e., |Fk| = 2P0E0L|zi − zi−1|, where the z axis is directed
perpendicular to the electrodes, zi are the coordinates of the
zigzag vertexes, and L is the capacitor width in the direction,
perpendicular to the figure plane (Fig. 1). The direction of this
force depends on the sign of the angle θ , i.e., on the sign of
the difference zi − zi−1. Thus, the absolute value of the total
force acting on the zigzag wall containing n segments can be
found as the sum the the forces acting on each segment

|F | = 2P0E0L

∣∣∣∣∣
n∑

i=0

(zi − zi−1)

∣∣∣∣∣ = 2P0E0L|zn − z0|. (16)

The force obtained depends only on the coordinates of the
vertexes at the edges of the capacitor. Considering the density
of this force per unit area of the electrode, we get∣∣∣∣ F

Sel

∣∣∣∣ = 2P0E0L |zn − z0|
Lw

� 2P0E0h

w
. (17)

In the considered model, the fraction h/w and, therefore, the
force density |F/Sel| vanishes. Thus, the total force acting on
the wall is zero, and the above paradox is resolved. The fact
that this force is zero is not just a trivial consequence of the
electrical neutrality of the domain wall because an interaction
between electric field and a domain wall includes not only
simple electrostatic forces acting on the charge on a domain
wall, but also the ponderomotive forces. For example, the force
acting on the 180◦ neutral domain wall is equal to 2P0E0, while
there is no electric charge on this wall.

Concluding this section, we would like to discuss the
applicability of Eq. (10) to the case of a partially compensated
zigzag wall. To calculate the force acting on such a wall, one
should know the electric field and the polarization on the both
sides of the wall and apply Eq. (10) locally. In general, this
is a tough mathematical problem. However, the result can be
readily obtained in the case where the zigzag amplitude d is
much smaller than the domain size h (see Fig. 2). We can
consider such a zigzag wall together with a layer of thickness

P

P

dQf Hwh

FIG. 2. Schematic of zigzag domain walls in a ferroelectric
capacitor. The polarizations inside domains are perpendicular to
electrodes. The zigzag amplitude d is much smaller than the domain
size. This wall can be considered together with a layer around it of
thickness Hw (d � Hw � h), which is shown with the dark region
on the figure. The polarizations inside the bulk of the domains, the
free electric charges on the walls, and the force acting on the walls
are the same for the zigzag wall and the equivalent flat wall.
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Hw, d � Hw � h, containing it. This layer is equivalent to a
flat wall: they have the same jump of polarization and the same
free charge, which create the same electric field in the bulk of
the domains. The virtual displacement of the walls will lead
to the same changes of the charges on the electrodes and the
same changes in the fractions of the domains. Thus, the total
forces acting on the zigzag wall and the equivalent flat wall
should be the same in the limit of d/h � 1. This enables the
use of Eq. (10) for the calculation the force acting on the walls
of this type.

III. FORCE ON A DOMAIN WALL IN A PERIODIC
PATTERN

In the previous section, we obtained the force acting on
the domain wall, carrying an arbitrary free charge density σf .
The calculation of such force requires the knowledge of this
charge. An essential interesting feature of this problem is that
σf is dependent, in a unique way, on other parameters of the
system. This makes it possible to calculate the force, acting on
a charged wall in a domain pattern due to the application of an
external electric field. We will do this for the case of a periodic
domain pattern with charged walls (see Fig. 3). We will be
interested in the situation, typical for ferroelectrics,18 where
the screening of the bound charge in the wall is in the nonlinear
regime, i.e., the carrier concentration inside the domain wall
is much higher than the homogeneous carrier concentration in
the material. We will consider a pattern with domains of the
same thicknesses H/2, where H is the structure period, having
planar walls perpendicular to the spontaneous polarization.

As was shown in Refs. 18 and 19, the charged wall in a finite
sample is not completely compensated. The net charge on the
wall is proportional (due to the Gauss law) to the electric
field inside the adjacent domains. In a pattern containing
charged domain walls, this field is not zero, even in the
absence of external bias field. For the situation considered,

H

P
∼

P
∼

-P
∼

-P
∼

z

1

2

z1

E0

FIG. 3. Schematic of the periodic structure with head-to-head
and tail-to-tail 180◦ domain walls with period H . Domain walls are
perpendicular to the polarization inside the domains P̃ , which is
different from the spontaneous polarization due to the depolarizing
field. The wall between the domains 1 and 2 considered in calculations
is marked by a bold line.

where the screening regime in the wall is nonlinear, this
field can readily be evaluated. Indeed, in this regime, the
free carrier density, needed for the polarization screening,
can be provided exclusively by a band bending. Obviously,
such band bending implies a voltage difference between the
neighboring head-to-head and tail-to-tail domain walls, which
is about Eg/q, where Eg is the band gap of the ferroelectric
and q is the absolute value of the electron charge.11,18 Finally,
the absolute value of the corresponding electric field inside a
domain of the thickness H/2 is

Ẽ = 2Eg

qH
. (18)

Actually, it can also be viewed as a partially compensated
depolarizing field. Due to this field, the polarization inside the
domains is reduced, compared to the nominal spontaneous
polarization of the ferroelectric. For a ferroelectric with a
second-order phase transition, where the polarization response
is given by the equation of state E = αP + βP 3, the reduced
polarization P̃ can be found as the negative solution to the
following equation:

αP̃ + βP̃ 3 = 2Eg

qH
. (19)

A. Pressure on the wall between domains of equal sizes

In the considered configuration, the tangential component
of the force, given by Eq. (12), is zero, whereas the pressure,
given by Eq. (1), is nonzero. Considering the domain wall
between domains 1 and 2, one can rewrite Eq. (1) as follows:

p = �2 − �1 − 1
2 (E1 + E2)(P2 − P1 − σf). (20)

Here, the electric field and polarization are considered positive
if the corresponding vectors are directed along the z axis
(Fig. 3), i.e., from domain 1 to domain 2. It follows from the
form of Eq. (20) that the absolute values of the pressure acting
on the head-to-head and tail-to-tail walls are equal, whereas the
corresponding forces are acting in opposite directions. Thus, it
suffices to calculate the pressure on a head-to-head wall. Such
wall is shown in Fig. 3 by a bold line.

The general formula for the pressure linear in a small
applied electric field E0 can be obtained. Using Eq. (20) and
expressing E0 = U/h as

E0 = (E1 + E2)/2, (21)

one finds

p =
(

∂�2

∂E
− ∂�1

∂E

)
E0 − 1

2
(E1 + E2)(P2 − P1 − σf )

= [(E2 − E1) χ − (P2 − P1 − σf)] E0, (22)

where χ = ∂P/∂E|P=P̃ is a susceptibility of a ferroelectric at
P = P̃ .

The Poisson equation for considered configuration has the
form [see Eq. (9) for the definition of electric displacement]

σf = εbE2 + P2 − εbE1 − P1. (23)
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By combining Eqs. (22) and (23), we finally get the pressure
as

p = 2εfẼE0, (24)

where

εf = εb + χ (25)

is the permittivity of the ferroelectric at P = P̃ . This is a
general formula which is suitable disregarding the order of
phase transition in the ferroelectric.

The absolute value of the electric field inside the domain Ẽ

in turn can be found from Eq. (18). Thus, from Eq. (24), we
obtain

p = 4εfEg

qH
E0. (26)

One should note that in contrast to the case of neutral domain
wall, the main part of this pressure is coming from the term
�2 − �1 in Eq. (20), but not from the electrostatic term
− 1

2 (E1 + E2)(P2 − P1 − σf).
It is instructive to compare the pressure, given by Eq. (24),

for the case where the polarization inside the domains is
close to the bulk spontaneous polarization P0 with the
pressure on the neutral domain wall 2P0E0. For simplicity,
we consider the case of a second-order phase transition.
Physically, the condition that the polarization inside domains
is close to P0 means that the depolarizing field inside domains
Ẽ is much smaller than the thermodynamic coercive field
Ecoer = [2/(3

√
3)]|α|P0. In this case, neglecting the difference

between P̃ and P0 and using Eq. (24) and the relation
εf ≈ 1/(2|α|), one finds p/(2P0E0) ≈ εfẼ/P0 ≈ 0.2Ẽ/Ecoer.
Since, in the considered situation, the depolarizing field inside
the domain Ẽ is much smaller than Ecoer, the pressure on the
charged wall is expected to be much smaller than the pressure
on the corresponding neutral wall.

The situation where the depolarizing field approaches the
thermodynamic coercive field corresponds to a polarization
instability inside domains manifesting itself in a divergency
of the permittivity εf . This formally implies [via Eq. (24)] an
unlimited increase of the pressure acting on the wall when
the domain period H approaches a certain critical value.
This academically interesting situation is, however, difficult
to attain experimentally.20 For this reason, in this paper we
will further discuss only the situation where the ferroelectric
inside domains is far from the aforementioned instability.

To calculate the terms in the pressure nonlinear in E0, we
need to know equations of state, which links polarizations and
electric fields inside the domains. We will find the pressure
on a domain wall for ferroelectric with a second-order phase
transition. In this case, electric fields inside the domains can
be calculated using the following equations of state:

E1 = αP1 + βP 3
1 , (27)

E2 = αP2 + βP 3
2 . (28)

Using Eqs. (21), (23), (27), and (28), we can present the
polarizations inside the domains as a Taylor expansion with
respect to E0 as follows:

P1 = P̃ + χE0 + ηE2
0 , (29)

P2 = −P̃ + χE0 − ηE2
0 , (30)

where

χ = 1

α + 3βP̃ 2
(31)

is the susceptibility of the ferroelectric at P = P̃ and

η = −3βP̃

(α + 3βP̃ 2)2(α + 3βP̃ 2 + 1/εb)
= −3βP̃χ2

1/χ + 1/εb
. (32)

By substituting the polarization from Eqs. (29) and (30)
into Eq. (20) [where for a ferroelectric with a second-order
phase transition � = (α/2)P 2 + (β/4)P 4] and keeping terms
up to the third power with respect to E0, one finds

p = εf

εb
(2P̃ + σf )E0 − 2βP̃χ3E3

0 . (33)

Using Eq. (33) and Poisson equation (23), we can find the total
pressure, including nonlinear term, as

p = 4εfEg

qH
E0 − 2βP̃χ3E3

0 . (34)

Here, χ and εf should be calculated for the reduced values of
the polarization inside domains. The term linear in E0 in the
right-hand side of Eq. (34) was obtained earlier in the general
case [see Eq. (26)]. The term nonlinear in E0 has the opposite
sign with respect to the linear one. For the structure with large
domains, where the depolarizing field is small and P̃ → P0, it
leads to the nonlinear pressure obtained by Mokrý et al.14:

p = −(χ2/P0)E3
0 , (35)

where χ is the susceptibility at P = P0.

B. Polling a sample with charged domain walls

In this section, we will consider the problem of poling a
sample, where the periodical structure with charged domain
walls shown in Fig. 3 was formed. We will consider the case
of a small external field, where we can take into account only
the part of the pressure given by Eq. (26), which is linear
in E0. For the model developed in the previous section and
used in the present one, the free carrier concentration in the
domain wall is close to metallic. This means that, for a realistic
concentration of the trapping centers, the main part of the free
carriers in the wall is not trapped, having high mobility and,
thus, being able to easily follow the domain wall in its motion.
In a realistic situation, the time needed for the free carriers to
transfer between neighboring domain walls (which depends on
the conductivity of the material and domain size) is expected
to be large compared to the time of poling. That means that
we can consider a model where the free charge carried by a
domain wall remains constant, when the domain wall moves
away from its position in the pattern with domains of equal
thicknesses.

Defects which always exist in real materials lead to the
domain-wall pinning. The pinning acts as dry friction in
mechanics. When we apply a small pressure on a domain wall,
its position is stabilized because of the pinning. To start the
domain-wall motion, the applied pressure, given by Eq. (26),
should be equal to the maximal “stabilizing” pinning pressure
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GUREEV, MOKRÝ, TAGANTSEV, AND SETTER PHYSICAL REVIEW B 86, 104104 (2012)

ppinning:

p = ppinning. (36)

Equations (36) and (26) enable us to find the electric
field needed to start the motion of the walls from the initial
positions in the equidistant domain pattern. However, the field,
which is necessary to start the domain-wall motion, may not
be sufficient for the poling of ferroelectric. To be sure that
Eq. (36) represents a criterion of successful poling, we should
check that the pressure p is greater or equal to the pinning
pressure at any position of the wall after it starts moving.
If the pining pressure does not depend on the position of the
domain wall, successful poling at a given external electric field
occurs, when the ponderomotive pressure acting at the wall in
a shifted position is larger than that in the original position.
In reality, one expects the pining pressure to be larger in the
original position because of the defect accumulations at the
wall during the time before the poling, which is the situation
often observed experimentally.7 It is clear that for this situation
the aforementioned criterion of successful poling holds as well.

Let us check if the criterion of successful poling is met
by our system, schematically depicted in Fig. 3. Since the
absolute value of the pressure acting on the head-to-head and
tail-to-tail walls is equal, whereas the corresponding forces are
acting in the opposite directions, the period of the pattern will
not be affected by the application of an electric field. Thus,
when discussing poling we can address just one head-to-head
wall moving between two tail-to-tail walls spaced by a time-
independent distance H (see Fig. 3).

Let us first consider how the polarizations P1 and P2 and
electric fields E1 and E2 inside the domains will change
after a domain wall is displaced from its initial position.
Differentiating the Poisson equation (23), and taking into
account that the free charge on the wall remains constant,
we get (

εb
∂E2

∂P2
+ 1

)
∂P2

∂z1
=

(
εb

∂E1

∂P1
+ 1

)
∂P1

∂z1
. (37)

Here, ∂E/∂P ≈ χ−1 ≈ ε−1
f . Thus, εb(∂E/∂P ) ≈ εb/εf � 1

and we can conclude that

∂P1

∂z1
≈ ∂P2

∂z1
. (38)

The sign of the derivatives in Eq. (38) can be obtained from the
relation between average field E0 applied to the ferroelectric
and fields inside the domains E1 and E2:

E1z1 + E2(H − z1) = E0H. (39)

By differentiating this equation, we obtain

∂E1

∂z1
z1 + ∂E2

∂z1
(H − z1) = −E1 + E2. (40)

In the case of the head-to-head wall considered here (see Fig. 3)
E1 < 0, E2 > 0, implying that the expression in the right-hand
side in Eq. (40) is positive. Thus, the left-hand side expression

in Eq. (40) is also positive and we obtain

∂E1

∂z1
z1 + ∂E2

∂z1
(H − z1)

= ∂E1

∂P1

∂P1

∂z1
z1 + ∂E2

∂P2

∂P2

∂z1
(H − z1) > 0. (41)

Here, ∂E1/∂P1 and ∂E2/∂P2 are positive, the domain widths
z1, H − z1 are also positive. Thus, it follows from Eqs. (41)
and (38) that

∂P1/∂z1 ≈ ∂P2/∂z1 > 0. (42)

In the following, we will consider the positive displacement
of the domain wall, i.e., the size of the domain 1, z1, increases
during this displacement. This situation corresponds to the
external field applied from domain 1 to domain 2 (E0 > 0).
In this case, it follows from Eq. (42) that the polarization
in domain 1 is positive, and that it will increase (the absolute
value of the depolarizing field E1 in this domain will decrease),
while the polarization in domain 2 is negative, and its absolute
value will decrease (the absolute value of the field E2 will
increase). We can summarize the result for polarization change
in a compact form as

|P2| < P̃ < |P1| < P0, (43)

|E1| < |Ẽ| < |E2|. (44)

Now, using Eqs. (20) and (23), we can evaluate the pressure
on the domain wall, when it is in an arbitrary position, as

p = �2 − �1 + εb

2
(E2

2 − E2
1). (45)

When the domain wall moves in the positive direction of the z

axis (z1 > H/2), it follows from Eq. (44) that E2
2 increases and

E2
1 decreases, thus the last term in Eq. (45) increases. Thus,

to show that the pressure increases when the wall is displaced
from the central position, it is sufficient to check that the term
�2 − �1 increases. Using Taylor expansion of polarization
similar to Eqs. (29)–(31) and keeping only the linear terms in
E0, we find

�2 − �1 = A(P̃1,P̃2) + B(P̃1,P̃2)E0, (46)

where

A(P̃1,P̃2) = 1
4β

(
P̃ 2

1 − P̃ 2
2

)(
2P 2

0 − P̃ 2
2 − P̃ 2

1

)
, (47)

B(P̃1,P̃2) = P̃2
(
P̃ 2

2 − P 2
0

)
3P̃ 2

2 − P 2
0

− P̃1
(
P̃ 2

1 − P 2
0

)
3P̃ 2

1 − P 2
0

. (48)

Here, P̃1, P̃2, Ẽ1, Ẽ2 are polarizations and electric fields in
nonsymmetric situation (z1 �= H − z1) at zero external field in
the domains 1 and 2, respectively.

In the case of zero external field, Eq. (43) leads to P̃2 <

P̃1 < P0, and it immediately follows that A(P̃1,P̃2) > 0. Thus,
if the domain wall is displaced from the central position in the
absence of external field, the direction of the force acting on
the wall is parallel to the displacement. Thus, the equidistant
periodic structure with charged domain walls is unstable. It
corresponds to a maximum of the energy. In real systems, the
position of charged domain walls can be stabilized because of
the pinning by defects, as discussed above.
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Now, we will analyze the second term in Eq. (46), which is
proportional to E0. Using Eqs. (48) and (38) we find

∂B

∂z1
≈ 6

(
P̃ 2

1 − P̃ 2
2

)P 4
0

(
P̃ 2

1 + P̃ 2
2 − P 2

0

) + 3P 2
0 P̃ 2

1 P̃ 2
2(

3P 2
2 − P 2

0

)2(
3P 2

1 − P 2
0

)2

∂P

∂z1
.

(49)

For the typical situation, where the depolarizing fields inside
the domains are far from the thermodynamic coercive field,
there is P̃1 ≈ P0, P̃2 ≈ P0. Thus, it follows from Eq. (49)
using Eqs. (42) and (43) that it is ∂B/∂z1 > 0. Thus, when
the domain wall is displaced from the central position by
application of the external electric field, the pressure acting
on the wall increases, and the criterion of successful poling is
met. This means that the switching is governed by the condition
in the periodic domain-wall pattern given by Eq. (36).

IV. CONCLUSIONS

A general formula for the local force acting on a domain
wall with an arbitrary free charge on it has been obtained.
In general, this force is not perpendicular to the domain
wall. The force acting on the domain wall depends on the
compensating free charge on it. This charge in turn depends
on the characteristic size of the domain structure. A periodic
domain structure with parallel head-to-head and tail-to-tail
walls has been considered. It has been shown that a smaller
domain size leads to a larger force. In a typical situation, the
force acting on the charged domain wall is much smaller than
the force acting on the neutral domain wall. Thus, poling of
the sample with such a structure is difficult in comparison
with poling of the sample with neutral domain walls. We
also showed that in an ideal crystal, the periodic structure
with charged domain walls is unstable. It corresponds to the
maximum of the energy.
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APPENDIX A: EFFECTIVE STRESS TENSOR AND
METHOD OF VIRTUAL DISPLACEMENT

The direct application of the formula for the generalized
stress tensor, actually given in the book by Landau and
Lifshitz16 without derivation, leads to the force acting on
the domain wall expressed as follows: fk = [[�(P )]] −
Êi[[Pi]]nk + Êkσf + [[PkEi − PiEk]]ni . In comparison to the
result, obtained using the method of virtual displacement,
given by Eq. (10), this force contains an additional (in general
nonzero) term [[PkEi − PiEk]]ni . The contribution of this

term at the pressure fknk is equal to zero and in this case
the result obtained with the method of virtual displacement is
the same as that obtained using the stress tensor from the book
by Landau and Lifshitz.16

APPENDIX B: DERIVATION OF THE LOCAL FORCE
DENSITY ACTING ON THE ELEMENT OF THE

DOMAIN WALL

We analyze the local pressure on the ferroelectric domain
wall in a system shown in Fig. 4. We consider that inside a
ferroelectric material with ferroelectric part of polarization
P

(1)
i there exists a closed domain of the material in a

different polarization state P
(2)
i . The closed boundary splits the

ferroelectric into two domains, which have volumes V (1) and
V (2), respectively. Inside domains there are conductors, which
carry charges Q

(1)
E and Q

(2)
E which are at electric potentials ϕ

(1)
E

and ϕ
(2)
E , respectively. We consider that the bound charges due

to discontinuous change of polarization at the domain wall SW

are partially compensated by free charges of surface density
σf . The charges on conductors and on the domain wall produce
electric fields E

(1)
i and E

(2)
i within each domain. Symbols ϕ(1)

and ϕ(2) stand for the electric potentials within each domain.
In order to obtain a general formula for the local pressure on

domain wall, we follow the principle of virtual displacements,
formulated in Sec. II. We will use the thermodynamic function
G given by Eq. (8). In what follows, it is convenient to
transform the work of electric sources into volume integrals

ϕ
(1)
E Q

(1)
E = −ϕ

(1)
E

∫
S

(1)
E

D
(1)
i ni dS

=
∫

V (1)
E

(1)
i D

(1)
i dV +

∫
SW

ϕ(1)D
(1)
i ni dS, (B1a)

δu
n

n

n

SW

SE
(1)

SE
(2)

QE
(1)

QE
(2)P

(1)

E
(1)

(1)

V
(1) P

(2)

E
(2)

(2)

V
(2)

(1)

E

(2)

E

σf

f

FIG. 4. General system of a ferroelectric in contact with two
conductors. Domain wall SW separates the ferroelectric into two
domains of volumes V (1) and V (2). There are two conductors, which
carry charges Q

(1)
E and Q

(2)
E and have electric potentials ϕ

(1)
E and

ϕ
(2)
E within each domain. The quantities within each domain are the

ferroelectric part of polarization P
(1)
i and P

(2)
i , electric field E

(1)
i and

E
(2)
i , and electric potential ϕ(1) and ϕ(2). Symbol δu stands for the

virtual displacement of the domain wall and symbol f stands for the
local force density acting on a domain wall.
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ϕ
(2)
E Q

(2)
E = −ϕ

(2)
E

∫
S

(2)
E

D
(2)
i ni dS

=
∫

V (2)
E

(2)
i D

(2)
i dV −

∫
SW

ϕ(2)D
(2)
i ni dS, (B1b)

where D
(1)
i and D

(2)
i are the vectors of electric displacement in

domains V (1) and V (2), respectively, and where we considered
the absence of free charges, i.e., divDi = 0, inside domains
V (1) and V (2) and vanishing the surface integral over the

domain V (1) at infinity. Orientations of the normal vectors
ni are indicated in Fig. 4. Since the bulk quantities, e.g., ϕDi ,
are generally discontinuous at the domain wall SW , it will be
useful to denote their jump by, e.g.,

[[ϕDi]] = ϕ(2)D
(2)
i − ϕ(1)D

(1)
i . (B2)

If we employ the expression for electric displacement Di =
Pi + εb Ei , the thermodynamic function G can be expressed
in a form

G =
∫

V (1)

[
�(1)(P (1)) − 1

2
εbE

(1)
i E

(1)
i − E

(1)
i P

(1)
i

]
dV +

∫
V (2)

[
�(2)(P (2)) − 1

2
εbE

(2)
i E

(2)
i − E

(2)
i P

(2)
i

]
dV

+
∫

SW

[[ϕ (Pi + εb Ei)]] ni dS. (B3)

Now, our task is to express the variation of thermodynamic function δG, which is produced by the virtual displacement of
domain wall. When doing this, we have to keep in mind that the bulk quantities ϕ, Ei , and Pi are not independent variables. The
relation between the electric field and the electric potential is given by Ei = −∂ϕ/∂xi and one has to consider the continuity
of electric displacement at the domain wall, i.e., [[Pi + εb Ei]] ni = σf . These additional conditions can be introduced into our
treatment by adding new variables λi and μ according to the method of Lagrange multipliers. Using this approach, we obtain a
new thermodynamic function L = L(ϕ,Ei,Pi,λi,μ), where all bulk variables in the both domains are considered independent:

L =
∫

V (1)

[
�(1)(P (1)) − 1

2
εbE

(1)
i E

(1)
i − E

(1)
i P

(1)
i + λ

(1)
i

(
E

(1)
i + ∂ϕ(1)

∂xi

)]
dV +

∫
V (2)

[
�(2)(P (2)) − 1

2
εbE

(2)
i E

(2)
i − E

(2)
i P

(2)
i

+ λ
(2)
i

(
E

(2)
i + ∂ϕ(2)

∂xi

)]
dV +

∫
SW

[
[[ϕ (Pi + εb Ei)]] ni + μ

(
[[Pi + εb Ei]] ni − σf

)]
dS. (B4)

The virtual displacement δu of domain wall, which in general is not normal to the wall surface, shown in Fig. 4 produces the
variation of all independent quantities δϕ, δEi , δPi , δλi , and δμ, except the electric potential on conductors ϕ

(1)
E and ϕ

(2)
E , which

are constant in the system. The variation of quantities results in the variation of thermodynamic function δL. In equilibrium, the
variation δL equals the work produced by external force during the virtual displacement of domain wall

δL = −
∫

SW

fiδui dS, (B5)

where fi is the local force density per unit area of the domain wall, and SW is the area of domain wall.
In order to express the variation δL, it is useful to consider the following formula for the variation of volume integral:

δ

{∫
V

g dV

}
=

∫
V

δg dV ±
∫

SW

g δuknk dS, (B6a)

where g is an arbitrary bulk quantity and plus and minus correspond to volume V (1) and V (2), respectively. The physical
interpretation of the above formula is that the variation of volume integral includes the contribution due to variation of bulk
quantity δg and the contribution due to the volume change of domains produced by the virtual displacement of domain wall δu.
A similar formula can be written for the variation of surface integral over the domain wall:

δ

{∫
SW

g dS

}
=

∫
SW

δg dS +
∫

SW

∂g

∂xk

δuk dS, (B6b)

where the first term on the right-hand side represents the contribution due to variation of bulk quantity δg on the domain wall
and the second term represents the contribution due to change of the domain-wall position during the virtual displacement.

By applying Eqs. (B6) to function L given by Eq. (B4), we obtain

δL =
∫

V (1)

{
δP

(1)
i

[
∂�(1)

∂Pi

− E
(1)
i

]
− δE

(1)
i

[
P

(1)
i + εbE

(1)
i − λ

(1)
i

] + ∂δϕ(1)

∂xi

λ
(1)
i + δλ

(1)
i

[
E

(1)
i + ∂ϕ(1)

∂xi

]}
dV

+
∫

V (2)

{
δP

(2)
i

[
∂�(2)

∂Pi

− E
(2)
i

]
− δE

(2)
i

[
P

(2)
i + εbE

(2)
i − λ

(2)
i

] + ∂δϕ(2)

∂xi

λ
(2)
i + δλ

(2)
i

[
E

(2)
i + ∂ϕ(2)

∂xi

]}
dV

+
∫

SW

{
δϕ(2)

[
P

(2)
i + εbE

(2)
i

]
ni − δϕ(1)

[
P

(1)
i + εbE

(1)
i

]
ni + (

δP
(2)
i + εbδE

(2)
i

)
ni(ϕ

(2) + μ)

104104-8



FERROELECTRIC CHARGED DOMAIN WALLS IN AN . . . PHYSICAL REVIEW B 86, 104104 (2012)

− (
δP

(1)
i + εbδE

(1)
i

)
ni(ϕ

(1) + μ) + δμ([[Pi + εbEi]]ni − σf ) − δuk

([[
�(P ) − 1

2εbEiEi − EiPi

+ λi

(
Ei + ∂ϕ

∂xi

)]]
nk + ∂

∂xk

([[ϕ(Pi + εbEi)ni]] + μ([[Pi + εb Ei]] ni − σf ))

)}
dS. (B7)

The above formula can be further transformed using following integral expressions:∫
V (1)

λ
(1)
i

(
∂δϕ(1)

∂xi

)
dV +

∫
V (1)

(
∂λ

(1)
i

∂xi

)
δϕ(1)dV =

∫
SW

λ
(1)
i δϕ(1)nidS, (B8a)

∫
V (2)

λ
(2)
i

(
∂δϕ(2)

∂xi

)
dV +

∫
V (2)

(
∂λ

(2)
i

∂xi

)
δϕ(2)dV = −

∫
SW

λ
(2)
i δϕ(2)nidS, (B8b)

where we consider that, during the virtual displacement of domain wall, the electric potential on conductors is kept constant by
the electric sources, i.e. the variations of electric potentials on conductors are zero, and that the surface integral over domain V (1)

is vanishing at infinity.
Applying Eqs. (B8) to formula (B7), we readily obtain the variation δL in a form

δL =
∫

V (1)

{
δP

(1)
i

[
∂�(1)

∂Pi

− E
(1)
i

]
− δE

(1)
i

[
P

(1)
i + εbE

(1)
i − λ

(1)
i

] − δϕ(1) ∂λ
(1)
i

∂xi

+ δλ
(1)
i

[
E

(1)
i + ∂ϕ(1)

∂xi

]}
dV

+
∫

V (2)

{
δP

(2)
i

[
∂�(2)

∂Pi

− E
(2)
i

]
− δE

(2)
i

[
P

(2)
i + εbE

(2)
i − λ

(2)
i

] − δϕ(2) ∂λ
(2)
i

∂xi

+ δλ
(2)
i

[
E

(2)
i + ∂ϕ(2)

∂xi

]}
dV

+
∫

SW

{
δϕ(2)

[
P

(2)
i + εbE

(2)
i − λ

(2)
i

]
ni − δϕ(1)

[
P

(1)
i + εbE

(1)
i − λ

(1)
i

]
ni + (

εbδE
(2)
i + δP

(2)
i

)
ni(ϕ

(2) + μ)

− (
εbδE

(1)
i + δP

(1)
i

)
ni

(
ϕ(1) + μ

) + δμ([[Pi + εbEi]]ni − σf ) − δuk

([[
�(P ) − 1

2
εbEiEi − EiPi + λi

(
Ei + ∂ϕ

∂xi

)]]
nk

+ ∂

∂xk

([[ϕ(Pi + εbEi)ni]] + μ([[Pi + εb Ei]] ni − σf ))

)}
dS. (B9)

Employing the principle of virtual displacements, (B5) yields the formula for the local force density on the domain wall

fk =
[[

�(P ) − 1

2
εbEiEi − EiPi + λi

(
Ei + ∂ϕ

∂xi

)]]
nk − ∂

∂xk

{[[ϕ(Pi + εbEi)ni]] + μ([[Pi + εb Ei]] ni − σf )}, (B10)

equations of motion

∂�

∂Pi

= Ei, (B11)

electric displacement λi = εbEi + Pi , Gauss’ law for electric displacement ∂λi/∂xi = 0, relationship between electric field and
electric potential Ei = −∂ϕ/∂xi , continuity of electric potential at the domain wall μ = ϕ(1) = ϕ(2), and continuity of electric
displacement at the domain wall [[Pi + εbEi]] ni = σf . Combining the above expressions, the formula for the local force density
on the domain wall can be written in a form

fk =
[[

�(P ) − 1

2
εbEiEi − EiPi

]]
nk + [[Ek (Pi + εbEi)]] ni. (B12)

Considering the continuity of tangential components of electric field at the domain wall [[Et,i]] = [[Ei − (Eknk)ni]] = 0 and
using the algebraic identity

[[fg]] = f̂ [[g]] + [[f ]] ĝ, (B13)

where f̂ = (f (1) + f (2))/2 is the average of bulk quantity at the opposite sides of the domain wall, the general formula for the
local force density of external sources on the domain wall can be further simplified to the form

fk = [[�(P )]] nk − Êi [[Pi]] nk + Êkσf . (B14)
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