Journal article

Transport, Flux And Growth Of Homoclinic Floer Homology

We point out an interesting relation between transport in Hamiltonian dynamics and Floer homology. We generalize homoclinic Floer homology from R-2 and closed surfaces to two-dimensional cylinders. The relative symplectic action of two homoclinic points is identified with the flux through a turnstile (as defined in MacKay & Meiss & Percival [19]) and Mather's [20] difference in action Delta W. The Floer boundary operator is shown to annihilate turnstiles and we prove that the rank of certain filtered homology groups and the flux grow linearly with the number of iterations of the underlying symplectomorphism.


Related material