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Rock joints have significant effects on wave propagation. When the joints are filled with saturated sand or
clay, the filling materials exhibit viscoelastic behavior on wave propagation. In the present study, wave prop-
agation across single and multiple parallel joints filled with viscoelastic medium is examined. Based on a
layered mediummodel, the recursive method is adopted and a modification is made under some special con-
ditions for faster calculation. In the theoretical formulation, analytical solutions of wave propagation across a
single viscoelastic joint as well as elastic joint are mathematically derived. Through parametric studies, it is
found that the more viscous the filled medium is, the less the wave energy transmits. Meanwhile, distinct
stop-pass behavior exhibits with the change of joint thickness or wave frequency for a single elastic joint.
While for the wave transmission across a single viscoelastic joint, the transmission coefficient generally de-
creases with increasing joint thickness or wave frequency, except when the two parameters match with
the pass bands of the corresponding elastic joint. When parallel joints exist, multiple wave reflections
among joints influence wave transmission. The transmission coefficient decreases with increasing joint
number and, the stop-pass behavior for viscoelastic joints is less significant than that for the elastic joints.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

When a wave propagates through rock masses, it is often attenu-
ated (and slowed) due to the presence of rock joints (King et al.,
1986; Zhao et al., 2006). For rock engineering, the prediction of
wave attenuation across jointed rock masses is a great concern of
rock engineers to assess the safety of underground structures built
in rocks under dynamic loads.

Recently, many studies have been performed on wave propaga-
tion across non-filled joints with full consideration of different defor-
mational behaviors by using displacement discontinuity theories (Cai
and Zhao, 2000; Pyrak-Nolte et al., 1990a; Schoenberg, 1980). In
these theories, stresses across joints are continuous, but displace-
ments are not. The discontinuity in displacement is equal to the ap-
plied stress divided by the joint stiffness. These theories are utilized
usually when joints generally have large persistence and small aper-
tures relative to the wavelength (Myer, 2000; Yi et al., 1997).

Natural joints, however, are often filled with a certain amount of
saturated sand, clay or gouge, where the thickness of filled material
can be up to several centimeters (Barton, 1974; Sinha and Singh,
+86 25 83686016.
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2000). For a thick filled joint, its behavior is mostly controlled by
the filling material. In practice, a filled joint can be treated as a thin
and weak layer sandwiched between background rock materials
(layered medium model). Across the two interfaces, both displace-
ments and stresses are continuous (Bedford and Drumheller, 1994;
Brekhovskikh, 1960). The layered medium model is valid regardless
of the ratio of joint thickness to wavelength. The displacement dis-
continuity model is also applicable for the analysis of filled joints.
However, the displacement discontinuity model is an approximation
of the layered medium model, and its accuracy decreases with the in-
creasing ratio of joint thickness to wavelength (Liu et al., 1995;
Rokhlin and Wang, 1991). When the joint thickness is comparable
with the wavelength, e.g., ultrasonic wave (with a frequency of
105 Hz or more) propagation across a thick joint (with a thickness
of 10−2 m or more), the displacement discontinuity model is no lon-
ger applicable, but the layered medium model always is.

Based on the layered mediummodel, the wave propagation across
a single filled joint (or a sandwiched layer between two solids) has
been studied for different scenarios, where the behavior of the filling
material is assumed to be linear elastic (Jones and Whittier, 1967),
nonlinear elastic (Li and Ma, 2009), poroelastic (Nakagawa and
Schoenberg, 2007) or viscoelastic (Fehler, 1982; Rokhlin and
Marom, 1986; Zhu et al., 2011). In nature, rock joints are usually in
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parallel form as joint sets. Wave propagation across multiple joints
becomes complicated due to multiple wave reflections among joints
(Cai and Zhao, 2000; Pyrak-Nolte et al., 1990b). Solutions of wave
propagation across a layered medium have been reported in some
classical books (Bedford and Drumheller, 1994; Brekhovskikh,
1960). For a periodically layered structure (a special case of layered
medium), frequency spectra show large energy transmission bands
(pass bands) and near-zero energy transmission bands (stop
bands). The stop-pass behavior for elastic stratified system with
welded interfaces (Brekhovskikh, 1960; Sve, 1971) and with
non-filled joints (Nakagawa et al., 2000) has been studied and, the
transmission coefficient is a function of impedance contrast,
nondimensional layer thickness, and joint stiffness.

For a joint filled with saturated sand or clay, the viscoelastic be-
havior of the filling material is suggested by some researchers
(Jaeger et al., 2007; Richer, 1977) to take account of wave propaga-
tion, and such behavior has been widely implemented in the study
of soil dynamics (Das and Ramana, 2011; Verruijt, 2010). In order to
consider a wide range of wave frequency and joint thickness, the lay-
ered mediummodel is adopted in the present study to examine wave
attenuation across single and multiple parallel joints filled with visco-
elastic medium. Firstly, the recursive method is briefly introduced
and a modification is made under some special conditions for faster
calculation. Then, analytical solutions of wave propagation across a
single viscoelastic joint as well as elastic joint are mathematically de-
rived. Subsequently, parametric studies of wave propagation across a
single filled joint are conducted with respect to viscosity, joint thick-
ness and wave frequency. Finally, the effects of multiple joints (in-
cluding joint spacing and joint number) on wave transmission are
examined.

2. The modified recursive method

The recursive method (or termed as propagator method or reflec-
tivity method by some other researchers) is an efficient tool to study
wave propagation across a layered medium (Brekhovskikh, 1960;
Fuchs and Müller, 1971; Kennett, 1983; Sve, 1971; Treitel and
Robinson, 1966). With this method, relations among different layers
with respect to potential amplitude or stresses and displacements
are established. Hence, the transmitted wave across N layers can be
obtained through N−1 steps. However, efforts have been persistent-
ly made to improve its efficiency since its emergence (Chen, 1993;
Luco and Apsel, 1983). For example, Chen (1993) presented a system-
atic and efficient approach for computing the dispersion curves as
well as the eigenfunctions of normal modes in a multilayered
half-space medium. Compared with the previous recursive method,
it is a simple and self-contained algorithm. In addition, as intrinsically
excluding the growth terms, the algorithm not only exhibits the phys-
ical mechanism of the formation of the normal modes, but also is
numerically more stable for high-frequency cases.

In nature, joint mechanical properties, filling condition, spatial
configuration, and mechanical properties of background media vary
little and can be approximated to be the same on a certain engineer-
ing scale (Jaeger et al., 2007). Therefore, a modification of the recur-
sive method is made in this section under above assumption for
faster calculation.

For a normally incident P or S wave with the form of u0=
A exp(− iωt+ ikx), where u0 is the particle displacement, A is the am-
plitude, ω is the angular frequency, and k is the wave number, its re-
flection and transmission coefficients across a single joint are
assumed to be R1 and T1, respectively.

The reflected and transmitted waves can be treated as the super-
position of reflected and transmitted waves arriving at different
times caused by multiple reflections between joints. Therefore, the
first, second, third, fourth, …, nth reflected waves across two joints
are R1u0, T1

2R1e
i2ksu0, T1

2R1e
i2ksR1

2ei2ksu0, T1
2R1e

i2ks(R12ei2ks)2u0, …,
T1
2R1e

i2ks(R12ei2ks)n−2u0, respectively; and the first, second, third, …,
nth transmitted waves across two joints are T1

2eiksu0, T12eiksR12ei2ksu0,
T1
2eiks(R12ei2ks)2u0, …, T1

2eiks(R12ei2ks)n−1u0, respectively, where s is
the joint spacing, and the term iks reflects the phase shift caused by
wave propagation through the background medium. It is found that
transmitted waves arriving at different times form a geometric se-
quence with a common ratio of R12ei2ks, and reflected waves arriving
at different times except the first one also form a geometric sequence
with a common ratio of R12ei2ks. Thus, the reflection and transmission
coefficients across two joints are

R2 ¼ R1 þ
T1

2R1e
i2ks

1−R1
2ei2ks

¼ R1 þ
T1

2R1e
i4πξ

1−R1
2ei4πξ

; ð1Þ

T2 ¼ T1
2eiks

1−R1
2ei2ks

¼ T1
2ei2πξ

1−R1
2ei4πξ

; ð2Þ

where ks=2πs/λ=2πξ, ξ is the ratio of the joint spacing to the wave-
length and termed as the nondimensional joint spacing.

Similarly, thefirst, second, third, fourth,…,nth reflectedwaves across
four joints are R2u0, T22R2ei2ksu0, T22R2ei2ksR22ei2ksu0, T22R2ei2ks(R22ei2ks)2u0,
…, T22R2ei2ks(R22ei2ks)n−2u0, respectively; and the first, second, third,
…, nth transmitted waves across four joints are T2

2eiksu0, T22eiksR22ei2ksu0,
T2
2eiks(R22ei2ks)2u0, …, T22eiks(R22ei2ks)n−1u0, respectively. It shows that

transmitted waves arriving at different times form a geometric sequence
with a common ratio of R22e2iks, and reflected waves arriving at different
times except thefirst one also formageometric sequencewith a common
ratio of R22e2iks. Thus, the reflection and transmission coefficients across
four joints are functions of those across two joints:

R4 ¼ R2 þ
T2

2R2e
i4πξ

1−R2
2ei4πξ

; ð3Þ

T4 ¼ T2
2ei2πξ

1−R2
2ei4πξ

: ð4Þ

It is further found that for wave propagation across 2n joints, the
reflection and transmission coefficients can be expressed as functions
of R2n−1 and T2n−1:

R2n ¼ R2n−1 þ T2n−1
2R2n−1ei4πξ

1−R2n−1
2ei4πξ

; ð5Þ

T2n ¼ T2n−1
2ei2πξ

1−R2n−1
2ei4πξ

: ð6Þ

These solutions (R2n and T2n) are basic solutions. However, it does
not mean that reflection and transmission coefficients can only be
obtained for 2n joints. Reflection and transmission coefficients across
other joint numbers can be obtained from these basic solutions
through steps much less than the joint number. For example, R3, T3
can be obtained through one step from R1, T1, R2 and T2

R3 ¼ R1 þ
T1

2R2e
i4πξ

1−R1R2e
i4πξ

¼ R2 þ
T2

2R1e
i4πξ

1−R1R2e
i4πξ

; ð7Þ

T3 ¼ T1T2e
i2πξ

1−R1R2e
i4πξ

: ð8Þ
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Fig. 1. The magnitude of transmission coefficient across a single viscoelastic joint as a
function of viscosity, where d=0.01 m and f=100 kHz.
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R7, T7 can be obtained through two steps from R1, T1, R2, T2, R4 and
T4 with the first step to obtain R3 and T3 as shown in Eqs. (7)–(8), and
then,

R7 ¼ R3 þ
T3

2R4e
i4πξ

1−R3R4e
i4πξ

¼ R4 þ
T4

2R3e
i4πξ

1−R3R4e
i4πξ

; ð9Þ

T7 ¼ T3T4e
i2πξ

1−R3R4e
i4πξ

: ð10Þ

To be convenient, the modified recursive method is abbreviated to
MRM. The MRM is superior to the previous method by the existence
of basic solutions. Therefore, less steps are needed for the MRM to ob-
tain reflection and transmission coefficients across multiple joints, es-
pecially when the joint number is large. For example, it needs only 4
steps (first R2 and T2, then R4 and T4, R8 and T8, finally R16 and T16) to
obtain R16 and T16 with the MRM, while 15 steps are needed to obtain
R16 and T16 for the previous recursive method. In addition, once the
reflection and transmission coefficients across a single joint are avail-
able, the MRM can be applied to calculate wave propagation across
multiple joints with different deformational behaviors.

3. Wave propagation across a single filled joint

Different from wave propagation across the elastic medium, wave
attenuation and dispersion occur when a wave propagates across the
viscoelastic medium. A general solution of wave propagation across
the viscoelastic medium is expressed as (Achenbach, 1973; Ewing et
al., 1957; Kolsky, 2003)

u ¼ A exp −axð Þ exp iω x=C−tð Þ½ �; ð11Þ

where a is the attenuation factor and C is the phase velocity.
Many viscoelastic models, including the Maxwell model, the

Kelvin model, the Kelvin–Voigt model and other models were devel-
oped to describe the viscoelastic behavior of materials for different
scenarios. Among them, the Kelvin model is simple and has been
widely used to describe the dynamic behavior of saturated sand or
clay (Das and Ramana, 2011; Verruijt, 2010). For P wave propagation
across the viscoelastic medium described by the Kelvin model with
spring stiffness E and dashpot viscosity η, the attenuation factor (a)
and phase velocity (C) are (Achenbach, 1973; Ewing et al., 1957;
Kolsky, 2003):

a ¼ ρ0E
2 E2 þ η2ω2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2ω2

E2

s
−1

0
@

1
A

2
4

3
51=2

ω; ð12Þ

C ¼
2 E2 þ η2ω2
� �

ρ0E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2ω2

E2

q
þ 1

� �
2
664

3
775
1=2

: ð13Þ

From Eqs. (12) and (13), it can be seen that both the attenuation
factor and phase velocity are frequency-dependent. In addition, the
attenuation factor and P wave velocity for purely elastic materials
can be obtained by setting η to zero:

a ¼ 0; ð14Þ

C ¼
ffiffiffiffiffiffi
E
ρ0

s
: ð15Þ

Based on the layered medium model, the reflection and transmis-
sion coefficients across a single viscoelastic joint by considering
multiple wave reflections between two interfaces of the filled joint,
are obtained:

R1 ¼ RR→F þ
TR→FTF→RRF→Re

−2adþi2ωd=Cð Þ

1−RF→R
2e −2adþi2ωd=Cð Þ ; ð16Þ

T1 ¼ TR→FTF→Re
−adþiωd=Cð Þ

1−RF→R
2e −2adþi2ωd=Cð Þ : ð17Þ

where RR→F ¼ 1−r
1þr , TR→F ¼ 2

1þr, RF→R ¼ r−1
1þr , TF→R ¼ 2r

1þr, the subscripts R
and F refer to rock and filled medium, respectively, r is the ratio of the
impedance of rock to that of the filled medium. r is frequency-
dependent because of the frequency-dependency of phase velocity in
viscoelastic medium. Eqs. (16)–(17) are similar with Eqs. (1)–(2), the
difference between them is that Eqs. (1)–(2) describe the dynamic re-
sponse across two joints, while Eqs. (16)–(17) are used to determine
the effects of two interfaces of a single filled joint on wave propagation.

Similarly, the reflection and transmission coefficients for wave
propagation across a single joint filled with a purely elastic medium
are obtained by introducing Eqs. (14) and (15) into Eqs. (16) and
(17).

R1E ¼ RR→F þ
TR→FTF→RRF→Re

i4πζ

1−RF→R
2ei4πζ

; ð18Þ

T1E ¼ TR→FTF→Re
i2πζ

1−RF→R
2ei4πζ

; ð19Þ

where ζ=d/λ is the ratio of joint thickness to the wavelength and
termed as the nondimensional joint thickness. To be convenient,
joints filled with viscoelastic medium and purely elastic medium are
abbreviated to be viscoelastic joint and elastic joint, respectively.

In the following calculation, it is assumed that the rock density is
2650 kg/m3 and its P wave velocity is 5830 m/s as typical properties
of the Bukit Timah granite of Singapore (Zhao, 1996), the density of
the filled material is 1900 kg/m3 and the stiffness (k) of the filled me-
dium for both Kelvin model and elastic model is equal to 2 GPa, which
are typical soil properties.

In the following section, the effects of viscosity η, joint thickness d,
and wave frequency f on wave transmission across a single filled joint
are studied in the frequency domain. Fig. 1 shows the magnitude of
transmission coefficient across a single viscoelastic joint (|T1|) as a
function of η (when η=0, the viscoelastic joint becomes an elastic
one), where d=0.01 m, f=100 kHz. From the figure, it is found
that |T1| decreases with η and, it indicates that the more viscous
the filled medium is, the less the wave energy transmits. This phe-
nomenon is due to the combined effects of wave attenuation in the
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Fig. 3. The magnitude of transmission coefficient across single viscoelastic and elastic
joints as a function of wave frequency, where d=0.01 m and, η=1000 Pa*s for the
viscoelastic joint.
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viscoelastic medium and the dependence of material impedance on
viscosity.

Results of transmission coefficients across a single viscoelastic
joint (|T1|) and elastic joint (|T1E|) as a function of joint thickness d
are presented in Fig. 2, where f=100 kHz for both kinds of joints,
and η=1000 Pa*s for the viscoelastic joint. It can be seen that |T1| is
smaller than |T1E| and, distinct stop-pass behavior exhibits with the
change of joint thickness for a single elastic joint. While for wave
transmission across a viscoelastic joint, |T1| decreases with increasing
d, except when d matches with pass bands of the elastic joint. The
general tendency of |T1| decreasing with d is due to the wave attenu-
ation in viscous medium: the larger the joint thickness is, the more
the wave energy dissipates. Meanwhile, the small discrepant part is
caused by the stop-pass characteristics of a layered system, which re-
sults from the change of the ratio of joint thickness to wavelength.

Wave frequency also has great effects on wave transmission
across joints. Fig. 3 presents results of transmission coefficients across
a single viscoelastic joint (|T1|) and elastic joint (|T1E|) as a function of
wave frequency f, where d=0.01 m for both kinds of joints and, η=
1000 Pa*s for the viscoelastic joint. Similar with Fig. 2, it is found that
|T1| is smaller than |T1E| and, distinct stop-pass behavior exhibits
with the change of wave frequency for a single elastic joint. While
for wave transmission across the viscoelastic joint, |T1| decreases
with increasing f, except when f matches with the pass bands of the
elastic joint. The general tendency of |T1| decreasing with f is due to
two factors: the dependence of attenuation factor on f (the higher
the wave frequency is, the more the wave energy dissipates), and
the dependence of the filling material's impedance on f. Meanwhile,
the small discrepant part is due to the stop-pass characteristics of the
layered system, which corresponds to the variation of the ratio of
joint thickness to wavelength.

4. Wave propagation across a filled joint set

When parallel joints exist, wave propagation becomes complicat-
ed due to multiple wave reflections among joints. Based on the MRM
and solutions of wave propagation across a single viscoelastic joint
and elastic joint, wave attenuation across multiple filled joints is stud-
ied in this section.

Fig. 4 shows the results of transmission coefficients across two vis-
coelastic joints (|T2|) and elastic joints (|T2E|) as a function of
nondimensional fracture spacing ξ, where f=100 kHz, d=0.01 m
for both kinds of joints, and η=10000 Pa*s for the viscoelastic joints.
From the figure, it is shown that the stop-pass behavior exhibits with
the change of joint spacing for both scenarios of two viscoelastic and
elastic joints. However, the stop-pass behavior for elastic joints is
more significant than that for the viscoelastic joints: at the pass
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Fig. 2. The magnitude of transmission coefficient across single viscoelastic and elastic
joints as a function of joint thickness, where f=100 kHz, and η=1000 Pa*s for the
viscoelastic joint.
band, the transmission coefficient for the elastic scenario is much
larger than that for the viscoelastic scenario; and contrarily at the
stop band, the transmission coefficient for the elastic case is much
smaller than that for the viscoelastic case.

The transmitted wave can be treated as the superposition of trans-
mitted waves arriving at different times caused by multiple reflec-
tions between joints. Joint spacing causes phase shift among
differently arriving waves. Therefore, for some joint spacing, trans-
mitted waves arriving at different times enhance the superposed
wave amplitude and form the pass band. While for some other joint
spacing, these waves counteract one another and form the stop
band. Due to the attenuation of the filling medium, amplitudes of
the first arriving transmitted wave and subsequently arriving trans-
mitted waves across the viscoelastic joints are smaller than those
across the elastic joints. Thus, it is well understood that at pass
bands, the transmission coefficient for the viscoelastic scenario is
much smaller than that for the elastic scenario. At stop bands, for
the viscoelastic joints, because later transmitted waves experience
much more numbers of wave reflections and transmissions across
joints, the attenuation effects (compared with the elastic scenario)
on them are much greater than those on the first transmitted wave.
And thus, the counteraction effects of the later transmitted waves
on the first transmitted waves are not as significant as those for the
elastic cases. Therefore, the transmission coefficient for the viscoelas-
tic joints is larger than that for the elastic ones.

Results of the transmission coefficients across multiple viscoelas-
tic joints (|TN| and N=2, 8, 16) as a function of nondimensional frac-
ture spacing ξ are illustrated in Fig. 5, where f=100 kHz, d=0.01 m,
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and η=10000 Pa*s. From the figure, we find that the stop-pass
behavior exhibits with the change of joint spacing for the wave trans-
mission across 2, 8 and 16 viscoelastic joints. However, the transmis-
sion coefficients at pass bands and stop bands decrease with N. It is
due to the wave attenuation of the filling materials and wave reflec-
tion at the joint interfaces.

5. Discussion

Wave propagation across viscoelastic medium is distinguished
from that across the elastic medium by frequency-dependent wave
attenuation and dispersion. Four points (A–D) are shown in Figs. 2
and 3: point A corresponds to wave transmission across a single elas-
tic joint, where d=0.005 m and f=100 kHz; point C refers to wave
transmission across a single elastic joint, where d=0.01 m and f=
50 kHz; point B denotes wave transmission across a single viscoelas-
tic joint, where d=0.005 m and f=100 kHz; point D shows wave
transmission across a single viscoelastic joint, where d=0.01 m and
f=50 kHz. For points A and C (both cases correspond to wave trans-
mission across a single elastic joint), the ratios of joint thickness to
the wavelength for the two scenarios are the same (the phase change
of differently arriving waves are the same) and correspondingly, their
transmission coefficients are the same (|T1E|=0.955). For points B
and D (both cases refer to the wave transmission across a single vis-
coelastic joint), because of the frequency-dependency of phase veloc-
ity in the viscoelastic medium, there exists a small difference between
their ratios of joint thickness to the wavelength (the ratio is 0.483 for
point B and it is 0.47 for point C). However, the difference of their
transmission coefficients is relatively large: |T1|=0.332 for point B
and |T1|=0.494 for point D. The above phenomena indicate that
wave attenuation across an elastic joint is equally determined by
thickness and wave frequency, i.e., by the ratio of joint thickness to
the wavelength. However, compared with joint thickness, wave at-
tenuation across a viscoelastic joint is more sensitive to wave fre-
quency, i.e., for cases having the same products of f and d, the case
with larger f has smaller |T1|.

6. Conclusions

Wave propagation across viscoelastic joints is of great importance
in the fundamental research and engineering application of rock
dynamics and applied geophysics. Based on the layered medium
model, the recursive method is adopted and modified for faster calcu-
lation, which is valid when joints and rock materials have similar me-
chanical properties and spatial configuration.

In the theoretical formulation, analytical solutions of wave propa-
gation across a single viscoelastic joint as well as elastic joint are
mathematically derived. Through parametric studies, it is found that
the magnitude of the transmission coefficient across a viscoelastic
joint is smaller than that across an elastic joint and, the transmission
coefficient decreases with increasing viscosity, which indicates that
the more viscous the filled medium is, the less the wave energy trans-
mits. In addition, the magnitude of the transmission coefficient across
a viscoelastic joint decreases with increasing joint thickness and wave
frequency, except when the joint thickness and wave frequency
match with the pass bands of the corresponding elastic joint. Mean-
while, for an elastic joint, wave attenuation is determined by the
ratio of joint thickness to the wavelength, while for a viscoelastic
joint, wave attenuation is more sensitive to wave frequency, com-
pared with joint thickness.

When parallel joints exist, multiple wave reflections among joints
influence wave transmission. Based on calculation results, it can be
concluded that the transmission coefficient decreases with increasing
joint number and, the stop-pass behavior with the change of joint
spacing for the viscoelastic joints is less significant than that for the
elastic joints: at the pass band, the transmission coefficient for the
viscoelastic scenario is much smaller than that for the elastic scenario,
and contrarily at the stop band, the transmission coefficient for the
viscoelastic case is much larger than that the for elastic case.
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