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Abstract This work is concerned with numerical methods for matrix eigenvalue
problems that are nonlinear in the eigenvalue parameter. In particular, we focus on
eigenvalue problems for which the evaluation of the matrix-valued function is compu-
tationally expensive. Such problems arise, e.g., from boundary integral formulations
of elliptic PDE eigenvalue problems and typically exclude the use of established non-
linear eigenvalue solvers. Instead, we propose the use of polynomial approximation
combined with non-monomial linearizations. Our approach is intended for situations
where the eigenvalues of interest are located on the real line or, more generally, on a
pre-specified curve in the complex plane. A first-order perturbation analysis for non-
linear eigenvalue problems is performed. Combined with an approximation result for
Chebyshev interpolation, this shows exponential convergence of the obtained eigen-
value approximations with respect to the degree of the approximating polynomial.
Preliminary numerical experiments demonstrate the viability of the approach in the
context of boundary element methods.
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1 Introduction

We consider a nonlinear eigenvalue problem of the form

T (λ)x = 0, x �= 0, (1.1)

for a holomorphic matrix-valued function T : Ω → C
n×n. Any pair (x,λ) satisfy-

ing (1.1) is called an eigenpair of T , consisting of the eigenvector x and the eigen-
value λ.

Nonlinear eigenvalue problems arise in a number of applications. In the context of
partial differential equations (PDEs), the nonlinearity is usually caused by frequency-
dependent boundary conditions or material parameters; see [6, 25]. In the context of
the finite element method (FEM), additional nonlinearities can be introduced by the
use of frequency-dependent basis functions. In a similar manner, a recently proposed
boundary element method (BEM) for elliptic PDE eigenvalue problems [29] also
leads to nonlinear eigenvalue problems. This will be illustrated for the 3D Laplace
eigenvalue problem with Dirichlet boundary conditions:

−�u = λ2u in D ⊂ R
3,

u = 0 on B := ∂D.
(1.2)

By means of the representation formula for the Helmholtz operator, the problem (1.2)
can be reformulated [29] as the boundary integral equation

1

4π

∫
B

eiλ‖ξ−η‖

‖ξ − η‖un(η)dS(η) = 0 for all ξ ∈ B, (1.3)

where un is the exterior normal derivative of u. Discretizing a weak formulation
of (1.3) by a Galerkin approach eventually leads to a nonlinear eigenvalue prob-
lem (1.1). In particular, when using a boundary element space of piecewise constant
functions on a surface mesh consisting of triangles �1, . . . ,�n, the entries of T (λ)

take the form

[T (λ)]ij = 1

4π

∫
�i

∫
�j

eiλ‖ξ−η‖

‖ξ − η‖ dS(η)dS(ξ). (1.4)

The assembly of T is far more expensive than in typical FEM, due to the nonlocality
and singularity of the integral kernel; see, e.g., [27, 28].

The solution of nonlinear eigenvalue problems has been extensively discussed in
the literature; see [25] for an overview of classic methods and [8, 14, 20, 31] for
more recent developments. However, most existing methods are not appropriate for
situations as (1.4), where the evaluation of the matrix-valued function T (λ) is very
expensive. For example, many methods rely on frequent evaluations of the residual
T (λ̃)x̃ for approximate eigenpairs (x̃, λ̃). A possible exception are methods based on
contour integrals [2, 3, 9]. In this paper, we consider a rather different approach to
deal with such nonlinear eigenvalue problems. All evaluations of T (λ) are performed
once in a preprocessing step to construct a polynomial approximation P(λ) to T (λ)

in the eigenvalue region of interest. This has two advantages: (i) the evaluation of
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P(λ) is considerably cheaper; (ii) a standard linear eigensolver can be used after an
appropriate linearization. Similar approaches have been proposed in [10, 11, 14, 15,
24]; we will discuss their relation to our approach in Sect. 2.1.

The remainder of this paper is structured as follows. In Sect. 2, we present our ap-
proach and discuss various details, such as the choice of the polynomial approxima-
tion, the linearization, and the linear eigenvalue solver. Also, the concept of invariant
pairs is introduced, which provides a robust way of handling several eigenpairs. In
Sect. 3, we analyze the impact of the error incurred by the polynomial approximation
on the accuracy of the computed invariant pairs. Finally, Sect. 4 contains preliminary
numerical experiments, demonstrating the viability of our approach for solving the
3D Laplace eigenvalue problem (1.2) by the BEM.

2 Derivation of the method

2.1 Polynomial approximation

In the following, we constrain ourselves to the situation that the eigenvalue region of
interest is the interval [−1,1]. This covers general finite intervals or even prescribed
smooth curves in the complex plane through an appropriate analytic reparameteriza-
tion.

The main idea of our approach for solving the nonlinear eigenvalue problem (1.1)
is to replace T by a polynomial approximant P . More specifically, for fixed interpo-
lation nodes λ0, λ1, . . . , λd ∈ [−1,1], we replace T by the unique matrix polynomial
P of degree at most d , satisfying the interpolation conditions

P(λj ) = T (λj ), j = 0, . . . , d (2.1)

This leads to the polynomial eigenvalue problem

P(λ)x = 0. (2.2)

We expect that a small interpolation error will lead to a small error in the eigenpairs.
This expectation is confirmed by an error analysis in Sect. 3. Standard choices of
interpolation nodes include Chebyshev nodes of the first kind,

λj = cos

(
j + 1

2

d + 1
π

)
, j = 0, . . . , d, (2.3)

and of the second kind,

λj = cos

(
j

d
π

)
, j = 0, . . . , d. (2.4)

As is well known and shown for our particular situation in Proposition 3.1 below, the
interpolation error of such a Chebyshev interpolant decays exponentially with d , and
hence we expect that a moderate polynomial degree will be sufficient to ensure good
accuracy.
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Remark 2.1 The idea of using polynomial approximations to solve nonlinear eigen-
value problems is not new. In particular, for boundary integral formulations of
PDE eigenvalue problems, the use of Taylor approximations is a well-known ap-
proach in applications [15–19, 26]. Polynomial and Padé approximation techniques
are frequently used in deriving absorbing boundary conditions for Helmholtz and
Schrödinger eigenvalue problems; see, e.g., [10]. In this context, Botchev et al. [11]
have proposed a polynomial approximation technique based on empirical interpola-
tion. Very recently, Meerbergen [24] has proposed a polynomial approximation tech-
nique with a heuristic selection of interpolation nodes based on Ritz values. While
this approach is more general, it is likely to require more evaluations of T than our
approach and there is no convergence analysis available to the best of our knowledge.

Finally, we mention that a very different approach has been proposed in [14],
which constructs a polynomial approximation in the course of applying an Arnoldi-
like method. This approach, however, relies on the construction of an integral operator
representing (1.1).

2.2 Linearization of the polynomial eigenproblem

Once we have substituted the interpolating polynomial P for the nonlinear func-
tion T , we are facing the need to solve the resulting polynomial eigenvalue prob-
lem (2.2). A popular way of solving polynomial eigenvalue problems is to transform
them into an equivalent (generalized) linear eigenvalue problem and then apply stan-
dard techniques. This transformation is not at all unique [23]. A common choice are
companion linearizations based on an expansion of the polynomial P in the mono-
mial basis. However, there is a number of inconveniences associated with the use
of the monomial basis. First of all, the coefficient matrices of P with respect to the
monomial basis are not readily available from the construction in Sect. 2.1. More-
over, especially for higher degrees of P , this transformation may cause numerical
difficulties. Therefore we employ a different linearization scheme described in [1],
which is based on an expansion of P in the polynomial basis formed by the first
d + 1 Chebyshev polynomials (of the first kind),

P(λ) = P0τ0(λ) + · · · + Pdτd(λ). (2.5)

Combining the expansion (2.5) with the interpolation conditions (2.1), through
which P is defined, leads to

T (λj ) =
d∑

i=0

Pi cos
i(j + 1

2 )π

d + 1
, j = 0, . . . , d

if the Chebyshev nodes of the first kind in (2.3) are used as interpolation nodes, and
to

T (λj ) =
d∑

i=0

Pi cos
ijπ

d
, j = 0, . . . , d

for the Chebyshev nodes of the second kind in (2.4). In both cases, the coefficient
matrices P0, . . . ,Pd can be efficiently computed by a sequence of inverse discrete
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cosine transforms of type III or type I, respectively. For details, the reader is referred
to, e.g., [4].

For the sake of completeness, let us recall the linearization technique from [1] for
the polynomial eigenvalue problem

(
P0τ0(λ) + · · · + Pdτd(λ)

)
x = 0 (2.6)

expressed in the Chebyshev basis. Introducing the vectors xk := τk(λ)x, the polyno-
mial eigenvalue problem (2.6) can be rewritten as

P0x0 + · · · + Pdxd = 0. (2.7)

Furthermore, the three-term recurrence for the Chebyshev polynomials τk yields

x1 = λx0 and xk = 2λxk−1 − xk−2, k = 2, . . . , d.

By means of the preceding identities, we can eliminate xd from the polynomial eigen-
value problem (2.7). The remaining equation,

P0x0 + · · · + Pd−3xd−3 + (Pd−2 − Pd)xd−2 + Pd−1xd−1 + 2λPdxd−1 = 0,

can be reformulated as the equivalent (generalized) linear eigenvalue problem

L0y = λL1y (2.8)

with y = [xT
0 , . . . , xT

d−1]T and

L0 =

⎡
⎢⎢⎢⎢⎢⎣

0 I

I 0 I

. . .
. . .

. . .

I 0 I

−P0 · · · −Pd−3 Pd − Pd−2 −Pd−1

⎤
⎥⎥⎥⎥⎥⎦

,

L1 =

⎡
⎢⎢⎢⎢⎢⎣

I

2I

. . .

2I

2Pd

⎤
⎥⎥⎥⎥⎥⎦

.

(2.9)

It has been shown in [1] that (2.8)–(2.9) is a strong linearization of the polynomial
eigenvalue problem (2.6).

2.3 Solution of the linearized eigenproblem

The resulting linearizations (2.8)–(2.9) are typically large. Their size is equal to the
size of the original nonlinear eigenvalue problem times the degree of the interpolat-
ing polynomial P . The eigenvalues of interest are those lying in or close to the real
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interval [−1,1]. As these are likely to be interior eigenvalues of the problem, we pur-
sue a shift-and-invert strategy for their computation. A natural choice for the shift is
the center of the interval, i.e., zero. This choice leads us to the computation of a few
eigenvalues of largest magnitude for the matrix Φ = L−1

0 L1, which can be easily ac-
complished using Krylov subspace methods, such as the implicitly restarted Arnoldi
algorithm [21].

Krylov subspace methods crucially depend on repeated matrix-vector multiplica-
tion with the matrix Φ , which, in our case, can be broken up into successive multipli-
cations by L1 and L−1

0 . Whereas the multiplication by the block diagonal matrix L1

can be performed efficiently in a straightforward manner, the question of how to in-
vert L0 is more subtle and will be treated subsequently.

The linear system L0x = y has the block structure

⎡
⎢⎢⎢⎢⎢⎣

0 I

I 0 I

. . .
. . .

. . .

I 0 I

−P0 · · · −Pd−3 Pd − Pd−2 −Pd−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x0
x1
...

xd−2
xd−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

y0
y1
...

yd−2
yd−1

⎤
⎥⎥⎥⎥⎥⎦

, (2.10)

where we have partitioned the vectors x and y in accordance with L0. The odd-
numbered block rows of (2.10) amount to the recursion

x1 = y0, x2j+1 = y2j − x2j−1, j = 1,2,3, . . . ,

which permits us to compute the entries x1, x3, x5, . . . of the solution. In a similar
fashion, the even-numbered block rows give

x2j = ŷ2j−1 + (−1)j x0, j = 1,2,3, . . . , (2.11)

where the vectors ŷ2j−1 are determined by the recurrence

ŷ1 = y1, ŷ2j+1 = y2j+1 − ŷ2j−1, j = 1,2,3, . . . .

Inserting identity (2.11) into the last block row of the linear system (2.10), we arrive
at the equation

(−P0 + P2 − P4 + P6 − · · · + · · · )x0

= (P1x1 + P3x3 + P5x5 + · · · ) + (P2ŷ1 + P4ŷ3 + P6ŷ5 + · · · ), (2.12)

which needs to be solved for x0. An LU factorization of the system matrix (−P0 +
P2 − P4 + P6 − · · · + · · · ) should be computed once in a preprocessing step before
the actual Krylov subspace method is invoked. In this way, each application of L−1

0
requires only one pair of forward and backward solves. After x0 has been computed,
the remaining components x2, x4, x6, . . . are determined via (2.11).
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2.4 Invariant pairs

Often, we are interested in computing more than one eigenvalue and eigenvector. As
discussed in [9, 20], the concept of invariant pairs provides a robust way of represent-
ing and computing several eigenpairs simultaneously.

Definition 2.1 A pair (X,Λ) ∈ C
n×m × C

m×m is called an invariant pair of the
nonlinear eigenvalue problem (1.1) if

T(X,Λ) := 1

2π i

∫
Γ

T (z)X(zI − Λ)−1 dz = 0, (2.13)

where Γ is a contour containing the eigenvalues of Λ in its interior.

Any holomorphic matrix-valued function T can be expressed as

T (λ) = T1f1(λ) + · · · + TKfK(λ) (2.14)

with scalar holomorphic functions f1, . . . , fK and constant coefficient matrices
T1, . . . , TK . For example, one may consider the entries of T individually to arrive at
a representation (2.14) with K = n2 terms. Using (2.14), the characterization (2.13)
becomes equivalent to

T1Xf1(Λ) + · · · + TKXfK(Λ) = 0, (2.15)

where f1(Λ), . . . , fK(Λ) are to be understood as matrix functions in the usual
sense [13].

Equation (2.13), or equivalently (2.15), need to be complemented with a normal-
ization condition to avoid degenerate situations, such as X = 0. As discussed in [20],
a suitable condition is to require that there is an integer 
 ≥ 1 such that the matrix

V
(X,Λ) =

⎡
⎢⎢⎢⎣

X

XΛ
...

XΛ
−1

⎤
⎥⎥⎥⎦ ∈ C


n×m

has full column rank. An invariant pair satisfying this condition is called minimal.
For any minimal invariant pair (X,Λ), the eigenvalues of Λ are eigenvalues of the
nonlinear eigenvalue problem (1.1); see, e.g., [20]. If additionally the algebraic mul-
tiplicities of the eigenvalues of Λ match those of (1.1), then (X,Λ) is called a simple
invariant pair.

2.5 Extraction of invariant pairs

An invariant pair (X,Λ) of the matrix polynomial (2.5) satisfies

P0Xτ0(Λ) + · · · + PdXτd(Λ) = 0. (2.16)
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In the following, we will show how such an invariant pair can be obtained from the
corresponding linearization L0 − λL1 defined in (2.8)–(2.9). A linear eigensolver,
such as the Arnoldi method discussed in Sect. 2.3, applied to L0 − λL1 yields an
invariant pair (Y,Λ) ∈ C

dn×m × C
m×m. For this special case, the characterization

above takes the form

L0Y = L1YΛ. (2.17)

Note that span(Y ) is usually called an invariant subspace.
Partitioning Y = [XT

0 , . . . ,XT
d−1]T with Xj ∈ C

n×m and exploiting the block struc-
ture of L0, L1, the first d − 1 block rows of (2.17) amount to

X1 = X0Λ, Xk−2 + Xk = 2Xk−1Λ, k = 2, . . . , d − 1. (2.18)

A simple induction using the three-term recurrence for the Chebyshev polynomials τk

shows that (2.18) implies Xk = X0τk(Λ) for k = 0, . . . , d − 1. Inserting these rela-
tions into the last block row of (2.17),

−
d−1∑
k=0

PkXk + PdXd−2 = 2PdXd−1Λ,

and rearranging terms yields

−
d−1∑
k=0

PkX0τk(Λ) = PdX0
(
2τd−1(Λ)Λ − τd−2(Λ)

)
.

Exploiting once more the three-term recursion finally shows that the pair (X0,Λ)

satisfies (2.16) and is therefore an invariant pair of the polynomial (2.5).

Remark 2.2 The discussion above suggests a simple extraction procedure: Given an
invariant pair (Y,Λ) of the linearization, an invariant pair of the polynomial is ob-
tained as (X0,Λ), where X0 is the first block component of Y . In finite-precision
arithmetic, this relation is affected by roundoff error. Numerical aspects of such ex-
traction procedures have been discussed in [7] for the class of so-called L1 lineariza-
tions. Moreover, alternative algorithms for extraction have been proposed in [7],
which turn out to be numerically more robust in certain situations. However, in our
particular setting, |τk(λ)| ≤ 1 for all eigenvalues λ of interest. Hence, we expect that
X0 is a dominant component of Y and therefore a numerically reasonable choice. This
is confirmed by our numerical experiments, which also show that suitable adaptions
of the alternative algorithms mentioned above do not result in significant accuracy
improvements.

The accuracy of the extracted invariant pair (X0,Λ) can be further refined by
applying a Newton iteration as described in [7, 20].
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3 Error analysis

Instead of the original nonlinear eigenvalue problem (1.1), our method from Sect. 2
solves the perturbed problem

(T + �T )(λ)x = 0,

where the perturbation �T = P − T amounts to the interpolation error. It is there-
fore important to analyze the impact of such a perturbation on the eigenvalues or,
more generally, on the invariant pairs. For this purpose, we will derive a general
perturbation result for nonlinear eigenvalue problems. This will be combined with a
polynomial approximation result to establish convergence rates for our method.

3.1 First-order perturbation theory

In the following, let T0 be a holomorphic function on some domain Ω ⊂ C with
values in C

n×n. Furthermore, we will assume that T0 is bounded on Ω with respect
to the Frobenius norm ‖·‖F and regular; i.e., detT0(λ) does not vanish identically for
all λ ∈ Ω .

Let (X0,Λ0) ∈ C
n×m × C

m×m be a minimal invariant pair of T0 such that all
eigenvalues of Λ0 are contained inside Ω . Then the triple (X0,Λ0, T0) constitutes a
solution of the nonlinear equation

F(X,Λ,T ) = 0 (3.1)

with

F : C
n×m × C

m×m × B(Ω) → C
n×m × C

m×m,

(X,Λ,T ) 	→
(

1

2π i

∫
Γ

T (z)X(zI − Λ)−1 dz,WH[
V
(X,Λ) − V
(X0,Λ0)

])
.

(3.2)
Here, Γ is a contour in Ω containing the eigenvalues of Λ0 in its interior, and B(Ω)

denotes the Banach space of all bounded, holomorphic, C
n×n-valued functions on

Ω ⊂ C, equipped with the supremum norm

‖·‖∞ : B(Ω) → R, T 	→ ‖T ‖∞ := sup
λ∈Ω

‖T (λ)‖F.

Note that the convergence of functions in the supremum norm amounts to uniform
convergence. The first term in (3.2) characterizes the invariance of the pair (X0,Λ0),
whereas the second term characterizes minimality, provided that the normalization
matrix W ∈ C


n×m is chosen such that WHV
(X0,Λ0) is invertible.

Lemma 3.1 The mapping F defined above is continuously Fréchet differentiable in
a neighborhood of (X0,Λ0, T0).

Proof As a norm in the space C
n×m × C

m×m × B(Ω), we employ

‖(�X,�Λ,�T )‖ := ‖�X‖F + ‖�Λ‖F + ‖�T ‖∞.
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Since the continuous differentiability of the second component of F is easily seen,
we will only treat the first component F (1) and demonstrate that its derivative is given
by the map

DF (1)(X,Λ,T )(�X,�Λ,�T )

= DXF (1)(X,Λ,T )(�X) + DΛF (1)(X,Λ,T )(�Λ) + DT F (1)(X,Λ,T )(�T )

with

DXF (1)(X,Λ,T )(�X) = 1

2π i

∫
Γ

T (z)�X(zI − Λ)−1 dz,

DΛF (1)(X,Λ,T )(�Λ) = 1

2π i

∫
Γ

T (z)X(zI − Λ)−1�Λ(zI − Λ)−1 dz,

DT F (1)(X,Λ,T )(�T ) = 1

2π i

∫
Γ

�T (z)X(zI − Λ)−1 dz.

For this purpose, let (X,Λ,T ) ∈ C
n×m × C

m×m × B(Ω) be fixed. We assume Λ

to be sufficiently close to Λ0 so that its eigenvalues still lie inside Ω . Consequently,
there exists a contour Γ in Ω which contains all eigenvalues of Λ in its interior.
Because the number of eigenvalues is finite, we can w.l.o.g. assume the contour to
possess a finite length L. Let γ : [0,1] → Γ be a parametrization of the contour Γ .
As Γ touches none of the eigenvalues of Λ, the mapping ϕ 	→ ‖(γ (ϕ)I − Λ)−1‖F is
continuous and therefore bounded on the compact interval [0,1] by some M > 0.

Now suppose ‖(�X,�Λ,�T )‖ < M−1, implying, in particular, ‖�Λ‖F < M−1.
Thus, ‖�Λ(zI − Λ)−1‖F < 1 for arbitrary z ∈ Γ , and the Neumann series gives

[
zI − (Λ + �Λ)

]−1 = (zI − Λ)−1 + (zI − Λ)−1�Λ(zI − Λ)−1 + O
(‖�Λ‖2

F

)
,

where the constant implicitly contained in the O(‖�Λ‖2
F) term is independent of z.

Altogether, we obtain
∥∥F (1)(X + �X,Λ + �Λ,T + �T ) − F (1)(X,Λ,T )

− DF (1)(X,Λ,T )(�X,�Λ,�T )
∥∥

F

=
∥∥∥∥ 1

2π i

∫
Γ

[�T (z)X + T (z)�X + �T (z)�X](zI − Λ)−1�Λ(zI − Λ)−1

+ �T (z)�X(zI − Λ)−1 + O
(‖�Λ‖2

F

)
dz

∥∥∥∥
F

= O
(‖(�X,�Λ,�T )‖2)

confirming the claim that F (1) is differentiable with the derivative DF (1) stated above.
The continuity of DF (1) can be established by a similar estimate. �

The next result concerns the derivative of F at (X0,Λ0, T0) only with respect to X

and Λ, but not T . The corresponding linear operator from C
n×m × C

m×m onto itself
will be denoted by D(X,Λ)F (X0,Λ0, T0).
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Theorem 3.1 [20, Theorem 10] Let (X0,Λ0) be a minimal invariant pair of T0. Then
the derivative D(X,Λ)F at (X0,Λ0, T0) is an automorphism on C

n×m × C
m×m if and

only if (X0,Λ0) is simple.

In combination with Lemma 3.1, Theorem 3.1 permits us to apply the Implicit
Function Theorem to the nonlinear equation (3.1) in the vicinity of a simple invariant
pair (X0,Λ0) of T0. This yields the existence of continuously differentiable functions
X : B(Ω) → C

n×m and Λ : B(Ω) → C
m×m with X(T0) = X0 and Λ(T0) = Λ0 such

that

F
(
X(T ),Λ(T ),T

) = 0

for all T in a neighborhood of T0. Moreover, the derivatives with respect to T of these
two functions are given by

[
DT X(T0)�T0
DT Λ(T0)�T0

]
= −

([
D(X,Λ)F (X0,Λ0, T0)

]−1 ◦ DT F (X0,Λ0, T0)
)
�T0,

where [D(X,Λ)F (X0,Λ0, T0)]−1 refers to the inverse of the bijective linear opera-
tor D(X,Λ)F (X0,Λ0, T0) : C

n×m × C
m×m → C

n×m × C
m×m as established by The-

orem 3.1. Setting T = T0 + �T0, we conclude that the perturbed problem (T0 +
�T0)(λ)x = 0 has an invariant pair (X,Λ) satisfying

[
X

Λ

]
=

[
X0
Λ0

]
−

([
D(X,Λ)F (X0,Λ0, T0)

]−1 ◦DT F (X0,Λ0, T0)
)
�T0 +o

(‖�T0‖∞
)
.

(3.3)
The main result of this section is summarized in the subsequent theorem.

Theorem 3.2 Let T0 and �T0 be bounded, holomorphic, C
n×n-valued functions on

some domain Ω ⊂ C and suppose that T0 is regular. Let (X0,Λ0) ∈ C
n×m × C

m×m

be a simple invariant pair of T0. If ‖�T0‖∞ is sufficiently small, then there exists an
invariant pair (X,Λ) ∈ C

n×m × C
m×m of the perturbed problem T0 + �T0 satisfy-

ing (3.3) with F defined as in (3.2).

3.2 Convergence rates

We will now apply Theorem 3.2 to analyze the method from Sect. 2. To this end, we
assume that T is a regular, analytic function on the real interval [−1,1] with values
in Cn×n, and hence can be extended to a holomorphic function on a neighborhood of
this interval in the complex plane. For simplicity, this extension will also be referred
to as T . In particular, we can choose ρ > ρ0 > 1 such that the Bernstein ellipse

Eρ := {
cos(t − i ln ρ̄) : t ∈ [0,2π], ρ̄ ∈ [1, ρ]}

is contained in the analyticity domain of T . Moreover, the holomorphic extension
of T obviously inherits its regularity. With this notation, we obtain the following
convergence result.
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Corollary 3.1 Let T be as above and let P (d) denote the interpolating polynomial
of degree d for T with respect to the Chebyshev nodes of either the first or the sec-
ond kind. Let (X,Λ) be a simple invariant pair of T such that all eigenvalues of Λ

lie in the real interval [−1,1]. Then there exists a sequence (Xd,Λd) of invariant
pairs belonging to the polynomials P (d), which converges to (X,Λ) exponentially as
d → ∞.

Proof Choose Ω = Eρ0 with ρ > ρ0 > 1 as above, and set �T (d) := P (d) − T , d ∈
N0. Because Ω is compact, we have T ,�T (d) ∈ B(Ω) for all d ∈ N0. Consequently,
by Theorem 3.2, there exists an invariant pair of P (d) satisfying

∥∥∥∥
[
Xd

Λd

]
−

[
X

Λ

]∥∥∥∥
F

= O
(‖�T (d)‖∞

)
.

Since the interpolation error �T (d) converges to zero exponentially according to
Proposition 3.1 below, the assertion follows. �

As we have seen, the proof of Corollary 3.1 relies on convergence estimates of the
Chebyshev interpolant inside the Bernstein ellipse Eρ0 . These will be covered by the
subsequent proposition, which is a variation of classical polynomial approximation
results [22].

Proposition 3.1 Let T : U → C
n×m be holomorphic in a neighborhood U of the

Bernstein ellipse Eρ with ρ > ρ0 > 1 and let P (d) denote the interpolating polyno-
mial of degree d for T with respect to the Chebyshev nodes of either the first or the
second kind. Then there exists a constant C > 0 depending only on T , ρ, and ρ0 such
that for all λ ∈ Eρ0

‖T (λ) − P (d)(λ)‖F ≤ C
(ρ0

ρ

)d

.

Proof Depending on what kind of Chebyshev nodes are used, we define (Qd)d∈N0 to
be the sequence of Chebyshev polynomials of the first or second kind, respectively.
In either case, the interpolation nodes are the zeroes of the polynomials Qd .

In the following, we will show the claim for the Chebyshev nodes of the first kind.
In this case, it is well known that

Qd(cos θ) = cos(dθ). (3.4)

The statement for the Chebyshev nodes of the second kind then follows by similar
arguments using the identity

Qd(cos θ) sin θ = sin
(
(d + 1)θ

)

instead and is therefore omitted.
Let λ ∈ Eρ0 . If λ is identical with one of the interpolation nodes, the claimed

inequality trivially holds for any C > 0. Thus, we may assume w.l.o.g. that Qd(λ) �=
0. For fixed i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, we consider the (i, j)-th component Tij
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of T . By applying the residue theorem to the function z 	→ Tij (z)

(z−λ)Qd(z)
and exploiting

that all roots of its denominator are simple, one shows that the interpolation error
satisfies

Tij (λ) − P
(d)
ij (λ) = Qd(λ)

2π i

∫
∂Eρ

Tij (z)

(z − λ)Qd(z)
dz. (3.5)

We proceed by individually estimating the factors on the right-hand side of (3.5).
To begin with, we notice that z ∈ ∂Eρ can be expressed as z = cos(t − i lnρ) for some
t ∈ [0,2π], and hence Qd(z) = cos(dt − id lnρ) due to (3.4). A simple calculation
then reveals that

|Qd(z)|2 = 1
4 (ρd − ρ−d)2 + cos2(dt),

implying the estimate

1
2 (ρd − ρ−d) ≤ |Qd(z)| ≤ 1

2 (ρd + ρ−d)

because dt is real. Analogously, λ ∈ Eρ0 can be written as λ = cos(s − i ln ρ̄) for
some s ∈ [0,2π], ρ̄ ∈ [1, ρ0], and we conclude that

|Qd(λ)| ≤ 1
2 (ρ̄d + ρ̄−d) ≤ 1

2 (ρd
0 + ρ−d

0 ).

Furthermore, |z − λ| is bounded from below by the minimal distance between
Eρ0 and ∂Eρ , which is given by dist(Eρ0, ∂Eρ) = 1

2 [ρ + ρ−1 − (ρ0 + ρ−1
0 )] due

to geometric considerations. Finally, |Tij (z)| ≤ ‖T (z)‖F ≤ ‖T ‖∞. Taking absolute
values in (3.5) and inserting the above estimates, we obtain the bound

∣∣Tij (λ) − P d
ij (λ)

∣∣ ≤ Lρ‖T ‖∞
2π dist(Eρ0 , ∂Eρ)

· ρd
0 + ρ−d

0

ρd − ρ−d
,

where Lρ is the circumference of the Bernstein ellipse Eρ . The proof is completed by
combining the bounds for all components of T and taking into account that ρ−d

0 → 0
and ρ−d → 0 as d → ∞. �

3.3 Spurious eigenvalues

Based on real interpolation nodes, the interpolating polynomials P (d) tend to be ac-
curate only in the vicinity of the real axis. Away from the real axis, the approximation
quality quickly deteriorates. This might cause the appearance of spurious eigenval-
ues; i.e., eigenvalues of the interpolating polynomial which do not approximate any
eigenvalue of the original nonlinear eigenvalue problem, in the sense that the associ-
ated residual is large. However, the subsequent result shows that this problem does
not occur for sufficiently large degree d .

Corollary 3.2 Let the assumptions of Proposition 3.1 hold. Then for every λ ∈ Eρ0

such that T (λ) is non-singular (i.e., λ is not an eigenvalue of T ), there exists d0 ∈ N0

such that P (d)(λ) is non-singular (i.e., λ is not an eigenvalue of P (d)) for all d ≥ d0.
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Proof Let λ ∈ Eρ0 be fixed. According to Proposition 3.1, we can choose d0 ∈ N0
such that the Frobenius norm of the interpolation error �T (d)(λ) = P (d)(λ)−T (λ) is

strictly bounded above by ‖T (λ)−1‖−1
F for all d ≥ d0. Thus, ‖−�T (d)(λ)T (λ)−1‖F <

1 for d ≥ d0, and by a Neumann series argument, P (d)(λ) = T (λ) + �T (d)(λ) is in-
vertible. �

Corollary 3.2 states that in the limit d → ∞, λ ∈ Eρ0 can only be an eigenvalue of
P (d) if it is also an eigenvalue of T . Thus, asymptotically, there will be no spurious
eigenvalues inside the Bernstein ellipse Eρ0 . Since the interval [−1,1] is enclosed
by Eρ0 , we expect spurious eigenvalues to occur only in some distance to the inter-
val. This motivates the following mechanism for detecting spurious eigenvalues: An
eigenvalue is discarded as spurious if its real part lies outside the interval [−1,1] or
its imaginary part exceeds a certain threshold in magnitude. Particularly for nonlin-
ear eigenvalue problems resulting from boundary integral formulations, see (1.4), this
strategy leads to considerable computational savings over the conventional approach
of checking the residuals for all computed eigenvalues.

4 Numerical Experiments

To assess the performance of the method developed in Sect. 2, we have applied it to
a set of test problems. All computations have been performed under MATLAB 7.10
(R2010a) on a cluster of 24 Intel Xeon X5650 processors with 72 GB of shared mem-
ory. The reported computing times are averages over 20 identical runs. For the solu-
tion of the linearized eigenvalue problems, we have utilized a MATLAB implemen-
tation of the Arnoldi algorithm with Krylov-Schur restarting [30]. Our preliminary
implementation can be found under http://www.math.ethz.ch/~kressner/chebapprox/.

In our first experiment, we consider the Laplace eigenvalue problem (1.2) on the
unit cube D = [0,1]3 with homogeneous Dirichlet boundary conditions. The eigen-
values and eigenfunctions of this problem are known to be given by

λj1,j2,j3 = π

√
j2

1 + j2
2 + j2

3 ,

uj1,j2,j3(x1, x2, x3) = sin(j1πx1) sin(j2πx2) sin(j3πx3).

The 6 smallest eigenvalues are summarized in Table 1(a). The occurence of multiple
eigenvalues is due to the symmetry of the domain.

We construct a boundary formulation of the problem as described in Sect. 1 and
solve the resulting nonlinear eigenvalue problem by the method developed in Sect. 2.
To capture the 6 smallest distinct eigenvalues (17, counting multiplicities), we select
[5,12] as the interval of interest. Furthermore, we set the degree of the interpolating
polynomial to 12 and compute 20 Ritz values with the implicitly restarted Arnoldi
algorithm. The result for a uniform boundary mesh with 2400 triangles is depicted
in Fig. 1. The plot also reveals a small number of spurious eigenvalues (marked by
crosses). However, as predicted by the results in Sect. 3.3, these spurious eigenvalues
are well-separated from the true eigenvalues close to the real axis and can be easily
identified.

http://www.math.ethz.ch/~kressner/chebapprox/
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Table 1 (a) The 6 smallest eigenvalues of the negative Laplace operator on the unit cube. (b) Reference
eigenvalues for the Fichera corner computed by the method from Sect. 2 using an interpolating polynomial
of degree 30 on a uniform boundary mesh with 2400 triangles

No. Eigenvalue Multiplicity

1 5.441398 1

2 7.695299 3

3 9.424778 3

4 10.419484 3

5 10.882796 1

6 11.754763 6

(a)

No. Eigenvalue

1 6.484702318577543

2 8.142495692472265

3 8.142499335034771

4 9.053846829423080

5 9.716892649192921

6 9.716894006586880

(b)

Table 2 Execution times for
determining all eigenvalues
within the interval of interest
using an interpolating
polynomial of degree 30 for
increasingly fine boundary
meshes of the unit cube and the
Fichera corner, respectively

h No. of triangles Average execution time (s)

Unit cube Fichera corner

1
6 864 409 361
1
8 1536 1154 1054
1
10 2400 2722 2451

Fig. 1 Ritz values obtained by
the method in Sect. 2 for the
Laplace eigenproblem on the
unit cube using a uniform
boundary mesh with 2400
triangles. The circles mark Ritz
values corresponding to true
eigenvalues whereas the crosses
indicate spurious eigenvalues

We have experimented with different levels of mesh refinement and different de-
grees of the interpolating polynomial. Figure 2 shows the spectral convergence of
the smallest eigenvalue, computed on a boundary mesh with 2400 triangles (h = 1

10 ),
towards a reference solution obtained with polynomial degree 30. The convergence
behavior for the larger eigenvalues and/or different mesh sizes has been found to be
identical, supporting the exponential convergence of eigenvalues predicted by Corol-
lary 3.1. The execution times for the reference solutions are reported in the third col-
umn of Table 2. These include the time for setting up the interpolation polynomial,
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Fig. 2 Spectral convergence of
the smallest eigenvalue for the
unit cube using a boundary
mesh with h = 1

10 consisting of
2400 triangles

Fig. 3 Relative residual of an
invariant pair representing the
first 11 eigenvalues of the
Laplace eigenvalue problem on
the unit cube during three steps
of Newton-based iterative
refinement. Each curve
represents a different level of
mesh refinement: h = 1

6 ,
864 triangles (dash-dotted with
circles), h = 1

8 , 1536 triangles

(dashed with crosses), h = 1
10 ,

2400 triangles (solid with
plusses)

which is the dominating part, as well as the time for the solution of the polynomial
eigenvalue problem.

Furthermore, we have implemented and tested the extraction scheme for invariant
pairs and their subsequent refinement using Newton iterations outlined in Remark 2.2.
For different levels of mesh refinement, we apply the Arnoldi method to compute an
approximate invariant pair representing the first 11 eigenvalues employing a degree-
20 interpolating polynomial. These initial invariant pairs have relative residuals of
about 10−4. We then perform three Newton steps. The result is depicted in Fig. 3.
Already after two steps, the relative residual has decreased to an order between 10−10

and 10−12. Finally, after the third step, the residual reaches machine accuracy.
As a second experiment, we consider the Laplace eigenvalue problem (1.2) with

homogeneous Dirichlet boundary conditions for the Fichera corner D = [0,1]3 \
[ 1

2 ,1]3. The boundary element formulation and the resulting nonlinear eigenvalue
problem for this case are again obtained as outlined in Sect. 1. However, this time
there is no analytic expression for the eigenvalues available.
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Fig. 4 Spectral convergence of
the smallest eigenvalue for the
Fichera corner using a boundary
mesh with h = 1

10 consisting of
2400 triangles

Fig. 5 Relative residual of an
invariant pair representing the
first 6 eigenvalues of the
Laplace eigenvalue problem for
the Fichera corner during two
steps of Newton-based iterative
refinement. Each curve
represents a different level of
mesh refinement: h = 1

6 ,
864 triangles (dash-dotted with
circles), h = 1

8 , 1536 triangles

(dashed with crosses), h = 1
10 ,

2400 triangles (solid with
plusses)

On a uniform boundary mesh with 2400 triangles and with an interpolation poly-
nomial of degree 30, our new method computes the approximate eigenvalues listed
in Table 1(b). The spectral convergence of the first of these eigenvalues towards a
reference solution computed with polynomial degree 30 is illustrated in Fig. 4. The
convergence behavior for the other eigenvalues as well as for different levels of mesh
refinement turns out to be the same. As before, exponential convergence of the eigen-
values is observed, in agreement with the statement of Corollary 3.1. The fourth col-
umn of Table 2 summarizes the computing times for the reference solutions, con-
sisting of the time to set up the interpolating polynomial and the time to solve the
resulting polynomial eigenvalue problem.

Also in this case, we have applied the extraction scheme and Newton-based iter-
ative refinement from Remark 2.2. Starting from an approximate invariant pair with
relative residual 10−4 obtained from a degree-20 interpolating polynomial, the first
refinement step brings the residual down to about 10−9. Already after the second
step, the relative residual approaches the level of the machine accuracy. The results
are visualized in Fig. 5.
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Remark 4.1 When considering the execution times in Table 2, one should take into
account that we did not use a highly optimized BEM code for our computations.
Possible improvements include, e.g., the exploitation of the inherent parallelism in
the computation of the matrix entries (1.4) as well as the use of hierarchical matrix
techniques; see, e.g., [5, 12].

5 Conclusions

Based on Chebyshev interpolation, we have proposed a polynomial-based method
for solving nonlinear eigenvalue problems. In comparison to existing approaches us-
ing polynomial approximation, our approach admits a rigorous error analysis for the
obtained approximate eigenpairs. However, it should be emphasized that we have
restricted ourselves to problems with eigenvalues of interest in (or close to) a real
interval. On the other hand, our approach also allows to deal with very complicated
settings where the evaluation of the matrix-valued function is very expensive. Such
settings typically impose severe limitations on most existing methods.

Our preliminary numerical experiments indicate that the newly proposed method
is effective for nonlinear eigenvalue problems from boundary integral formulations.
Its potential for other applications remains to be explored. To address more challeng-
ing problems, an eventual implementation should also take advantage of the tech-
niques discussed in Remark 4.1.
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