000184045 001__ 184045
000184045 005__ 20181203022950.0
000184045 0247_ $$2doi$$a10.1039/c2jm90163c
000184045 022__ $$a0959-9428
000184045 02470 $$2ISI$$a000311522600001
000184045 037__ $$aARTICLE
000184045 245__ $$aThemed issue: nanomaterials for energy conversion and storage
000184045 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2012
000184045 269__ $$a2012
000184045 300__ $$a5
000184045 336__ $$aJournal Articles
000184045 520__ $$aThe rich and diverse aspect of nanomaterials for energy conversion and storage has been the research topic for many researchers. Photovoltaic solar cells for the direct conversion of sunlight to electricity can be grouped under three generations. One approach targets solar cells that can deliver a solar-to-electrical conversion efficiency well beyond the single-junction Schokley-Queisser limit of 32% using multi-layers of a graded series of light absorbers. One exciting possibility is a multiple exciton generation (MEG) solar cell. MEG refers to the process where a high energy photon can produce more than one electron-hole pair per absorbed photon. In another key development, the design of inverted polymer solar cells with high solar-conversion efficiency has been reported. Carbon-dots are superior in terms of high aqueous solubility, robust chemical inertness, easy functionalization, high resistance to photobleaching, low toxicity and good biocompatibility.
000184045 700__ $$0244010$$aKalyanasundaram, K.$$g105528
000184045 700__ $$0240191$$aGraetzel, M.$$g105292
000184045 773__ $$j22$$k46$$q24190-24194$$tJournal Of Materials Chemistry
000184045 909C0 $$0252060$$pLPI$$xU10101
000184045 909CO $$ooai:infoscience.tind.io:184045$$pSB$$particle
000184045 917Z8 $$x105528
000184045 917Z8 $$x249835
000184045 937__ $$aEPFL-ARTICLE-184045
000184045 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000184045 980__ $$aARTICLE