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Abstract

Learning filters to produce sparse image representations
in terms of overcomplete dictionaries has emerged as a
powerful way to create image features for many different
purposes. Unfortunately, these filters are usually both nu-
merous and non-separable, making their use computation-
ally expensive.

In this paper, we show that such filters can be computed
as linear combinations of a smaller number of separable
ones, thus greatly reducing the computational complexity at
no cost in terms of performance. This makes filter learning
approaches practical even for large images or 3D volumes,
and we show that we significantly outperform state-of-the-
art methods on the linear structure extraction task, in terms
of both accuracy and speed. Moreover, our approach is gen-
eral and can be used on generic filter banks to reduce the
complexity of the convolutions.

1. Introduction

It has been shown that representing images as sparse lin-
ear combinations of learned filters [27] yields effective ap-
proaches to image denoising and object recognition, which
outperform those that rely on hand-crafted features [38].
Among these, convolutional formulations have emerged as
particularly appropriate to handle whole images, as opposed
to independent patches [18, 23, 30, 39]. Unfortunately, be-
cause the filters are both numerous and not separable, they
tend to be computationally demanding, which has slowed
down their acceptance. Their computational cost is even
more damaging when dealing with large 3D image stacks,
such as those routinely acquired for biomedical purposes.

In this paper, we show that we can preserve the perfor-
mance of these convolutional approaches while drastically
reducing their cost by learning and using separable filters
that approximate the non-separable ones. Fig. 1 demon-
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Figure 1. Convolutional filter bank (a) learned for the extraction of
linear structures in retinal scan images, along with its separable ap-
proximation (b). The full-rank filters of (a) can be approximated
very precisely as linear combinations of the far fewer separable
filters of (b). This allows us to use this property to considerably
speed up extraction of learned image features compared with con-
volutions with the original non-separable filters, even when Fast
Fourier Transform is used.

strates this behavior in the case of filters designed to clas-
sify whether or not a pixel belongs to a blood vessel in reti-
nal scans. Using the learned separable filters is much faster
than using either the original non-separable ones or a state-
of-the-art implementation of the FFT for all practical filter
sizes. We will demonstrate that this is consistently true over
a wide range of images.

As we will see, such a result could be achieved by en-
forcing the separability constraint as part of a convolu-
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tional, `1-based learning framework to directly learn a set
of separable filters. However, we have found that an even
better result could be obtained by first learning a set of
non-separable filters, such as those of Fig. 1(a), and then
a second smaller set of separable filters, such as those of
Fig. 1(b), whose linear combinations can be used to repre-
sent the original filters.

Our contribution is therefore an original approach to ap-
proximating non-separable filters as a linear combination of
a smaller set of separable ones. It benefits both from the fact
that there are fewer filters and that they are separable. Fur-
thermore, for the purpose of finding linear structures, our
method is not only faster but also significantly more accu-
rate than one of the best current techniques that relies on
hand-designed filters [20].

In the remainder of the paper, we first discuss related
work, and then introduce our approach to separable ap-
proximation. Finally, we test our method on different
applications—pixel and voxel classification as well as im-
age denoising—and show that the speed-up is systemati-
cally significant at no loss in performance.

2. Related work
Automatic feature learning has long been an important

area in Machine Learning and Computer Vision. Neural
networks [21], Restricted Boltzmann Machines [16], Auto-
Encoders [5], Linear Discriminant Analysis [6], and many
other techniques have been used to learn features in either
supervised or unsupervised ways. Recently, creating over-
complete dictionaries of features—sparse combinations of
which can be used to represent images—has emerged as a
powerful tool for object recognition [8, 18, 38] and image
denoising [9, 24], among others.

However, for most such approaches, run-time feature ex-
traction can be very time-consuming because it involves
convolving the image with many non-separable non-sparse
filters. It was proposed several years ago to split convo-
lution operations into convergent sums of matrix-valued
stages [35]. This principle was exploited in [28] to avoid
coarse discretizations of the scale and orientation spaces,
yielding steerable separable 2D edge-detection kernels, and
has been extended in [14]. These approaches are powerful
but restricted to kernels that can be decomposed efficiently
by the method. This precludes the arbitrary ones found in a
learned dictionary, or the ones handcrafted to suit particular
needs. After more than a decade in which the separabil-
ity property has been either taken for granted or neglected,
there is evidence of renewed interest [25, 29]. The scope of
those papers is, however, limited in that they are restricted
to particular frameworks, while our approach is completely
generic. Nonetheless, they prove a growing need for fast
feature extraction methods. Two well known attempts to
tackle the computational complexity issue by focusing on

aspects other than separability are the steerable filters [12]
and the gray-code filter kernels [4]. However, as before,
their computational advantage comes at the price of restrict-
ing the family of representable filters.

Among recent feature-learning works, very few have re-
visited the run-time efficiency issue. The majority of those
advocate exploiting the parallel capabilities of modern hard-
ware [10, 26]. However, programming an FPGA unit as
in [10] is cumbersome. Exploiting the Graphics Processing
Unit as in [26] is an attractive alternative, but the time re-
quired for memory transfers between the CPU and the GPU
is often prohibitive in practice.

An interesting recent attempt at reducing computational
complexity is the approach of [32], which involves learning
a filter bank by composing a few atoms from an handcrafted
separable dictionary. Our own approach is in the same spirit
but is much more general as we also learn the atoms. As
shown in the results section, this results in a smaller number
of separable filters that are tuned for the task at hand.

3. Learning 2D Separable Filters
Most dictionary learning algorithms operate on image

patches [27, 24, 8], but convolutional approaches [18, 23,
39, 30] have been recently introduced as a more natural
way to process arbitrarily-sized images. They generalize
the concept of feature vector to that of feature map, a term
borrowed from the Convolutional Neural Network litera-
ture [22]. In our work, we consider the convolutional exten-
sion of Olshausen and Field’s objective function proposed
in [30]. Formally, N filters {f j}1≤j≤N are computed as

argmin
{fj},{mj
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where

• xi is an input image;
• * denotes the convolution product operator;
• {mj

i}j=1...N is the set of feature maps extracted dur-
ing learning;
• λ1 is a regularization parameter.

A standard way to solve Eq. (1) is to alternatively optimize
over the mj

i representations and the f j filters. Stochastic
Gradient Descent is used for the latter, while the former is
achieved by first taking a step in the direction opposite to
the `2-penalized term’s gradient and then applying the soft-
thresholding operation 1 on the mj

i s.
In an earlier report [31] we showed that this formula-

tion allows to extract linear structures in a more reliable
way than state-of-the-art methods. However, when dealing

1Soft-thresholding is the proximal operator for the `1 penalty term [3];
its expression is proxλ(x) = sgn(x)max(|x|−λ, 0). Proximal operators
allow to extend gradient descent techniques to some nonsmooth problems.



with large amounts of data, as it is common in the medical
domain, the required run-time convolutions are costly be-
cause the resulting filters are not separable. Quantitatively,
if xi ∈ Rp×q and f ji ∈ Rs×t, extracting the feature maps
requires O (p · q · s · t) multiplications and additions. By
contrast, if the filters were separable, the computational cost
would drop to a more manageable O (p · q · (s + t)).

Our goal is therefore to look for separable filters without
compromising the descriptive power of dictionary-learning
approaches. One way to do this would be to explicitly write
the f j filters as products of 1D filters and to minimize the
objective function of Eq. (1) in terms of their coefficients.
Unfortunately, this would result in a quartic objective func-
tion in terms of the unknowns and therefore a very difficult
optimization problem.

In the remainder of this section, we introduce two differ-
ent approaches to overcoming this problem. The first relies
on a natural extension of the objective function of Eq. (1),
and directly forces the learned filters to be separable by low-
ering their rank. However, this often degrades the results,
most probably because of the additional constraints on the
filters, therefore we propose a better and even faster solu-
tion. Since arbitrary filters of rank R can be expressed as
linear combinations of R separable filters [28], we replace
the f filters of Eq. (1) by linear combinations of filters that
are forced to be separable by lowering their rank. This so-
lution is more general than the first, and retains the discrim-
inative power of the full-rank filter bank.

3.1. Penalizing High-Rank Filters
A straightforward approach to finding low-rank filters is

to add a penalty term to the objective function of Eq. (1) and
to solve

argmin
{sj},{mj
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where the sjs are the learned linear filters, ‖ · ‖∗ is the
nuclear norm, and λ∗ is an additional regularization param-
eter. The nuclear norm of a matrix is the sum of its singular
values and is a convex relaxation of the rank [11]. Thus,
forcing the nuclear norm to be small amounts to lowering
the rank of the filters. Experimentally, for sufficiently high
values of λ∗, the sj filters become effectively rank 1 and
can be written as products of 1D filters.

Solving Eq. (2), which has the nuclear norm of the filters
as an additional term compared to Eq. (1), requires minimal
extra effort. After taking a step in the direction opposite of
that of the gradient of the filters, as described in the previ-
ous section, we just have to apply the proximal operator of
the nuclear norm to the filters. This amounts to perform-

ing a Singular Value Decomposition (SVD) s = UDV>

on each filter s, soft-thresholding the values of the diago-
nal matrix D to obtain a new matrix D̂, and replacing s by
UD̂V>. At convergence, to make sure we obtain separa-
ble filters, we apply a similar SVD-based operation but set
to 0 all the singular values but the largest one. In practice,
the second largest singular value is already almost zero even
before clipping.

Choosing appropriate values for the optimization param-
eters, the gradient step size, λ1, and λ∗, is challenging be-
cause they express contrasting needs. We have found it ef-
fective to start with a low value of λ∗, solve the system, and
then progressively increase it until the filter ranks are close
to one.

3.2. Linear Combinations of Separable Filters
In this second approach, we write the N f j filters

of Eq. (1) as linear combinations of M separable filters
{sk}1≤k≤M . In other words, we seek a set wj

k of weights
such that, ∀j, f j =

∑M
k=1 w

j
ksk, and convolving the image

with all the f js amounts to convolving it with the separable
sk filters and then linearly combining the results, without
further convolutions. This could be achieved by solving
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where Γi
m,s is defined in Eq. (3). This formulation can be

seen as a generalization of Eq. (2), which can be retrieved
from Eq. (4) by taking wj

k = 1 if j = k and 0 otherwise.
Again, we introduce the nuclear norm to force the sk filters
to be separable. Unfortunately, this objective function is
difficult to optimize as the first term contains products of
three unknowns.

A standard way to handle this difficulty is to introduce
auxiliary unknowns, making the formulation linear by in-
troducing additional parameters. Parameter tuning is, how-
ever, already difficult in the formulation of Eq. (1), and this
would therefore only worsen the situation. We tried in-
stead a simpler approach, which has yielded better results
by decoupling the computation of the non-separable filters
from that of the separable ones. We first learn a set of non-
separable filters {f j} by optimizing the original objective
function of Eq. (1). We then look for separable filters whose
linear combinations approximate the f j filters by solving

argmin
{sk},{w

j
k
}

∑
j

∥∥∥∥∥f j −
M∑
k=1

wjksk
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2

2

+ λ∗

M∑
k=1

‖sk‖∗ . (5)

Even though this may seem suboptimal when compared to
the global optimization scheme of Eq. (4), it gives superior
results in practice because the optimization process is split
into two easier tasks and depends on just two parameters,
easing their scheduling.



(a) (b) (c) (d)
Figure 2. Examples of non-separable and separable 3D filter banks, learned on the OPF dataset [2]. (a) One of the test images. (b)
Response of the classifier trained on the separable filter bank output (d). (c) Non-separable filter bank learned by optimizing Eq. (1). (d)
The separable filter bank learned by optimizing Eq. (5).

4. Learning Separable 3D Filters
The computational complexity of feature extraction be-

comes even more daunting when handling 3D volumes such
as those of Fig. 2. Fortunately, our approach generalizes
naturally to learning 3D separable filters.

As will be shown in the Results section, the formalism
of Eq. (1) yields the best results in the 2D case and we
therefore rely on it for the proposed extension. The only
difference comes from the fact that minimizing the nuclear
norm was achieved by SVD decomposition of the 2D fil-
ters, which cannot be done for 3D arrays, also known as
tensors. Fortunately there are decomposition methods for
tensors [19], some of which have already been used in Com-
puter Vision [37, 15]. The most appropriate one for our
purpose is the Canonical Polyadic Decomposition (CPD). It
decomposes a R-rank tensor into a sum of R rank-one ten-
sors. As it is not possible to know R a priori, this becomes
a parameter of the decomposition. Given the new decom-
position scheme, the structure of the optimization scheme
of Eq. (5) is unchanged. It simply involves a CPD of the
filters with R set to a large enough value, followed by a
soft-thresholding on their coefficients σk

r .
To compute the CPDs we tried a simple alternate least-

squares optimization and the CP-OPT algorithm of [1], im-
plemented in the MATLAB tensor toolbox. The second
technique gave the best results in term of accuracy and con-
vergence speed. Fig. 2(d) depicts an example of the 3D sep-
arable filter we obtained and can be compared to the non-
separable ones of Fig. 2(c), which were learned by solving
the minimization problem of Eq. (1).

5. Results and Discussion
To demonstrate our approach on both 2D and 3D data,

we first compare the performance of our separable filters
against that of non-separable ones for the purpose of classi-
fying pixels and voxels in biomedical images as belonging
to linear structures or not. We show that our separable filters
systematically deliver a very substantial speed-up at no loss
in performance. We then demonstrate that they can also ap-

proximate very effectively non-separable ones learned for
denoising purposes.

For the purpose of these comparisons, we will refer to the
non-separable filters obtained by minimizing the objective
function of Eq. (1) as NON-SEP, and the separable ones
learned using the technique of Sections 3.1 and 3.2 as SEP-
DIRECT and SEP-COMB, respectively. We will denote by
SEP-SVD the separable filters obtained by approximating
each NON-SEP filter by the outer product of its first left
singular vector with its first right singular vector, which is
the simplest way to approximate a non-separable filter by a
separable one.

As discussed in Section 3.2, linear combinations of the
SEP-COMB filters can be used to represent the NON-SEP
ones. However for some applications, such as when the fil-
ters’ output is fed to a linear classifier, it is not necessary to
explicitly compute this linear combination because the clas-
sifier can be trained directly on the separable-filters’ output
instead of that of the non-separable ones. This approach,
which we will refer to as SEP-COMB∗, further simplifies
the run-time computations because the linear combinations
are implicitly learned by the classifier at training-time.

5.1. Detection of Linear Structures
Biomedical image processing is a particularly promising

field of application for Computer Vision techniques as it in-
volves large numbers of 2D images and 3D image stacks
of ever growing size, while imposing strict requirements
on the quality and the efficiency of the processing tech-
niques. Here, we demonstrate the power of our separa-
ble filters for the purpose of identifying linear structures,
a long-standing Computer Vision problem that still remains
wide-open when the image data is noisy.

Over the years, models of increasing complexity and ef-
fectiveness have been proposed, and attention has recently
turned to Machine Learning techniques. [33, 13] apply a
Support Vector Machine classifier to the responses of ad hoc
filters. [33] considers the Hessian’s eigenvalues while [13]
relies on steerable filters. In [31], it was shown that con-
volving images with non-separable filter banks learned by



solving the problem of Eq. (1) and training an SVM on the
output of those filters outperforms these other methods. Un-
fortunately, this requires many such non-separable filters,
making it an impractical approach for large images or im-
age stacks, whose usage is becoming standard practice in
medical imaging. We show that our approach solves this
difficulty.

5.1.1 Pixel Classification
In the 2D case we considered the three biomedical datasets
of Fig. 3:

• The DRIVE dataset [34] is a set of 40 retinal scans cap-
tured for the diagnosis of various diseases. The dataset
is split into 20 training images and 20 test images, with
two different ground truth sets traced by two different
human experts for the test images.
• The STARE dataset [17] is composed of 20 RGB reti-

nal fundus slides. Half of the images come from
healthy patients and are therefore rather clean, while
the others present pathologies. Moreover, some im-
ages are affected by severe illumination changes,
which challenge automated algorithms. It is therefore
less clean than the DRIVE dataset.
• The BF2D dataset is composed of minimum inten-

sity projections of bright-field micrographs of neurons.
The images have a very high resolution but exhibit a
low signal-to-noise ratio, because of irregularities in
the staining process. Furthermore, parts of the den-
drites often appear as point-like structures that can
be easily mistaken for the structured and unstructured
noise affecting the images.

We tested all the methods described above on all these
images. To this end, we compute the feature maps extracted
by the different convolutional filters, and feed them to a
Random Forests classifier [7]. Note that we do not need
to compute the linear combination of the filter outputs in
the case of SEP-COMB, since the Random Forest classifier
relies on linear projections. We will therefore opt for SEP-
COMB∗.

As discussed above, it has been shown in [31] that the
NON-SEP approach outperforms other recent approaches
that rely on Machine Learning but is slow. Our goal is there-
fore to achieve the same level of performance but much
faster. For completeness, we also compare our results to
those obtained using Optimally Oriented Flux (OOF) [20],
widely acknowledged to be one of the best techniques for
finding linear structures using hand-designed filters, and
a reimplementation of NON-SEP that relies on the Fast
Fourier Transform to perform the convolutions. This ap-
proach is known to speed-up the convolution for large
enough filters, and we will refer to it as NON-SEP-FFT.

Figure 3. Representative images from the 2D medical datasets con-
sidered, together with the corresponding pixel classification results
obtained with our SEP-COMB∗ method.

An analysis of the computational costs of the differ-
ent approaches is presented in Fig. 1(bottom). In particu-
lar, the graph for the 2D case reports the time in second
needed to convolve a 512 × 512 2D image with a bank
of 121 filters, as a function of the filter size, by using the
MATLAB’s conv2 function, the FFTW library, and our
method 2. Timings increase quadratically for conv2, and

2All the algorithms were optimized to provide a fair comparison.



only linearly for our methods. They are constant for FFTW
but much higher even for relatively large filters and even
if the image size is optimal for FFTW as it is a power of 2.
When a 128×128×64 3D volume is considered, the advan-
tage of our method is even clearer, as the cubic complexity
makes the computations in the non-separable case imprac-
tical even when very few filters are considered. Indeed, the
reduction in computational time is largely due to the separa-
bility of the filters, and only partially to the reduction of the
numbers of the filters involved. Additional results showing
this are included in the supplemental material 3.

We first learned a filter bank with 121 learned filters of
size 21 × 21 on the DRIVE dataset and one on the BF2D
dataset, as these parameters provided us with the best re-
sults. To assess how well our approach generalized, we also
used the filter bank learned for the DRIVE dataset for the
STARE dataset. The classification in this latter case was
performed on each image in turn, leaving the rest of the
dataset as training set. We have then learned other filter
banks of reduced cardinality, both full-rank and separable,
to assess the impact of the filter bank size on the final clas-
sification performance.

As there is no universally accepted metric to evaluate
pixel classification performance, we used several to com-
pare our method to others. In the supplementary material,
we report results in terms of the F-measure [36], the Area
Under the Curve (AUC) computed on ROC curves, PR and
ROC curves, Variation of Information (VI), and Rand In-
dex (RI). We plot these accuracy results against the time it
takes to obtain them.

Fig. 4 summarizes these results in the case of the F-
measure. More specifically, we treat OOF as our baseline
and, for each one of the other methods and for every image,
we compute the ratio of the F-measure it produces to that of
OOF. If this ratio is greater than one, the other method per-
forms better than OOF. We then plot the average of these
ratios over all the images belonging to the same dataset
against the time it took to perform the convolutions required
to perform the classification.

SEP-COMB∗ performs consistently best, closely match-
ing the performance of NON-SEP but with a significant
speed-up. SEP-DIRECT is just as fast but entails a loss of
accuracy. Somewhat surprisingly, SEP-SVD falls between
SEP-DIRECT and SEP-COMB in terms of accuracy but is
much slower than both. Finally, NON-SEP-FFT yields ex-
actly the same results as NON-SEP, but it is much slower
than plain 2D convolutions. The costs of the Fourier Trans-
form are indeed amortised only for extremely large image
and filter sizes.

3The supplemental material, the source codes, and the parameters can
be found in the project’s web page at http://cvlab.epfl.ch/
research

All the filter-based methods are more accurate than
OOF, although the latter does not need a classification step.
However, the accuracy of OOF is significantly lower than
that of filtering-based approaches.

5.1.2 Voxel Classification
We also evaluated our method on classifying voxels as be-
longing or not to linear structures in 3D volumes of Ol-
factory Projection Fibers (OPF) from the DIADEM chal-
lenge [2], which were captured by a confocal microscope.
We learned the 3D filter bank made of 49 13 × 13 × 13
pixel filters depicted by Fig. 2(c) and the 16 separable fil-
ters of Fig. 2(d) using the approach of Sec. 4. As in the 2D
case, we then trained classifiers to use these filters, but we
used `1-regularized logistic regressors instead of Random
Forests since they have proved faster without significant
performance loss. For training we used a set of 200, 000
samples, randomly selected from 4 train images. Since
these classifiers do not require us to compute the linear com-
bination of the separable filter outputs, we chose again the
SEP-COMB∗ approach for our experiments.

As in Section 5.1.1, we use NON-SEP as our base-
line. We compare SEP-COMB∗ against NON-SEP-FFT,
a Fourier-based implementation of NON-SEP, a 3D ver-
sion of OOF, and SEP-CPD, which approximates each fil-
ter by its rank-one CPD decomposition and is therefore a
3D equivalent of SEP-SVD.

The results are essentially the same as in the 2D-case.
SEP-COMB∗ is 30 times faster than NON-SEP-FFT for vir-
tually the same accuracy. It is 4 times faster than SEP-CPD,
but the latter is also less accurate. As before, OOF is even
worse in terms of accuracy. Again, we refer the interested
reader to the supplementary material for a more detailed set
of individual results.

5.2. Denoising
To evaluate how well our SEP-COMB approach is at rep-

resenting a set of generic filters in a very different context,
we used it to approximate the 256 denoising filters com-
puted by the K-SVD algorithm [9], some of which are de-
picted by Fig. 6(b). We experimented with different sizes
of the approximating separable filter bank, and reported the
results in Tab. 1. As can be seen, the 36 separable filters
shown in Fig. 6(a) are already enough to obtain a very ac-
curate approximation, giving a perfect reconstruction of the
original filters up to a nearly imperceptible smoothing of the
filters with many high-frequency components.

We also compared our results with the SEP-SVD ap-
proach, and we observed that our method performs similarly
or better than it, although the latter requires several times
more filters. Table 1 reports the denoising scores, measured
using the Peak Signal-to-Noise Ratio (PSNR). [32] also
considered the approximation of filter banks learned with
the K-SVD algorithm by using sparse linear combinations

http://cvlab.epfl.ch/research
http://cvlab.epfl.ch/research


Figure 4. Pixel classification results for the three considered 2D biomedical datasets. The graphs compare the F-measure [36] obtained
by the different approaches, normalizing the result by the F-measure obtained with the Optimally Oriented Flux filter [20]. Our filtering
approach outperforms the OOF results in all the datasets, and the separable filters do so at a fraction of the computational costs of the
non-separable filters, while retaining their accuracy. Times are given in seconds and represent the time it takes to convolve the input image
with the considered filter banks. More results are given in the supplementary material.

Figure 5. Pixel classification results on the OPF image stack. The
F-measure is normalized by the F-measure obtained with the Op-
timally Oriented Flux filter [20]. More results are given in the
supplementary material.

of 1D DCT basis. However, we need significantly fewer
separable filters, only 36 compared to the 100 for [32].

Interestingly, the basis of separable filters we learn seem
general. We proved that by taking the filters that were
learned to approximate a filter bank of a specific image, and
we used them to reconstruct the filter banks of the other im-
ages. In other words, we kept the same sk filters learned for
the Barbara image, and only optimized on the wj

k weights
in Eq. (5). The results are summarized in Tab. 1.

(a) (b)
Figure 6. Approximating an existing filter bank. (a) The 36 sepa-
rable filters learned by SEP-COMB to approximate a bank of 256
filters learned by K-SVD algorithm of [9]. (b) Comparison be-
tween some of the original filters learned by K-SVD (top row) and
their approximations reconstructed by our algorithm (bottom row).
While filters with a regular structure are very well approximated,
noisy filters are slightly smoothed by the approximation. Their
role in the denoising process is, however, marginal, and therefore
this engenders no performance penalty.

6. Conclusion
We have proposed a learning-based filtering scheme

applied to the extraction of linear structures, along with
two learning-based strategies for obtaining separable filter
banks. The first one directly learns separable filters by mod-
ifying the regular objective function. The second one learns
a basis of separable filters to approximate an existing filter
bank, and not only gets the same performance of the origi-
nal, but also considerably reduces the number of filters, and
thus convolutions, required. Although we have presented
our results in a convolutional framework, the same conclu-
sions apply to patch-based approaches.



Table 1. Results for the image denoising task. We give here the
image Peak Signal-to-Noise Ratio (PSNR) in decibels for differ-
ent methods. The images were first artificially corrupted by ad-
ditive Gaussian white noise with standard deviation 20, and de-
noised with the K-SVD method [9], using the bank of 256 filters
computed by the original method and its approximations we ob-
tained with our SEP-COMB methods. We obtain similar results
with much fewer filters. SEP-COMB-Barbara denotes the strat-
egy where, instead of grounding the reconstruction on the approx-
imating filter bank corresponding to the image to denoise, the ap-
proximating filter bank from the Barbara image is used. This filter
bank seems general as it does not degrade the results. For all of the
experiments no tuning of the parameters for either the approxima-
tion or of the denoising algorithms was performed. More results
are given in the supplementary material.

Barbara Boat Lena Peppers

Noisy image 22.12 22.09 22.09 22.13

K-SVD 30.88 30.36 32.42 32.25

SEP-SVD(256) 30.23 30.20 32.08 32.06

SEP-COMB(25) 30.21 30.27 32.40 31.99
SEP-COMB(36) 30.77 30.36 32.42 32.08
SEP-COMB(49) 30.87 30.36 32.42 32.17
SEP-COMB(64) 30.88 30.36 32.42 32.25

SEP-COMB-Barbara(36) - 30.26 32.43 31.97
SEP-COMB-Barbara(64) - 30.36 32.43 32.23

Our techniques also bring to learning approaches one of
the most coveted properties of handcrafted filters, namely
separability, and therefore reduce the computational burden
traditionally associated with them. Moreover, designers of
handcrafted filter banks do not have to restrict themselves
to separable filters anymore: they can freely choose filters
for the application at hand, and approximate them using few
separable filters with our approach.
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