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Abstract—Affine rank minimization algorithms typically rely
on calculating the gradient of a data error followed by a singular
value decomposition at every iteration. Because these two steps
are expensive, heuristic approximations are often used to reduce
computational burden. To this end, we propose a recovery scheme
that merges the two steps with randomized approximations, and
as a result, operates on space proportional to the degrees of
freedom in the problem. We theoretically establish the estimation
guarantees of the algorithm as a function of approximation
tolerance. While the theoretical approximation requirements are
overly pessimistic, we demonstrate that in practice the algorithm
performs well on the quantum tomography recovery problem.

I. INTRODUCTION

In many signal processing and machine learning applica-
tions, we are given a set of observations y ∈ Rp of a rank-r
matrix X? ∈ Rm×n as y = AX? + ε via the linear operator
A : Rm×n → Rp, where r � min{m,n} and ε ∈ Rp is
additive noise. As a result, we are interested in the solution of

minimize
X∈Rm×n

f(X)

subject to rank(X) ≤ r,
(1)

where f(X) := ‖y − AX‖22 is the data error. While the
optimization problem in (1) is non-convex, it is possible to
obtain robust recovery with provable guarantees via iterative
greedy algorithms (SVP) [1], [2] or convex relaxations [3], [4]
from measurements as few as p = O(r(m+ n− r)).

Currently, there is a great interest in designing algorithms
to handle large scale versions of (1) and its variants. As a
concrete example, consider quantum tomography (QT), where
we need to recover low-rank density matrices from dimen-
sionality reducing Pauli measurements [5]. In this problem,
the size of these density matrices grows exponentially with
the number of quantum bits. Other collaborative filtering
problems, such as the Netflix challenge, also require huge
dimensional optimization. Without careful implementations
or non-conventional algorithmic designs, existing algorithms
quickly run into time and memory bottlenecks.

These computational difficulties typically revolve around
two critical issues. First, virtually all recovery algorithms
require calculating the gradient ∇f(X) = 2A∗(A(X)−y) at
an intermediate iterate X, where A∗ is the adjoint of A. When
the range of A∗ contains dense matrices, this forces algorithms
to use memory proportional to O(mn). Second, after the iter-
ate is updated with the gradient, projecting onto the low-rank
space requires a partial singular value decomposition (SVD).

This is usually problematic for the initial iterations of convex
algorithms, where they may have to perform full SVD’s. In
contrast, greedy algorithms [2] fend off the complexity of full
SVD’s, since they need fixed rank projections, which can be
approximated via Lanczos or randomized SVD’s [6].

Algorithms that avoid these two issues do exist, such
as [7]–[10], and are typically based on the Burer-Monteiro
splitting [11]. The main idea in Burer-Monteiro splitting is to
remove the non-convex rank constraint by directly embedding
it into the objective: as opposed to optimizing X, splitting
algorithms directly work with its fixed factors UVT = X in
an alternating fashion, where U ∈ Rm×r̂ and V ∈ Rn×r̂
for some r̂ ≥ r. Unfortunately, rigorous guarantees are
difficult.1 The work [12] has shown approximation guarantees
if A satisfies a restricted isometry property with constant
δ2r ≤ κ2/(100r) (noiseless), where κ = σ1(X?)/σr(X

?), or
δ2r ≤ 1/(3200r2) for a bound independent of κ. The authors
suggest that these bounds may be tightened based on the good
empirical performance of the algorithm.

In this paper, we merge the gradient calculation and the
singular value projection steps into one and show that this
not only removes a huge computational burden, but suffers
only a minor convergence speed drawback in practice. Our
contribution is a natural but non-trivial fusion of the Singular
Value Projection (SVP) algorithm in [1] and the approxi-
mate projection ideas in [2]. The SVP algorithm is a hard-
thresholding algorithm that has been considered in [1], [13].
Inexact steps in SVP have been considered as a heuristic [13]
but have not been incorporated into an overall convergence
result. A non-convex framework for affine rank minimization
(including variants of the SVP algorithm) that utilizes inexact
projection operations with provable signal approximation and
convergence guarantees is proposed in [2]. Both [1], [2] do
not consider splitting techniques in the proposed schemes.

In this work, departing from [1], [2], we engineer the
SVP algorithm to operate like splitting algorithms that directly
work with the factors; this added twist decreases the per
iteration requirements in terms of storage and computational
complexity. Using this new formulation, each iteration is
nearly as fast as in the splitting method, hence removing a

1If r̂ &
√
p, then [11] shows their method obtains a global solution, but

this is impractical for large p. Moreover, it is shown that the explicit rank r̂
splitting method solves a non-convex problem that has the same local minima
as (1) (if r̂ = r). However, the non-convex problems are not equivalent
(e.g. U = 0, V = 0 is a stationary point for the splitting problem whereas
X = 0 is generally not a stationary point for (1)).



drawback to SVP in relation to splitting methods. Furthermore,
we prove that, under some conditions, it is still possible to
obtain perfect recovery even if the projections are inexact.
Such characterizations have been used for convex [3] and non-
convex [1], [2] algorithms to obtain approximation guarantees.

II. PRELIMINARY MATERIAL

Notation: PΩ is an orthogonal projection onto the closed
set Ω when it exists, and Pr stands for P{X:rank(X)≤r} (which
does exist by the Eckart-Young theorem). Computer routine
names are typeset with a typewriter font.

R-RIP: The Rank Restricted Isometry Property (R-RIP)
is a common tool used in matrix recovery [1]–[3]:

Definition 1 (R-RIP for linear operators on matrices [3]). A
linear operator A : Rm×n → Rp satisfies the R-RIP with
constant δr(A) ∈ (0, 1) if, ∀X ∈ Rm×n with rank(X) ≤ r,

(1− δr(A))
∥∥X∥∥2

F
≤
∥∥AX

∥∥2

2
≤ (1 + δr(A))

∥∥X∥∥2

F
. (2)

We use the short notation δr to mean δr(A).

Additional convex constraints: Consider the variant
minimize
X∈Rm×n

f(X)

subject to rank(X) ≤ r, X ∈ C,
(3)

for a convex set C. Our main interests are C+ = {X : X � 0}
and the matrix simplex C∆ = {X : X � 0, trace(X) = 1}.
In both cases the constraints are unitarily invariant and the
projection onto these sets can be done by taking the eigenvalue
decomposition and projecting the eigenvalues. Furthermore,
for these specific C, P{X:rank(X)≤r}∩C = PC ◦ Pr (see [14]).

Approximate singular value computations: The stan-
dard method to compute a partial SVD is the Lanczos method.
However, the method is somewhat hard to parallelize and it
lacks theoretical bounds of the form used in Theorem 1.

Algorithm 1 RandomizedSVD

Finds Q such that X ≈ PQX = QQ∗X

Require: Function h : Z̃ 7→ XZ̃
Require: Function h∗ : Q̃ 7→ X∗Q̃
Require: r ∈ N // Rank of output
Require: q ∈ N // Number of power iterations to perform

1: ` = r + ρ // Typical value of ρ is 5
2: Ω a n× ` standard Gaussian matrix
3: W ← h(Ω)
4: Q← QR(W ) // The QR algorithm to orthogonalize W
5: for j = 1, 2, . . . , q do
6: Z ← QR(h∗(Q))
7: Q← QR(h(Z))
8: end for
9: Z ← h∗(Q)

10: (U,Σ, V )← FactoredSVD(Q, I`, Z)
11: Let Σr be the best rank r approximation of Σ
12: return (U,Σr, V )

Algorithm 2 FactoredSVD(Ũ , D̃, Ṽ )

Computes the SVD UΣV ∗ of the matrix X implicitly given by
X = ŨD̃Ṽ ∗

1: (U,RU )← QR(Ũ)
2: (V,RV )← QR(Ṽ )
3: (u,Σ, v)← DenseSVD(RU D̃R

∗
V )

4: return (U,Σ, V )← (Uu,Σ, V v)

As an alternative, we turn to randomized linear algebra.
On this front, we restrict ourselves to algorithms that re-
quire only multiplications, as opposed to sub-sampling en-
tries/rows/columns, as sub-sampling is not efficient for the
application we present. The randomized approach presented in
Algorithm 1 has been rediscovered many times, but has seen
a recent resurgence of interest due to theoretical analysis [6]:

Theorem 1 (Average Frobenius error). Suppose X ∈ Rm×n,
and choose a target rank r and oversampling parameter ρ ≥ 2
where ` := r + ρ ≤ min{m,n}. Calculate Q and PQ via
RandomizedSVD using q = 0 and set X̃ = PQX. Then

E‖X− X̃‖2F ≤ (1 + ε) ‖X−Xr‖2F

where Xr is the best rank r approximation in the Frobenius
norm of X, X̃ has rank `, and ε = r

ρ−1 .

The theorem follows from the proof of Thm. 10.5 in
[6]. The expectation is with respect to the Gaussian r.v. in
RandomizedSVD. For the sake of our analysis, we cannot
immediately truncate X̃ to rank r since then the error bound
in [6] is not tight enough. Thus, since X̃ is rank `, in practice
we even observe that ‖X − X̃‖2F < ‖X −Xr‖2F , especially
for small r, as shown in Figure 3. The figure also shows that
using q > 0 power iterations is extremely helpful, though this
is not taken into account in our analysis since there are no
useful theoretical bounds. Note that variants for eigenvalues
also exist; we refer to the equivalent of RandomizedSVD as
RandomizedEIG, which has the property that U = V and
Σ need not be positive (cf., [6])

III. A PROJECTED GRADIENT DESCENT ALGORITHM

Our approach is based on the projected gradient descent:

Xi+1 = Pεr(Xi+1 − µi∇f(Xi)), (4)

where Xi is the i-th iterate, ∇f(·) is the gradient of the
loss function, µi is a step-size, and Pεr(·) is the approximate
projector onto rank r matrices given by RandomizedSVD.
If we include a convex constraint C, then the iteration is

Xi+1 = PC(Pεr(Xi+1 − µi∇f(Xi))). (5)

In practice, Nesterov acceleration improves performance:

Yi+1 = (1 + βi)Xi − βiXi−1 (6)
Xi+1 = P(Yi − µi∇f(Yi)), (7)



Algorithm 3 Efficient implementation of SVP, K = {R,C}
Require: step-size µ > 0, measurements y, initial points u0 ∈
Km×r, v0 ∈ Kn×r, d0 ∈ Kr, (opt.) unitarily invariant
convex set C

Require: Function A : (u, d, v) 7→ A(udiag(d)v∗)
Require: Function At : (z, w) 7→ A∗(z)w
Require: Function At∗ : (z, w) 7→ (A∗(z))∗w

1: v−1 ← 0, u−1 ← 0, d−1 ← 0
2: for i = 0, 1, . . . do
3: Compute βi // See text
4: uy ← [ui, ui−1], vy ← [vi, vi−1]
5: dy ← [(1 + βi)di,−βidi−1]
6: z← A(uy, dy, vy)− y // Compute the residual
7: Define the functions

h : w 7→ uy diag(dy)v∗yw − µAt(z, w)
h∗ : w 7→ vy diag(dy)u∗yw − µAt∗(z, w)

8: (ui+1, di+1, vi+1)← RandomizedSVD(h,h∗, r)
9: di+1 ← PC(di+1) // Optional

10: end for
11: return X ← uidiv

∗
i // If desired

where βi is chosen βi = (αi−1− 1)/αi and α0 = 1, 2αi+1 =
1 +

√
4α2

i + 1 [15] (see [2]). Algorithm 3 shows details for
low-memory implementation. The implementation of A and
At depends on the structure of A in the specific problem.

IV. CONVERGENCE

We assume the observations are generated by y = AX?+
ε where ε is a noise term (not to be confused with ε). In the
following theorem, we will assume that ‖A‖2 ≤ mn/p, which
is true for quantum tomography [16]; if A is a normalized
Gaussian, then this assumption holds in expectation.

Theorem 2. (Iteration invariant) Pick an accuracy ε = r
ρ−1 ,

where ρ is defined as in Theorem 1. Define ` = r+ ρ and let
c be an integer such that ` = (c − 1)r. Let µi = 1

2(1+δcr) in
(4) and assume ‖A‖2 ≤ mn/p and f(Xi) > C2‖ε‖2, where
C ≥ 4 is a constant. Then the descent scheme (4) or (5) has
the following iteration invariant

Ef(Xi+1) ≤ θf(Xi) + τ‖ε‖2, (8)

in expectation, where

θ ≤ 12 · 1 + δ2r
1− δcr

·
(

ε

1 + δcr
· mn
p

+ (1 + ε)
3δcr

1− δ2r

)
,

and

τ ≤ 1 + δ2r
1− δcr

·
(

12 · (1 + ε)

(
1 +

2δcr
1− δ2r

)
+ 8

)
.

The expectation is taken with respect to Gaussian random
designs in RandomizedSVD. If θ ≤ θ∞ < 1 for all
iterations, then limi→∞ Ef(Xi) ≤ max{C2, τ

1−θ∞ }‖ε‖
2.

Each call to RandomizedSVD draws a new Gaussian r.v.,
so the expected value does not depend on previous iterations.
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Fig. 1. (Left) Convergence rate as a function of parameters to
RandomizedSVD/RandomizedEIG. (Right) Scaling plot for computation
time of RandomizedEIG.

The expected value of the function converges linearly at rate
θ to within a constant of the noise level, and in particular, it
converges to zero when there is no noise.

Unfortunately, the theorem imposes overly pessimistic
values for ε. The bound on θ should be less than 1 in
order to have a contraction. This gives the requirement that
δcr . 1/200, which is reasonable (cf. [12]). However, it
also imposes2 12

1−δ2cr
· εmnp < 1

2 , which means that we need
ε . p

24mn . For quantum tomography, m = n and p = O(rn),
so we require ε . r/n. From Theorem 1, our bound on ε is
r/(ρ− 1), so we require ρ ' n, which defeats the purpose of
the randomized algorithm (in this case, one would just perform
a dense SVD). Surprisingly, numerical examples in the next
section show that ρ can be nearly a small constant, so the
theory is not sharp.

V. NUMERICAL EXPERIMENTS

We apply the algorithm to the quantum tomography
problem, which is a particular instance of (1). For details,
we refer to [5]. The salient features are that the variable
X ∈ Cn×n is constrained to be Hermitian positive-definite,
and that, unlike many low-rank recovery problems, the linear
operator A satisfies the R-RIP: [16] establishes that Pauli
measurements (which comprise A) have R-RIP with over-
whelming probability when p = O(rn log6 n). In the ideal
case, X? is exactly rank 1, but it may have larger rank due to
some (non-Gaussian) noise processes, in addition to AWGN
ε. Furthermore, it is known that the true solution X? has
trace 1, which is also possible to exploit in our algorithmic
framework. Each component of the linear operator A has a
special Kronecker product structure, which we exploit in order
to keep memory low, using custom parallel code.

Figure 1 (left) plots convergence and accuracy results for a
quantum tomography problem with 8 qubits and p = 4rn with
r = 1. The SVP algorithm works well on noisy problems but
we focus here on a noiseless (and truly low-rank) problem in
order to examine the effects of approximate SVD/eigenvalue
computations. The figure shows that the power method with
q ≥ 1 is extremely effective (if q = 0, then ρ ' 20 still
leads to convergence). When p is smaller and the R-RIP is
not satisfied, taking ρ or q too small can lead to divergence.

2For the details, see the extended version at http://arxiv.org/abs/1303.0167.

http://arxiv.org/abs/1303.0167
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Fig. 2. (Left) Accuracy comparison of several algorithms, as a function of
number of samples. (Right) Convergence for the 16-qubit simulation
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The right subfigure of Figure 1 shows that the low-memory
implementation has time complexity O(n2) up to n = 216.

The left subfigure of Figure 2 reports the median error on
10 test problems across a range of p. Here, X? is only approxi-
mately low rank and y is contaminated with noise. We compare
the convex approach [5], the “AltMinSense” approach [12],
and a standard splitting approach. AltMinSense and the convex
approach have poor accuracy; the accuracy of AltMinSense
can be improved by incorporating symmetry, but this changes
the algorithm fundamentally and the theoretical guarantees are
lost. The splitting approach, if initialized correctly, is accurate,
but lacks guarantees. Furthermore, it is slower in practice due
to slower convergence, though for some simple problems it is
possible to accelerate using L-BFGS [10].

Figure 3 tests Theorem 1 by plotting the value of

ε̃ = ‖X− X̃‖2F /‖X−Xr‖2F − 1

(which is bounded by ε) for matrices X that are generated by
the iterates of the algorithm. The algorithm is set for r = 1 (so
X is the sum of a rank 2 term, which includes the Nesterov
term, and the full rank gradient), but the plots consider a range
of r and a range of oversampling parameters ρ. Because X̃ has
rank ` = r + ρ, it is possible for ε̃ < 0, as we observe in the
plots when r is small and ρ is large. For two power iterations,
the error is excellent. In all cases, the observed error ε̃ is much
better than the bound ε from Theorem 1.

Finally, to test scaling to very large data, we compute a
16 qubit state (n = 65536), using a known quantum state as
input, with realistic quantum mechanical perturbations (global
depolarizing noise of level γ = 0.01; see [5]) as well as
AWGN to give a SNR of 30 dB, and p = 5n = 327680
measurements. The first iteration uses Lanczos and all sub-

sequent iterations use RandomizedEIG using ρ = 5 and
q = 3 power iterations. On a cluster with 10 computers, the
mean time per iteration is 401 seconds. After 1270 iterations,
‖X−X?‖F = 0.0256; see Figure 2 (right).

VI. CONCLUSION

Randomization is a powerful tool to accelerate and scale
optimization algorithms, and it can be rigorously included
in algorithms that are robust to small errors. In this paper,
we leverage randomized approximations to remove memory
bottlenecks by merging the two-key steps of most recovery
algorithms in affine rank minimization problems: gradient
calculation and low-rank projection. Unfortunately, the current
black-box approximation guarantees, such as Theorem 1, are
too pessimistic to be directly used in theoretical characteri-
zations of our approach. For future work, motivated by the
overwhelming empirical evidence of the good performance
of our approach, we plan to directly analyze the impact of
randomization in characterizing the algorithmic performance.
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