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Abstract
When water flows through hydraulic turbomachines, the local pressure can become low

enough to vaporize the water and create vapor cavities. This phenomenon is called cavitation.

When the cavities collapse, shock waves and liquid jets traveling through the inclusions

can erode nearby solid surfaces. The collapse of cavitation bubbles has been extensively

investigated in the case of a single bubble in a liquid at rest. However, in the case of hydraulic

machines, the bubbles collapse in a flowing liquid subject to strong pressure gradients. The

objective of this thesis is thus to investigate the effect of the pressure gradient on the collapse

of a spherical cavitation bubble.

We have performed a preliminary investigation of bubble dynamics in a flowing liquid with

a pressure gradient. To this end, we have placed a Naca0009 hydrofoil in the test section of

EPFL High Speed Cavitation Tunnel and used a high energy pulsed laser focusing technique

to generate a single vapor bubble close to the hydrofoil’s leading edge. We have observed

a significant influence of the pressure gradient on the bubble dynamics. Particularly, if the

collapse phase occurs near the minimum pressure point, the microjet is no more directed

towards the solid surface but towards the lower pressure zone in the stream wise direction. We

have also observed a peculiar feature of a cluster of bubble dynamics, which behaves almost

similar to a single bubble, exhibiting a microjet during its collapse. These unprecedented re-

sults are of major importance for a better understanding of the cavitation erosion mechanism

in hydraulic systems.

The qualitative results obtained in the cavitation tunnel led to the investigation of the effect

of a constant pressure gradient on the collapse of the bubble. An experimental setup is built

to observe the dynamics of the bubble in water, subject to the gravity induced hydrostatic

pressure gradient, and to measure the pressure fluctuation due to the shock waves. The

bubbles are generated with a high energy pulsed laser and recorded with a high speed camera.

The experimental setup is taken onboard parabolic flights. The parabolic manoeuvres allow

the gravity level to be varied in the plane, which modulates the intensity of the pressure

gradient in the liquid. The high speed movies taken during the flights reveal that vapor jets

appear with the rebound bubble. An empirical law for the prediction of the volume of the

jet is deducted from the experimental results. The volume of the jet, normalized with the

volume of the rebound bubble, is found to be proportional to a non dimensional parameter

ζ= |∇p|Rmax /Δp, where ∇p is the pressure gradient, Rmax is the maximal bubble radius and

Δp is the driving pressure. This dependance is enforced by a theoretical development based

on the concept of the Kelvin impulse. Moreover, we identify a threshold for the apparition of
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the vapor jet: ζ> 4 ·10−4.

A new approach for the study of the bubble collapse is proposed: we look at how the energy in

the initial cavitation bubble is partitioned between the collapse channels, namely the rebound,

the shock wave, the jet, and the luminescence. The microgravity phases of the parabolic

flights prevent the apparition of the jet. The collapse of the bubble, in this case, is perfectly

spherically symmetric. Moreover, the energy dissipated through luminescence is negligible.

Therefore, the study reduces to the energy partition between rebound and shock wave. The

measurements uncover a systematic pressure dependence of the energy partition between

rebound and shock. We demonstrate that these observations agree with a physical model

relying on a first-order approximation of the liquid compressibility and an adiabatic treatment

of the non-condensable gas inside the bubble. Using this model, we find that the energy

partition between rebound and shock is dictated by a single non-dimensional parameter

ξ=Δpγ6/pg 0
1/γ(ρc2)1−1/γ, where γ is the adiabatic index of the non-condensable gas, pg 0 is

the pressure of the non-condensable gas at the maximal bubble radius, ρ is the liquid density,

and c is the speed of sound in the liquid.

Keywords

Cavitation, bubble, collapse, pressure gradient, microjet, shock wave, luminescence, energy

partition, bubble gas content.
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Résumé
Dans les turbomachines hydrauliques, la pression locale dans le liquide peut s’abaisser à un

tel point que l’eau se vaporise. Ce phénomène est appelé la cavitation. Lorsque ces cavités

de vapeur implosent proche d’une surface solide, on peut observer la formation d’un jet de

liquide dirigé vers la paroi, ainsi que la formation d’une onde de choc. L’implosion de la bulle

a été largement étudiée dans le cas d’une bulle générée dans un liquide au repos. Cependant,

dans le cas des machines hydrauliques, les bulles implosent dans un liquide soumis à de forts

gradients de pression. L’objectif de cette thèse est d’étudier l’effet du gradient de pression sur

l’implosion d’une bulle de cavitation sphérique.

Nous avons tout d’abord observé le cas d’une bulle soumise à un gradient de pression dans

un écoulement. Une bulle est créée par focalisation d’un laser pulsé de forte énergie dans

le liquide, proche d’un profil placé dans la veine d’essai du tunnel de cavitation de l’EPFL.

L’écoulement autour du profil est représentatif de celui que l’on trouve dans une turbomachine

hydraulique. Le gradient de pression affecte de manière significative l’implosion de la bulle. En

effet, on observe notamment la formation lors de l’implosion d’un microjet, dont la direction

est opposée à celle du gradient de pression.

Les résultats qualitatifs obtenus dans le tunnel de cavitation nous ont poussés à étudier l’effet

d’un gradient de pression constant sur l’implosion de la bulle. Un dispositif expérimental a

été construit afin d’observer la dynamique de la bulle dans de l’eau soumise à un gradient

de pression hydrostatique, et de mesurer les fluctuations de pression liées au passage des

ondes de choc. Les bulles ont été créées par focalisation d’un laser pulsé de forte énergie, et

l’évolution de la bulle est enregistrée au moyen d’une caméra rapide. Le dispositif expérimental

a été mis à bord d’un avion pour des vols paraboliques. Ces manœuvres aériennes permettent

de faire varier le niveau de gravité à bord de l’avion, ce qui fait donc varier l’intensité du

gradient de pression dans le liquide. Grâce à ces essais, nous avons observé l’apparition d’un

microjet lors du rebond de la bulle. Nous en avons tiré une loi empirique qui permet de prédire

le volume du jet en fonction des conditions expérimentales. Le volume du jet, normalisé par

le volume du rebound, est proportionnel à un paramètre adimensionnel ζ= |∇p|Rmax /Δp,

où ∇p est le gradient de pression, Rmax est le rayon maximal de la bulle et Δp est la différence

de pression entre l’intérieur et l’extérieur de la bulle. Finalement, le paramètre adimensionnel

est validé par un développement théorique basé sur le concept de l’impulsion de Kelvin. De

plus, nous avons identifié un seuil pour l’apparition du microjet : ζ> 4 ·10−4.

Nous proposons une nouvelle approche pour l’étude de l’implosion de la bulle : On évalue

comment l’énergie se trouvant initialement dans la bulle se partage lors de l’implosion entre
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les différents canaux que sont le rebond, l’onde de choc, le jet et la luminescence. Les résul-

tats obtenus lors des phases de microgravité durant les vols paraboliques nous permettent

d’étudier le cas d’un collapse parfaitement sphérique. En effet, les jets ne se forment pas

en microgravité. De plus, l’énergie dissipée par la luminescence est si faible que l’on peut

la négliger. Notre cas d’étude se réduit alors à la répartition de l’énergie de la bulle entre le

rebond et l’onde de choc. Nos mesures nous ont permis de découvrir une dépendance de la

répartition d’énergie à la pression dans le liquide. Ces résultats sont confirmés par un modèle

physique basé sur une approximation de premier ordre de la compressibilité du liquide, et

d’un traitement adiabatique du gaz se trouvant dans la bulle. Au moyen de ce modèle, nous

développons un paramètre adimensionnel ξ qui permet de prédire la répartition de l’énergie

à l’implosion. Le paramètre adimensionnel est défini comme ξ=Δpγ6/pg 0
1/γ(ρc2)1−1/γ, où γ

est l’indice adiabatique du gaz non-condensable, pg 0 est la pression du gaz non-condensable

lorsque le rayon de la bulle est à son maximum, ρ est la masse volumique du liquide, et c est

la vitesse du son dans le liquide.

Mots-clés

Cavitation, bulle, implosion, gradient de pression, microjet, onde de choc, luminescence,

répartition de l’énergie, composition du gaz dans la bulle.
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1 Introduction

1.1 About cavitation

Cavitation is the phase change process through which vapor cavities form inside an initially

homogeneous liquid when the pressure decreases [1, 2, 3]. Analogous to when water turns

into vapor when the temperature reaches the boiling point, water turns into vapor when the

pressure decreases below its vapor pressure (see water phase diagram in Fig. 1.1). The nucle-

ation, i.e., the formation of the bubbles, is however quite complex, which makes cavitation

a subtle process. Indeed, pure water is able to sustain pressure below the vapor pressure,

and even tensile stress before the intermolecular bounds break, leading to the formation of

cavities. In practice, the presence of impurities in the liquid, such as microscopic gas bub-

bles or solid particles, can create weak points in the liquid, where the gas cavities grow once

the vapor pressure is reached. These impurities are called cavitation nuclei. The nuclei can

have several origins, mainly from gas dissolved in the liquid, or gas trapped in small surface

roughness. In flowing liquids cavitation occurs when the local pressure in the liquid becomes

smaller than the vapor pressure, and activates the growth of the nuclei. The pressure decrease

could be induced by the geometry of the boundaries around the liquid, by roughness on the

boundary surfaces, or even by shear stresses. Cavitation occuring in a flowing liquid is called

hydrodynamic cavitation, and can take several forms, commonly divided into three groups

[2, 3]:

• Attached cavitation: A cavity or a vapor pocket that is attached to a solid boundary in

the flow.

• Vortex cavitation: Cavitation that occurs at the core of a vortex.

• Transient cavitation bubbles: An isolated cavitation bubble that appears in a low pres-

sure region and is carried away by the flow.
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Figure 1.1: Sketch of the water phase diagram. Boiling is the phase change from liquid to gas
by temperature increase, whereas cavitation is the phase change by pressure decrease.

Historically, experimental interest in cavitation arose in 1912 when Silberrad reported erosion

due to cavitation on the propeller of large cruise boats [4]. The cavitation occurred on the

blades of the propeller, due to low pressure zones generated by the high rotation speed. The

same phenomenon occurs in hydraulic turbomachines. Low pressure zones are generated

by the flow over the blades. If the local pressure is lower than the vapor pressure, cavitation

develops on the blade. The hydraulic machines are not designed to operate with cavitation,

which significantly modifies the flow. Therefore, cavitation can lead to a dramatic drop in

performance. In addition to erosion, cavitation can also lead to vibrations and subsequent

structural damages to the point where the turbine needs to be repaired or replaced. Since large

hydraulic turbines can generate hundreds of megawatts of electricity, unexpected damages

and early replacement of the equipment can result in huge economic costs.

Cavitation is not only restricted to water, but can occur in various fluids. In rocket engines, the

liquid fuel and oxidizers are pumped by the inducers and injected into the combustion cham-

ber. The inducers are designed to sustain cavitation erosion for the few minutes necessary to

launch the spacecraft [5]. In artificial hearts, cavitation can not only damage the mechanical

valves, but it can also critically alter the blood of the patient [6].

Despite a century of research, cavitation is still a major issue in various domains. At this point,

efforts have been placed on preventing the initiation of cavitation, and, when cavitation cannot

be avoided, minimizing the damages. However, effective prevention measures necessitate

a good understanding of the fundamental physical phenomena involved in cavitation. This

understanding has been notably seeked by investigating the simplest form of cavitation, the

single bubble.
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1.2. Goal and organization of the thesis

Experimental methods have been developed to generate one single vapor bubble on demand,

growing and eventually collapsing in a liquid at rest. These single bubbles can be generated by

several means, most of them not implying a local pressure drop in the liquid. Nuclei can be

excited by acoustic pressure waves, to the point where the bubble grows several times their

initial volume. Energy deposition methods have been widely used to generate an explosively

growing vapor bubble by local heating of the liquid. The bubble is obtained by focussing

a laser, by an electrical discharge, or even by an explosion in water. The rise of high speed

imaging contributed largely to the investigation of the dynamics of the bubble, because the

lifetime of the cavitation bubble is so short that conventional recording methods do not allow

the phenomena to be captured. With high speed imaging, it becomes possible to observe

peculiar phenomena such as the formation of microjets at the collapse, or the propagation of

shock waves in the liquid.

In parallel with experiments, theoretical models of the collapse of spherical cavitation bubbles

have been developed. The first model, still widely used, is the Rayleigh equation [7]. This

model describes the collapse of a perfectly spherical empty cavity in a uniform liquid. It was

later improved by Plesset [8], to take into account surface tension, viscosity, and gas inside

the bubble, resulting in the so-called Rayleigh-Plesset model. Later, this model was further

developed to account for more physical aspects, such as the compressibility of the liquid

[9, 10, 11, 12], or the chemical reactions occurring at the collapse [13, 14, 15]. Non-spherical

collapses have to be treated differently, using numerical simulations such as the boundary

integral method [16, 17].

Nowadays, cavitation is not only associated with erosion issues. It is increasingly considered

for “beneficial” uses. Cavitation bubbles are now exploited as tools in surgery [18] and medical

applications [19], microchip cleaning [20], water treatment [21], and microfluidics [22, 23].

However, even in the most simple form of cavitation, a thorough description of the physical

processes is still lacking.

1.2 Goal and organization of the thesis

To date, most studies on collapsing cavitation bubbles have considered a bubble in a liquid

at rest, with a uniform pressure field around the bubble. The characteristic features of the

bubble collapse, namely the rebound, the formation of jets, the generation of shock waves,

and the luminescence have been assiduously investigated. However, in the field of hydraulic

machines, the cavitation bubbles occur in a flowing liquid, subject to strong pressure gradients.

A few studies have already observed a non-negligible influence of a pressure gradient on the

dynamics of the collapse of the cavitation bubble, in the form of the apparition of a jet at the

rebound [24, 25]. But no systematic study of the effect of a pressure gradient on the different

collapse channels has ever been conducted.
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The goal of this thesis is to investigate the effect of the pressure gradient on the collapse

of a spherical cavitation bubble.

To address this question, the work has been organized as follows.

We start with an introduction on single cavitation bubbles (Ch. 2). We describe the phenom-

ena associated with the collapse of the bubble, and we detail different theoretical models. The

methods for generating on demand single cavitation bubbles are also discussed.

The case of bubbles generated within a flow with a pressure gradient is first treated (Ch. 3). The

pressure gradient is developed by putting a hydrofoil in the flow. The experimental conditions

reproduce those typically found in hydraulic turbomachines. The bubble is generated with a

high energy laser at different locations in the pressure field, in order to test the effect of the

pressure gradient. Qualitative conclusions are drawn from the observations.

An experimental setup dedicated to the observation of single spherical cavitation bubbles is

built (Ch. 4). The setup is designed to study the effect of the hydrostatic pressure gradient on

the collapse of the bubbles. The setup is not only used in the laboratory, but also onboard

an aircraft performing parabolic flights. During the parabolic flights, the gravity level experi-

enced in the aircraft changes due to specific flight manoeuvres, as a result, the intensity of the

hydrostatic pressure gradient in the liquid changes.

With the data obtained during the parabolic flights, the effect of the hydrostatic pressure

gradient on the jetting phenomenon is investigated (Ch. 5). A parametric study leads to a

scaling law for the volume of the jet as a function of the involved experimental parameters.

The phenomenologic law is supported by an analytic treatment of the problem.

Lastly, the effect of the pressure gradient on the rebound, the shock and, to a lesser extent,

the luminescence is investigated (Ch. 6). Unlike previous studies that examined each phe-

nomenon individually, we adopt a global approach, which consists of studying all collapse

channels at the same time. We first investigate how the energy of the initial bubble is parti-

tioned between the different collapse channels in a perfectly spherical case. The partition and

the major driving parameters are identified and discussed. Then, we look at how this partition

varies when we apply a constant hydrostatic pressure gradient in the liquid.
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2 An introduction to single cavitation
bubbles

2.1 Phenomena occurring at the collapse of a single cavitation bub-

ble

Regardless of how and where a cavitation bubble occurs, the bubble is bound to grow and

eventually collapse. The collapse of the bubble is of particular interest, because of several

peculiar phenomena that take place in a very short period of time. These phenomena, which

we refer to as the collapse channels, are listed below. and illustrated in Fig. 2.1.

• Rebound : The collapse is followed by the reappearance of the rebound bubble, growing

and collapsing several times again.

• jet : An asymmetrical collapse of the bubble can lead to the formation of a jet at the very

last stage of the collapse, visible with the rebound bubble.

• shock wave : A shock wave is released at the last stage of the collapse of the bubble.

• luminescence : The gas inside the bubble at the collapse is compressed, and the temper-

ature rise to a state where light is emitted. This phenomenon is called the luminescence.

growth collapse rebound

shock wave jet

luminescence

Figure 2.1: High speed images of a cavitation bubble growing, collapsing, and rebounding.
The four collapse channels, namely the rebound, the jet, the shock wave and the luminescence
are illustrated.

5



Chapter 2. An introduction to single cavitation bubbles

Each of these phenomena and their implications are described in the following paragraphs.

The fundamental theoretical models for the dynamics of the collapse are then detailed in the

next section, while the chapter ends with a discussion on the methods for the generation of

single cavitation bubbles.

Rebound

After the collapse, the bubble reappears in the form of a rebound bubble of smaller size. The

rebound is due to gas trapped in the bubble at the collapse. The cavitation bubbles are filled

with a mixture of vapor and non-condensable gas. The origin of this gas is still unclear, but it is

thought that it comes from a combination of gas dissolved in the water, and gas created at the

generation for the energy deposition bubbles [26, 27]. At the very last stage of the collapse, the

bubble interface moves fast towards the center of the bubble. Both non-condensable gas and

vapor in the bubble are compressed, and the pressure in the bubble rises (can reach 1 GPa

[2, 28]). Due to this high pressure in the bubble, the contraction of the bubble eventually slows

down and stops, and the bubble starts to rebound. The quantity of non-condensable gas in

the bubble influences the maximum radius of the rebound bubble. It has been demonstrated

that a larger concentration of non-condensable gas leads to a larger volume of the rebound

bubble [26, 29].

The shape of the rebound bubble is determined by the symmetry or asymmetry of the dy-

namics of the collapse. A perfectly spherical collapse produces a spherical rebound bubble.

However, an asymmetry leads to the deformation of the bubble and, in some cases, the ap-

parition of a jet emerging from the rebound bubble. The rebound bubble can also sometimes

break into several bubbles. This phenomenon is called fission of the bubble. It is thought to

be cause by either Rayleigh-Taylor instabilities on the bubble interface or by the re-entrant jet

at the collapse of the bubble [30]. It has also been shown that when bubble fission occurs the

resulting rebound bubble is smaller than expected because the process dissipates energy [31].

Jets

When the collapse of a cavitation bubble is not spherically symmetric, one side of the bubble

will eventually reach the center of the bubble first at the very last stage of the collapse. On this

side of the bubble, the liquid is advancing faster into the bubble than on the other location

on the interface. Because of its characteristic shape, this advancing portion of liquid is called

the microjet. The microjet can pierce the bubble, and go through the diametrally opposite

interface of the bubble. This traversing flow entrains some vapor into the liquid, and a vapor

jet grows outwards from the rebound bubble.

The presence of a solid boundary close to a collapsing bubble creates an asymmetry. The

interface close to the solid surface tends to flatten, while the interface diametrally opposite

moves fast towards the center of the bubble, creating the microjet. The microjet can reach
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2.1. Phenomena occurring at the collapse of a single cavitation bubble

velocities of 100 m/s [32]. If the bubble is close enough to the surface, the microjet hits the

solid surface. Because of the high velocity of the microjet, it is often considered as a potential

source of cavitation erosion. The characteristics of the microjet are closely related to the

standoff parameter, which is the ratio between the bubble radius and the distance between

the bubble center and the wall [32, 33]. The shape of the solid surface also plays an important

role in the jetting mechanisms. A convex solid surface tends to increase the velocity of the

microjet [34].

When a bubble collapses close to a free surface, a microjet also appears. However, unlike for

the solid surface, the microjet is in this case directed opposite to the surface. The velocity of

the microjet is of the order of 100 m/s [35]. In addition to the microjet, a counterjet appears

on the free surface after the collapse of the bubble. A column of liquid rises with velocities

of 10 to 30 m/s [36, 37, 38]. The velocities and width of both the microjet and the counterjet

are also influenced by the standoff parameter. The effect of the curvature of the free surface

has also been investigated. Cavitation bubbles have been generated within cylindrical liquid

jets [38] and in spherical drops [37]. The curvature changes the shape of the crown appearing

around the counterjet. The increase of the curvature also broadens the counterjet.

A multitude of variations and combinations of these two basic case studies have been inves-

tigated. We can cite the case of a bubble between two solid surfaces, or a solid and a free

surface [39, 35]. Moreover, cases of bubble collapsing close to elastic surfaces have also been

carefully investigated [40]. Approaching boundaries to the bubble is not the only way to cause

asymmetry in the collapse. When a bubble collapses in a liquid subject to a pressure gradient,

the bubble symmetry is also broken. Observations of bubble traveling in the flow through

a venturi tube have been reported [25]. The shape of the collapsing bubbles denotes the

formation of a microjet. It has also been reported that the hydrostatic pressure gradient can

also induce the apparition of the jets [24, 41].

Shock waves

During the collapse phase, the high velocity of the bubble interface and the compressibility

of the liquid lead to the generation of shock waves into the water. The pressure peak can

reach values of the order of 1 GPa, which is high enough to damage solid material located

near the bubble. The shock waves are therefore considered, along with the microjet impinging

the surface, as a mechanism causing the erosion at the bubble collapse. The fluctuation of

pressure, when the shock propagates through the liquid, can excite nuclei [37]. It can even

make bubbles collapse, which has been used to observe the formation of microjet within

bubbles [42, 43, 19]. Depending on the shape of the boundaries around the bubble, the

reflections of the shock waves can focus and generate secondary cavitation in the liquid

[37, 38, 44, 45]. Note that when a cavitation bubble is generated by energy deposition, the

explosive growth of the bubble generates a first shock wave, with a pressure peak amplitude of

1-10 GPa [46].

7



Chapter 2. An introduction to single cavitation bubbles

Luminescence

At the very last stage of the collapse, the pressure and temperature of the gas inside the bubble

are so high that light is emitted. This phenomenon of light emission is known as luminescence.

The contraction of the bubble at the collapse is so violent that the gas within the bubble is

compressed to pressure as high as 1GPa [28]. The duration of high compression (> 103 ×
initial pressure) is so short (order of 1 ns) that the process can be considered as adiabatic. The

temperature in the bubble increases dramatically. The maximum temperature is estimated

at 5,000 to 15,000 K. By comparison, the surface of the sun is 5,778 K. The gas is so hot that it

radiates light. The chemical species constituting the gas inside the bubble plays an important

role in luminescence. For instance, luminescence can be “boosted” by the adjunction of inert

gas within the bubble. The temperature reached is higher than for other gases, and the light

emitted is more intense. Investigations have shown that asymmetry at the bubble collapse can

decrease the intensity of the light emitted [47, 48, 49, 50]. This denotes a close relation between

the “symmetry” of the compression motion and the temperature reached by the gas in the

bubble. However, luminescence can still occur in highly non-spherical cavitation collapse,

like in the case of attached cavitation [51]. Note that the high pressure and temperature

reached within the bubble enhances chemical reactions within the trapped gas, and even

allows reactions that could otherwise not occur [13, 14].

2.2 Theoretical models

In 1847, when George Stokes challenged his students to calculate the motion of an empty

spherical cavity in water, he was not aware that he had just set down the equation that would

become the most used in cavitation modeling. Indeed, in 1917, Lord Rayleigh modeled the

collapse of cavitation bubbles as the motion of an empty spherical cavity in an infinite volume

of water. This equation, nowadays known as the Rayleigh equation, reads

RR̈ + 3

2
Ṙ2 =−p∞

ρ
, (2.1)

where R is the radius of the spherical cavity as a function of time, p∞ is the pressure in the

water, and ρ is the density of water (997 kg / m3 at 25 ◦C). Using this simple model, one

assumes that:

• the motion is spherically symmetric

• the bubble is empty

• the bubble is located in an infinite volume of water

• the water is incompressible and irrotational

• gravity, surface tension, viscosity, and heat or mass transfer is neglected
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In 1954, the Rayleigh equation is adapted by Plesset to model the more general case of the

evolution of a spherical bubble in a viscous and incompressible liquid. The main assumptions

are [7, 2]

• the liquid is incompressible, and either Newtonian or inviscid

• gravity is neglected

• the air content inside the bubble is constant, its inertia is neglected and no heat is

transferred to the surroundings (i.e. adiabatic assumption)

• the bubble is saturated with vapor, whose partial pressure is the vapor pressure at the

temperature of the liquid.

The resulting equation, known as the Rayleigh-Plesset equation, allows to determine the radius

of the bubble, and the pressure in the bubble and around the bubble as a function of time. It

reads

ρ

[
RR̈ + 3

2
Ṙ2

]
= pv −p∞+pg 0

(
R0

R

)3γ

− 2S

R
−4μ

Ṙ

R
, (2.2)

where pv is the vapor pressure of water, pg 0 is the initial partial pressure of the non-condensable

gas in the bubble, R0 is the initial radius of the bubble, γ is the adiabatic index of the non-

condensable gas inside the bubble (1.3 for air), S is the surface tension of water (7.2·10−2 N/m

at 25 ◦C), and μ is the kinematic viscosity of water (9·10−7 N/m at 25 ◦C).

Surface tension and viscosity are found to play a negligible role in the collapse of cavitation

bubbles [1, 2, 52], and are therefore often neglected. If we monitor each term Eq. 2.2 during

the collapse of a bubble, we observe that the inertial terms (left hand side terms) and the

pressure terms (first three terms of right hand side) dominate over the terms of surface tension

and viscosity (fourth and fifth term of right hand side respectively). Note that this observation

if valid for millimetric bubbles in water, which is what we consider in this thesis. For bubbles

with a radius of the order of the micrometer, the effect of surface tension is not negligible

anymore [2], whereas for bubbles in a very viscous fluid (more than thousands of time the

viscosity of water), the viscosity would slow down the collapse process.

Authors have proposed different generalizations of the Rayleigh-Plesset equation to a com-

pressible liquid [9, 10, 11, 12]. In 1987, Prosperetti and Lezzi [53, 54] showed that several of the

equations can be derived from a unique one-parameter family of equations, called the general

Keller-Herring equation [12]:

[
1− (λ+1)

Ṙ

c

]
RR̈ + 3

2

[
1− 1

3
(3λ+1)

Ṙ

c

]
Ṙ2

= 1

ρ

(
1− (λ−1)

Ṙ

c
+ R

c

d

d t

)
(pB −p∞)+O(c−2) (2.3)
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where c is the speed of sound, pB is the pressure inside the bubble, λ is an arbitrary param-

eter, and O denotes the order of the error. Note that, in the following work, we will use the

formulation with λ = 0, which corresponds to the equation derived by Keller and Miksis [11].

The three models for the bubble collapse presented here have been further improved. Evapo-

ration, condensation, and mass transfer can be taken into account [26]. The gas inside the

bubble can be considered as a van der Waals gas rather than ideal gas [26]. It is also possible

to model the chemical reactions occurring at the collapses of an oscillating bubble, and thus

to monitor the evolution of gas concentration within the bubble [15]. However, all these

models have been developed for the calculation of spherical collapses, even though, as already

mentioned, the bubbles do not always collapse spherically. Benjamin and Ellis [24] were the

first to realize that the concept of the Kelvin impulse could give a good insight of the dynamics

of a non-spherical bubble collapse. The Kelvin impulse corresponds to the apparent inertia of

the collapsing bubble, and can be used to determine the general motion of the bubble [55].

Precise prediction of the dynamics of a non-spherical bubble collapse can be achieved by

numerical simulations, using methods such as the boundary integral method [16, 17].

2.3 Differences between “on demand” cavitation bubbles and hy-

drodynamic cavitation bubbles

Predicting accurately where and when a single cavitation bubble will occur in a flowing liquid is

a difficult task. Moreover, the unsteady and short lived nature (could be � 1ms) of the bubbles

makes it difficult to observe. Therefore, experimental techniques have been developed in

order to generate “on demand” one single cavitation bubble at a given time and location in a

liquid. The “flaw” of these methods is that the bubbles are not generated by pressure drop in a

flow, as for hydrodynamic cavitation, but by either a tension applied on the liquid or by local

energy deposition, which leads to the rupture of the liquid and the formation of a cavity of

vapor. By extension, these bubbles are also called cavitation bubbles. The main methods for

generating bubbles are the following:

• Acoustic cavitation: Sound waves propagating into the liquid produce a tension that

makes the nuclei grow, leading to the apparition of a bubble.

• Laser-induced bubble: A laser pulse is focussed into the water. At the focussing point,

the water turns into a hot plasma. This phenomenon is called water breakdown. Even-

tually, the plasma turns into an expanding vapor bubble.

• Spark bubble: Two electrodes are placed into the water. An electric discharge between

the electrodes creates a small plasma which, as for the laser method, eventually turns

into a vapor bubble.

The acoustic method excites the bubble over several oscillation cycles. It is often used in

the investigation of cavitation enhanced chemistry [56, 13, 14] or luminescence [57], where
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the successive collapses help the observation. However, the energy deposition methods

have the advantage to generate a single bubble that collapses under the sole influence of the

pressure in the liquid, since the rebound is not affected by pressure waves traveling through

the liquid. In addition, the prediction of the position of the generation of the bubble is also

more precise than with the acoustic method. The acoustic bubble grows from a nuclei in

the liquid, while with the energy deposition method, the bubble grows where the energy is

focussed or released. Because of those advantages, the energy deposition methods are more

adapted to the identification of the effect of a pressure gradient on the collapse of a single

cavitation bubble, which is what we intend to do in this thesis.

The two main methods for the generation of cavitation bubble with energy deposition in a

liquid are the spark method and the laser method. Figure 2.2 provides a sketch of how both

bubble are generated, along with an image of a bubble at maximum radius generated with

each method. The bubble is generated from a hot plasma created in the water. Due to the high

pressure and temperature within the plasma, a vaporization of the liquid take place, and the

bubble grows explosively. In the first instant of the bubble generation, the supersonic velocity

of the interface and the large pressure inside the plasma creates a shock wave propagating in

the liquid. The bubble grows and reaches a maximum radius. At this moment, the pressure

in the surrounding liquid is larger than the pressure within the bubble (which is equal to the

vapor pressure) and the bubble starts to collapse. The bubble interface accelerates radially

towards the center of the bubble. The gas inside the bubble is compressed until the bubble

reaches a minimum radius. At this moment, the pressure and the temperature of the gas

inside the bubble are high, leading to emission of light, called luminescence. Due to the high

pressure and temperature, a rebound bubble grows explosively. The supersonic interface

velocity and the high pressure in the bubble generate a shock wave. The collapse-rebound

cycle occurs again several times, until all potential energy of the bubble is dissipated, mainly

through the shock waves.

The difference between the spark and the laser method lies in how the plasma is generated. In

the spark method, the plasma is generated by an electric discharge between two electrodes.

In the laser method, the plasma is generated with a high energy laser pulse focussed into the

liquid. The phenomenon is called the water breakdown. The plasma occurs where the energy

density of the laser beam is larger than the ionization threshold [38]. The main advantage of

the laser compared to the spark is that the laser method is non-intrusive. The laser can be

focussed from an optical system placed outside of the test chamber. Although it requires an

optical access to the liquid, i.e. a transparent window, nothing is placed into the test chamber.

In the case of the spark method, the electrodes are located within the liquid. The bubble forms

at the tip of the electrodes. An interaction between the bubble and the electrodes cannot be

avoided. For this reason, we decided to use the laser method for the generation of cavitation

bubbles.

11



Chapter 2. An introduction to single cavitation bubbles

Bubble

Plasma

Electrodes

Bubble

Plasma

Laser
(a) (b)

(d)(c)

Figure 2.2: Sketch of the generation of a bubble with (a) an electrical spark discharge, and (b) a
focussed laser pulse, along with an image of the bubble at maximum radius generated with (c)
the spark, and (d) the laser.

One can reasonably wonder if the cavitation bubbles generated by energy deposition are

similar to the hydrodynamic cavitation bubbles, i.e. bubbles generated by pressure decrease

in the liquid. One way to evaluate it is to compare the dynamics of the collapse with a well-

established and reliable theoretical model: the Rayleigh-Plesset model. This model allows

to calculate accurately the evolution in time of the radius of a collapsing bubble, and has

been proven to be an accurate model of the collapse of hydrodynamic cavitation bubbles.

The normalized radius R∗ = R/Rmax , calculated with the Rayleigh-Plesset equation, is plot

as a function of the normalized time t∗ = t/τc in Fig. 2.3. R is the radius of the bubble as a

function of time t , Rmax is the maximum radius, and τc is the collapse time of the bubble.

The points on the graph are experimental data of R∗ as a function of t∗. We plot the values

from one spark induced bubble, and from laser induced bubbles at three different liquid

pressure. All the experimental data superpose well for the first growth and collapse phase

of the bubble. However, the growth of the rebound varies from case to case, depending on

both the pressure in the liquid and the method for bubble generation. The experimental data

for the first collapse are consistent with the Rayleigh-Plesset curve. Furthermore, we notice

that the growth phase is reasonably symmetric to the collapse phase. The dashed curve on

the graph is the mirror (from t∗ = 0) of the Rayleigh-Plesset curve. The similarity between

the experimental data and the theoretical curve from to generation until the last stage of the

collapse implies that the method for the generation of the bubble does not affect significantly

the dynamics for these two phases. However, we note large variations in the rebounds.

According to Fig. 2.3, the dynamics of the rebound depends on both the pressure in the liquid

and the method for the bubble generation. Comparing the laser cases, we observe that the

rebound bubbles become larger when the pressure in the liquid decreases. This behavior is

12
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deeply addressed in Ch. 6. However, the rebound obtain with the spark bubble at atmospheric

pressure is as large as the laser bubble obtained at low pressure (10 kPa). This difference is

thought to be caused by the gas inside the bubble. In the case of the bubble generated by

energy deposition, non-condensable gas is formed by dissociation of water in the plasma at

the generation of the bubble. This gas is trapped inside the bubble during the collapse phases,

and eventually diffuses in the water. Sato et al. [27] measured the concentration of hydrogen

in water after the collapse of a laser bubble and a spark bubble. The concentration of hydrogen

after a spark bubble was three times larger than after a laser bubble, for the same potential

energy in the initial bubble. A larger amount of gas inside the bubble at the collapse leads to

larger rebound bubble.
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Figure 2.3: Plot of the normalized radius as a function of the normalized time calculated
measured for laser induced bubbles at three different pressures in the liquid (dots) and for
a spark induced bubble (square). The solid curve is the theoretical collapse of a bubble,
calculated with the Raylei-Plesset model, and the dashed curve is the reflection of the curve
across the axis t∗=0.

Are hydrodynamics bubbles and laser bubbles the same ? In fact, they are not the same. The

bubble content is different. In consequence, the phenomena associated with the last stage

of the collapse, when the gas inside the bubble is compressed, might be affected. However,

the phenomena are qualitatively similar: apparition of a rebound bubble, microjet, shock

waves, and luminescence. The conclusions drawn from the investigations on laser induced

cavitation bubble can still be transposed to hydrodynamic cavitation bubbles, as long as we

keep in mind the possible influence of the gas content.
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2.4 The thermodynamic effect

The temperature of the liquid affects the dynamics of the cavitation bubble. Physical properties

such as the vapor pressure, the density, the surface tension and the viscosity are function of

the temperature of the fluid. The vapor pressure pv as a function of the temperature T can be

calculated with the Antoine equation 2.4. The variation of the other physical properties can be

extrapolated from reference tables [58].

l og10(pv ) = A− B

C −T
(2.4)

with A = 5.4022, B = 1838.675, C = -31.737. The pressure is in bars, and the temperature in K.

The effect of the temperature on cavitation occurrence, called the thermodynamic effect, has

been reported in the case of pumps. Although the variation of the vapor pressure is considered

in the calculation of the cavitation number, we still observe that the breakdown cavitation

number decreases when the temperature of the liquid increases. This phenomenon is not

well understood, but it is thought to be due to the variation of the vapor density with the

temperature, which implies variation of mass rate of evaporation for a given volume growth

[59].

The influence of the temperature can also be observed in the case of laser-induced bubbles.

Figure 2.4 shows the radius as a function of time for two bubbles generated with the same

laser input energy, one in water at 3 ◦C, and the other at 44 ◦C. We observe that for a higher

temperature, the rebound bubble is significantly larger (2.5 times larger in this case). However,

the study of the thermodynamic effect is beyond the scope of this thesis. Therefore, we

restrict ourselves to water temperature in the vicinity of 20 ◦C, which is what is the typical

nominal temperature for hydraulic machine testing [60]. When the temperature varies over a

small range, the discrepancies induced by the temperature differences become insignificant.

To illustrate this, several movies were recorded at a water temperature of 19◦C and 26◦C

respectively. Figure 2.5 plots the average radius of the bubble as a function of time for each

temperature. The difference between the two cases is small, as summarized in Tab.2.1. The

differences in the maximum radius (Rmax ) or maximum radius of the rebound (Rr eb) from

one case to the other are of the order of the standard deviation of the measurement(σ).

Rmax ±σ: Rr eb ±σ

19 ◦C : 1.653 ± 0.017 0.266 ± 0.060

26 ◦C : 1.674 ± 0.011 0.304 ± 0.024

Table 2.1: Maximum radius of the bubble and of the rebound bubble, along with the standard
deviation, for two cases, at respectively 19 ◦C and 26 ◦C.
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Figure 2.4: The radius as a function of time for a bubble in water at 3◦C and 44◦C respectively.
The growth and collapse of the bubbles are similar, but the rebound bubble is 2.5 times larger
at higher temperature.
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Figure 2.5: The radius as a function of time for a bubble in water at 19◦C and 26◦C respectively.
Despite a difference of 7◦C, the growth, the collapse, and the rebound of the bubbles are
similar (within the standard deviation of the measurements).
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3 Effect of the pressure gradient around
a hydrofoil on the collapse of a bub-
ble
3.1 From the turbine to the cavitation tunnel: simplification of the

problem

Despite decades of research on the subject, cavitation remains a major issue in hydraulic

machines. In the particular case of hydraulic turbines for instance, the design of the turbine

and the nominal operating point are adapted in order to avoid cavitation. However, with

new global energetic challenges, hydraulic turbines are not expected to run only at one

nominal point. Most hydraulic power plants are expected to adapt their production to meet

the requirement of complex electric network including , even more in the future, the unsteady

renewable energy sources. Under these conditions, cavitation occurrence in the turbine might

not be avoidable. Cavitation is not only a source of performance losses. Cavitation is a source

of damages on the turbine. The collapse of cavitation bubbles on the blade of the turbine

induces erosion which, for serious cases, leads to the replacement of the turbine, at very high

costs.

A first step to simplify the problem of cavitation within hydraulic turbine is to investigate what

happens when one blade (a hydrofoil with a standard geometry) is placed in a flow with a

uniform inlet (the flow within the test section of the cavitation tunnel). The experimental

condition at the inlet of the test section, namely the velocity of the flow and the pressure in the

liquid, and the geometry and angle of attack of the hydrofoil can then be modified to obtain

different types of hydrodynamic cavitation on the profile, among which, cavitation bubbles

collapsing on the blade.

Investigations on cavitation bubbles traveling along a hydrofoil have already been performed

both at the LMH [61, 62], and elsewhere [63, 64]. The innovation of the present study stands

on the use of a laser to generate the cavitation bubble. With this technique, the bubbles can

be generated (on demand) at any location within the flow around the hydrofoil. This allows to

probe the behavior of the cavitation bubble generated at different distances from the hydrofoil

and, more important, for different pressure gradient intensities. Indeed, for a liquid flow
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Chapter 3. Effect of the pressure gradient around a hydrofoil on the collapse of a bubble

around such a solid profile, the pressure gradient is highly space dependant. Therefore, the

pressure gradient acting on the bubble during the growth and collapse varies with the location

of the bubble generation.

3.2 Experimental setup

3.2.1 The EPFL high speed cavitation tunnel

The experiments take place in the EPFL high speed cavitation tunnel [65]. The test facility,

shown in Fig. 3.1, is a closed loop circuit providing a rectangular test section of 150 x 150 x

750 mm. The honey comb located in the contraction upstream to the test section reduces

the turbulence intensity in the flow to less than 2 % [66]. A double suction pump produces

a pressure head of 36.5 m for 1.125 m3/s at 885 rpm. The maximum flow velocity at the

test section inlet is 50 m/s. The transit time for a fluid particle to complete the loop at this

maximum flow rate is 98 s. The long pipe with a large diameter, located at the middle of the

tunnel acts as a bubble resorber. It reduces the flow to 3 % of the test section inlet velocity. The

bubbles can rise to the top of the pipe, where they are trapped and removed.

2000 mm

Test section

Pump

Flow direction

Figure 3.1: The EPFL high speed cavitation tunnel
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3.2. Experimental setup

3.2.2 The hydrofoil

We place in the test section a stainless steel hydrofoil (geometry drawn in Fig. 3.2). This Naca

0009 profile has a span of 150 mm and a maximum thickness of 9 % located at 45 % of the

chord length. The geometry is defined by the Eq. 3.1, using L = 110 mm for the chord length.

The hydrofoil is then truncated at 100 mm, resulting in a 3.22 mm thick trailing edge.

0 ≤ x

L
≤ 0.5 y

L = a0
( x

L

)1/2 +a1
( x

L

)+a2
( x

L

)2 +a3
( x

L

)3

0.5 ≤ x

L
≤ 1 y

L = b0 +b1
(
1− x

L

)+b2
(
1− x

L

)2 +b3
(
1− x

L

)3 (3.1)

a0 =+0.1737, a1 =−0.2422, a2 =+0.3046, a3 =−0.2657

b0 =+0.0004, b1 =+0.1737, b2 =−0.1898, b3 =+0.0387

Figure 3.2: The truncated NACA 0009 hydrofoil

For our experiment, we restrain ourself to one flow condition. The water pressure and the flow

velocity at the inlet of the test section are respectively 0.45 bar and 15 m/s, with a constant

angle of attack of 1◦. These conditions correspond to a coefficient of cavitation σ = 0.39 (Eq.

3.2). The pressure distribution on pressure and suction sides of the hydrofoil for an angle of

attack of 1◦ is plotted on Fig. 3.3. Note that the X axis direction goes from the right to the left, to

be consistent with the flow direction on the high speed images. The experimental conditions

were chosen to reconcile the following requirements:

• The flow velocity should be high enough to allow the bubble to travel a significant

distance in the pressure field before collapsing.

• Meanwhile, the velocity should not be too high, otherwise the bubble is washed away

from the observation area in the flow.
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• The inlet pressure has to be low to favor the generation of large bubbles, which are easier

to observe.

• However, the minimum pressure on the hydrofoil surface should be above the vapor

pressure to avoid hydrodynamic cavitation.

σ= pr e f −pv
1

2
ρCr e f

2
(3.2)

cp (x) = p(x)−pr e f
1

2
ρCr e f

2
(3.3)

pr e f is the pressure at the test section inlet, pv the vapor pressure of water, Cr e f the flow

velocity at the inlet, p(x) the pressure on the hydrofoil surface as a function of the chord

position x, and ρ the water density.

Figure 3.3: Pressure coefficient cp as a function of the distance on the chord of the truncated
NACA 0009 hydrofoil, for an angle of attack of 1◦. The dashed line is the cavitation coefficient
σ for the experimental conditions.

3.2.3 Generation and observation of a bubble

The bubbles are obtained by focussing a laser pulse in the test section through the plexiglass

front window, as illustrated in Fig 3.4. The laser is a Q-switched Nd:YAG laser (New Wave

Minilase III) delivering pulses up to 11 mJ and 5 ns at a wavelength of 532 nm. The laser
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beam of 3.5 mm is expanded 12 times with a set of one diverging and one converging lens,

then focussed into the water, through the plexiglas, by a converging lens. To be able to reach

the water breakdown threshold, the energy of the laser pulse has to be focussed into a small

volume of liquid. To optimize the focalization, the laser beam has to be focussed with a largest

possible convergence angle. The focussing system used is sketched in Fig. 3.5. The whole

bubble generation system is mounted on a computer comtrolled traverse system. This allows

to generate a bubble anywhere around the hydrofoil, within the vertical plane 30 mm behind

the front plexiglas window.

laser
head

focussing system

hydrofoil

test section

Figure 3.4: Sketch of the test section of the EPFL high speed cavitation tunnel with the laser
and the focussing system for bubble generation. One diverging and one converging lens
expand the laser pulse, while the converging lens close to the plexiglas focuses the pulse into
the water.

laser
source

lens
-25mm

lens
+300 mm

lens
+76.5 mm

plexiglas
window

275 mm 30mm

bubble

Figure 3.5: Sketch of the laser focussing system used to generate bubbles in the cavitation
tunnel.
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Movies of the laser-induced bubbles are recorded with a high-speed camera (Photron Fastcam

SA1.1). To obtain sharp images, it is necessary to have a lot of light in order to reduce the

exposure time on the camera. We use two xenon flashes (Cordin Model 359) delivering a

maximum energy of 1100 J during 11 ms. The synchronization of the laser-camera-flashes

is controlled by the high-speed camera. When the experimenter starts the recording from

the camera software on a computer, two TTL signals are sent from the camera. One triggers

the flashes, and the other the optical pumping of the YAG rod, leading to the emission of the

laser pulse. The flashes are fixed, respectively, on the top and on the front of the test section,

allowing to observe the interface of the bubble. Fig. 3.6 shows a typical example of the images

we have recorded. It is a superposition of high speed images taken for one cavitation bubble.

Note that some “parasite” cavitation appears on the hydrofoil, at the corner edge close to

the plexiglas. The sub-millimetric gap between the edge of the hydrofoil and the plexiglas

generates a local pressure drop that induces tiny cavitation bubbles, entrained by the flow.

The value for the conversion of the pixels on the movie in millimeters is calculated using a

reference object of known dimensions placed on the hydrofoil. The spatial resolution is 6.85

pixels per millimeters and the temporal resolution, given by the frame rate set on the camera,

is 20 μs.

hydrofoil

flow direction

Figure 3.6: Superposition of the images from a typical high speed movie of a laser-induced
bubble generated above the hydrofoil. The bubble travels in the flow above the hydrofoil, grow-
ing and collapsing. The rebound bubble appears like a cluster of microbubbles. Interframe
time: 200 μs

3.2.4 Presentation of the four case studies

We will analyse four case studies. The coordinates of the position of the generation of each

bubble are given on both Figs. 3.7 and 3.9. In the cases 1 and 2, the interaction between the

bubble and the pressure gradient is weak. The bubbles collapse downstream to the leading

edge, where the pressure is low. In the cases 3 and 4, the interaction between the bubble and

the pressure gradient is strong. The bubble collapses in the vicinity of the leading edge, where
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the intensity of the pressure gradient is high. In the cases 1 and 4, the bubble, respectively the

rebound bubble, travels on the surface of the hydrofoil. In the case 2 and 3, the bubble moves

in the flow above the hydrofoil.

The Navier-Stokes equations for our flow configuration has been solved with ANSYS CFX,

considering a two-dimensional flow. This numerical simulation leads to a solution for the

flow and the pressure field around the hydrofoil, which allows to estimate the trajectory of

the bubble and the pressure experienced by the bubble. The system of coordinates giving the

position of the generation of the bubble is defined as follow. The origin is given by the leading

edge of the hydrofoil when the angle of attack is 0 ◦. The X direction is the horizontal direction

and the Y direction is the vertical. Figure 3.7 shows the isobar lines around the hydrofoil,

calculated numerically (details in appendix A.1).

(+3, +10)

(+1.5, +6)

(-5, +9)

(-5, +5)

2

1

3

4

Figure 3.7: Pressure field around the hydrofoil, with the position of the generation of the
bubbles for the four case studies treated in the chapter. The minimum pressure on the
hydrofoil is 13 kPa, and the maximum, at the leading edge, is 207 kPa. There is 10 kPa between
two isobares.
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Figure 3.8: Pressure gradient isolines around the hydrofoil, together with the streamlines for
the four case studies treated in the chapter. Note that the isolines are logarithmically spaced.
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hydrofoil

flow direction

(+1.5, +6)

(+3, +10)
(-5, +9)

(-5, +5)

2

1

3

4

Figure 3.9: Coordinates of bubble initiation sites. The coordinates are given in millimeters,
according to the axis defined in Fig. 3.2.

3.3 Weak interaction between a bubble and the pressure gradient

3.3.1 Bubble traveling on the surface of the hydrofoil

The case 1 treats the bubble traveling on the surface of the hydrofoil. The laser is focussed

above the leading edge of the hydrofoil, as shown in Fig. 3.10. Figure 3.11 is a superposition of

high-speed images of the bubble. The bubble grows downstream from the leading edge. Once

the bubble reaches its maximum radius, the collapse process starts. The top of the bubble

becomes flat, and advances into the the bubble. The bubble eventually takes the shape of a

“donut” and collapses. This type of collapse is called a toroidal collapse. The portion of liquid

going through the bubble and impacting the bottom of the bubble is the microjet. Figure 3.12

shows the formation of the microjet and the toroidal collapse for the same bubble, viewed

from the top of the test section.

(+1.5, +6)

Figure 3.10: The isobars around the hydrofoil, and the streamline starting from the position of
the generation of the bubble, at (+1.5, +6).
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Figure 3.11: Case 1: The bubble traveling on the surface of the hydrofoil. The grey dash
lines are the axis perpendicular to the flap top of the bubble and passing through the center.
Interframe time: 400 μs, maximum diameter: 7 mm, bubble lifetime: 3.1 ms.

leading edge

Figure 3.12: Case 1: High speed images of the collapsing bubble taken from the top of the test
section. Interframe time: 60 μs, maximum diameter: 7 mm, bubble lifetime: 3.1 ms.

The microjet and the toroidal collapse are characteristic for collapse of a bubble on a solid

surface in a liquid at rest [32, 67, 39]. Figure 3.13 shows the collapse of a cavitation bubble

near a solid surface (just below the bubble) in a liquid at rest. During the collapse process,

we observe that the bubble interface diametrally opposite to the solid wall flattens. A liquid

jet, the microjet, pierces and advances through the whole bubble from the top. The microjet

eventually hits the bubble interface and the solid surface, and the bubble takes the shape of

a flat thorus. This high speed liquid microjet is thought to cause erosion. The high pressure

reached locally, where the microjet hits the surface, damages the surface. The repetition of
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this phenomenon leads to the formation of pits on the surface.

Figure 3.13: High speed images of the development of the microjet at the last stage of the
collapse of a cavitation bubble near a solid surface. The interval between the numbered frames
is 8 μs and the frame width is 3 mm.

The bubble traveling on the hydrofoil takes a particular shape just before the last stage of the

collapse. The top of the bubble is flat and inclined towards the downstream side. Interestingly,

this shape is similar to the shape of hydrodynamic bubbles traveling on a hydrofoil surface.

Previous observations [61, 63, 64] report bubble shapes changing from hemispherical to a so

called “wedge” shape, i.e., a bubble with triangular vertical section. The laser-induced bubble

generated here also take this particular shape, as shown in Fig. 3.14. As this shape is similar

for both laser and hydrodynamic bubbles, we assume that it results from the flow over the

hydrofoil.

(a) (b)

Figure 3.14: Traveling bubbles observed in two different studies. Despite of different genera-
tion methods,(a) is generated by laser while (b) is “hydrodynamic” cavitation, the same shape
is observed. (b) from [61].

We observe on the high speed images that the inclination of the flat top of the bubble is

changing while the bubble moves along the hydrofoil. The top is first inclined towards the

upstream side, and finishes inclined towards the downstream side. We found two possible

explanations for this phenomenon. It could be a rotation of the bubble on itself, as suggested

by the variation of the angle between the vertical and the axis perpendicular to the flat top

in Fig. 3.11. The other explanation could be that the shrinking of the top downstream side

of the bubble that catches up and overtakes the shrinking of the upstream side. It is actually

difficult to confirm one rather than the other possibility with the images of the bubble. In any

case, this phenomenon does not occur in the case of a bubble in a liquid at rest, where the

flat part of the bubble remains parallel to the solid surface. Therefore we conclude that this

phenomenon is caused by the flow.
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3.3.2 Bubble collapsing above the hydrofoil

In the case 2, the bubble is generated above the profile, so that a significant gap of water (>

3× the maximum radius of the bubble) is kept between the bubble and the solid surface until

the first collapse. The position of the generation of the bubble, and the streamline starting

from this point are plotted in Fig. 3.15. The high speed images of the growth, collapse, and

rebound of the bubble are shown in Fig. 3.16. As in the case 1, we observe that the top of

the bubble flattens during the collapse. In contrast, the bottom half of the bubble shrinks

quite spherically until the last moment of the collapse. The rebound appears as a cloud of

microbubble.

(+3, +10)

Figure 3.15: The isobars around the hydrofoil, and streamline starting from the position of the
generation of the bubble, at (+3, +10).

Figure 3.16: Case 2: Collapse of a bubble above the hydrofoil. The collapse is not spherical,
it is initiated at the top of the bubble. Interframe time: 200 μs, maximum diameter: 7 mm,
bubble lifetime: 1.28 ms.

Studies of collapsing bubbles in water at rest concluded that the influence of a solid surface is

negligible when the standoff is > 3. However, in our case, the standoff parameter is > 3 during
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the first growth and collapse of the bubble, and we still observe a non-spherical collapse. We

conclude that the asymmetric collapse is not induced by presence of the solid surface, but

by the flowing liquid. To identify the cause of the asymmetry, we consider the pressure field

around the hydrofoil and the trajectory of the bubble. Because of the pressure gradient in the

liquid, the top of the bubble experiences a higher pressure than the bottom of the bubble. The

result of this unbalance favors a faster collapse of the upper half of the bubble than the lower

half, which actually match our observation. Therefore, we postulate that a pressure gradient in

the liquid is sufficient to initiate a non-spherical collapse of the bubble, and ultimately to the

generation of a microjet. To confirm this, we present in the next section the cases of bubble

generated upstream to the leading edge, in the region where the intensity of the pressure

gradient is the highest.

The trajectory of the bubble is well represented by the superposition of the images in Fig.

3.16. However, the trajectory does not follow the streamline drawn in Fig. 3.15. The bubble

migrates towards the hydrofoil, while the streamline shows that a fluid element would flow

over the hydrofoil keeping an almost constant distance with the solid surface. We explain

this difference as being an effect of the microjet at the collapse of the bubble. We assume

the asymmetric collapse and the formation of the microjet to put the bubble into motion in

the direction of the microjet. In our particular case, the microjet is directed towards the solid

surface. This downwards motion combines with the flow, leading to the trajectory observed.

Note that one can wonder if the downwards motion is not due to the buoyancy effect on the

bubble, i.e. the bubble being attracted towards the hydrofoil, where the pressure is lower. We

excluded this possibility because the buoyancy forces would move the bubble much slower

than what we observe.

3.4 Strong interaction between a bubble and the pressure gradient

3.4.1 Apparition of a microjet parallel to the direction of the pressure gradient

In the case 3, the bubble is generated in the area upstream to the leading edge, where the

intensity of the pressure gradient is high, see Fig. 3.17. We investigate the influence of the

pressure gradient on the dynamics of the bubble, and in particular on the generation of a jet.

Figure 3.18 shows a superposition of high speed photographs of this bubble. The high speed

movie reveals peculiar bubble dynamics, quite different from what presented in the previous

section. In this case, we do not observe the toroidal collapse and the microjet directed towards

the solid surface. More details about the collapse are visible in Fig. 3.20, where all the frames

of the high speed movie are presented. The bubble remains quite spherical until the end

of the first collapse (frame (d)). The rebound of the bubbles appears like a compact cloud

of microbubbles (frame (f)). But on the following frame, we observe the growth of a jet of

vapor at the rear of the rebound (frames (g) to (i)). The jet then disappears and the rebound

becomes quite spherical (frames (k) to (l)). The apparition of a jet of vapor actually denotes
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3.4. Strong interaction between a bubble and the pressure gradient

that a microjet pierces the bubble during the collapse. The microjet entrains some vapor while

going through the bubble, and the vapor jet grows outside of the bubble following the stream.

(-5, +9)

Figure 3.17: The isobars around the hydrofoil, and streamline starting from the position of the
generation of the bubble, at (-5, +9).

The puzzling question is: Why, in this case, the jet takes this direction ? The answer becomes

clear when we superpose the trajectory of the bubble with the isobar lines around the hydrofoil

(see Fig.3.19). We see on the figure the jet perpendicular to the isobar lines, which means

by definition that the jet has the same direction as the pressure gradient. Actually, to be

correct, the jet develops in the direction opposite to the pressure gradient. This observation

implies that in this case the influence of the pressure gradient in the liquid is stronger than the

influence of the solid surface.
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2 mm

Figure 3.18: Case 3 : Superposition of the high speed images of the collapse of a bubble gener-
ated at (-5, +9). The bubble bubble has a microjet not towards the solid surface. Interframe
time: 180 μs, maximum diameter: 5 mm, bubble lifetime: 440 μs.

Rigid
profile

jet

collapse

1mm

Figure 3.19: Case 3 : Superposition of the isobars on the high speed images of the collapse of a
bubble with a strong interaction with the pressure gradient. A jet, perpendicular to the isobars,
appears on the rebound bubble. [41]
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(a)

(l)(k)(j)

(i)(h)(g)

(f)(e)(d)

(c)(b)

Figure 3.20: Case 3 : High speed images of the collapse of a bubble generated at (-5, +9).
The microjet and its direction, parallel with the flow, clearly visible. Interframe time: 100 μs,
maximum diameter: 5 mm, bubble lifetime: 440 μs.
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3.4.2 Cloud of microbubbles traveling on the surface of the hydrofoil

In the case 4, we generate a bubble upstream to the leading edge (see Fig. 3.21) so that the

rebound bubble flows along the hydrofoil, like the traveling bubble presented in the case

1. Because the bubble collapses in the region of strong pressure gradient, we observe the

apparition of a jet in the direction opposite to the local pressure gradient rather than in the

direction of the solid surface. The interesting feature with this bubble is its rebound, as shown

in Fig. 3.22. The collapse happens such that fission occurs on the rebound bubble [30]. The

rebound bubble takes the shape of an expanding, vertically elongated, cloud of microbubbles.

As the rebound advances over the hydrofoil, the microbubbles at the bottom of the cloud, close

to the hydrofoil, start to coalesce, forming one large bubble. Meanwhile, the microbubbles at

the top of the cloud move towards the solid surface, and start to collapse. This motion induces

a stream of liquid flowing through the cloud of microbubble, towards the hydrofoil, like a

microjet. At the last stage of the collapse, the bubble becomes toroidal. Its shape is similar to

the shape of the traveling bubble described before, as shown in Fig. 3.23. We observe in both

cases the “wedge” shape and the hole induced by the microjet.

It is interesting to note that the microbubbles in the cloud do not behave independently to each

other after the first collapse. The microbubbles close to the hydrofoil coalesce and generate

one bigger bubble that behaves like a traveling bubble along the hydrofoil. Meanwhile, the

microbubbles at the top of the cloud collapse in a methodic matter: from the top towards the

bottom. This behavior is thought to be caused by the configuration of the pressure field around

the hydrofoil. The low pressure near the hydrofoil favors the coalescence of the microbubbles.

The further from the hydrofoil, the larger the pressure is. We thus expect the collapse to start

at the top of the bubble. However, it is still surprising to observe the formation of a microjet,

piercing the whole elongated rebound bubble and provoking the toroidal collapse of what

was, just after the first collapse, a shapeless could of microbubbles.

(-5, +5)

Figure 3.21: The isobars around the hydrofoil, and streamline starting from the position of the
generation of the bubble, at (-5, +5).
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2 mm

Figure 3.22: Case 4 : Superposition of the high speed images of the collapse of a bubble
generated at (-5, +5). The bubble collapses upstream to the leading edge. The rebound, a
cloud of microbubbles, travels and collapses on the surface of the hydrofoil. Interframe time:
200 μs. Initial bubble maximum diameter: 5 mm, lifetime: 380 μs. Rebound bubble maximum
diameter: 6 mm, lifetime: 2 ms.

Figure 3.23: Comparison of the shape of the collapsing bubble in: (a) case 1, where the
bubble experiences its first collapse, and (b) case 4, where the rebound bubble, a cluster of
microbubbles, collapses. In both cases we observe the similar wedge shape.
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3.5 Discussion

The observations of laser-induced cavitation bubbles around the hydrofoil reveal a tight

relation between the pressure gradient in the liquid and the dynamics of the bubble. In

particular, we observe that the jet takes the direction of the pressure gradient. This statement

is reasonable when looking at the pressure forces applied on the bubble. The pressure gradient

makes one side of the bubble experience a stronger force than the other. One interface would

collapse faster towards the center. This loss of symmetry is thought to lead to the apparition

of the microjet.

The small turbulence intensity in the flow does not affect the dynamics of the bubble. The

formation of Rayleigh-Taylor instabilities at the collapse of bubbles is sometimes mentioned

[1, 68, 30, 69, 31]. However, in the cases presented here, the bubble interface is smooth during

the growth and collapse phase, which denotes the absence of instabilities developing on the

interface.

Although we were able to highlight the effect of the pressure gradient on the collapse of

a cavitation bubble in a typical flow, the results remain qualitative. The pressure field is

estimated with a numerical simulation of the flow without bubble. The influence of the bubble

on the flow is not known. The pressure experienced by the bubble interface is not necessarily

the pressure calculated in the liquid for the case of the flow without a bubble. A calculation of

the pressure on each point of the bubble interface as a function of time is thus not possible.

The observations show that, unlike in the case of a bubble collapsing close to a solid surface

in water at rest, the microjet is not directed towards the solid surface, but take the direction

opposite to the pressure gradient. This might be a clue for understanding the erosion potential

of cavitation in the hydraulic machines. Indeed, the occurrence of cavitation in a machine

does not systematically imply severe erosion. We could imagine that if the microjet developing

at the collapse is deviated and does not hit the solid surface perpendicularly, the pressure

on the surface is decreased. Therefore, the erosion potential would depend on the pressure

gradient at the location of the collapse of the bubble. This effect could even be considered

during the design of the machine, in order to minimize the potential erosion issues.

These encouraging results reveal the need for a quantitative investigation of the effect of

the pressure gradient on the collapse of a bubble. Therefore, we had to think about a new

experimental setup, where a bubble is subject to a constant pressure gradient, whose intensity

can be modified at will. The solution we adopted is to generate a bubble in a liquid at rest,

subject to a hydrostatic pressure gradient, whose intensity is modified by changing the gravity

level experienced by the liquid. This allows a systematic investigation of the effect of the

pressure gradient on all the collapse channels, namely the rebound, the microjet, the shock

waves, and the luminescence. The setup is described in the next chapter, and the results are

presented in the remaining part of the thesis.
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4 Experimental setup for the collapse
of a bubble in a hydrostatic pressure
gradient
4.1 Spherical symmetry broken by the hydrostatic pressure gradi-

ent

Although many studies on cavitation consider bubbles as spherical, it is impossible to generate

a perfectly spherical cavitation bubble in a liquid at rest subject to gravity. Gravity induces

a hydrostatic pressure gradient in the liquid which influences the dynamics of cavitation

bubbles. When the bubble grows and collapses in such a pressure field, the top of the bubble

experiences a lower pressure than its bottom due to the difference of liquid height above the

two locations on the bubble. From the generation until the maximum radius of the bubble is

reached, the expansion of the bubble is more refrained on the lower half of the bubble than

the upper half of the bubble. The shape of the bubble is therefore not perfectly spherical at

maximum radius. The bottom of the bubble is flattened close to the bubble center compared

to the top, as sketched in Fig. 4.1 (a). The same process occurs during the collapse of the

bubble. As the bubble shrinks, the lower half of the bubble moves faster than the upper

half. The bottom of the bubble reaches the center of the bubble first, as in Fig. 4.1 (b). The

asymmetry of the pressure forces during both the growth phase and the collapse phase leads

to a collapse that is not spherically symmetric.

g
Δ

P
g

Δ
P

Growth Collapse
(a) (b)

Figure 4.1: Sketch of the shape of an initially spherical bubble after (a) growing, and (b)
collapsing in a liquid subject to a hydrostatic pressure gradient.
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For our experimental purpose, we would like to vary or remove the intensity of the hydrostatic

pressure gradient in order to identify and quantify its effect on the collapse of a bubble. Such

conditions can be obtained in principle by varying the gravity level acting on the liquid, to the

limit of canceling the own weight of the liquid, which results in the situation of weightlessness.

One way of doing that is to run the experiment onboard a special aircraft performing parabolic

flights. This aircraft follows parabolic trajectories, with the result of generating different stable

levels of gravity during 20 s, from 1.8 g to 0 g. In consequence, one can study cavitation bubbles

generated in “normal” gravity, hyper gravity (gravity between 1g and 1.8g), and microgravity

(	 0g). Note that in microgravity, the pressure in the liquid is uniform, thus the pressure forces

on the bubble are spherically symmetric. The situation is of particular interest since most

theories strictly apply to perfectly spherical bubble collapses.

4.2 Parabolic flights

One way to vary the gravity level experienced by an object is to apply accelerations in addition

to the gravitational acceleration. It is this principle that is used in parabolic flights. An aircraft

performs specific manoeuvres in order to produce a vertical acceleration to counterbalance or

accentuate the gravitational acceleration. It is then possible to run experiences at different

levels of gravity. For our experiment, we generate laser-induced bubbles with an experimental

setup placed in an aircraft performing those parabolic flights. Bubbles were observed in

microgravity (acceleration of 0g), hypergravity (acceleration ∈ [1.2g; 1.8g]), and earth gravity

(acceleration of 1g). The results allow to identify the effect of the variation of the intensity of

the pressure gradient on the collapse of the bubbles.

The parabolic flights are organized by the European Space Agency (ESA). A specially modified

aircraft (Airbus A300-zeroG) performs the parabolic manoeuvres to provide weightlessness to

the experiments onboard. Figure 4.2 shows one parabolic manoeuvre. After 120 seconds of

horizontal flight, the aircraft smoothly climbs and pulls up its nose to an angle of 47 degrees.

This phase lasts around 20 seconds during which the aircraft experiences an acceleration of

1.8g in the direction perpendicular to the trajectory. The thrust is then suddenly reduced to the

minimum needed to compensate the drag of the aircraft. The aircraft is meticulously piloted

to follow as closely as possible a free-fall ballistic trajectory, i.e., a parabola, for 20 seconds.

During this phase, all forces applied on the aircraft compensate, and no forces are exerted

on the content of the aircraft. The sensation of weightlessness is achieved. The parabolic

manoeuvre ends with a pull out phase where the nose of the aircraft is lifted from an angle of

42 degrees back 0 degree, and thus to horizontal flight. The pull out phase lasts 20 seconds

during which an acceleration of 1.8g is experienced. During a typical flight day, the parabolic

manoeuvre is repeated 31 times. Longer breaks are planned every five parabolas, as illustrated

on Fig. 4.3. At the end of the 31 parabolic manoeuvres, the aircraft performs six steep turns

during which stable hypergravity is achieved. 15 to 20 seconds are usually needed to stabilize

the aircraft from the horizontal flight. The hypergravity phases last about 60 seconds and the

gravity level reached are 1.2g, 1.4g, and 1.6g. The results presented in this thesis were obtained
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during the 53rd ESA parabolic flight campaign. One campaign offers three consecutive days of

flight.

120 140 160 180 Time [s]

Altitude [km]

6

9

8

7

1.8g 1.8g0g
0

Figure 4.2: The typical parabolic manoeuvre, during which weightlessness is achieved.
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Figure 4.3: The Typical flight profile for one day of flight: a succession of 31 parabola, with
breaks every five parabolas, concluded with six turns.
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Figure 4.4 shows (a) the flight altitude of the aircraft, and the g-level in (b) the vertical direction

gz and the two horizontal directions (c) gx , and (d) g y . Each curve is the average over the 31

parabolas of one typical parabolic flight. The shaded area around the curves is the standard

deviation σ. Note that the mean altitude during the stationary flight (during the first 60 s.)

might change from one parabola to another. The pilots adapt the altitude to avoid turbulence

zones. Therefore, we calculate the σ for the altitude relatively to the initial altitude of the

stationary flight of the parabola. The fluctuation of the mean g-level in the vertical direction

during the microgravity period is small: gz ∈ [−0.01g ,+0.02g
]

with a maximum standard

deviation of 0.02g. The typical g-jitter for one parabola is < 0.03g at typical frequencies of

1-10 Hz. The duration of the phenomena we observe are of the order of the millisecond. The

fluctuations of the g-jitter are thus too slow to affect our observations. Regarding to the values

of the fluctuation of gz , we could argure that what is called “microgravity” phases should

actually be called “centi-gravity” phases.

The g-levels, recorded for each turn of the campaign, are shown in fig. 4.4: (f) is g-level in the

vertical direction gz , (g) in the horizontal directions gx , and (h) in the horizontal directions

g y . The mean duration of a turn is 60 seconds. However, we observe that the duration can

vary from one case to another, from 44 seconds for the shortest, to 120 seconds for the longest.

The mean g-level and its standard deviation for each turn is given in tab. 4.1. All the standard

deviations are < 0.03g.

gz : gx : g y :

1.2g turn : 1.220 ± 0.011 0.029 ± 0.003 0.014 ± 0.003

1.4g turn : 1.418 ± 0.013 0.057 ± 0.006 0.018 ± 0.003

1.6g turn : 1.612 ± 0.022 0.063 ± 0.009 0.019 ± 0.003

Table 4.1: The mean g-levels recorded during the stabilized hypergravity turns, along with the
standard deviation.
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Figure 4.4: Plots of (a) the flight altitude of the aircraft, and the g-level on three directions
(b) gz , (c) gx , and (d) g y , averaged over the 31 parabolas of one typical parabolic flight. The
shaded area around the curves is the standard deviation σ. (e) The direction of the reference
axis in the plane. (f)-(h): Measurements of the accelerations during the hypergravity turns in
the three directions (f) gz , (g) gx , and (h) g y .
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4.3 Experimental bench

4.3.1 Design of the experimental bench

A new experimental setup has been built for the observation of bubbles onboard the zero-g

aircraft. The science of the bubble generation has been acquired through tests in water at rest,

and from the experiments in the cavitation tunnel. The knowledge on microgravity experimen-

tations has been brought by the input of collaborators having experience on parabolic flights.

A first experimental setup from the LMH had participated in parabolic flight campaigns in

2005 and 2006 [37, 70]. The experimental bench has been designed, mounted and tested

at the LMH in less than four months. It has been specially designed to be used both in the

laboratory on earth, and in the aircraft during the parabolic flights, for the observation of

the collapse of laser-induced cavitation bubbles in a liquid at rest. What we expect from the

experimental bench is (1) to record high speed movies of the bubble dynamics, (2) to measure

the pressure fluctuations in the liquid due to the propagation of the shock waves, (3) to vary

the pressure in the liquid, and (4) to measure the experimental condition at the moment of the

generation of the bubble. The equipment needed to fulfill these requirements has to be fixed

on an experimental bench that satisfies all the security constrains imposed for the parabolic

flight. Note that a thorough description of the setup can also be found in [71].

Most design decisions are dictated by practical and security constraints. The width of the

experimental bench is fixed to 780 mm, which allows the bench to go through standard doors

when moved form the lab to the plane. The experimental bench is fixed on the floor of the

plane on seat track fittings. The limit on the linear load for one seat track is 100 kg/m. As

the weight of our experimental is 250 kg, the bench had to be fixed on three seat tracks. In

consequence, the length of the base plate of the bench is set to 1580 mm. The bench is

separated in two levels, as shown in Fig. 4.5. On the first level, all the electric and electronic

components are fixed. The second level is a box containing all the experimental equipment.

The height of each level is fixed at 400 mm. A laptop and the control box for the laser are fixed

on the top of this box. In case of hard landing, the experimental bench and any equipment

fixed on it are designed to support the accelerations listed in Tab. 4.2. The sections of the

beams constituting the structure of the bench and all the fixation systems for the component

have to be chosen in consequence. Mechanical calculations for the structure are performed,

taking into account the weight and the position of each component on the bench.

Aircraft axis : +X -X +Y -Y +Z -Z

Hard landing load : 9 g 1.5 g 3 g 3 g 4.2 g 7.3 g

Table 4.2: Maximum acceleration, for each direction, to be supported in case of hard landing
of the aircraft. All the equipment fixed on the plane or on the experimental bench has to stand
these accelerations without breaking or detaching.

The main experimental components to be placed on the bench are:
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• a vessel for the liquid

• a laser

• a high speed camera

• a dynamic pressure sensor

• an oscilloscope

• a set of sensors to measure the experimental conditions

The experimental equipment in the second level of the bench is arranged as shown in Fig.

4.6, in order to optimize the spacing on the bench. We put a box around the second level

in order to satisfy two constrains: (1) the laser has to be confined, and (2) the liquid has to

be double confined. (1) For security reasons, the laser has to be confined and secured. By

putting all the experiment in the box, we ensure that no laser light will be emitted or reflected

outside of the box. The lid of the box is connected to a switch so that the laser is shut off

when the box is open. There is thus no risk for the laser to reach somebody or something

outside of the box. (2) When large quantity of liquid is used (>0.5 L), the liquid has to be

double-confined. If the first container breaks, the second prevents the liquid to float through

the plane in microgravity phases. The liquid could reach other experiments in the plane,

causing all sort of damages such as undesired chemical reactions or electric malfunctions. In

our experiment, the first container is the vessel, and the second container is the level two box,

around all the equipment.

level 1

level 2

X

Y

Z

Figure 4.5: Picture of the experimental bench onboard the A300 zero-g aircraft. The two levels
are shown, together with the XYZ axis of the plane.
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Figure 4.6: Picture of the equipment inside the experimental bench.

4.3.2 Control and automatization of the experimental bench

Once in microgravity, it is almost impossible for the experimenters to interact with the experi-

ment. They are floating around the experimental bench, trying not to drift too far. Therefore, it

is necessary to have a setup able to detect the beginning of the microgravity phases, and able to

run a sequence of experiments and acquisitions during one parabola without any interaction

with the experimenters. In the case of our experiment, we want to generate laser-induced

bubbles during the microgravity phase, the hypergravity phase and the earth gravity phase

within one parabola cycle. The dynamics of the bubble will be recorded with the high speed

camera, and the shock waves monitored with the dynamic pressure sensor. In addition, for

each bubble, we also want to know the exact experimental conditions such as the gravitational

acceleration, the static pressure in the liquid, the temperature in the liquid, or the energy of

the laser. All these data have to be saved on the laptop between two parabolas, classified in

one folder per cavity generated. The control and the synchronization of all measurements

are performed with a Labview program, from the laptop fixed on the top of the experimental

bench.

The two “dynamic measurements” that lead to the largest files to handle are the high-speed

camera movies and the dynamic pressure measurements. The high speed movies are recorded

using a software (Photron Fastacm Viewer) edited by the manufacturer of the camera (Photron).

During one parabola, the necessary movies are recorded and stored on the memory of the

camera. At the end of the parabola, one experimenter saves these movies, transferring them

from the camera to the laptop through an ethernet connexion. For the pressure measurements,

one signal per bubble is acquired with the oscilloscope (Lecroy). Each signal is transferred and
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saved automatically on the laptop through an ethernet connection. The rest of the information

on the experimental conditions, gathered by static pressure sensors placed on the bench, is

saved within one log file, and the log file for each bubble is saved in the same folder as the one

containing the file of the pressure signal.

The Labview program for the control of the experimental bench has two distinct parts: an

acquisition part, and a control part. The first part is to gather information about the general

state of the experimental bench, and to acquire data about the experimental conditions

from static sensor. The following static sensors are placed on the experimental bench. All

the sensors are calibrated by the manufacturer. The experimental conditions are within the

calibration validity range, except for the static pressure sensor in the vessel. This sensor is

therefore tested and calibrated to be used in our whole range of conditions (see appendix A.2).

The sensors are listed below:

• one accelerometer, for g-level (Phidget #1059)

• one static pressure sensor, for ambiant pressure (Phidget #1112)

• one static pressure sensor, for pressure in the vessel (Phidget #1112)

• one thermometer, for ambiant temperature (Phidget #1124)

• one thermometer, for temperature on the surface of laser head (Phidget #1124)

• one thermometer, for temperature in the water (Redfish, DirecTemp DTU6024C)

• two light sensors, for light or laser leakage (Phidget #1115)

• one proximity sensor, for the position (open/close) of the the lid (Phidget #3562)

• one current sensor, for the electrical current provided to the setup (Phidget #3500)

The second part of the program is written as to control the pressure in the vessel and to start

an acquisition sequence when the program detects the beginning of a parabola. Before each

parabola, the experimenter has to enter in the Labview program: the pressure in the vessel,

the number of bubbles to generate in 0g, 1.8g and 1g, the energy set on the laser and the

type of lighting used. The pressure in the vessel is then controlled by a vacuum pump (Parker

BTC-IIS, Brushless Motor) connected to the vessel. The pump is switched on and off such

as to adjust the pressure in the vessel with the prescribed pressure. The acquisition for one

bubble works as follow. The program controls a relay that sends a TTL signal to the laser and

the laser pulse is generated. When the laser pulse is released, a TTL signal is sent from the

laser to the high-speed camera and to the oscilloscope, and the recording and acquisition

begin. At the same time, the values of the static sensors about the experimental conditions, i.e.

the temperature in the liquid, the pressure in the vessel, and the gravitational acceleration are

saved in one log file. The program recognizes the different phases of the parabola. It starts the

0g acquisitions when the vertical acceleration is zero for 2 seconds. Once the 0g acquisition is

performed, it waits until the vertical acceleration exceed 1.2g for two seconds, which means

the plane is in the pull out phase. After the pull out phase, when the vertical acceleration

becomes equal to 1g for two seconds, the 1g acquisition starts and followed by the end of the
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sequence. Back to 1g, the experimenters can now adjust the experimental parameters for

the next parabola. The electrical schematic in Fig. 4.7 gives an overview of how the different

components are connected and controlled.
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Figure 4.7: Electrical schematic of the experimental setup.
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4.4 Laser technique with innovative optics

The experimental bench is developed to generate highly spherical cavitation bubbles in order

to identify and quantify the faint effect of gravity on the collapse of the bubble. The effect

of gravity on the cavitation bubble is supposed to slightly deform the bubble, leading to an

asymmetric collapse. Therefore, it is primordial to avoid any source of asymmetry, except

gravity, when the bubbles are generated. In particular, attention has to be pay on the focussing

of the laser into water. The key to obtain spherical cavitation bubbles with a laser is the shape

of the initial plasma. The vapor bubble grows from the plasma. Therefore, an asymmetry

of the plasma leads to an asymmetric bubble. Even if this asymmetry might not be visible

during most of the bubble lifetime, due to the large expansion of the radius, it still affects the

last stage of the collapse. This mechanism has actually already been used to obtain specific

non-spherical collapse geometries by tuning the shape of the initial plasma [17]. Under these

circumstances, it becomes obvious that we need to generate a small, spherical, compact

plasma in order to obtain highly spherical cavitation bubbles. The best way to generate such a

plasma is to focus the laser with a large convergence angle. Indeed, with the large angle, the

volume where the energy density of the laser exceeds the breakdown threshold is small.

The cavitation bubbles are obtained by focussing a high energy laser in water (Fig. 4.10).

The water is contained in a 228.6 × 228.6 × 241.3 mm acrilic vessel (Terra universal vacuum

chamber type C). The laser source is a Q-switched Nd:YAG laser (Quantel CFR 400) delivering

pulses up to 230 mJ and 8 ns duration at a wavelength of 532 nm. The laser pulse of 7 mm in

diameter is increased 10 times through a galilean beam expander before being focussed. The

energy of the laser pulse is controlled by changing the delay between the beginning of the flash

lamp pumping and the release of the pulse by Q-switching. We call this delay the Q-switch

delay. The mechanism is the following: As long as the flash lamp is pumping, the energy in

the laser head cavity is increasing. When pumping stops, the energy is slowly absorbed by

the YAG rod in the cavity. If Q-switching happens before all energy is absorbed, the energy in

the cavity is released in the form of a short laser pulse. For the laser used in our experiment,

the nominal Q-switch delay, leading to the highest energy, is 170 μs. If this delay is increased,

more energy is absorbed, and the output energy is lower. The conversion from Q-switch delay

to laser energy output is non-linear. Figure 4.8, shows measurements of the laser energy as a

function of the Q-switch delay. The energy of the laser is measured inside the vessel, without

water. One can wonder how much of the laser energy is transferred into the bubble. Figure

4.9 shows the calculated potential energy in the generated bubble Epot as a function of the

energy of the laser pulse, Epot = 4/3πR3
max (p∞−pv ), where Rmax is the bubble maximum

radius, p∞ is the pressure in the liquid, and pv the vapor pressure. The least square linear

regression on the data gives a fraction of 8.7 % of the energy transferred from the laser into the

bubble. In comparision, Robert et al. [38] found 7.3 %, while Vogel et al. [72] found fractions

between 11 % and 30 %, depending on the characteristics of the laser used. The rest of the

energy is transferred into light reflection, scattering, and transmission, plasma radiation, water

evaporation and shock wave formation [72].
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Figure 4.8: Measurements of the energy of the laser pulse as a function of the Q-switch delay.
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Figure 4.9: The potential energy of the bubble as a function of the energy in the laser pulse.
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Figure 4.10: Sketch of the arrangement of the experimental setup on the second level of the
bench.

The innovation in our the setup lays in the use of a parabolic mirror to focus the laser beam.

To our knowledge, in all studies on optical cavitation (i.e. cavitation generated with a laser),

a lens is used to focus the laser into the water. However, lenses are subject to refraction and

spherical aberration issues. With a lens, the convergence is achieve by refraction when the

beam travels through interfaces of a different refractive index. Since most lenses are designed

to focus beams in the air rather than in water, the beam is not well focussed into water. The use

of a parabolic mirror minimizes these issues of refraction and spherical abberation because

the focussing is achieved by reflection on the surface of the mirror. The quality of the focussing

is thus improved compared to what is achieved with a lens. Figure 4.11 shows the plasma

obtained using: a) 54.5 mm parabolic mirror, b) 76.5 mm converging lens and c) 100 mm

converging lens. The plasma looks indeed more spherical and compact with the mirror than

with the lenses. In addition to these physical considerations, we note that the manufacture

of mirrors with a large diameter and a short focal distance (which leads to large convergence

angle) is more common than lenses with the same characteristics.
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Figure 4.11: Images of the plasma generated using: a) 54.5 mm parabolic mirror, b) 76.5 mm
converging lens and c) 100 mm converging lens.

After debating the benefits of the parabolic mirror, it is legitimate to wonder why we do not use

a mirror to focus the laser pulse in the case of the bubbles in the cavitation tunnel. Two reasons

arise. First, it is simply not possible to place a mirror in the test section without disturbing

the flow. Second, we did not found how we could reach such flexibility for the location of

the bubble generation with a design using a focussing mirror outside the test section. The

concession on the sphericity of the bubble is therefore counterbalanced by the flexibility of the

system. In any case, in our experiments in the cavitation tunnel, the pressure field in the flow

has a significant influence on the dynamics of the bubble. The slight non-sphericity induced

by the focussing of the laser through the lens is then negligible.

4.5 High-speed imaging and image processing

The collapse of cavitation bubble is a short event. The lifetime of the bubbles we observe is

between a few microseconds and a few milliseconds. There is impossible to record a sharp

movie of the bubble dynamics using a standard camera. In consequence, we observe the

bubble with a high-speed camera (Photron Fastcam SA1.1). The camera records at a rate

of up to 675,000 frames/s with a minimal exposure times as short as of 370 ns. With short

exposure times, the light needed to observe the phenomenon is important, and special care

has to be taken to obtain good images. Two methods were used to illuminate the bubble. The

first method was to illuminate the bubble from the back and to visualize it by shadowgraphy.

A compact 3W LED lamp with a small opening angle of 6◦ is used to illuminate the bubble

from the back. The light reaches almost perpendicularly the CCD sensor of the camera. The

bubble appear in black on a clear background (figure 4.12 a) ). With this method, shock waves

can also be observed when the exposure time is short enough (i.e. camera set at 370 ns).

The drawback of this method is that, as we see the shadow of the bubble, the detail of the

bubble-liquid interface are not visible. The second method is to use two 800 W halogen lamps,

one on the front and one on the top of the water reservoir. With this method, the details of the

bubble interface become visible as shown on figure 4.12 b). In this configuration, a lot of light is
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needed to have a clear picture. The exposure time has to be longer than with the shadowgraphy

method. The images when the interface is moving fast (i.e. frames of the generation and the

very last stage of the collapse) are not as sharp as with backlight illumination, but irregularities

and instabilities on the interface are visible. As the halogen lamps dissipate a lot of heat, this

second method was not appropriate for the experiment in the plane because of fire or plastic

melting issues.

a)

b)

Figure 4.12: High-speed images of the growth, collapse and rebound of a cavitation bubble.
The bubble is illuminated a) from the back, i.e. shadowgraphy, b) from the front and the top.
Note the apparition of the gravity-induced microjet at the rebound.

During the course of the flights, movies are taken with the high speed camera and the shadowg-

raphy illumination. The radius as a function of time is then extracted by an image processing

detailed in figure 4.13. The image is binerized using a threshold function adapted to separate

the bubble from the background. If there are parasite microbubbles on the frame, we suppress

them by selecting only the bubble located at the center of the frame, where the bubble is

generated. The volume of the bubble on the frame is calculated as the volume generated by

the silhouette of the bubble on the frame when rotating around the vertical axis going through

its center of gravity. The value for the conversion of pixels in milimeters is obtained by putting

a reference object (a ruler, as shown in fig.4.14) at the location of the bubble generation. The

volume in cubic pixels is then converted into cubic meters. By processing each image of

the high-speed movie, and knowing the time between each frame of the movie, we obtain a

measure of the radius as a function of time for the observed bubble. We obtained a spatial

resolution of 69 μm per pixel, and a temporal resolution of 10 μs.
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a) d)b) c)

Figure 4.13: Processing of the high speed images to extract the volume of the bubble: a)
original image, b) binerized image and contours detected, c) selection of the cavitation bubble,
d) calculation of the volume by revolution of the 2D silhouette of the bubble.

Figure 4.14: Picture of the ruler placed at the location of the bubble generation. The number
of pixels per millimeter (14.5) is measured from this image.

For the analysis of rebound bubbles exhibiting a microjet, we are not only interested in the

total volume of the bubble, but also in the volume of the microjet. Thus, for each of these

bubble, the rebound bubble is decomposed into a disk and the microjet, as shown in figure

4.15 d). The contour of the disk, i.e. the spherical part of the rebound, is determined using a

χ2 fit of a circular function on the contour of the bubble. The limit between disk and jet (grey

line on d)) is the top horizontal tangent on the frame. The volume of both the spherical part of

the bubble Vdisk and the volume of the jet Vjet are calculated as volume of revolution of the

surface respectively below and above the limit.

a) b) c) d) e)
Vjet

Vdisk

Figure 4.15: Processing of the high speed images to extract the volume of a rebound bubble
with a microjet: a) original image, b) binerized image and contours detected, c) selection of the
cavitation bubble, d) separation between jet and e) calculation of the volumes by revolution of
the 2D silhouette of the bubble.
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5 Gravity induced jets due to the hydro-
static pressure gradient

5.1 Simple model for the effect of gravity on the collapse of a bubble

The effect of gravity on the collapse of a cavitation bubble manifests itself as the presence of a

hydrostatic pressure gradient in the liquid around the bubble. The pressure at one point on

the bubble interface is a function of the depth in the liquid, as expressed in Fig. 5.1. The top of

the bubble experiences the smallest pressure, while the bottom experiences the largest. In

most studies, gravity is neglected. However, we demonstrate in this chapter that gravity can

have a non-negligible effect. We exploit the hydrostatic pressure gradient to build case studies

for the investigation of the effect of a pressure gradient on the bubble dynamics.

The effect of gravity can be illustrated with the following simplistic theoretical case study. We

assume a perfectly spherical cavity in a liquid subject to earth gravity. We assume that the

interface between the cavity and the liquid moves exclusively in the radial direction, and that

the radial position of each point on the interface is given by the Rayleigh equation (Eq. 5.1),

without interaction of one point on the other.

RR̈ + 3

2
Ṙ2 =−p∞

ρ
(5.1)

where R is the radius of the cavity as a function of time, p∞ is the pressure in the liquid, and ρ

is the water density.

When the initial system is released from the initial conditions (given maximum radius Rmax

and initial interface velocity Ṙ(t = 0) = 0) at a time t = 0, we observe the collapse of the cavity.

However, because of the gravity, the cavity does not collapse symmetrically. The bottom of the

bubble reaches the center of the bubble first. At this moment the cavity looks like an empty

cardioid in the middle of the liquid. Figure 5.2 shows the result of such a calculation in two

dimensions. The shape of the cardioid depends on the initial radius of the cavity, on the value

of the gravitational acceleration, and on the pressure considered inside the liquid.

The shape of the cardioid is given by the position of the cavity interface at the time t = τc,bot tom ,
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Chapter 5. Gravity induced jets due to the hydrostatic pressure gradient

where τc,bot tom is the collapse time of the point at the bottom of the interface. As the position

of each point is derived from the Rayleigh equation, the shape of the cardioid is the set of

solution for R = R(t = τc,bot tom), where R(t) is the radial position, calculated for every interface

point. The general form of the collapse time τc for a cavity of initial radius Rmax is

τc = 0.915Rmax

(
ρ

p∞

)1/2

(5.2)

In our case study, we consider a different pressure p∞ for every point on the cavity interface.

p∞ becomes a function of the depth in the liquid. It is given by

p∞(α) = p∞,c −ρg Rmax cos(α) (5.3)

with p∞,c = pair +ρgh

where α is the angle between the vertical direction and the radial direction for the considered

point, p∞,c the pressure at the depth of the center of the bubble, pai r is the pressure in the air

above the water, and h is the depth of liquid between the surface and the bubble center.

p∞,c = pair + ρ g h

α

g
Δ

P

p∞(α) = p∞,c - ρ g Rmax cos(α)

pair

h

Rmax

pbottom = p∞,c + ρ g Rmax

Figure 5.1: Sketch of a bubble within a vessel full on liquid subject to a hydrostatic pressure
gradient.

Instead of solving numerically the Rayleigh equation to obtain R(t) for each point of the

interface, we use the approximation for the Rayleigh collapse proposed by Obreschkow et al.

[73], expressed in Eq. 5.4. This approximation provides a simple and explicit equation for the
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normalized radius of the bubble R∗ (radius divided by maximum radius) as a function of the

normalized time (time divided by collapse time).

R∗ = R(t )

Rmax
=

(
1−

(
t

τc

)2)0.4

(5.4)

From Eq. 5.2, we obtain the collapse time τc,bot tom :

τc,bot tom = 0.915Rmax

(
ρ

pbot tom

)1/2

(5.5)

where pbot tom = p∞(α= 2π) = p∞,c +ρg Rmax .

Considering Eqs. 5.3, 5.4, and 5.5, the normalized positions R∗(τc,bot tom) become

R∗(τc,bot tom) = R(τc,bot tom)

Rmax
=

⎛
⎜⎜⎜⎜⎝1−

⎛
⎜⎜⎜⎝

0.915Rmax

(
ρ

pbot tom

)1/2

0.915Rmax

(
ρ

p∞(α)

)1/2

⎞
⎟⎟⎟⎠

2⎞
⎟⎟⎟⎟⎠

0.4

(5.6)

=
(
1−

(
p∞(α)

pbot tom

))0.4

(5.7)

=
(
1−

(
p∞,c −ρg Rmax cos(α)

p∞,c +ρg Rmax

))0.4

(5.8)

=

⎛
⎜⎜⎜⎝

ρg Rmax

p∞,c

1+ ρg Rmax

p∞,c

⎞
⎟⎟⎟⎠

0.4

(1+ cos(α))0.4 (5.9)

Z= ρg Rmax
p∞,c=

(
Z

1+Z

)0.4

(1+ cos(α))0.4 (5.10)

(5.11)

As long as the experimental conditions lead to a same value for Z, the normalized cardioid

at the collapse is the same. Figure 5.2 (a) shows the cardioid obtained with ρ = 1000 kg/m3,

g = 9.81 m/s, Rmax = 1 mm, and p∞,c = 100 kPa. (b) shows the cardioids obtained when g is

multiplied by 2, when Rmax is multiplied by 2, and when p∞,c is divided by 2 with respect to

the conditions taken in (a). The three cardioids superpose perfectly. We observe that when

the value of the parameter Z increases, the size of the cardioid increases too, which suggests a

larger asymmetry, and possibly a stronger microjet.
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Figure 5.2: Theoretical shape of a spherical bubble collapsing in a liquid subject to a hydrostatic
pressure gradient. (a) The reference case: ρ = 1000 kg/m3, g = 9.81 m/s, Rmax = 1 mm, and
p∞,c = 100 kPa. (b) Superposition of the results where g is multiplied by 2, Rmax is multiplied
by 2, and when p∞,c with respect to the reference case.

If we transpose this observation to the case of a laser-induced cavitation bubble, we expect

the bottom of the bubble to reach the center of the bubble before the top. The liquid arriving

from the concave bottom would advance into the bubble until it collides with the top interface

of the bubble. Depending on the initial condition, if this asymmetry is large enough, this

situation could lead to the formation of the microjet. Therefore, we suppose the microjet to

scale with Z = ρg Rmax /p∞,c .

5.2 Effect of the experimental conditions on the gravity induced jets

In the course of the parabolic flights, bubbles are generated during the zero gravity, the

hypergravity, and the normal gravity phases. With this three different levels of gravity, we can

identify the effect of gravity by comparing the observations performed with gravity with the

observations performed without gravity. We can also quantify the influence of the value of the

pressure gradient using the two levels of none-zero gravity.

Figure 5.3 shows three bubbles of similar maximum radius Rmax ≈ 5 mm, generated in water

at a pressure of p∞,c ≈ 10 kPa, for three different gravity level: (a) 1g, (b) 1.6g, and (c) 0g. We

observe, in agreement with the simple theoretical model presented in the previous section, the

apparition of a vertical jet growing from the top of the rebound bubble in (a) and (b). However,

no jet appears in microgravity (c). The disappearance of the jet in microgravity is a major

result. It confirms that the jet we observe is caused by gravity. Indeed, the only difference in the

physics of the collapse with or without gravity is a constant vertical pressure gradient applied

on the bubble in the case with gravity, whereas in microgravity there is no pressure gradient in

the liquid. Two main conclusions are drawn from this observation. First, under appropriate

conditions, the gravity can cause the apparition of microjet at the collapse of a bubble. And

second, that the microjet goes in the direction opposite to the pressure gradient. Although it is

not the first time that a gravity-induced microjet is observed [24], the investigation performed
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during the flight campaign provides the first systematic observations of the phenomenon.

(a)

Rmax = 4.9 mm
glevel   = 1 g

(b)

Rmax = 4.7 mm
glevel   = 1.6 g

(c)

Rmax = 5.2 mm
glevel   = 0 g

Figure 5.3: Three bubbles generated with the same laser energy, in a liquid with the same
pressure on its surface, but at three different gravity levels g .

(a)

Rmax = 4.9 mm
Pcav   = 10 kPa

(b)

Rmax = 3.4 mm
Pcav   = 30 kPa

(c)

Rmax = 2.4 mm
Pcav   = 80 kPa

Figure 5.4: Three bubbles generated with the same laser energy, in normal gravity, but at three
different pressures in the liquid p∞.

Figure 5.4 shows three bubbles generated in normal gravity, with the same laser energy, at

three different liquid pressures: 80, 30 , and 10 kPa. The pressure refereed here as the liquid

pressure is the pressure at the depth of the bubble center p∞,c . Note that from now on, we

will simply refer p∞,c as p∞, because p∞(α) ∈ p∞,c ±0.1%,∀α. In the case p∞ = 10 kPa, we

observe the apparition of a jet, growing vertically at the top of the rebound bubble. However,

for p∞ = 30 or 80 kPa, no jet is visible. The apparition of the jet is thus not systematic, which
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implies the existence of a threshold for the apparition of the jet. We can already suspect p∞
and Rmax to be involved in the definition of the threshold.

We observe that the maximum radius of the initial bubble is different for each p∞. This is

explained by considering the energy in the bubble. The energy in the laser pulse is the same

for each cases. The potential energy of the bubble, given by Epot = 4/3πR3
max (p∞−pv ), where

pv the vapor pressure, is actually also the same in the three cases. Therefore, a variation in the

pressure p∞ leads to a different bubble radius Rmax . Note that the maximum radius of the

rebound bubble, when normalized with Rmax , also dependents on the pressure p∞.

To determinate the effect of the pressure versus the effect of the maximum radius, we show

on Fig. 5.5 three bubbles generated in normal gravity at the same pressure p∞,c ≈ 10 kPa. We

observe that the jet is longer and wider when the bubble maximum radius is larger.

(a)

Rmax = 4.9 mm
Pcav   = 10 kPa

(b)

Rmax = 4.1 mm
Pcav   = 10 kPa

(c)

Rmax = 3.7 mm
Pcav   = 10 kPa

Figure 5.5: Three bubbles generated in normal gravity, with the same pressure in the liquid,
but with three different laser energies, leading to three different bubble maximum radii Rmax .

From these experimental observations, we draw the following conclusions:

• under appropriate conditions, gravity can induce the apparition of a jet at the collapse

of the bubble

• the size of the jet increases when the gravity level increases

• the size of the jet increases when the maximum radius of the bubble increases

• the size of the jet increases when the pressure in the water decreases

The last three conclusions can be summarized as follow: The size of the jet increases when the

value of Z = ρg Rmax /p∞,c increases, independently of the cause for the variation of Z .
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5.3 Scaling law for the volume of the jets

The high speed movies reveal a variation of the size of the jet when the experimental conditions

are changed. We will show here that we can scale the size of the jet with the experimental

conditions, using a phenomenological approach. To quantify the variation of the size of

the jet, we first need to define what we mean by “size”. The representation of the different

constituents of the jet, and the corresponding variables, is given in Fig. 5.6. The rebound

bubble is decomposed, as explained in section 4.5, into a disk of radius R1, and a jet (vapor +

liquid) of volume V ∗
j et . Since the microjet starts at the bottom of the bubble, we extend the

volume V ∗
j et into the bubble to obtain an effective jet Vj et . The relation between V ∗

j et and Vj et

depends on the angle of the conical jet φ. This angle is measured along the edges of the jet

when its volume is maximum V ∗max
j et from the high speed movies taken during the parabolic

flights. We obtain φ≈ 4◦ for all jets. By trigonometry, Eqs 5.12 - 5.13, we obtain the extended

jet volume V max
j et as a function of the jet volume V ∗ max

j et and the radius of the bubble R1.

Finally, the “size” of the jet is defined as the “normalized jet volume” ε j et in Eq. 5.14.

V ∗max
j et = π

3

(
d t an(φ/2)

)2 d = π

3
t an2(φ/2)d 3 (5.12)

V max
j et = π

3
t an2(φ/2)(d +2R1)3

=

⎛
⎜⎜⎝V ∗max

j et
1/3 +

(π
3

t an2(φ/2)
)1/3

2︸ ︷︷ ︸
≈0.2

R1

⎞
⎟⎟⎠

3

V max
j et ≈

(
V ∗max

j et
1/3 +0.2R1

)3
(5.13)

ε j et =V max
j et /

[
(4π/3)R1

3] (5.14)
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(a) (b) (c)

R1Vjet
~

Vjet

Vjet*micro-
jet

vapor
jet

1mm

(e)

(d)

d

micro-
jet

Figure 5.6: (a),(b) Observations of the gravity-driven jet of a rebounding cavitation bubble
(Rmax = 3 mm, ΔP = 10 kPa) in normal gravity: (a) using a back-illumination, (b) using a
front-illumination and adaptive overlaying of different exposures to increase the dynamic
range of sharpness. The vapor jet envelops a narrow microjet. (c) Definition of the variable
used in the equations. (d)-(e) Two cases where no vapor jets are visible. (d) A bubble with no
microjet, (e) A bubble with the longest microjet not leading to a visible vapor jet. [41].

In order to find an empirical relationship between the experimental conditions and the

normalized jet volume, we define a non-dimensional parameter ζ, and assume that we can

find a linear relationship between ζ and ε j et . ζ is defined as a power law for the experimental

parameters Rmax , ρ, g , Δp = p∞−pv , η, and c, where η is the viscosity, and c is the speed of

sound in water. The general non-dimensional form of ζ is:

ζ= (Ra1
maxρ

a2 gΔpa1−a2−1c−a1+2a2−1η−a1+1)a3 (5.15)

were a1, a2, a3 are free parameters. To determine the values of a1, a2, a3, a χ2 fit is performed

over the experimental data in order to minimize the rms of the ratios ε j et /ζ. The experimental

data used are the data collected during the flight campaign, plus measurements of bubble

collapses in three liquids of different viscosity. The three liquids are water-glycerol mixture,

of following composition: (1) pure water, η1 = 1 mPa s, (2) 25% glycerol mass, η2 = 2 mPa s,

and (3) 75% glycerol mass, η3 = 30 mPa s. Note that the variation of pv , ρ, and c due to the

addition of glycerol is taken into account when performing the χ2 fit. The surface tension σ

is deliberately neglected because we consider relatively large bubbles. Indeed, the terms of

pressure in the Rayleigh equation Δp +3/2ρṘ(t ) exceed term of surface tension 2σ/R(t ) by a

factor > 102 during the whole collapse for the bubbles considered for the χ2 fit.

The χ2 fit leads to: a1 = 1.04±0.03, a2 = 1.05±0.20, , and a3 = 0.98±0.10. As a1 = a2 = a3 = 1

is consistent with the results of the χ2 fit, this solution is adopted in a effort of simplicity.

Considering the hydrostatic pressure gradient |∇p| = ρg , the non-dimensional parameter ζ

becomes:

ζ= |∇p|Rmax

Δp
. (5.16)
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5.3. Scaling law for the volume of the jets

The values of ε j et as a function of ζ are plotted in Fig. 5.7. The points align along one straight

line, which justify a posteriori the use of a power law for the construction of ζ, and the linear

relationship between ε j et and ζ. The linear regression between ε j et and ζ leads to:

ε j et = 5.4 ζ. (5.17)

Note that in certain cases, it is possible that the microjet forms into the bubble, but it does

not reach the opposite interface. No vapor jet becomes visible. The critical case of the

longest “invisible” microjet, see Fig. 5.6 (e), defines the threshold of apparition of the jet.

In this critical case, we have V ∗ max
j et = 0 and V max

j et = (0.2 R1)3. From Eq. 5.14, we obtain

ε j et = εmi n
j et = 0.2/(4π/3) ≈ 0.002, which corresponds to ζc ≈ 4 ·10−4. Therefore, we conclude

that the threshold for apparition of a visible jet is ζ> ζc ≈ 4 ·10−4. The shaded area on Fig. 5.7

represents the cases where no jet are visible.

Figure 5.7: Normalized jet volume ε j et as a function of the non-dimensional parameter ζ.
Black points are data at varying Rmax , p0,η and fixed g = 9.81ms−2. Grey points are data at
varying Rmax , p0, g and fixed η= 1mPa s. Some 67% measurement uncertainties are shown
by the error bars. The solid line is the weighted regression. [41].
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Chapter 5. Gravity induced jets due to the hydrostatic pressure gradient

5.4 Theoretical model for the volume of the jets

The proportional relationship between ε j et and ζ deducted from the experiments can also be

derived from theoretical principles [41]. By conservation of the momentum, the momentum

of the microjet is equal to the integral of the momentum accumulated by the liquid during the

growth and collapse of the bubble. This momentum is called the “Kelvin impulse” [24, 55],

and is calculated as

I =
∫Tc

−Tc

d t
∫

S(t )
d�F with d�F =−p d�S (5.18)

where Tc is the collapse time, S is the surface of the bubble (assumed spherical), and d�F =
−p d�S the force acting on the surface of the bubble.

The spherically symmetric terms in the pressure field vanish with the integration over S.

Therefore, we only consider the anisotropic terms, given by the constant hydrostatic pressure

gradient�∇p. In addition to the pressure in the liquid, an additional pressure gradient forms

because of the motion of the bubble interface [2]. This gradient is dependant on the normal-

ized time t∗ = t/Tc , and contains a spherically symmetric term, and a linear term proportional

to�∇p caused by the motion of the bubble center. Neglecting the spherically symmetric terms

that vanish in the integral, we obtain

d�F =− f (τ)(�∇p d�R)dS (5.19)

where f (τ) is a scalar function associated with the additional pressure gradient induced by the

bubble, and �R is the vector going from the center of the bubble to a surface element of the

bubble.

Using the spherical coordinates (R , φ, θ), where θ is the angle between�∇p and d�R , we calculate

�∇p ·�R = |�∇p| R cos(θ) (5.20)

and insert into Eq. 5.19:

∫
S(t )

d�F =− f R3 �∇p
∫2π

0
dφ

∫π

0
si n(θ) cos2(θ) dθ =−4π

3
�∇p f R3 . (5.21)

The microjet momentum defined in 5.18 becomes:

I =
∫Tc

−Tc

d t
∫

S(t )
d�F = 4π

3
�∇p

∫Tc

Tc

f (τ) R3 d t . (5.22)
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5.4. Theoretical model for the volume of the jets

According to Rayleigh theory, the evolution of the radius of the bubble during the collapse

can be expressed as R(t ) = Rmax R̃(τ), where R̃ = R(t )/Rmax is a unique function. Finally, we

obtain the folloing relationship for the microjet momentum I :

I =−4π

3
�∇p R3

0 Tc

∫1

−1
f (τ) R̃3(τ) dτ∝ −�∇p R3

0 Tc . (5.23)

In analogy to the Kelvin impulse, a kinetic “Kelvin” energy E can be defined:

E = 2
∫Rmax

0

∫
S(t )

|d�F ·d�R| (5.24)

Using the spherical coordinates, we calculate

∫
S(t )

|d�F ·d�R| = 2π|�∇p| f R3dR. (5.25)

Since f , referring the bubble collapse, can be written as a function of R̃ we have

∫Rmax

0
f R3dR ∝ R0

4. (5.26)

Combining Eqs. 5.24-5.26, we link the kinetic Kelvin energy to:

E ∝|�∇p|R4
max . (5.27)

We define m and v the mass and the spatially averaged velocity of the fully developed microjet.

We obtain the following relationships for the Kelvin impulse I and the Kelvin energy E :

I = mv and E ∝ mv2. (5.28)

Using Eqs. 5.28, and the relationship for the Rayleigh time TC ≈ 0.915Rmax
√
ρ/Δp we find

v ∝−√
Δp/ρ�̂e (5.29)

and

m ∝|�∇p|R4
maxρ/Δp. (5.30)

where �̂e =�∇p/|�∇p|.
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Chapter 5. Gravity induced jets due to the hydrostatic pressure gradient

Now we assume that the effective volume of the vapor jet scales with the volume of the

microjet, at an efficiency ε∝ R3
r eb/R3

max . We justify this approximation by the fact that the

vapor jet grows out of the rebound bubble, and thus consumes a fraction of the volume which

is proportional to R3
r eb . We can finally derive a relationship for the normalized jet volume ε j et :

ε j et ∝ |�∇p|Rmax

Δp
= ζ. (5.31)

In conclusion, we find the same relationship ε j et ∝ ζ form both the experiment and the theory.

5.5 Discussion

Previous studies have already observed the apparition of a gravity induced jet at the col-

lapse [24, 74], and mentioned the usefulness of the concept of Kelvin impulse for the jets

developing at the bubble collapse [24, 55]. However the results shown here represent the

first systematic investigation of the effect of the gravity on the apparition of the jet at the

collapse of a cavitation bubble. The systematic parametrical study results in the construction

of a phenomenological law linking the volume of the jet with the experimental conditions

(ε j et ∝ ζ). This phenomenological law is supported by theoretical considerations, issued from

the concept of Kelvin impulse.

We found that a microjet appears if ζ> 4 ·10−4. To give an order of magnitude, this means that

in a liquid at atmospheric pressure and normal gravity, a bubble with a minimum radius of

4 mm is necessary to observe the gravity induced jet. We achieved a maximum radius of 3.2

mm (≡ 14 mJ) with our 230 mJ laser. Therefore, the best way to investigate the effect of gravity

on the jet is to generate bubbles at reduced pressure. Indeed, with a pressure of 25 kPa, the

jet appears on bubble with maximum radius of 1 mm. Note that the experimental conditions

investigated here are limited to ζ< 0.008. To obtain ζ> 0.008 at atmospheric pressure and

normal gravity, it would require a bubble with a maximum radius > 82 mm. Such large bubbles

at atmospheric pressure would probably require other methods to generate the bubble than

the laser method.

It is interesting to point out that the key parameter ζ can be reduced to a ratio of pressures. ζ

is the ratio between the difference in the pressure between the top and bottom of the bubble,

and the difference in the pressures between the inside and the outside of the bubble. The

apparition of a microjet can thus be regarded as a problem of non-uniform pressure on the

bubble surface.

ζ= |�∇p|Rmax

Δp
= 1

2

(
pbot tom −ptop

)
(
pout si de −pi nsi de

) . (5.32)
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5.5. Discussion

Neither the viscosity nor the surface tension appear in the definition of ζ, which might seem

counterintuitive. The independence on viscosity is verified experimentally by varying the

value of viscosity by a factor 30 without a significant effect on the results. The surface tension

is neglected here, but could be indirectly taken into account in the definition of the collapse

time Tc , leading to Eq. 5.29. With the surface tension, the collapse time of the bubble would

vary by around 1% for the order of magnitude of the bubbles we consider. The effect on the

volume of the jet is thus insignificant.

In this chapter, we demonstrate that a pressure gradient in the liquid can induce the formation

of a microjet at the collapse of a bubble. However, the jet is only one of the four collapse

channels we identified. The next step is thus to investigate what is the effect of the pressure

gradient on the rebound, the shock wave, and the luminescence. This is undertaken in the next

chapter. We take advantage of the microgravity phases to investigate the case of a perfectly

spherical collapse, i.e., without jet. The results are then compared with those obtained in

normal and hypergravity.
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6 Energy partition at the collapse of a
spherical bubble

6.1 Energy partition: a new approach of the bubble collapse

So far, studies on the collapse of cavitation bubbles have examined on one collapse channel

at a time, namely the rebound, the jetting, the shock waves or the luminescence. It has been

observed that the dynamics or the intensity of each of these phenomena is closely dependant

on experimental conditions such as the type of liquid, the pressure in the liquid, or the

presence of a boundary. However, we still poorly understand how the variation of one collapse

channel might affect the others. The original approach proposed here is to look at how the

energy available initially in the cavitation bubble is partitioned at the collapse between all the

different channels.

The energy partition approach is first applied to the simplest case study: the collapse of a

spherical cavitation bubble. Thank to the microgravity, and the innovative focussing system,

we were able to generate what we consider the “most spherical” cavitation bubble. Indeed,

we avoid the deformation of the bubble due to the hydrostatic pressure gradient, resulting in

the formation of the microjet. Also, we note that the energy involved in the thermal process

leading to luminescence is usually negligible with respect to the energy in the rebound or in

the shock [75]. Therefore, we reduce the problem to the partition of the energy in the initial

cavitation bubble into the shock and the rebound. Another advantage of considering the

spherical collapse is the availability of simple theoretical model for the bubble dynamics.

The energy partition can thus be modeled, and the accuracy of the model tested with the

experimental results. In a second phase, we study the effect of the hydrostatic pressure

gradient, by comparing the experiments performed in microgravity with those in normal and

hypergravity. This comparison allows us to estimate the contribution of the gravity induced

microjet studied in Ch. 5 to the partition of the initial bubble energy.
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Chapter 6. Energy partition at the collapse of a spherical bubble

6.2 Experimental results for the collapse in microgravity

6.2.1 Rebound bubble

In the course of the flights, the bubble dynamics at three distinct water pressures p∞ (10 kPa,

30 kPa and 80 kPa) is observed. For each pressure, the laser pulse energy is varied from 55

to 230 mJ, resulting in maximal bubble radii Rmax from 2 to 5.6 mm. Figure 6.1 shows three

laser-induced bubbles generated in microgravity, with a laser energy of 67 mJ, at a pressure

in the water of respectively 10, 30, and 80 kPa. We observe that the maximum radius of the

bubble Rmax , and maximum radius of the rebound bubbles Rr eb are different in each case.

The variation of the maximum radius of the bubble is explained by considering the potential

energy of the bubble Epot = 4/3πR3
max (p∞−pv ), as detailed in section 5.2. The fraction of

energy transferred from the laser pulse into the bubble potential energy is constant. Therefore,

when the pressure in the liquid decreases, the bubble maximum radius increases in order to

keep the same value of the potential energy at bubble maximum radius in each case.

The variation of the maximum radius of the rebound bubble is more puzzling. In Fig. 6.2, we

show cavitation bubbles generated at water pressure of (a) p∞ = 30 kPa and (b) p∞ = 10 kPa.

The images in the case (a) are enlarged so the the maximum radius appears to be identical to

case (b) on the figure. The maximum radius of the rebound is larger in the case (b) p∞ = 10

kPa than in the case (a) p∞ = 30 kPa. The maximum radius of the rebound bubble, normalized

by the maximum radius of the bubble, is larger when the pressure in the liquid is lower.

(a)

Rmax = 5.2 mm
Pcav   = 10 kPa

(b)

Rmax = 3.6 mm
Pcav   = 30 kPa

(c)

Rmax = 2.5 mm
Pcav   = 80 kPa

Figure 6.1: Three bubbles generated with the same laser energy, in microgravity, at three
different pressures in the liquid p∞.
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6.2. Experimental results for the collapse in microgravity
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Figure 6.2: Selected high-speed images of a cavitation bubble at two different water pressures.
The images are scaled so that the bubble appears with the same normalized Rmax on the
figure. (a) p∞ = 30Pa, Rr eb/Rmax = 0.22 , (b) p∞ = 10Pa, Rr eb/Rmax = 0.57. [29]

The variation of the normalized maximum radius of the rebound is a direct indication of how

much energy of the initial bubble is transferred into the rebound at the collapse of the bubble.

Indeed, we calculate the potential energy of a bubble as [37]

Epot =
∫R

0
4πr 2Δp dr = 4π

3
R3Δp, (6.1)

where R is the bubble radius. In particular, we define the initial bubble energy E0 and the

rebound energy Er eb as

E0= 4π

3
R3

max Δp and Er eb =
4π

3
R3

r eb Δp . (6.2)

The relationship between Rr eb/Rmax and Er eb/E0 writes

Er eb

E0
=

4π

3
R3

r eb Δp

4π

3
R3

max Δp
=

(
Rr eb

Rmax

)3

. (6.3)

Figure 6.3 shows the normalized radius R/Rmax for a representative selection of bubbles as

a function of the normalized time t/τc , where τc is the bubble collapse time according to

Rayleigh theory [7]: τc = 0.915Rmax
√
ρ/Δp with ρ being the density of the liquid and Δp

being the “driving pressure”, i.e. the difference between the static liquid pressure p∞ and the

pressure pv of the condensable vapor inside the bubble. The value of pv is calculated with

the Antoine equation from the temperature of the water measured for each of the three flight

days. The three temperatures are respectively 16.8 ◦C, 23.9 ◦C and 20.9 ◦C, corresponding to

pv of 1910 Pa, 2950 Pa and 2460 Pa. All the curves are remarkably superposed during the first

collapse, and consistent with the Rayleigh theory (solid line in the figure). However, as already

shown in Figs 6.1, 6.2, and 6.3, the dynamics of the rebound is very different depending on

the pressure in the liquid p∞. The high-speed movies reveal that for a given maximum radius

Rmax , the maximum radius of the rebound Rr eb decreases with p∞, as plotted in Fig. 6.4.
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Chapter 6. Energy partition at the collapse of a spherical bubble

When looking at the results in term of energy, Fig. 6.5 reveals that Er eb scales linearly with E0

for given liquid pressures p∞. The least square linear regression on Er eb as a function of E0 for

each p∞, gives respectively 1%, 2%, and 20% for 80, 30 and 10 kPa. In consequence, when p∞
decreases, the fraction of energy going in the rebound bubble increases.
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Figure 6.3: The normalized radius for a representative selection of bubbles as a function of the
normalized time, for different pressure levels p∞. The experimental data (dots) are consistent
with the Rayleigh theory (solid black line). [29]
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Figure 6.4: Measured maximum radius of the rebound bubble as a function of the maximum
radius of the initial bubble, for different pressure levels p∞.
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Figure 6.5: Measured potential energy of the rebound bubble as a function of the initial bubble
energy, for different pressure levels p∞. [29]
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Chapter 6. Energy partition at the collapse of a spherical bubble

6.2.2 Shock wave energy

At the collapse of the cavitation bubble, a shock wave is released, dissipating a large part of

the energy of the cavitation bubble. The energy carried away by the shock can be estimated

from the pressure profile of the shock wave. Given a shock pressure profile p(t ), measured at a

distance d from the bubble center, the shock energy is given by [46, 76]

ESW = 4πd 2

ρc

∫
p(t )2dt , (6.4)

where ρ is the water density and c is the speed of sound in water. The difficulty is thus to

measured accurately the pressure profile p(t ).

On our setup, a piezo-resistive dynamic pressure sensor (Unisensor) is used to monitor the

shock waves that propagate through water. The sensor is fixed at the bottom of the vessel,

below the bubble generation point. The sensor is connected to a oscilloscope (Lecroy) for

the acquisition of the signal through an amplifier. A typical signal is shown in Fig. 6.6. We

observe a first peak at the generation of the plasma by the laser (t = 0 ms). A second peak,

corresponding to the collapse of the bubble is visible at t = 1.56 ms.

With this piezo-resistive dynamic pressure sensor, the duration of the shock transition, i.e., the

characteristic time-scale of p(t ) (<100 ns), is much shorter than the characteristic response

time (10 μs) of the pressure sensor. An accurate measurement of p(t), leading to a direct

calculation of the shock energy is not possible. Nevertheless, a rough estimation of the

shock energy remains possible under the assumption of a linear response. Explicitly, if we

define h(t ) as the sensor’s impulse response, the response of the sensor s(t ), is expressed as

s(t) = h(t)∗p(t), where ‘∗’ denotes the convolution. We assume that the pressure p(t) has

a universal shape in the sense that p(t) = pmax p̃(t), where p̃(t) is the same function for all

bubbles. The signal can then be expressed as s(t) = h(t)∗pmax p̃(t), and hence
∫

s(t)dt =
pmax

∫
h(t )∗ p̃(t )dt ∝ pmax . In other words, pmax is proportional to the integrated response.

Substituting into Eq. (6.4), we finally obtain

ESW ∝
∫

p2
max p̃(t )2dt ∝ p2

max ∝
(∫

s(t )dt

)2

. (6.5)

The constant of proportionality in Eq. (6.5), which is unknown, is estimated such that the

shock energy ESW equals the potential energy of the initial bubble E0 in the extreme cases,

where only a negligible rebound bubble is observed. The theoretical and experimental results

presented further in this chapter justify a posteriori this procedure.
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Figure 6.6: Typical signal recorded by the dynamic pressure sensor during bubble generation
and oscillation.
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Chapter 6. Energy partition at the collapse of a spherical bubble

The validity of this reasoning is tested with two different approaches, using the data collected

during the parabolic flight campaign. First, the assumption p(t) = pmax p̃(t) implies that

s(t)/max(s(t)) is the same function of time for all measurements because h(t) and p̃(t) are

time-dependent only. Figure 6.7 shows the first 24 μs of the normalized signal s(t )/max(s(t ))

for all measurement (dotted grey curves) and the mean normalized signal (solid black curve).

The mean standard deviation is 0.09. The solid grey curves on the figure represent the mean

normalized signal ± the standard deviation. The standard deviation of the FWHM (full width

at half maximum) of the first peak on the normalized signal (i.e. the shock) is 0.63 μs (for a

time resolution of 0.4 μs). Those results show that all the normalized signals are reasonably

similar. Therefore, we conclude that the use of the assumption p(t ) = pmax p̃(t ) is suitable for

the estimation of ESW . In turn, this implies that
(∫

s(t )dt
)2 ∝ p2

max .

Second, the validity of p2
max ∝ (∫

s(t )dt
)2 is tested as follows. We have

(∫
s(t )dt

)2 =C1p2
max

where C1 is a constant. We also have
∫

s2(t )dt =C2p2
max where C2 is a constant. Dividing the

former equation with the latter, we have

(∫
s(t )dt

)2

/
∫

s2(t )dt =C1/C2 = const. (6.6)

Figure 6.8 shows this ratio of the integrals of the signal as a function of the potential energy

E0 for all bubbles. Despite a slight dependance on the potential energy of the bubble E0, the

ratio of the integrals is almost a constant: the average is 0.36 and the standard deviation is

0.02. Therefore, we conclude that the assumptions lead to a suitable estimation of ESW .
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Figure 6.7: Superposition of all the normalized signals s(t )/max(s(t )) (dotted grey curves), the
mean normalized signal (solid black curve) and the mean normalized signal ± the standard
deviation (solid grey curve). [29]
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Figure 6.8: Confirmation of the validity of the assumptions for the estimation of ESW :
(
∫

s(t )dt )2/
∫

s2(t )dt ≈ const. [29]

We consider the energy carried away by the spherical shock produced at the first bubble

collapse. Figure 6.9 presents the energy of the shock wave at the first collapse Esw as a function

of the initial potential energy of the bubble E0. Unlike the rebound energy Er eb , we observe

that Esw scales linearly with E0 and that the ratio Esw /E0 is close to 1. These results have

two important implications: (1) The variation of the pressure on the water does not affect

significantly the energy of the shock. (2) Almost all the potential energy of the bubble is

transformed into shock energy at the collapse of the bubble. This means that our experiments

all lie in a “shock-saturated” regime, where the shock absorbs most of the available energy

(ESW ≈ E0), and thus where the variation of the experimental conditions have insignificant

effect on the energy of the shock.
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Figure 6.9: Estimated energy in the shock wave as a function of the initial bubble energy, for
different pressure levels p∞. [29]

6.3 Theoretical model for the spherical collapse

Hereafter, a theoretical model is developed to compute the energies of the rebound bubble

and the shock wave as a function of various experimental parameters. The simplest model

for the evolution of spherical cavitation bubbles, i.e. the Rayleigh equation, cannot produce

rebound bubbles and shock waves. Indeed, to model rebounds we need to consider gas

within the bubble, and to model shocks we need to consider liquid compressibility. The set

of equations we develop here is based on the Keller-Miksis equation for the dynamics of the

bubble, coupled with a adiabatic treatment of the gas inside the bubble.

To calculate the rebound motion it is necessary to include a non-condensable gas inside the

bubble. We here assume that this gas is compressed and decompressed adiabatically, that

is without heat transfer across the bubble surface. According to the adiabatic theory, the

pressure pg (t ) of this non-condensable gas is then given by

pg = pg 0

(
Rmax

R

)3γ

, (6.7)

where pg 0 is the pressure at the maximal initial bubble radius Rmax , R(t ) is the evolving bubble

radius, and γ is the adiabatic index also known as “heat capacity ratio.”

To incorporate shock waves, we require a model for the bubble evolution in a compressible

liquid. We here use the Keller-Miksis model [11], which is an extension of the Rayleigh equation
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6.3. Theoretical model for the spherical collapse

to compressible liquids, accurate to first order in the speed of sound c . As shown by Prosperetti

[12] this model belongs to a more general class of first order models and can be rewritten as

R̈ = (pg −Δp)(1+ ṽ)+Rṗg /c − (3− ṽ)Ṙ2ρ/2

(1− ṽ)Rρ
, (6.8)

where ṽ(t) ≡ Ṙ(t)/c. Note that we deliberately neglect the effects of surface tension and

viscosity for two reasons. First, these effects are quite irrelevant for the large bubbles in our

experiment. Second, surface tension and viscosity are generally insignificant at the last stage

of the bubble collapse, since inertial forces increase more rapidly than viscous forces and

surface tension as R(t ) → 0. The latter can therefore be neglected to calculate rebounds and

shocks.

The Eqs. (6.7) and (6.8), fitted with the initial conditions R(0) = Rmax , Ṙ(0) = 0, pg (0) = pg 0,

and ṗg (0) = 0, constitute a model for the collapse and the rebound of a spherical bubble, while

including compression waves (shocks). We use the Runge-Kutta method to solve this model

numerically. The radius R(t) is calculated as the bubble first collapses and then rebounds

until it reaches its maximal rebound radius Rr eb .

Given a time-solution of Eqs. (6.7) and (6.8) we can then calculate various energies. The initial

bubble energy E0 and the energy of the rebound bubble Er eb are computed directly using

Eq. (6.2). It is important to note that the temperature of the non-condensable gas changes

during the adiabatic compression/decompression. The gas temperature at the rebound point

is different from the initial temperature. Hence the internal energy U = (4π/3)R3pg /(γ−1)

of the non-condensable gas changes. We can calculate this energy change ΔU simply by

subtracting the final value of U from the initial one,

ΔU = 4π

3(γ−1)

(
pg 0R3

max −pg ,r ebR3
r eb

)
. (6.9)

The adiabatic nature of the process implies that ΔU must be equal to the total work done by

the liquid onto the non-condensable gas. This work can be calculated as

ΔU =
∫

δW =−
∫

pg dV =−
∫

4πR2Ṙ pg dt , (6.10)

where the time-integral runs from the initial bubble radius through the collapse point to the

maximal rebound radius. To check the accuracy of our numerical solution we compute ΔU

using both Eq. (6.9) and Eq. (6.10).

Given ΔU , the initial energy E0, and the potential energy of the rebound Er eb , the compression

energy of the shock wave ESW can be computed from energy conservation as

ESW = E0 −Er eb −ΔU . (6.11)
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Finally, we introduce the energy fractions

εr eb ≡ Er eb/E0, εSW ≡ ESW /E0, εU ≡ΔU /E0. (6.12)

Eq. (6.11) implies the normalization:

εr eb +εSW +εU = 1. (6.13)

6.4 Calculation of a non-dimensional parameter predicting the en-

ergy partition

How do εr eb , εSW , and εU depend on the six model parameters Rmax , Δp, pg 0, γ, ρ, and

c? We first note that the four energies E0, Er eb , ESW , and ΔU all scale as R3
max . This can

be shown by rewriting the model as a function of the normalized radius r (t) ≡ R(t)/Rmax .

Therefore εr eb , εSW , and εU are independent of Rmax . To test the remaining five model

parameters we ran 2.7 ·105 independent computations of εr eb , εSW , and εU by taking logarith-

mically spaced parameters from the following intervals: Δp ∈ [1,100] kPa, pg 0 ∈ [0.1,100] Pa,

ρ ∈ [500,15000] kgm−3, c ∈ [1000,2000] ms−1, γ ∈ [1.3,1.5]. By systematically studying the

variation of εr eb , εSW , and εU as a function of the five parameters, we can draw two main

conclusions. First, the internal energy fraction is negligible because εU < 0.01 in all situations.

Second, all variations of εr eb and εSW as a function of the five model parameters Δp, pg 0, γ, ρ,

and c can be explained using a single non-dimensional parameter

ξ= Δpγ6

pg 0
1/γ(ρc2)1−1/γ

. (6.14)

In fact, Fig. (6.10) shows the 2.7 ·105 values of εr eb and εSW as a function of ξ, revealing a tight

correlation. The parameter ξ was found by first constructing the non-dimensional parameter

Δp (pg 0)a(ρc2)−a−1 from the four dimensional parameters Δp, pg 0, ρ, and c. The case where

a = 1 is plotted in Fig. 6.11 (a). We note that the cloud of data points take the shape of a

broad inverted “S”. The computed results are then grouped depending on the value of γ. a is

determined for each group as the value that maximizes the Pearson correlation coefficient

for εr eb ∈ [0.2,0.8]. We restrict εr eb to the interval where a small variation in ξ leads to a large

variation of εr eb , thus where we want the relation to be the most univocal. The values of a

obtained are correlated with γ as a = 1/γ with an error of ±10%. Figure 6.11 (b) plots the data

points obtained using a = 1/γ. The points form smooth curves. However, each value of γ

leads to a distinct curve, and the different curves are horizontally shifted. The final step is

to introduce the factor γβ to align the curves. β = 6 is then determined by maximizing the

Pearson correlation coefficient on εr eb ∈ [0.2,0.8] for all values of γ. We finally obtain the tight

and univocal relationship between ξ and εr eb shown in Fig. 6.11 (c). Note that the construction

of ξ is based on a phenomenologic approach. The relationship between ξ and the energy

partition is valid for experimental conditions within the intervals given above.
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Figure 6.10: Fraction of energy in the rebound εr eb and in the shock wave εSW as a function
of the non-dimensional parameter ξ. The solid curves are the results from the theoretical
model. The discrete black symbols are the values obtained experimentally, along with the
measurement error bars. The white symbols are data extracted from the literature. [29]
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(a)

(b)

(c)

Figure 6.11: Construction of the non-dimensional parameter ξ. The fraction of energy trans-
ferred in the rebound, εr eb , obtained from the 2.7 ·105 computations are plotted as a function
of three different non-dimensional parameter. (a) εr eb as a function of Δp/pg 0 shows the
general inverted “S” shape of the data points. (b) The data points form distinct curves when
εr eb is plotted as a function of Δp (pg 0)a(ρc2)−a−1, with a = 1/γ. (c) We finally obtain a tight
and univocal relationship between when εr eb is plotted as a function of ξ.
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6.5 Experimental results for the collapse with a hydrostatic pres-

sure gradient

The results shown so far are restricted to the case of a bubble collapsing spherically, in a liquid

with no pressure gradient. However, in the case of hydraulic turbomachines, the bubble is

subject to strong pressure gradient in the flowing liquids. It is then natural to wonder what is

the effect of a pressure gradient on the partition of energy. Therefore, we compare the results

in microgravity with the results of bubble collapsing in normal and hypergravity, i.e. in a liquid

subject to a constant hydrostatic pressure gradient. We have already demonstrated (Ch. 5) that

gravity can affect the collapse of a cavitation bubble in the form of the occurrence of a vapor jet

(see Fig. 6.12). The volume of the vapor jet normalized to the maximum volume of the rebound

was found to be proportional to the non-dimensional parameter ζ= |∇p|R0/Δp, where ∇p is

the hydrostatic pressure gradient. To investigate the effect of gravity on the energy partition,

we performed the experiments presented in this chapter 6.2 with the same parameters at

normal gravity (1g ) and hypergravity (1.8g ). The values of the non-dimensional parameter ζ

were ζ ∈ [2.5 ·10−3,7 ·10−3]. Using the same methods, we measure the maximum radius of the

rebound bubble, we calculate the energy in the rebound bubble, and we estimate the energy

in the shock for each bubble generated. The radius of the rebound bubble as a function of the

maximum radius, and its transposition in energy, is shown respectively in Figs. 6.13 and 6.14.

The estimation of the shock energy as a function of the bubble initial energy is plotted in Fig.

6.15.

collapse rebound

1g1mm

0g

Figure 6.12: Collapse and rebound of a bubble in 0g (upper) and 1g (lower). Note the shock
visible at the collapse, and the vapor jet on the rebound for 1g [41].
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Figure 6.13: Measured maximum radius of the rebound bubble as a function of the maximum
radius of the initial bubble, for different pressure levels p∞ and different gravity levels.
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Figure 6.14: Measured potential energy of the rebound bubble as a function of the initial
bubble energy, for different pressure levels p∞ and different gravity levels.
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Figure 6.15: Estimated energy in the shock wave as a function of the initial bubble energy, for
different pressure levels p∞ and different gravity levels.

Unlike for the vapor jet, we do not observe a significant difference in the energy partition when

the gravity changes. The relative difference between the values of εr eb at 0g and at ≥1g are

smaller than the standard deviations of the measurements at 0g . We deduce that the energy

transferred into the vapor jet is negligible compared to the energy in the rebound and in the

shock. In consequence, the results draw in microgravity also apply to bubbles collapsing in a

hydrostatic pressure gradient for ζ< 7 ·10−3.
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6.6 Discussion

6.6.1 Effect of gravity on the energy partition

The gravity does not affect significantly our experimental results on the energy partition

between the rebound and the shock wave. However, this does not mean that gravity has no

effect on the collapse channels. Indeed, we demonstrate the effect of gravity in the formation

of the microjet at the collapse of the bubble in Ch. 5, and a previous study [48] concluded that

the gravity has an effect on the energy radiated by luminescence. But the energies involved in

those latter phenomena are negligible compared to the energies involved in the rebound or

the shock wave. Therefore, if gravity affects the microjet or the luminescence, the impact on

the rebound or the shock remains insignificant, which explains why we could not detect it by

monitoring the rebound and the shock only.

6.6.2 Comparison between model predictions and experiment: Estimation of pg0

The theoretical model allows us to explain why, according to our experimental results, the

energy of the rebound depends on the pressure in the liquid while the energy of the shock wave

seems to scale with the initial potential energy only. However, to compare the experimental

results with the theoretical ones, we need a value for pg 0 in addition to the measured Δp and

Rmax and the known ρ, c and γ. According to the theoretical model, pg 0 is the pressure of the

non-condensable gas in the bubble at the instant when the radius of the bubble is equal to

Rmax . Since pg 0 is not directly measurable, we simply assume this pressure to be constant,

and estimate its value using the theoretical model.

We estimated the value of pg 0 by fitting the model to the experimental results. For each

measurement, the value of pg 0 leading to the observed Rr eb is calculated with an iterative

process. The results are averaged and we obtain pg 0 = 7.0±3.5Pa. The relatively small variance

a posteriori justifies the assumption of a constant value for pg 0. The experimental points are

plotted in Fig. 6.10, where the values of ξ are calculated using pg 0.

We observe that all our experimental data lies in a regime where εSW ≈ 1. So when ξ varies

because of the change of Δp, the relative difference is important for εr eb but not for εSW .

As εr eb and εSW represent the slopes of the curves in Fig. 6.5 and Fig. 6.9 respectively, the

difference in p∞ is significant for the rebound, but insignificant for the shock.

Both theoretically and experimentally, the relation Er eb +ESW = E0 is obtained. The results

using the theoretical model show that ΔU in Eq.(6.11) is negligible. Furthermore, the lumines-

cence energy Er ad can be roughly estimated using the model by integrating the thermal energy

radiated by the bubble Er ad . Assuming black body radiation, Er ad is given by Stefan’s Law:

Er ad =∫tr eb
t0

σ4πR2(T 4−T0
4)d t , where σ = 5.67 10−8 Js−1m−2K−4 is the Stefan constant, T is the

temperature inside the bubble, and T0 the temperature in the liquid. The result overestimates

the reality because we use the temperature calculated with an adiabatic treatment, while the
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radiation itself dissipate heat and thus lead to lower temperature than the one considered.

We still find Er ad < 0.1 ·Er eb for our experimental conditions, which justifies that the radiated

energy is negligible compared to the rebound energy. Thus, neglecting both ΔU and Er ad , we

have Er eb +ESW = E0. When adding the experimental data from Fig. 6.5 and Fig. 6.9, we also

obtain Er eb +ESW = E0, within a scatter of ±20%. This scatter is reasonable considering the

uncertainty introduced with the rough estimation of ESW .

6.6.3 Comparison with earlier work

The main issue with the treatment of the rebound is that the pressure of non-condensable gas

pg 0 is usually needed in the equation of motion. As pg 0 is not measurable and its origin is not

clear yet, it is difficult to estimate it and thus to validate a model. So in a concern of evaluating

our theoretical model, we look at previous studies for comparison. In the work of Fujikawa

et al. [77], Kröninger et al. [78] and Sadighi-Bonabi et al. [79] we found estimates of pg 0 or

enough information to obtain them. The data extracted from these articles are plotted in

Fig. 6.10. We observe that despite the different treatments of the thermodynamics inside the

bubble ([77] considered conductive heat transfer and condensation/evaporation, [78] used a

Van der Waals equation and [79] considered hydrochemical reactions) our model reproduces

reasonably well their results. Yet, the drawback of our model is that the temperature at the

collapse is overestimated because of the neglected thermal transport. This could be improved

by the addition of heat transfer or chemical reactions, but at the cost of the simplicity of the

model.

Akhatov et al. [26] propose a mathematical model supported by experimental measurements

of the rebound of a spherical cavitation bubble. Because of the difference in the model used

(the pressure of non-condensable gas is derived from a phase transition equation), we could

not derive a value for pg 0 for quantitative comparison of our results. Nonetheless, qualitatively,

the conclusions are the same. Akhatov et al. observed that the ratio between the radius of the

rebound and the initial bubble is constant when only varying the initial radius of the bubble,

which confirms the univocal relation between ξ and εr eb . They also showed numerically that

for given experimental conditions, when the concentration of the non-condensable gas in

the bubble increases, the radius of the rebound bubble increases too. This also agrees with

our conclusions. Indeed, the increase of the concentration of non-condensable gas means a

smaller value of ξ which implies, according to the Fig. 6.10, an increase of εr eb and thus of the

rebound radius.

Note that in the studies cited here [26, 77, 78, 79] and plotted in Fig.6.10, the non-dimensional

parameter ζ is � 7 ·10−3 (which is the the case with the largest microjet in our experiments).

We found respectively 1.5 ·10−4, 7.5 ·10−5, 3.0 ·10−6, and 1.4 ·10−4. We thus consider that the

comparison of our results in microgravity with these data in normal gravity is justified.
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6.6.4 Importance of the non-condensable gas

The pressure of the non-condensable gas pg 0 is the keystone in the understanding of the

energy partition at the collapse of a cavitation bubble. A variation of the value of pg 0 has a

direct impact on the energy partition. As an example, we consider a bubble with an initial

maximum radius of 5 mm, in a liquid at a uniform pressure 100 kPa, and calculate with our

model the evolution of the radius as a function of time for three values of pg 0: 1, 10, and

100 Pa. As shown in Fig. 6.16, the maximum radius of the rebound bubble increases with

the value of pg 0, and the fraction of energy in the rebound εr eb is 0.2 %, 1.2 %, and 7.2 %

respectively. Quantitative experimental investigation on the effect of the non-condensable

gas on the energy partition is very difficult, because there is so far no mean for measuring the

value of pg 0 in the collapsing bubble. However, the effect of the non-condensable gas can be

discussed through qualitative experimental observations, or quantitative result issued from

theoretical investigations.
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Figure 6.16: Evolution of the radius of the bubble as a function of time, calculated with our
theoretical model. The initial radius is 5 mm, and the liquid pressure 100 kPa. The pressure of
the non-condensable pg 0 gas is set to 1, 10 and 100 kPa. The maximum radius of the rebound
bubble increases with the value of pg 0.

The method for the generation of the bubble plays a major role in the bubble gas content.

Indeed, when a bubble is induced with a laser or a spark, non-condensable gas is generated

in the initial plasma [80, 26]. The amount of non-condensable gas varies significantly with

the generation method. The spark method tends to produce more gas then the laser [27].

Therefore, we understand why the rebound of a spark bubble is larger than the rebound of a

laser bubble. In the case of a spark bubble at atmospheric pressure, the energy fraction in the

rebound is around εr eb = 0.31 [81], whereas in the laser case, we obtained around εr eb = 0.01.

After such a discussion on the importance of the non-condensable gas in the bubble, one
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can reasonable wonder how can hydrodynamic cavitation bubbles rebound while there is

no non-condensable gas generated. The subtlety in the collapse of cavitation bubble is that

whether there is non-condensable gas or not in the bubble, vapor is trapped in the bubble at

the very last stage of the collapse, and acts like non-condensable gas [57]. The presence of

the vapor in the bubble bring another dimension to the problem. Indeed, the vapor pressure

pv varies with the temperature. With a higher temperature of the water, the values of pv is

larger. At the collapse, it would be as if more gas were trapped in the bubble compared to a

lower temperature situation, which implies a larger rebound. An experiment has been run,

generating bubbles of same size in water at three different temperature. The results, shown

in Tab. 6.1, confirm the fact that, for a bubble of a given size at a given pressure in the liquid,

the energy fraction in the rebound increases with the temperature. This issue is not treated

further here, but still illustrates the complexity of the unresolved problem of the collapse of a

cavitation bubble.

Temperature (◦C): 4 18 40

Rmax (mm): 4.2 4.2 4.2

Rr eb (mm): 0.4 0.8 2.0

εr eb (-): 0.1% 0.7% 11.1%

Table 6.1: The values of the maximum radius of the rebound bubble Rr eb , and the fraction of
energy transfered into the rebound εr eb are given for the case of a bubble of maximum radius
Rmax = 4.2 mm collapsing in a liquid at three different temperatures.

Note that the question of how non-condensable gas affects the energy partition can be inverted.

The question would become: What is the value of the non-condensable gas pressure pg 0 for

a given energy partition ? Indeed, similarly to what we did in this chapter, the pressure of

non-condensable gas in the bubble can be estimated using the experimental conditions, the

observations of the energy partition, namely εr eb and εSW , and the theoretical model. This

method would be the first method to estimate for experimental observation the pressure of

the non-condensable gas inside a bubble. With a better understanding of the gas content at

the collapse and the diffusion of gas during the growth and collapse of the bubble, we could

imagine being able to determine the amount of non-condensable gas generated at the bubble

initiation, and maybe even the concentration of dissolved gas in water. Unfortunately, the lack

of understanding of the physics of the very last stage of the collapse still prevent us to develop

completely this concept.

6.6.5 Implications of the results

For the first time, a systematic experimental and theoretical investigation of the rebound

and shock energy at the collapse of a spherical cavitation bubble is presented. This led us to

identify a single non-dimensional parameter ξ, which links the experimental conditions to the

fraction of energy in the rebound bubble and in the shock wave. This finding has important
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implications for many engineering applications. Indeed, it seems possible to manipulate the

bubble dynamics to accomplish the desired task. In microfluidics, cavitation bubbles are

used for micro-pumping. The bubble collapses on a solid surface pierce by a channel. The

microjet developing at the collapse pushes the water through the channel [23]. The pump flow

rate can be optimized by adjusting the size of the rebound and thus of the jet, through the

experimental conditions. Conversly, the size of the channel can be optimized for the nominal

experimental conditions. In chip cleaning, the intensity of the shock waves and microjets have

to be controlled to remove the contaminants without damaging the surface of the chip [20].

The intensity of the shock could be adjusted by changing the pressure in the liquid. In water

treatment [21] and other cavitation enhanced chemical reactions [56, 13, 14], the temperature

inside the bubble at the collapse is determined by the dynamics of the bubble. It should be

thus possible to optimize the processes through the experimental parameters.

The methodology presented here to estimate pg 0 also opens new perspectives for under-

standing the origin of the non-condensable gas in the bubble at the collapse. So far the

non-condensable gas has been assumed to be a combination of trapped vapor, laser break-

down products, and gas initially present in the water [26]. A method to verify this would be

to systematically vary the experimental conditions and assess their effect on pg 0. Our model

could then be used to extract the values of pg 0 by fitting the experimental results with the

theoretical ones. In the same line of thought, we could imagine estimating water properties,

such as the concentration of dissolved gas and nuclei, solely based on observing the rebound

of natural or artificially generated cavitation bubbles. Note, however, that such measurements

would require a quantitative validation of our model.
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7.1 Conclusions

In this thesis, experiments on the influence of the pressure gradient on the collapse of a

cavitation bubble are reported. The first experiment is performed in the cavitation tunnel,

where the pressure gradient on the bubble is changing in both the direction and the intensity

over the bubble collapse phase, similarly to what can happen in hydraulic machines. A new

setup is then built to observe bubbles subject to a constant pressure gradient, whose intensity

is varied from one measurement to the other. These experiments allow to develop theoretical

models for the prediction of the phenomena occurring at the collapse of the bubble.

A preliminary case study is carried out in a flowing liquid over a Naca0009 hydrofoil in the EPFL

High Speed Cavitation Tunnel. A single bubble is generated on demand with a laser focusing

technique at various locations on the hydrofoil surface and upstream. The observations reveal

a strong influence of the pressure gradient on the bubble collapse. We have shown how the

micro jet may develop along the local pressure gradient in stream wise direction and not

towards the solid surface as usually observed in still liquids. We have also shown how a cluster

of micro bubbles behaves like a single bubble, exhibiting a microjet during its collapse.

To address the case of uniform pressure gradient effects on a single bubble in still liquid, we

have developed an appropriate experimental setup where the gravity level may be varied from

0 to 2g. The setup was flown on parabolic flights, offering sequences of microgravity and

hyper gravity phases lasting for about 20 s (ESA parabolic flight campaigns). The microgravity

obtained during the parabolic flight is further exploited to investigate how the energy in the

initial bubble is partitioned between the rebound and the shock at the collapse of perfectly

spherical bubbles. To this end, a significant improvement of the optical arrangement in the

laser focusing technique was achieved. The focusing lens, traditionally used, was replaced

by a parabolic mirror placed in the liquid bulk. The resulting reduction of optical aberration

combined with micro gravity conditions led to the generation of the most spherical bubble.

The observation of the collapse phase reveals the occurrence of an upward micro jet for normal

and hyper gravity induced pressure gradients. In microgravity, a perfectly spherical collapse
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was observed. Since the hydrostatic pressure gradient is constant during the collapse, and its

intensity is varied between measurements, we were able to develop a universal scaling law

predicting the volume of the gravity induced vapor jet as a function of a non-dimensional

parameter ζ , which depends on the pressure gradient, the maximum bubble radius and the

surrounding pressure. A theoretical development, based on the concept of Kelvin impulse,

supports the empirical scaling law.

Finally, we exploited the microgravity phases to investigate how the energy in the initial

cavitation bubble is partitioned between the different collapse channels. The problem reduces

to the partition between rebound and shock because the luminescence energy is negligible

and no jet occurs in microgravity. We have found that most of the energy is transferred

into the shock wave. However, the energy transferred in the rebound increases when the

pressure in the liquid decreases. Although the gravity is known to affect the microjet and the

luminescence, we did not observe a significant effect on the energy partition between rebound

and the shock. Therefore, we expect these results to apply also to cavitation bubbles subject

to moderate pressure gradient. A physical model for the energy partition is built, relying on

a first-order approximation of the liquid compressibility and an adiabatic treatment of the

non-condensable gas inside the bubble. This model allowed us to develop a non-dimensional

parameter ξ which predicts the partition of the energy between the rebound and the shock

wave. The theoretical results were in good agreement with the experimental ones. In both

cases we found an increase of the energy in rebound bubble when the pressure in the liquid

decreases. The theoretical model highlighted the crucial role of the non-condensable gas

in the bubble. The maximum radius of rebound bubble increases with the pressure of the

non-condensable gas.
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7.2 Perspectives

The contributions presented in this thesis provide new inputs for the understanding of the

effect of the pressure gradient on the collapse of a bubble, and insights into future work on

the collapse of a bubble. This work could be carried on in three distinct ways: by extending

the scaling law to cases of non-constant pressure gradients, by developing further the original

approach of energy partition, and by investigating thoroughly the non-condensable gas inside

the bubble.

Extension of the scaling law for the jet volume to non-constant pressure gradients

The scaling law for the volume of the jet is obtained in the case of a single bubble in still water,

with a constant pressure gradient. The scaling law could be extended to cases of non constant

pressure gradients. We could generate the bubble in an axisymmetric venturi tube, where the

direction of the pressure gradient on the symmetry line is constant while the intensity varies

with the position. We could go back to the case of the bubble around the hydrofoil, where both

the direction and the intensity of the pressure gradient vary. If the pressure field for each case

can be accurately calculated, we could investigate the dynamic effect of the pressure gradient

variation on the collapse of the bubble.

Refinement of the energy partition approach

We present an original approach to investigate the collapse of the bubble, which consists in

looking at how the energy in the initial bubble is partitioned between the different collapse

channels, namely the rebound, the shock, the jet, and the luminescence. For our experimental

conditions, most of the energy goes into the shock (around 80 to 99 %), a little in the rebound

(up to 20 %), and a negligible amount in the jet and in the luminescence. Experiments can

be carried out to extend the range of validity of the presented theory, by testing different

experimental conditions from the ones we used.

The theoretical model could also be improved taking the jet and the luminescence into account.

Although the energy involved in jet and luminescence seems negligible, the variation of the

partition as a function of the experimental conditions should still be investigated. It would be

of particular interest to measure from the luminescence the temperature inside the bubble at

the collapse as a function of experimental parameters, such as the temperature and pressure

in the liquid, or the gravity level.

The model we propose can be used in different applications including microchip cleaning,

microfluidics, or sonochemistry, where the pressure in the liquid could be tuned to optimize

the process. In addition, it would be interesting to test the erosion potential of bubbles

depending on the energy partition. Bubbles of same potential energy can be generated close

to solid boundaries for different conditions. The mass lost by erosion can be compared, and

we may be able to identify which phenomenon, either the shock wave or the jet, is the most

damaging.

89



Chapter 7. Conclusions and perspectives

The non-condensable gas

Our model confirms that the non-condensable gas inside the bubble is a key parameter in the

collapse of cavitation bubbles. However, the origin of the non-condensable gas is still unclear.

It is thought to be a combination of dissolved gas in the water, gas diffusing into the bubble,

gas generated at the bubble initiation, and vapor trapped at the collapse. So far, measurements

of the pressure of the non-condensable gas, or an analysis of its chemical composition has

not proven to be possible. Observations of the rebound of the bubble in various cases could

provide a better insight into the problem. One could compare the size of the rebound bubbles

when they are generated by different energy deposition methods. Indeed, we already observed

that spark bubbles lead to larger rebounds than laser bubbles, but a systematic investigation

has not been conducted. We also observed that the rebound is strongly dependant on the

temperature of the liquid. Again, a systematic investigation of the thermodynamics of the

phenomenon could improve our understanding of the vapor trapped inside the bubble.

A better understanding of the composition of the gas inside the bubble is necessary to obtain

reliable and flexible theoretical models to predict the dynamics of the cavitation bubble. With

such a model, one could develop a method for estimating the non-condensable gas inside a

collapsing bubble by measuring the energy in the rebound and in the shock wave, just as we

did in this thesis.
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A Appendix

A.1 Numerical simulation of the flow within the cavitation tunnel

The flow in the cavitation tunnel is calculated with a numerical simulation. This allows esti-

mating the pressure at any location in the test section. In particular, we can define streamlines

from the bubble generation locations, and extract the pressure, the pressure gradient, and the

velocity along a streamline, which leads to the pressure and the pressure gradient experienced

by the bubble as a function of time.

The calculation was performed with the commercial code ANSYS-CFX, which uses a finite

difference method to solve the Navier-Stokes equations. The geometry is the same as the test

section of the cavitation tunnel. We generated a mesh of 127,298 nodes for a 2D calculation.

The boundary conditions are the following:

Top, bottom, and hydrofoil: no slip wall

Sides: symmetric boundary conditions (i.e. 2D calculation)

Inlet velocity and pressure: 15 m/s and 0.45 bars

Outlet: average static pressure of 0.45 bars

We defined the fluid as water at a constant temperature of 20◦C. The equations are solved with

a high resolution advection scheme, and a SST turbulence model. This stationary computation

stopped when the maximum residual was below 10−7.
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Appendix A. Appendix

A.2 Verification of the static pressure measurements

A static pressure sensor (Phidget) is located at the exit of the vessel to measure the pressure

above the liquid (pai r ). The pressure sensor is calibrated by the manufacturer for measure-

ments between 20 kPa and 250 kPa. However, during the experiment, we reach pressures

below 20 kPa. Therefore, we verify the measurements of the static pressure by comparing

with a reference piezo-resistive pressure sensor (Unisensor) of known characteristics. The

reference pressure sensor is fixed on the lid of the vessel.

The pressure measured by the static sensor, pst ati c , is plotted as a function of the reference

pressure, pr e f in Fig. A.1. We observe a non-linearity for pressures pr e f below 16 kPa. There-

fore, we calculate a regression function to fit the pressure given by the static sensor pst ati c

with the one given by the reference sensor pr e f . The regression curve is plotted on fig. A.1. :

pr e f =
pst ati c

1+
(

a1

pst ati c

)a2
a1 = 115 mbar, and a2 = 11. (A.1)

To check whether the static or the reference pressure sensor provides the correct measurement

for pressure below 16 kPa, we used the data of the collapsing bubbles collected during the

parabolic flight. Indeed, the pressure in the liquid can be derived from the Rayleigh-Plesset

equation if the bubble collapse time and the bubble maximum radius is known, see Equ. A.2.

The bubble collapse time is equal to the half of the bubble lifetime in the case of spherical

collapse. The bubble lifetime can be measured (1) from the high-speed movies and (2) from

the reference pressure measurements, where it corresponds to the time between the pressure

peaks due to the shock at the generation and at the collapse. The maximum radius of the

bubble can be measured on the high speed movies.

p∞ = pv +ρ

(
0.915 Rmax

τc

)2

(A.2)

where p∞ is the pressure in the liquid, pv is the vapor pressure, ρ is the water density, Rmax is

the buble maximum radius, and τc is the bubble collapse time.

The pressure in the liquid is calculated with Equ. A.2 for all bubbles in the case of pressure

lower than 20 kPa. The mean difference between the pressure calculated from the Rayleigh

theory and the pressure given by the static sensor is: 2.75 kPa. The mean difference between

the pressure calculated from the Rayleigh theory and the pressure given by the reference

sensor is: 0.27 kPa. Therefore, we trust the measurement of the reference pressure sensor, and

apply the correction to the measurement of the static pressure sensor.
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A.2. Verification of the static pressure measurements
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Figure A.1: Calibration of the pressure measured with the static pressure sensor pst ati c , using
a reference piezo-resistive pressure sensor pr e f .
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