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Abstract

This thesis presents two approaches to code generation (synthesis) along with a dis-
cussion of other related and influential works, their ideas and relations to these ap-
proaches. The common goal of these approaches is to efficiently and effectively assist
developers in software development by synthesizing code for them and save their ef-
forts. The two presented approaches differ in the nature of the synthesis problem
they try to solve. They are targeted to be useful in different scenarios, apply different
set of techniques and can even be complementary.

The first approach to code synthesis relies on typing information of a program to
define and drive the synthesis process. The main requirement imposes that synthe-
sized solutions have the desired type. This can aid developers in many scenarios of
modern software development which typically involves composing functionality from
existing libraries which expose a rich API. Our observation is that the developer
usually does not know the right combination for composing API calls but knows the
type of the desired expression. With the basis being the well-known type inhabitation
problem we introduce a succinct representation for type judgements that significantly
speed up the search for type inhabitants. Our method finds multiple solutions and
ranks them before offering them to the developer. We implemented this approach as
a plugin for the Eclipse IDE for Scala. From the evaluation we concluded that this
approach goes beyond available related techniques and can be very useful in practical
software development.

In the second approach, synthesis of code is driven by explicit specification of code
in terms of (formal) specification. The goal is to allow the developer to specify a pro-
gram, by giving formal description of its behavior, rather than writing the code - the
actual implementation is synthesized automatically. The practical value of such syn-
thesis is immediately clear since this problem is generally hard. The approach solves
this problem by combining existing tools for code generation, verification and testing
within the synthesis process, and applies techniques for speeding it up. Interesting
modifications to the synthesis driven by types were made to allow synthesizing expres-
sions lazily, on demand, by searching for solutions in an incremental fashion. Results
of the evaluation on several examples show that the implementation can be effective
and useful in practice, while the approach still offers a lot of room for improvements.
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Chapter 1

Introduction

In this thesis we present techniques that construct a program that writes programs,

i.e. techniques for program synthesis. Program synthesis is the task of discovering

an executable program from user intent expressed in the form of some constraints [1].

Synthesis requires a mechanism for expressing user intent that starts and drives the

synthesis, thus synthesizers usually take input from the user. Synthesizers can accept

a variety and mixed form of constraints including input-output examples, demon-

strations, logical relations between inputs and outputs, even partial or inefficient

programs. To make the synthesis meaningful and valuable the developer should be

able to describe (i.e. specify) the program in a way that is simpler than writing the

program itself. The problem of defining such a synthesis process is hard and even too

abstract and infeasible in general. Without relaxing the problem and narrowing its

domain, the problem can hardly be tackled.

The area of program synthesis has been studied for decades but it remained an

active area of research. Many works consider this problem in a variety of specialized

contexts and settings. One way to characterize and categorize approaches to program

synthesis is presented in [1] and it identifies three key dimensions:

1. User Intent This represents the mechanisms used to describe the intent of the

synthesis process, i.e. the input that drives the synthesis. Some of the choices

include logical (formal) specification, input/output examples, natural language,

incomplete and even inefficient programs.

2. Search space The key for efficiency of the synthesis is to define (and restrict)

its search space. Synthesis process should be careful about the ratio between

the expressiveness (thus applicability) and space of programs to consider in

the synthesis process. The search space of programs can be qualified by two

attributes reasoned about: operators and control structure. Besides programs
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some approaches aim at grammars and logics.

3. Search technique Although this category directly depends on the considered

search space, it deserves a separate discussion. Main classes of search strategies

include brute-force search, logical reasoning and machine learning.

Works that describe techniques that are related or influenced techniques used

in approaches to synthesis presented in this thesis include deductive synthesis and

transformation to theorem proving [77, 48, 47], learning from input/output examples

and pattern recognition [70, 40, 24], program sketching [67], frameworks for step-

wise synthesis [22, 36], approaches based on generating models from decision proce-

dures [42, 43], the type inhabitation problem [76] and various other strategies useful

in specific scenarios that occur in practice, ranging from giving assistance to the

developer, to automatic generation of tests [46,25,50,57,67,55,9].

The goal of our work is to tackle problems of program synthesis that relate to

difficulties often encountered in the practice of modern software development and in-

troduce techniques that could lead to tools that assist the developer. The developer

specifies intent of synthesis with type constraints, for the first approach (explicitly, by

giving the desired type, or implicitly, if the desired type is inferred) and with formal

(logical) specification of the program to be synthesized and input/output examples,

for the second approach. For the first approach, search space is narrowed down to

searching for small code snippets that represent chains of function (API) calls that

are to be inserted at holes of partial programs. Code snippets are searched with an

exhaustive enumeration strategy that is driven by weights and based on the brute-

force search1. The second approach cannot be strictly categorized according to the

mentioned key dimensions because it internally uses other existing tools for synthe-

sis. Although this means that all characteristics (and limitations) of the employed

synthesizer are reflected to the overall approach, this does not prevent enhancing

its expressiveness and effectiveness2. The search strategy can be described as being

based on the “generate and test” approach (in some contexts referred to as brute-

force search, while in our case it represents a variant of back-tracking) where code is

synthesized and then tested for correctness. Both approaches to synthesis have goals

to operate in various practical scenarios and settings so that they can prove useful to

developers during software development.

1note that the search space is narrowed down by introducing a novel representation of types and
terms

2this approach can utilize the one driven by types and enhance its expressiveness as it will be
shown in Chapter 4
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In the following sections we will introduce both approaches to synthesis in more

detail.

1.1 Synthesis driven by types and weights

Libraries are one of the biggest assets for today’s software developers. Useful li-

braries often evolve into complex application programming interfaces (APIs) with

a large number of classes and methods. It can be difficult for a developer to start

using such APIs productively, even for simple tasks. Existing Integrated Develop-

ment Environments (IDEs) help developers to use APIs by providing code completion

functionality. For example, an IDE can offer a list of applicable members to a given

receiver object, extracted by finding the declared type of the object. Eclipse [73] and

IntelliJ [35] recommend methods applicable to an object, and allow the developer to

fill in additional method arguments. Such completion typically considers one step

of computation. IntelliJ can additionally compose simple method sequences to form

a type-correct expression, but requires both the receiver object as well as assistance

from the developer to fill in the arguments. These efforts suggest a general direction

for improving modern IDEs: introduce the ability to synthesize entire type-correct

code fragments and offer them as suggestions to the developer.

One observation behind our work is that, in addition to the forward-directed com-

pletion in existing tools, developers can benefit from a backward-directed completion.

Indeed, when identifying a computation step, the developer often has the type of a

desired object in mind3. We therefore do not require the developer to indicate a

starting value (such as a receiver) explicitly. Instead, we follow a more ambitious

approach that considers all values in the current scope as the candidate leaf values of

expressions to be synthesized. Our approach therefore requires fewer inputs than the

recent work of Perelman et al [57] or the pioneering work on the Prospector tool [46].

Considering this more general scenario leads us directly to the type inhabitation

problem: given a desired type T , and a type environment Γ (a map from identifiers

to their types), find an expression e of this type T . In other words, find e such that

Γ ` e : T . In our deployment, we compute Γ from the position of the cursor in the

editor buffer. We look up T by examining the declared type appearing left of the

cursor in the editor (or where type inference applies, as described in Section 2.4.4).

The goal of the tool is to find an expression e, and insert it at the current program

point, so that the overall program type checks.

The type inhabitation in the simply typed λ-calculus corresponds to provability

3providing desired type may not be necessary if type inference is supported
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in propositional intuitionistic logic; it is decidable and PSPACE-complete [68, 76].

Guided by the experience from previous works [60, 31, 29], we developed a version

of the algorithm that is both complete in the lambda calculus sense, so it is able to

synthesize not only function applications, but also lambda abstractions and efficient

when used in practice. We present our result in a succinct types calculus, which

we tailored for efficiently solving type inhabitation queries. The calculus computes

equivalence classes of types that reduce the search space in goal-directed (and weight-

directed) search, without losing completeness. Moreover, our algorithm generates a

representation of all solutions using the appropriate graph structure, from which any

number of solutions can be extracted (including the cases when there are infinite

number of solutions), thus making our synthesis approach complete in solving the

type inhabitation problem. We also show how to use weights to guide the search. We

present an implementation within the Eclipse IDE for Scala. Our experience shows

fast response times as well as a high quality of the offered suggestions, even in the

presence of thousands of candidate API calls.

Besides solving the problem of synthesizing valid expressions, our work addresses

the problem of ranking found expressions so that the higher ranked expressions are

more likely to be helpful to the developer. Our work combines proof search with

a technique to find multiple solutions and to rank them. We introduce proof rules

that manipulate weighted formulas, where smaller weight indicates a more desirable

formula. Given an instance of the synthesize problem, we find proofs that determine

multiple expressions of the desired type, and rank them according to their weight.

Our proof rules combine weights of premises to determine the weight of the con-

clusion, and ensure that very long proofs result in terms with a very large weight.

Weight prioritization does not prevent the tool from finding proofs that an exhaustive

application of proof rules would find, but play an important factor for the quality of

generated results. To estimate the initial weights of declarations we leverage 1) the

lexical nesting structure, with closer declarations having lower weight, and 2) im-

plicit statistical information from a corpus of code, with more frequently occurring

declarations having smaller weight, and thus being preferred.

We implemented our tool, InSynth within the Scala Eclipse plugin. We used a

corpus of open-source Java and Scala projects as well as the standard Scala library to

collect the usage statistics for the initial weights of declarations. We evaluated InSynth

on a set of 50 benchmarks constructed from examples found on the Web, written

to illustrate API usage, as well as examples from larger projects. To estimate the

interactive nature of InSynth, we measured the time needed to synthesize the expected

snippet as a function of a number of visible declarations. We found that the expected
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snippets were found among the top dozen solutions in the great majority of cases in a

short period of time. In over 90% of benchmarks the expected snippet appears among

the first ten solutions. Moreover, in over 60% of benchmarks, the expected snippet

appears first in the list. Except in the case of one benchmark, the total execution

time of the synthesis process was less half a second. This suggests that InSynth can

efficiently and effectively help the developer in software development. Furthermore,

we evaluated a number of techniques deployed in our final tool, found that all of them

are important for obtaining good results, and found that, even for checking existence

of terms, on our benchmarks, InSynth outperforms recent propositional intuitionistic

provers [49,21]. The results show that techniques presented in this paper are essential

for the performance of the synthesis algorithm. Our and experience of users of InSynth

testify the practical value of our tool in real-world development scenarios.

1.2 Lazy approach to reconstruction

The standard implementation of the reconstruction process in InSynth is eager, since

it tries to reconstruct a specific number of code snippets at once, by employing an

eager search strategy to find type inhabitants of the highest rank. This process re-

quires a parameter that specifies how many code snippets should be synthesized.

Knowing such a parameter is a serious constraint for the synthesis, in some practical

scenarios. Moreover, if an instance of the type inhabitation problem has an infinite

number of solutions, in terms of type inhabitants, the synthesis process gets inher-

ently constrained by practical limitations in terms of number of code snippets it can

synthesize.

In order to remedy this, we present an idea that allows systematic enumeration of

reconstructed code snippets one by one, and makes the enumeration possible even in

cases where an infinite number of solutions exists. We present techniques that realize

the idea of lazy enumeration of reconstructed type inhabitants. The enumeration is

lazy in the sense that the search for solutions is performed only when needed, i.e.

when the next solution needs to be enumerated, and this involves exploring only the

smallest amount of search space necessary for the next enumerated solution.

We present unordered lazy enumeration which enumerates reconstructed type in-

habitants in an arbitrary order and guarantees that if an inhabitant is valid, it will

be enumerated eventually, and its ordered flavor which poses additional constraints

on the ordering of the enumeration. We show correctness properties that hold for

these lazy approaches to reconstruction and present evaluation of the implementa-

tion within the InSynth reconstruction phase. Results show that this approach to
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reconstruction makes synthesis driven by types practically feasible, and even outper-

forms its eager counterpart, in many scenarios.

1.3 Synthesis driven by specification

In many scenarios, it is easier to describe what a computation does than it is to define

it explicitly [10, 48]. That is, writing down the relation between the input and the

output variables can be easy, even when constructing a program that would satisfy

such a relation is difficult. Such relation, usually referred to as specification, effectively

describes what should be done, instead of how it should be done. Thus, the main goal

becomes to construct a program synthesizer that takes a relational description and

tries to produce a program that is guaranteed to satisfy the given relationship. Since

this relationship drives the synthesis process, the synthesized program is correct by

construction, with respect to the relationship. Therefore, under the assumption that

the specification is correct, no further efforts in terms of debugging or verification are

needed from the developer.

The motivation behind our approach to program synthesis driven by specification

comes from examining implementation of practical algorithms and tasks in func-

tional programming. These examples were collected from various sources including

textbooks on verification and practical implementations (most of them can be found

in [16,54,71]). Some of these examples belong to the benchmark set used for evalua-

tion of the implementation of this approach presented in Section 4.3.7. Most of these

examples operate on arguments that represent algebraic data types (such as List,

Tree) and have a similar implementation pattern. The implementation usually tests

for an actual type of an algebraic data type argument (usually with a match or if ex-

pression) and proceeds with implementation of the behaviour that holds for each case.

One key observation is that algorithms are recursive, that is, they implement control

flows with a recursive call (usually as the single case of a complex branch expression).

As an example, implementation of a concatenation of lists checks if an argument list

is actually of type Nil - if yes, the other list can be returned (simple case), otherwise

function branch contains a complex expression that invokes a recursive call. Through

a large variety of examples, ranging from ones that implement short and simple to

the ones that implement large and complex algorithms, the common pattern for en-

coding control flow with branches and recursive calls remains (complex algorithms

usually have multiple cases to consider and even such patterns nested). This pattern

effectively encodes a program with branches that represent correct implementations

for certain inputs. The space of inputs is partitioned and each branch gives a correct
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implementation for inputs from one such partition, together with a condition that

filters out inputs that are not in the partition. Such patterns can be encoded with

multiple nested expressions of the form if c then e. The key observation is that the

expressions for these implementations are simpler when reasoned about in separation

and they can be synthesized effectively (e.g. with the synthesis approach driven by

types presented in Chapter 2).

The technique of synthesis with condition abduction focuses on synthesizing code

of a purely functional programing language. Its focus is on recursive rather than

the iterative programs and the notion of looping is represented only with appropri-

ate recursive calls. Introduction of recursive calls is closely related to the use of

the principle of mathematical induction in the corresponding proof of the program

behavior. Reasoning about the behavior of the synthesized program can usually be

done with the help of structural induction [10, 13]. Although the technique does not

reason about iterative programs and loops, the induction principles allow synthesis

of corresponding recursive program forms.

Synthesis with condition abduction offers specifying the program to be synthesized

with both formal specification and input/output examples. The goal is to synthesize

expressions, that potentially implement complex algorithms, correct with respect to

given specification from the developer. The aim of the approach is to achieve practical

value in assisting developers in development of modern software. Thus, the user intent

supports the combination of these two means of specifying behavior of a program.

Specifications with example pairs have the advantages of naturalness (examples are

easy to elaborate) and conciseness (examples can implicitly describe manipulations

of parameters). Their disadvantages are limited expressive power and ambiguity (ex-

amples cannot completely specify a problem). Formal (logic) specifications have the

advantages of expressiveness (axioms benefit from the full expressive power of logic)

and non-ambiguity (axioms can completely specify a problem). Their disadvantages

are artificiality (axioms can be difficult to elaborate, and to understand) and length

(axioms require a complex formalization process) [22]. Note that formal specification

subsumes the specification with example pairs but involves more complex mechanisms

for specifying user intent for the synthesis. We aimed at combining these two means

of specification because of their complementary strengths and weaknesses.

We present algorithms that are based on “generate and test” approaches and em-

ploy existing tools for code generation, verification and testing to achieve synthesis

of programs correct by given specifications. In our approach, the developer is able to

declare a function, attach its formal specification (in terms of precondition and post-

condition) and provide input/output examples but omit its body in order to invoke
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the synthesis process. Our tool was implemented as Scala compiler plugin that inter-

nally uses InSynth, implementation of the synthesis approach driven by types given

in Chapter 2 and Leon, a system capable of verifying functional programs [72]. It uti-

lizes various techniques and heuristics to overcome practical limitations of the naive

implementation of the core algorithm and optimize the synthesis process. We evalu-

ate our tool on benchmarks that consist of several examples of practical algorithms,

elaborate the synthesis procedure in detail for each example and demonstrate with

results that synthesis with condition abduction can indeed be effective and useful in

practice.

1.4 Contributions

The first contribution of this thesis is the proposal of a new code generation feature

for IDEs that goes beyond currently available tools. It includes an efficient goal-

directed search algorithm that solves the type inhabitation problem by operating on

the newly introduced succinct representation of types and uses weights to guide the

search. This contribution lead to an implementation of a Scala IDE plugin, InSynth,

that implements all of the proposed techniques and is publicly available.

The second contribution is the proposal of an approach for generation of code

that is correct with respect to both formal specification and specification given in

terms of input/output examples. It presents a technique that employs existing tools

for code synthesis, verification and testing to effectively synthesize arbitrarily com-

plex expressions. In order to reuse the InSynth as the underlying synthesis tool, we

presented a novel approach to term reconstruction that allows lazy enumeration of

reconstructed trees according to their weights while still being complete. We present

an implementation of a Scala compiler plugin that utilizes InSynth and Leon and is

effective in synthesizing recursive algorithms that occur in practice (e.g. operations

on lists and insertion sort) and provides insights into the potential of the approach

for achieving high practical value.

An interesting contribution that emerged as a requirement for utilizing our ap-

proach to synthesis driven by types and weights in the approach to synthesizing correct

programs, is the lazy enumeration of reconstructed code snippets. The approach for

lazy reconstruction provides techniques for a systematic way of enumerating synthe-

sized snippets in an incremental fashion, on demand. These techniques are based on

several sound algorithms that allow constructing a stream of solutions that enumer-

ates all possible solutions, while delaying the space exploration until it is necessary,

and can be applied to a variety of traversal problems. We present an unordered
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and ordered enumeration, where the ordering can be determined by arbitrary weight

function, and present an evaluation which shows the practical advantages of the lazy

approach over the eager one4.

1.5 Organization of this thesis

The rest of the thesis is organized as follows: Chapter 2 presents the approach to

code generation driven by types and weights, Chapter 3 introduces lazy enumeration

of reconstructed code snippets that extends and improves code generation driven by

types and weights, while Chapter 4 presents the approach to code generation driven by

specifications. Each of these chapters introduces one major contribution of our work,

explains its goals through examples and motivation, presents necessary techniques,

design and implementation, together with results of evaluation. Chapter 5 discusses

works that motivated both of the approaches to synthesis and analyzes relations to

our current work and ideas for its extensions.

4at this point, we refer to the standard reconstruction as eager, since its does not defer any
computation
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Chapter 2

Efficient code synthesis driven by

types and weights

This chapter explains the idea and design decisions behind the code synthesis ap-

proach using types and weights, and its implementation realized in InSynth. We will

start by presenting examples that demonstrate functionality of our approach, continue

with theoretical foundations and introduction of the succinct types calculus, explain

the implementation of InSynth which is integrated into Scala IDE for Eclipse [65] as

a plugin and conclude the chapter with a discussion on correctness properties and

evaluation of effectiveness.

Although this approach to code generation is flexible and can be used for syn-

thesizing code snippets in a variety of (functional) programming languages, in this

section we will consider Scala [53] as the domain language and the only currently sup-

ported language for synthesis with InSynth. Flexibility of our modular design allows

adding support for other languages easily which represents an interesting point left

for the future work.

2.1 Motivating examples

We illustrate the functionality of InSynth through several examples. The first example

serves as a simple illustration of typical usage scenario and goals of InSynth when

used in an IDE. The second example is taken from the online repository of Java

API examples http://www.java2s.com/. The third example is a real world example

taken from code base of the Scala IDE for Eclipse1. The final example demonstrates

how InSynth deals with subtyping. The original code of these examples imports only

1Scala IDE for Eclipse, http://scala-ide.org/
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declarations from a few classes. To make the synthesis problem much harder for

InSynth, we import all declarations from packages where those classes reside.

Figure 2-1: InSynth suggesting five highest-ranked well-typed expressions synthesized
from declarations visible at a given program point

Defining a variable. While programming in Scala, a developer very often needs

to write an expression in order to initialize a newly declared variable or a field, or

to generate a method body with a single statement. Our observation is that the

developer usually knows the type of the expression, but is not sure what declarations

to use and/or how to combine them. InSynth uses a desired type information and

declarations in the context to synthesize an expression that type-checks at the point

of invocation.

Consider the problem of opening a file with a given name at a given position given

in the following fragment of code.

def openFileAt(name:String, pos:Int):File = {...}
var filename: String = ‘‘my file.txt’’

var position: Int = 100

...

var file:File =

Assume that the developer set variables name and position to the name of the

file and the desired file position for opening, respectively. Also, assume that a method

openFile takes a name and opens a file at a given position. In order to open a file the

developer defines a variable file of type File. The developer can initiate a query at a

place where the file’s initializer should be written (denoted with in the figure). If so,

InSynth extracts a desired type, i.e. File, with all visible declarations in the context.

In the example, among the others, those include openFile, filename and position.

InSynth then runs the synthesis algorithm and finds several solutions among which is
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also the code snippet openFileAt(fileName, position). This expression, a code

snippet, is of type File. Note, that argument types of openFileAt and types of

fileName and position must match in order to insert that snippet into the code

and make the whole variable definition successfully type-check. If there are more

solutions, they are ordered and presented to the developer in a drop-down list.

Sequence of Streams. Here, the goal is to create a SequenceInputStream object,

which is a concatenation of two streams. Suppose that the developer has the code

shown in the Eclipse editor in Figure 2-1. If he invokes InSynth at the program point

indicated by the cursor, in a fraction of a second it displays the ranked list of five

expressions. Seeing the list, the developer can decide that e.g. the second expression

in the list matches his intention, and select it to be inserted into the editor buffer.

This example illustrates that InSynth only needs the current program context, and

does not require additional information from the the developer. InSynth is able to use

both imported values (such as the constructors in this example) and locally declared

ones (such as body and sig). InSynth supports methods with multiple arguments and

synthesizes expressions for each argument.

In this particular example, InSynth loads over 3000 initial declarations from the

context, and finds the expected solution in less than 250 milliseconds. 2

The effectiveness in the above example is due to several aspects of InSynth. InSynth

ranks the resulting expressions according to the weights and selects the ones with the

lowest weight. The weights of expressions and types guide not only the final ranking

but also make the search itself more goal-directed and effective. InSynth learns weights

from a corpus of declarations, assigning lower weight (and thus favoring) declarations

appearing more frequently.

TreeFilter We demonstrate the generation of expressions with higher-order func-

tions on real code from the Scala IDE project (see the code bellow). The example

shows how a developer should properly check if a Scala AST tree satisfies a given prop-

erty. In the code, the tree is kept as an argument of the class TreeWrapper, whereas

property p is an input of the method filter.

import scala.tools.eclipse.javaelements.

import scala.collection.mutable.

trait TypeTreeTraverser {
val global: tools.nsc.Global

import global.

class TreeWrapper(tree: Tree) {

2evaluation of benchmarks, including this and other examples, is shown in Section 2.6
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def filter(p: Tree => Boolean): List[Tree] = {
val ft:FilterTypeTreeTraverser =

ft.traverse(tree)

ft.hits.toList

}
}
}

The property is a predicate function that takes the tree and returns true if the

tree satisfies it. In order to properly use p, inside filter, the developer first needs to

create an object of the type FilterTypeTreeTraverser. If the developer calls InSynth at

the place , the tool offers several expressions, and the one ranked first turns out to

be exactly the one expected (the one found in the original code), namely

new FilterTypeTreeTraverser(var1 => p(var1))

The constructor FilterTypeTreeTraverser is a higher-order function that takes as input

another function, in this case p. In this example, InSynth loads over 4000 initial

declarations and finds the snippets in less than 300 milliseconds.

Drawing Layout. Consider the next example, often encountered in practice, of

implementing a getter method that returns a layout of an object Panel stored in a

class Drawing. The following code is used to demonstrate how to implement such a

method.

import java.awt.

class Drawing(panel:Panel) {
def getLayout:LayoutManager =

}

Note that handling this example requires support for subtyping, because the type

declarations are given by the following code.

class Panel extends Container with Accessible { ... }
class Container extends Component {
...

def getLayout():LayoutManager = { ... }
}

The Scala compiler has access to the information about all supertypes of all types in

a given scope. InSynth supports subtyping and in 426 milliseconds returns a number

of solutions among which the second one is the desired expression panel.getLayout().

While doing so, it examines 4965 declarations.
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2.2 Type inhabitation problem for succinct types

To answer whether there is a code snippet of a given type, our starting point is the

type inhabitation problem. In this section we establish a connection between type

inhabitation and synthesizing code snippets.

Let T be a set of types. A type environment Γ is a finite set {x1 : τ1, . . . , xn : τn}
containing pairs of the form xi : τi, where xi is a variable of a type τi ∈ T . The

pair xi : τi is called a type declaration. With Γ ` e : τ we denote that from the

environment Γ we can derive the type declaration e : τ by applying rules of some

calculus. The type inhabitation problem is defined as: for a given calculus, a type τ ,

and a type environment Γ, does there exist an expression e such that Γ ` e : τ?

In the sequel we first describe the standard lambda calculus restricted to normal

form terms. We then introduce a new succinct representation of types and terms.

To distinguish the original and succinct version of the calculus we use `λ and `S to

denote derivability in the simply typed λ-calculus and in the succinct types calculus,

respectively.

2.2.1 Simply typed λ-calculus for deriving terms in long nor-

mal form

Let B be a set of basic types. Types are formed according to the following syntax:

τ ::= τ → τ | v, where v ∈ B

We denote the set of all types as τλ(B). When B is clear from the context we only

write τλ.

Let V be a set of typed variables. Typed expressions are constructed according

to the following syntax:

e ::= x | λx :τ.e | e e, where x ∈ V

The calculus given in Figure 2-2 describes how to derive new type judgements.

Note that this calculus is slightly more restrictive than the standard λ-calculus. The

APP rule requires that only those functions present in the original environment Γo

can be applied on terms.

We restrict the APP rule in order to derive only the terms that are in so-called

long normal form [69]. Our main motivation is to find suitable code snippets effi-

ciently (while avoiding finding unnecessary terms that are not in long normal form).
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App
f : τ1 → . . .→ τm → τ ∈ Γo Γo `λ ei :τi

Γo `λ fe1 . . . em :τ

Abs
Γo ∪ {x1 :τ1, . . . , xn :τn} `λ e :τ

Γo `λ λx1 . . . xn.e :τ1 → . . .→ τn → τ

Figure 2-2: Calculus rules for deriving lambda terms in long normal form

Therefore, we derive only terms in long normal form, as they simplify and speed up

the reconstruction process for code snippets. Note, that this does not restrict expres-

siveness of our calculus. Each simply-typed term can be converted to its long normal

form [69,6]. We now formally define long normal form.

Definition 2.2.1 (Long Normal Form) A judgement Γo `λ e : τe is in long nor-

mal form if the following holds:

• e ≡ λx1 . . . xm.fe1...en

• τe ≡ τ1 → . . .→ τm → τ

• let Γ′
o = Γo ∪ {x1 : τ1, . . . , xm : τm}

• f : ρ1 → . . .→ ρn → ρ ∈ Γ′
o

• τ, ρ ∈ B

• Γ′
o `λ ei : ρi are in long normal form

In long normal form the number of bound variables corresponds exactly to the

number of arguments. As an illustration, f : τ1 → τ2 is not in long normal form, but

λx.fx : τ1 → τ2 is in long normal form (η-conversion can converts between those two

whenever x does not appear free in f).

We define the length L of a term from a long normal form judgement as follows:

L(λx1 . . . xm.a) = 1

L(λx1 . . . xm.fe1, . . . , en) = max (L(e1), . . . ,L(en)) + 1

2.2.2 Succinct types

Consider the code declaring a value and a function:
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val a:Int = 0

def f(i1: Int, i2: Int, i3: Int):String = {...}

In the standard λ-calculus this code translates to the type environment Γo = {a :

Int, f : Int → Int → Int → String}. Checking whether there is an inhabitant of

type String requires three calls of the App rule. The application of currying typi-

cally constraints the search space even further and makes conceptually shallow proofs

deeper. In order to make the search more efficient we therefore introduce succinct

types, which are types modulo isomorphism of products and currying, or, equiva-

lently, commutativity, associativity, and idempotence of conjunction (according to

Curry-Howard correspondence [58,17]). In this example, succinct types would enable

us to find an inhabitant in only one step.

Definition 2.2.2 (Succinct Types) Let BS be a set containing basic types. Suc-

cinct types ts are constructed according to the grammar:

ts ::= {ts, . . . , ts} → BS

We denote the set of all succinct types with ts(BS), sometimes also only with ts.

A type declaration f : {t1, . . . , tn} → t is a type declaration for a function that

takes arguments of n different types and returns a value of type t. A special role has

the type ∅ → t which is a type of a function that takes no arguments and returns a

value of type t, i.e. we consider types t and ∅ → t equivalent.

Every type τ ∈ τλ(B) can be converted into a succinct type in ts(B). With

σ : τλ(B) → ts(B) we denote the conversion function. Every basic type v ∈ B

becomes an element of the set of basic succinct types, i.e. BS = B and σ(v) = ∅ → v.

Let A (arguments) and T(type) be two functions defined on ts(BS) as follows:

A({t1, . . . , tn} → v) = {t1, . . . , tn}
T ({t1, . . . , tn} → v) = v

Using A and T we define the σ function as follows:

σ(τ1 → τ2) = {σ(τ1)} ∪ A(σ(τ2))→ T (σ(τ2))

A type of the form τ1 → . . .→ τn → v (a type that often appears in practice) has

the succinct representation {σ(τ1), . . . , σ(τn)} → v.

Given a type environment Γo = {x1 : τ1, . . . , xn : τn} (τi are types in the simply

type λ-calculus), we define

Γ := σ(Γo) = {σ(τ1), . . . , σ(τn)}
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It can easily be shown that for every two type environments σ(Γ1
o ∪Γ2

o) = σ(Γ1
o)∪

σ(Γ2
o). By induction we can prove that the same holds for any union of type environ-

ments.

Types in InSynth

InSynth synthesizes valid Scala code snippets and it is straightforward to relate purely

functional subset of the Scala programming language to the simply typed λ-calculus.

In the first step, a typing environment needs to be extracted from the given Scala

program and encoded in the succinct type representation. We illustrate correspon-

dence between Scala and λ-calculus types on the examples given in Table 2.1. Note

that Scala subtype relation (e.g. class τ1 extends τ2) deserves a special attention

- we encode subtyping relation in the simply typed λ-calculus (e.g. τ1 <: τ2) with

coercion functions in the succinct types calculus (more details about how we deal with

subtyping can be found in Section 2.3.3).

Scala declaration Simply typed λ-calculus declaration

val i: Int i : Int

def f(a:Int, b:Char, c:Int): String f : Int→ Char → Int→ String

def g(f:(Int => Char), l:Long): String g : (Int→ Char)→ Long → String

class A { val s: String } A.s : A→ s

class A extends B A <: B

Table 2.1: Examples of the type declaration translation from Scala to the simply
typed λ-calculus

Note that the type translation procedure to succinct types is irreversible. We can-

not do the translation in the other direction and construct the original Scala type from

a succinct type. Once we translate a Scala type we keep both type representations for

each program declaration so that the information needed for reconstructing correct

code snippets is preserved during the synthesis process. This allows us to use the

succinct representation when solving the type inhabitation problem and afterwards

to reconstruct type inhabitants in the corresponding Scala representation.

Table 2.2 shows these examples of Scala declarations (and their types) transformed

to appropriate terms encoded in the succinct types calculus.

Note that while Definition 2.2.2 does not define succinct types for polymorphic

types, but only for the set of basic types BS which includes all constant types (which

correspond to Scala primitive types) and all instantiations of type constructors (which

correspond to instantiated Scala generic types). This means that the synthesis process

is effectively limited to reason about succinct representation of types including Int,
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Scala declaration Succinct declaration

val i: Int i : ∅ → Int

def f(a:Int, b:Char, c:Int): String f : {Int, Char} → String

def g(f:(Int => Char), l:Long): String g : {Long, {Int} → Char} → String

class A { val s: String } A.s : {A} → s

class A extends B cf : {A} → B

Table 2.2: Correspondence between Scala declarations and proof representation terms

String, List[String], Map[Int, List[String]] but not of the type Map[X, Y], where X,

Y are polymorphic type variables.

Succinct patterns

Succinct patterns have the following structure @{tS, . . . , tS} : tS, where tS are succinct

types. A pattern @{t1, . . . , tn} : t indicates that types t1, . . . , tn are inhabited and

an inhabitant of type t can be computed from them. They abstractly represent an

application term in λ-calculus. We identify @∅ : tS and tS.

Our algorithm for finding all type inhabitants works in two phases. In the first

phase we derive all succinct patterns. They can be seen as a generalization of terms,

because they describe all the schemes how a term can be computed. Additionally,

each succinct pattern is annotated with the type environment for which it was derived.

These annotations are needed for the second phase, where we do a term reconstruction

based on the original type declarations (Γo) and the set of succinct patterns.

Calculus. Figure 2-3 describes the calculus for succinct types. We derive judge-

ments for succinct patterns. As the patterns are derived only in the APP rule, we

annotate the derived pattern with the actual Γ and save them into the set of all

derived patterns. The rule ABS is a rule that modifies Γ - it can either reduce Γ or

enlarge it, depending on whether we are doing backward or forward reasoning.

Abs
Γ ∪ S `S π : t

Γ `S S→t
App

{t1, . . . , tn}→t ∈ Γ Γ `S t1 . . . Γ `S tn
Γ `S @{t1, . . . , tn} : t

Figure 2-3: Calculus rules for deriving succinct patterns . (The subscript S in `S is
a fixed symbol for “succinct” types, unrelated to the set of assumptions S in Γ ∪ S)

Consider the example given at the beginning of this section and its type environ-

ment Γo = {a : Int, f : Int → Int → Int → String}. From the type environment Γo

we compute Γ = {∅ → Int, {Int} → String}. By applying the APP rule on ∅ → Int,
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we derive a succinct pattern @∅ : Int and we add (Γ,@∅ : Int) to the set of derived

patterns. Having a pattern for Int we apply the ABS rule. By setting S = ∅, we

derive Γ `S ∅→Int. Finally, by applying again the APP rule, we directly derive a

pattern for the String type and (Γ,@{Int} : String) becomes an element of the set of

derived patterns.

2.3 Algorithms

In this section we will present algorithms used in InSynth. We will introduce two main

algorithms: the algorithm that searches for solutions of the type inhabitation problem

in the succinct types calculus and the term reconstruction algorithm. Afterward we

will show how InSynth reasons about subtyping information using coercion functions.

Finally we will present how the type inhabitation problem is modified to reason about

multiple solutions and rank them according to weights, that is, formalize the so-called

quantitative type inhabitation problem.

InSynth reasons about a subset of Scala that corresponds to simply typed lambda

calculus. At a high-level, the algorithm behind our implementation consists of the

following steps:

1. parse the program and extract declarations in succinct types calculus

2. follow the succinct types calculus rules to derive succinct patterns that encode

inhabitants of the required type

3. use these patterns to reconstruct code snippets and rank them

4. present snippets with highest ranks to the developer

2.3.1 Type inhabitation problem in succinct calculus

We are interested in generating any desired number of expressions of a given type

without missing any expressions equivalent up to β reduction [58]. To describe our

approach to solving the type inhabitation problem in the succinct types calculus (and

prove certain properties of it), we introduce two functions: CL and RCN3. The CL

function takes as arguments a succinct type environment Γ and a succinct type S→t.
It returns the set of all patterns @S1:τ derived in Γ ∪ S:

CL(Γ, S→t) = {(Γ ∪ S,@S1 : t) | (S1→t) ∈ (Γ ∪ S)

and ∀t′ ∈ S1.Γ ∪ S `S t′}
3the implementation of these functions will be described in Section 2.3
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The function RCN is used to reconstruct lambda terms, based on the set of patterns

and the original type environment. An additional argument of the RCN function is

a non-negative integer d, used to specify that we only synthesize terms with length

smaller or equal to d4. The algorithmic description of the RCN function is given in

Figure 2.1.

fun RCN(Γo, τ1→· · ·→τn→v, d) :=

if (d = 0) return ∅
else

S→v := σ(τ1→· · ·→τn→v)

Γ := σ(Γo)

Γ′
o := Γo ∪ {x1 : τ1, . . . , xn : τn} //x1, . . . , xn are fresh

TERMS := ∅
foreach (Γ ∪ S, @{t1, . . . , tm′} : v) ∈ CL(Γ, S→v)

foreach (f : to) ∈ Select(Γ′
o, {t1, . . . , tm′}→v)

ρ1→· · ·→ρm→v := to

foreach i← [1..m]

Ti := RCN(Γ′
o, ρi, d−1)

if (∀i ∈ [1..m]. Ti 6= ∅)
foreach (e1, . . . , em) ← (T1 × · · · × Tm)

//if m=0 then the empty tuple executes this loop once

TERMS := TERMS ∪ {λx1 . . . xn.fe1 . . . em}
return TERMS

fun Select(Γo, t) := {v:τ | v:τ ∈ Γo and σ(τ) = t}

Listing 2.1: A function that constructs lambda terms in long normal form up to given

length d.

Having CL and RCN functions, allows us to formalize our approach to solving type

inhabitation problem and prove its soundness and completeness properties (presented

in Section 2.5.1).

2.3.2 Synthesis of all terms in long normal form

We next present an algorithm based on the succinct types calculus that we use for

finding type inhabitants. This algorithm is further used for the implementation of an

interactive tool for synthesizing expression suggestions from which the developer can

select a suitable expression. In order to be applicable, such an algorithm needs to 1)

generate multiple solutions, and 2) rank these solutions to maximize the chances of

returning relevant expressions to the developer.

4note that the implementation uses weights instead of this depth parameter
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In Figure 2-4 we illustrate the main algorithm that creates at most N terms with

a type τo in Γo. All synthesized terms are in long normal form. The algorithm first

uses σ to transform Γo and τo into succinct environment and type. Then it invokes

the algorithm that calculates Derived on this environment and the type, Figure 2.2.

The set Derived contains pairs (Γ, p), where p is a pattern derived in Γ. We also give

a time limit (timeout) to the Core algorithm. Finally, the Rcnst-n algorithm takes

Derived and constructs at most N lambda terms in long normal form.

TIP−ALL(Γo, τo, N, timeout) =
Derived = Core(σ(Γo), σ(τo), timeout)
Rcnst−n(Derived, Γo, to, N)

Figure 2-4: The algorithm that generates all terms with a given type τo and the
environment Γo

The algorithms and implementation that implement Core and Rcnst-n are

prestented in Section 2.4.2 and 2.4.3, respectively.

2.3.3 Subtyping using coercion functions

We use a simple method of coercion functions [45, 62, 11] to extend our approach to

deal with subtyping. We found that this method works well in practice. On the given

set of basic types, we model each subtyping relation v1 <: v2 by introducing into the

environment a fresh coercion expression c12 : {v1} → v2. If there is an expression

e : τ , and e was generated using the coercion functions, then while translating e into

a simply typed lambda terms, the coercion is removed (in the reconstruction phase).

Up to η-conversion, this approach generates all terms of the desired type in a system

with subtyping on primitive types with the usual subtyping rules on function types.

In the standard lambda calculus there are three additional rules to handle sub-

typing: transitivity (τ1 <: τ2 and τ2 <: τ3 imply τ1 <: τ3), subsumption (if e : τ1

and τ1 <: τ2 then e : τ2), and the cvariant rule (τ1 <: ρ1 and ρ2 <: τ2 imply

ρ1 → ρ2 <: τ1 → τ2). We proved that even with those new rules the complexity of

the problem did not change and the type inhabitation remains a PSPACE-complete

problem [27,26]. If subtyping constraints are present, then the coercion functions are

used in construction of succinct patterns. However, in the reconstruction phase the

coercion functions are omitted when deriving lambda terms (as explained in Section

2.4.3).
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2.3.4 Quantitative type inhabitation problem

When answering the question of type inhabitation problem, there might be many

terms having the required type τ . A question that naturally arises is how to find

the “best” term, for some adequate meaning of “best”. For this purpose we assign

a weight to every term. Similarly as in resolution-based theorem proving, a lower

weight indicates a higher relevance of the term. Using weights we extend the type

inhabitation problem to the quantitative type inhabitation problem – given a type

environment Γ, a type τ and a weight function w, is τ inhabited and if it is, return a

term that has the lowest weight (or multiple terms with lowest weights).

Let w be a weight function that assigns to each variable a non-negative number.

As the weight plays the crucial role in directing the search for inhabitants, it is

important to assign meaningful weights. Section 2.3.4 describes how InSynth computes

the weights. In general, the weight of a symbols is primarily determined by:

1. the proximity to the point at which InSynth is invoked. We assume that the

user prefers a code snippet composed from values and methods defined closer

to the program point and assign the lower weight to the symbols which are

declared closer. As shown in Table 2.3 we assign the least weight to local

symbols declared in the same method. We assign the weight of one level higher

to symbols defined in a class where a query is initiated. We assign an even

higher weight to symbols in the same package.

2. the frequency with which the symbol appears in the training data corpus, as

described in Section 2.6.2 below. For an imported symbol x, we determine its

weight using the formula in Table 2.3. Here f(x) is the number of occurrences

of x in the corpus, computed by examining syntax trees in a corpus of code.

We also assign small weight to an inheritance conversion function that witnesses the

subtyping relation. While we believe that our strategy is fairly reasonable, we arrived

at the particular constants via trial and error, so further improvements are likely

possible.

Based on these values we define a weight function w that assigns a weight to

every symbol f . The weight of a term λx1 . . . xm.fe1 . . . en is the sum of weights of

all symbols that occur in the expression:

w(λx1 . . . xm.fe1 . . . en) =
m∑
i=1

w(xi) + w(f) +
n∑
i=1

w(ei)

To guide the algorithm that generates patterns (in Figure 2.2) we use weights of
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Nature of Declaration or Literal Weight

Lambda 1
Local 5
Inheritance function 10
Class 20
Package 25
Literal 200

Imported 215 + 785
1+f(x)

Table 2.3: Weights for names appearing in declarations. We found these values to
work well in practice, but the quality of results is not highly sensitive to the precise
values of parameters.

succinct terms. Given Select in Figure 2.1, a weight of a succinct type t in Γo is

defined as:

w(t) = min({weight | weight = w(f) and (f : τ) ∈ Select(Γo, t)})

2.4 Implementation

InSynth can be thought of as being partitioned into two main modules: 1) type in-

habitation solver module and 2) reconstruction module. The overview of the design

is given in Figure 2-5.

Figure 2-5: InSynth design

The type inhabitation solver module implements the first phase of the synthesis

process which does the initial parsing of the given program (retrieved by the IDE) and

extraction of typing information and then searches for all possible solutions to the type

inhabitation problem in the succinct types calculus. The output is a set of succinct

patterns encoded in a proof tree that witnesses type inhabitants, i.e. code snippets

that can be reconstructed and then type-checked at the given program point with the

desired type. Such proof trees are passed to the second, reconstruction module, which
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reconstructs expressions, orders them and provides them to the developer as a ranked

list of code snippet suggestions within the IDE. Additionally, with the functionality

provided by the IDE, it allows selection of particular code snippet and insertion of

that snippet at the point of invocation in the editor buffer.

Note that the search for type inhabitants is done in the succinct types calculus,

and as a consequence, type inhabitants need to transformed into terms in the simply

typed λ-calculus (and reconstructed into Scala code snippets). Introduction of the

succinct types calculus and the coupling of these two main phases allows solving the

type inhabitation problem effectively and efficiently.

2.4.1 Type inhabitation solver

For a given type environment Γ and a succinct type τ , we address the type inhabi-

tation problem by adding a new type declaration goal : {τ} → ⊥ (query type) and

directing the search towards an inhabitant of type ⊥. Symbol goal and type ⊥ are

fresh and previously unused, so an inhabitant of type ⊥ can only be an expression

of the form goal{e}, where e : τ . This allows directing the search for type inhabi-

tants towards a single type (that is not usable as a standard declaration) and easier

encoding of type inhabitants.

2.4.2 Pattern synthesis

In Figure 2.2 we present the algorithm that generates all succinct patterns starting

from a type Si → ti in Γi, as formulated in the definition of the CL function. The Γi

and Si → ti are initial succinct environment and the desired type, respectively.

INPUT: succinct environment Γi and desired type Si → ti
OUTPUT: Derived - set of pairs (Γ, @S:t) that are derived

Figure 2-6: Description of the input and output of the algorithm

fun Core(Γi, Si → ti, timeout) :=

Derived := ∅
Inhabitants := ∅
WorkingRequests := Requests := {(Γi, NUL, Si → ti)}
UninhabitedRequests := ∅
while (WorkingRequests 6= ∅ and ¬ timeout)

(Γ, S → t, S′ → t′) := NextRequest(WorkingRequests)

NewInhabitants :=

ExplorRequest(Γ ∪ S′, t′, Derived, Inhabitants,

UninhabitedRequests, WorkingRequests, Requests)
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PropagateInhabitants(NewInhabitants, Derived,

Inhabitants, UninhabitedRequests, Requests)

fun ExploreRequest(Γ, t, Derived, Inhabitants,

UninhabitedRequests, WorkingRequests, Requests) :=

NewInhabitants := ∅
//find all succinct types in Γ that return t

foreach (S → t) ∈ Γ

Inhabited := true

//See if we already have inhabitants for every type in S

foreach (S′ → t′) ∈ S
if ((Γ, S → t, S′ → t′) /∈ Requests)

if (Γ ∪ S′, t′) /∈ Inhabitants)

Inhabited := false

newRequest := {(Γ, S → t, S′ → t′)}
Requests := Requests ∪ newRequest

UninhabitedRequests :=

UninhabitedRequests ∪ newRequest

WorkingRequests := WorkingRequests ∪ newRequest

//Record a new inhabitant and corresponding pattern

if (Inhabited)

if ((Γ, @S:t) /∈ Derived)

Derived := Derived ∪ {(Γ, @S:t)}
if ((Γ, t) /∈ Inhabitants)

Inhabitants := Inhabitants ∪ {(Γ, t)}
NewInhabitants := NewInhabitants ∪ {(Γ, t)}

return NewInhabitants

fun PropagateInhabitants(NewInhabitants, Derived,

Inhabitants, UninhabitedRequests) :=

WorkingInhabitants := NewInhabitants

while(WorkingInhabitants 6= ∅)
(Γ, t) := NextInhabitant(WorkingInhabitants)

WorkingInhabitants := WorkingInhabitants

∪ PropagateInhabitant(Γ, t,

Derived, Inhabitants, UninhabitedRequests)

fun PropagateInhabitant(Γ”, t”,

Derived, Inhabitants, UninhabitedRequests) :=

NewInhabitants := ∅
foreach (Γ, S → t, S′ → t”)

∈ UninhabitedRequests and Γ” = Γ ∪ S′

UninhabitedRequests :=

UninhabitedRequests \ {(Γ, S → t, S′ → t′)}
//See if they can trigger new inhabitants
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if (∀ (S1 → t1) ∈ (S \ {S′ → t′}).
(Γ ∪ S1, t1) ∈ Inhabitants)

if ((Γ, @S:t) /∈ Derived)

Derived:= Derived ∪ {(Γ. @S:t)}
if ((Γ, t) /∈ Inhabitants)

Inhabitants := Inhabitants ∪ {(Γ, t)}
NewInhabitants := NewInhabitants ∪ {(Γ, t)}

return NewInhabitants

Listing 2.2: The algorithm that generates all succinct expressions (patterns) with a

given type Si → ti and the environment Γi

There are two alternating processes in the algorithm. First one explores types that

are reachable from the desired type. We use our calculus rules (in backward manner)

to determine what types are reachable. Therefore, this process goes from the desired

type. Second process synthesizes patterns and goes in the opposite direction, towards

the desired type. To form patterns we use our rules (in forward manner).

Request Exploration. The aim of this process is to discover the portion of the

search space reachable from the desired type. In Figure 2.2 we use requests to mark

the explored search space. Each request stores a tuple with Γ, a type (S → t) ∈ Γ

already explored, and a type (S ′ → t′) ∈ S that should be explored next. Let Γinit

and Sinit → tinit be initial environment and the desired type. We start with the

request (Γinit, NUL , Sinit → tinit) that initiates WorkingRequests set. In the loop we

choose the next request based on some criteria and remove it from WorkingRequests

(the function NextRequest). Second, we call ExploreRequest(Γ, t) that explores

the portion of the space reachable from t. It finds all succinct types S → t, with

T(S → t)=t, in Γ. It uses each S → t to create new requests if S 6= ∅. The requests

record the facts that types in S should be explored in the future.

Intuitively, we start from the desired type and apply the ABS and APP rules in

backward manner. Note that once we choose request (Γ, S → t, S ′ → t′) in the main

loop, we pass Γ ∪ S to ExploreRequest. The ABS rule extends Γ in the same way

if applied backwards. In the method ExploreRequest, the first foreach iterates over

all types (S → t). This corresponds to finding all t1, . . . , tn → t ∈ Γ in the APP

rule. In order for APP to succeed, we also need to check if t1, . . . , tn types can be

inhabited. Thus in the next foreach loop we iterate over those types. Note that S is

equal to t1, . . . , tn. For each such a type we create a new request, that will be explored

later (we put them in WorkingRequests set). The set Requests contains all created

requests, which prevents re-exploration and ensures termination of the algorithm.
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Another aim of the search is to reach types t that are inhabited. Type is inhabited

if A(t) is empty, or all types in A(t) are inhabited. When we reach inhabited types

they trigger a second process that discovers new inhabitant types. We next explain

this process.

Inhabitant Propagation. The goal of this process is to discover new inhabited

types. Another goal is to create and collect patterns whenever such a type is discov-

ered. As mentioned above, in method ExploreRequest, once we reach a type ∅ → t,

we know that APP succeeds. We say that t is inhabited in Γ. By the same rule,

if all types in S are inhabited for some type S → t, then t is also inhabited. The

flag Inhabited will preserve value true if the type is inhabited. Once we discovered

such a type, S → t, we create a pair (Γ, @S : t) and put it in Derived. We also

put the pair (Γ, t) into the set of all inhabited types, Inhabited. This set is used to

preserve termination. All new inhabited types in ExploreRequest are passed to the

PropagateInhabitants function. The function puts them in a working set WorkingIn-

habitants and process them one by one. The function stops once WorkingInhabitants

is empty. PropagateInhabitant takes a new inhabitant type t” and its correspond-

ing Γ” as inputs. The idea is to find all requests that need an inhabitant with type

S → t”. We find them in the “foreach” loop. Those request have the following form

(Γ, S → t, S ′ → t”). If we have inhabitant of type t” we also need to check if we can

decompose Γ” into Γ, S ′. Namely, it must hold Γ”=Γ ∪ S ′. This allows us to apply

the ABS rule in forward manner. Thus, we can conclude that Γ `s S ′ → t”, i.e.,

S ′ → t” can be inhabited. The set UninhabitedRequests keeps all requests without

inhabitant. Once we discovered a request with inhabitant, we can remove it from this

set.

The most interesting is the part that checks if new inhabitants can be derived. We

use S to find all types (S1 → t1) ∈ S. If they are all inhabited, then t is also inhabited.

This follows from the APP rule when it is applied in the forward manner. We then

create corresponding pattern. We update Inhabited and Derived in the same way like

in ExploreRequest. Finally, the function collects, returns and puts new inhabitants

into WorkingInhabitants set.

The function NextRequest chooses a request with the smallest weight. The weight

of a request is equal to the weight of a type it needs to explore.

Output of pattern synthesis

Pattern synthesis produces succinct patterns encoded in the form of proof trees. In-

Synth proof trees represent “proofs” of existence of solutions to the type inhabitation

problem - that is, they witness the existence of expressions that can indeed by re-
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constructed out of declarations from the given program environment as leafs and

type-check to the desired type. These proofs bear information that such valid ex-

pressions can be derived in the succinct types calculus but does not directly encode

how should the synthesized code snippets actually look like when given as suggestions

to the developer (syntactically correct in the domain language). Therefore, InSynth

proof trees need to include and propagate the information about correspondence be-

tween original program declarations and their succinct counterparts in order to allow

reconstruction of valid code snippets. In addition to this, proof trees also include in-

formation about the weights of program declarations to allow ranking of reconstructed

terms (see Section 2.3.4).

An example that depicts the outline of the structure of proof trees is given in

Figure 2-7.

Figure 2-7: Object diagram with an InSynth proof tree example

The proof tree consists of nodes (implemented as SimpleNode classes) that carry

the information about how to reconstruct an expression according to a program dec-

laration (given by Declaration class) from sub-expressions of types made available by

the parameters map. The parameters map represents information on how to construct

sub-expressions of a given node and maps a type (InSynth.Type) to a set of subtrees

(contained in the ContainerNode object). Each Declaration is associated with its

succinct type InSynth.Type and its corresponding Scala type Scala.Type which stores

the language-specific information that are needed for the reconstruction (and weights

for ranking).

Note that each node, represented by the SimpleNode class, carries the information

for reconstructing expressions of some type τ , that is, it encodes a set of patterns

@S1 : τ such that for each declaration in the node with succinct type τd, T (τd) = τ

holds, and for each t ∈
⋃
A(τd) there is a corresponding child ContainerNode (that

contains multiple SimpleNode nodes) that reconstructs to expressions of type t. The

root node encodes the set of all patterns that can derive the artificially introduced
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type ⊥ in the initial environment Γ, i.e. CL(Γ, τ → ⊥) where τ is the desired type.

2.4.3 Reconstruction of terms

In the following sections we will focus on the reconstruction part of the synthesis

process that has the specific role of reconstructing code snippets from proof trees.

The recursive function Rcnst-n starts from the desired type τ , the desired number

of solutions N and applies the following steps:

1. Use type τ to find appropriate declarations of the given type

2. Construct a partial expressions by instantiating bound variables (if any), while

its sub-expressions are left to be holes

3. Put partial expression into a priority queue based on their current cumulative

weights

4. Remove the expression with the smallest weight from the queue

5. If the expression is fully instantiated (with no holes), count it as a solution and

terminates if the number of found solutions is N

6. If the expression is not fully instantiated, recursively reconstruct its hole sub-

expressions

Note that the process effectively involves a weight-directed search over the proof

tree that encodes type inhabitants and needs to guarantee that the search is over when

N code snippets of the highest rank (smallest cumulative weight) are reconstructed5.

In the following sections we will explain the implementation of the reconstruction

algorithm and its integration with other modules in our tool in more detail.

Overview of the reconstruction module

In this section we will describe the implementation of the reconstruction module

which has the task of extrapolating and synthesizing code snippets from the proof

trees obtained as a result of the resolution phase and ranking them according to their

weight.

The overview of the reconstruction module is given in Figure 2-8.

The reconstruction phase starts when the type inhabitation solver phase finishes

(although its design allows starting the reconstruction phase as soon as possible and

running it in parallel with the resolution phase while receiving partial proof tree

5note that this method can terminate before inspecting the whole proof tree since weights are
strictly non-negative
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Figure 2-8: InSynth reconstruction module

updates and works on the proof tree representation. The input to the reconstruc-

tion phase besides the constructed proof trees includes the maximal execution time

(defined in terms of steps in Figure 2.1, a constraint put on the InSynth for respon-

siveness) and the number of code snippets that should be generated and suggested to

the developer.

The first step of the reconstruction phase is to extract a subtree of the proof tree

(and transform it into very similar pruned tree representation) which is guaranteed to

hold enough information for generation of sufficient number of code snippets that have

the lowest weight. The second step takes such pruned proof trees, consults embedded

information about the program environment and constructs an intermediate repre-

sentation tree which holds enough information about the structure of code (encoded

in simply typed λ-calculus) and program declarations (Scala-specific information).

The third step takes the intermediate representation tree and applies transformations

which generate a set of Scala code snippets and reports them back to the Eclipse IDE

and the developer.

Weighted search

Weighted search is the first step in the reconstruction process and its goal is to prune

the proof tree so that it encodes only the needed number N of the most optimal

combinations in terms of associated weights. The result of this step is a proof tree

that contains only a subset of nodes from the original, input proof tree such that

the belonging nodes are sufficient in constructing at least max(N,m) code snippets,

where m is the number of encoded type inhabitants, with the lowest weight that

need to be suggested to the developer 6. The rationale behind this step is that the

resolution step may, due to combinatorial explosion, output complex proof trees with

6due to the nature of succinct patterns, from one succinct pattern multiple expressions in the
domain language can be reconstructed so the pruned proof tree is guaranteed to hold information
to generate N or more code snippets
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a large number of nodes and the reconstruction phase can benefit from its pruning

to achieve better performance in consequent phases and overall responsiveness of the

typing assist. After this step, the unnecessary nodes are removed from the proof

tree and the output entails only the necessary information for construction of most

optimal solutions based on the assigned weights of program declarations.

The algorithm that accomplishes the weighted search is based on the uniform-cost

search which is a search algorithm used for traversing weighted tree structures [64].

Priority queue is used for storing partial expressions and directing the search ac-

cording to declaration weights. The search begins at the root node and continues

by visiting the next node which has the least total cost from the root. Nodes are

visited in this manner recursively, until the goal state is reached. Instead of hav-

ing a single global goal towards which the search is guided (as in the uniform-cost

search), our version of the algorithm needed to be modified since there can be multi-

ple solutions to the quantitative type inhabitation problem. When a subtree is fully

explored, its cumulative weight serves as a weighted goal for constructing an expres-

sion corresponding to that subtree. When the root of the tree is fully explored we can

compute the number of expressions that can be combined (i.e. solution snippets to

reconstruct) that are solutions of the goal (query) type. Number of expressions any

subtree can combine is equal to the sum, over all declarations, of products of number

of explored combinations for each subexpression according to given declaration. The

algorithm gradually explores nodes according to their weights (set of visited nodes

is maintained since in general there can be cycles in the proof tree and number of

traversals of recursive edges needs to be bounded), prunes the subtrees that ought to

construct expressions of weight larger than optimal and finishes when the resulting

tree contains nodes for construction of at least N expressions.

Note that the algorithm does not stop until it exhausts the priority queue of

unexplored nodes and only examines nodes that can make new optimal subtrees

(with total weight less than previously explored subtrees). This is needed since in

order to be sure that optimal solutions are found, all the nodes in the tree need to be

either pruned or dequeued and processed.

The weighted search algorithm is depicted in Algorithm 1.

The design of the algorithm allows implementation of incremental updates of proof

trees from the resolution phase (which would add unexplored nodes to the priority

queue) and it allows its implementation to support some more sophisticated policies

for nodes weight calculation (instead of summing the weights of subtree node it can

search for package declarations path matches, specific subtree pattern matches, etc.).
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Algorithm 1 Weighted search

Require: root node r
1: enqueue r
2: while queue is not empty do
3: dequeue node n
4: if n is not pruned then
5: for all nodes on the path to r do
6: update its weight
7: if pruning is enabled then
8: prune the node if needed according to their updated weights
9: end if

10: end for
11: if n is a leaf node then
12: mark the subtree as explored and propagate this information up to r
13: if number of combinations at r is ≥ N then
14: enable pruning of nodes
15: end if
16: end if
17: for all children c of n do
18: if c is not visited then
19: enqueue c
20: end if
21: end for
22: end if
23: end while
24: return r

Intermediate transformation

In the second step of the reconstruction phase, an intermediate transform is performed

on the pruned proof tree.

Figure 2-9: Intermediate representation tree example

The goal of this step is to produce intermediate representation trees which combine

program declarations and combinations encoded in proof trees and contain enough

41



information about the structure of the code to be synthesized. The resulting trees in

the intermediate representation are structurally similar to λ-calculus terms and thus

precisely encode information about abstractions and applications that form expres-

sions in the simply typed λ-calculus7.

An example of a tree in intermediate representation is given in Figure 2-9. The

example encodes a single expression in which an identifier from the program context

is applied to the function term declared in the root node abstraction.

The intermediate representation trees contain abstraction nodes which correspond

to abstraction terms in the λ-calculus but which can bind multiple terms (in order

to correspond to syntactically more powerful counterparts, functions and methods

in Scala), application nodes which represent an application in the λ-calculus (again,

the distinction is that they can include multiple parameters, like regular function

invocations in Scala), identifier nodes that represent program declarations and bound

abstraction variables. Important property of the intermediate representation is that

each node can contain multiple nodes in the place of its sub-terms - this allows

encoding multiple combinations of sub-expressions to form the expression encoded

by that node and thus efficient mapping of encoded inhabitants to multiple actuall

expressions in simply typed λ-calculus. Note that the intermediate representation

structurally corresponds to λ-calculus and thus provides the same expressive power of

λ-calculus (and thus is Turing-complete [53,58,75]). Therefore, it is more expressible

than the succinct pattern encoding which encodes only terms in the long normal form.

We will now describe the algorithm for transforming InSynth pruned proof trees

to intermediate representation trees.

Algorithm 2 Transformation procedure

Require: InSynth proof tree rooted at r
1: {r is the query node which has type (T → ⊥)}
2: return Transform(∅, r, ⊥)

The entry point to the transformation is given in Algorithm 2. Its input is the

(pruned) proof tree, more specifically its root r which encodes expression of the query

type T → ⊥, where T is the type of expressions we want to synthesize. The algorithm

initializes a typing context that defines the current typing environment visible during

the reconstruction of each subtree. It then calls the recursive Transform procedure

given in Algorithm 3 on the root node with an empty context and with ⊥ as the

goal type. Note that if an expression of type ⊥ is derived then its immediate sub-

7 the intermediate representation offers an abstract way of encoding the code structure so that
other programming languages can be supported as domain languages in the synthesis
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expressions will be of the required type T .

Algorithm 3 Transform

Require: context Γ, current node n, goal type t
1: {context Γ is the current typing context}
2: if t is of the form (X ⇒ Y ) then
3: for all type Xi in X according to real type do
4: let be fresh variable xi of type Xi

5: end for
6: let a be an abstraction that bounds all variables in X {a = (λx1 : X1.(λx2 :

X2. . . . (λxn : Xn. “ “)))}
7: for all t′ in Transform declarations(Γ ∪ (

⋃
i xi : Xi), n, Y ) do

8: return a [ “ “→ t′]
9: {plug t′ into the abstraction a in place of “ “}

10: end for
11: else
12: return Transform declarations(Γ, n, t)
13: end if

The recursive Transform, depicted in Algorithm 3 expects as inputs the current

node n in the proof tree, current typing context Γ and a goal type t, to which expres-

sions constructed from subtree n should type-check to. It simply checks the form of

t and updates the typing context accordingly (at the first call, t is equal to the query

type):

if t is not a function type according to the App rule (given in Figure 2-3), t rep-

resents the type derived from the patter @{t1, . . . , tn} : t and the transformation

proceeds immediately recursively to get sub-expressions of types t1, . . . , tn

if t is a function type X → Y t represents S → t according to the Abs rule so an

abstraction terms needs to be formed in order to introduce variables of types

found in S and the transformation proceeds recursively to get sub-expressions

of type t under the updated context

The recursive transformation in both cases is achieved with a helper procedure given

in Algorithm 4, which scans the available declarations in the current node and current

context in order to transform sub-expressions.

The Transform declarations procedure scans declarations at the given node and

the context to find suitable declarations that can transform to the goal type given as a

parameter. Such declarations may be returned immediately in the case of an identifier

or bound variable nodes (do not require application to them) or as applications of

recursively transformed parameters of appropriate type.
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Algorithm 4 Transform declarations

Require: context Γ, current node n, goal type t
1: search for declarations that can return Y type in declarations contained in the

node n and in Γ
2: denote the result set of declarations as D
3: for all declarations d from D do
4: if d has no parameters then
5: return identifier or bound variable node for d
6: else
7: for all parameters pi of type ti in d do
8: for all child nodes n′ that are contained in container node parameters(ti)

do
9: let Si be the result of Transform(Γ, n′, Y ) {set of nodes that represent

sub-expressions of type tp}
10: end for
11: end for
12: return application node (d S1 S2 . . .Sn) {if d has n parameters}
13: end if
14: end for

Code snippet generation

The code snippet generation represents the final phase done in the reconstruction

module and it takes a tree in the intermediate representation as input and produces

code snippets in the target language as output, ranked according to their weight.

This step is based on a tree traversal transformation algorithm which traverses

the intermediate representation tree and produces a set of code snippets. Since the

intermediate representation tree encodes the program structure and also allows mul-

tiple sub-trees in its abstraction and application nodes, the code snippet generation

step has to consider and collect every possible expression that is included in the inter-

mediate representation tree. It outputs only the needed number of N snippets with

the lowest weight, where N is the parameter to the synthesis process, in the non-

decreasing order according to their weights and discards other snippets. Note that

this needs to be done since intermediate representation encodes solutions in terms of

combinations of subtrees and in general cannot encode the exact number of N needed

solutions. Therefore the number of encoded solutions is always bounded from below

by N (if sufficient number of solutions actually exists, otherwise all encoded solutions

can be reconstructed and returned).

Although the intermediate representation precisely encodes the structure of code

snippets to be generated in terms of λ-calculus terms, the code snippet generation

step has to consult the information provided by the program declarations in order
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to be able to generate syntactically correct code and also to be able to simplify the

resulting code as much as possible. These language-specific transformations depend

on the adopted target language and in the case of Scala, include usage of necessary

syntactical constructs (e.g. keyword new for construction of new objects, parenthe-

ses for currying), optional syntactic sugar instances (e.g. omitting dot, parentheses

and apply in certain method calls) and general simplification steps (e.g. omitting of

explicitly given types to expressions).

Resulting code snippets are encoded as a set of Scala pretty print documents

(Scala.text.Document objects) which are then transformed by custom-indentation de-

fined properties to strings and reported back to the IDE (the output of such objects

can be then processed with Scala format and refactoring libraries in order to have

visually better suggestions reported to the developer, as described in architecture

section in [28]).

2.4.4 Implementation in Eclipse

We implemented InSynth as a plugin for Eclipse IDE for Scala [28] that extends

the Eclipse code completion feature for automatic generation of well-typed Scala

expressions [2]. It enables developers to accomplish a complex action with only a few

keystrokes: declare a name and type of a term, invoke InSynth, and select one of the

suggested expressions.

InSynth provides its functionality in Eclipse as a contribution to the standard

Eclipse content assist framework and contributes its results to the list of content

assist proposals. These proposals can be returned by invoking the content assist

feature when Scala source files are edited (invoked with Ctrl + Space). If the code

completion is invoked at any valid program point in the source code, InSynth attempts

to synthesize and return code snippets of the desired type. Only the top specified

number of choices are displayed as proposals in the content assist proposal list, in

the order corresponding to the snippet ranking. InSynth supports invocation at the

place right after declaring a typed value, variable or a method, i.e. in the place of

its definition and also at the place of method parameters, if condition expressions,

and similar (where the type can be inferred). InSynth uses the Scala presentation

compiler to extract program declarations and imported API functions visible at a

given point. InSynth can be easily configured though standard Eclipse preference

pages, and the user can set maximum execution time of the synthesis process, desired

number of synthesized solutions and code style of Scala snippets (in terms of omitting

unnecessary parentheses, using method name shorthands, etc.). InSynth is available

for download and is currently maintained as a part of the Eclipse Scala IDE plugin [2].
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2.5 Correctness of the approach

In this section we define and prove correctness properties of our approach to solving

the type inhabitation problem in the succinct types calculus and show that those

properties are preserved in the implementation of InSynth.

2.5.1 Soundness and completeness of succinct calculus

The calculus defined in Figure 2-3 is sound and complete with respect to synthesis

of lambda terms in long normal form. This represents an important claim for this

work. In the sequel we will present two theorems that define correctness properties of

the synthesis approach but omit their more formal counterparts and detailed proofs

which can be found in the original paper and the associated technical report [26].

The following two important theorems are defined:

Theorem 2.5.1 (Existence lemma) If Γo `λ e : τ is a judgment in long normal

form then σ(Γo) `S σ(τ).

This lemma states that for every derivable expression in λ-calculus an equivalent

pattern will be found in the succinct types calculus. That is, for each judgement in

the long normal form derived in the standard λ-calculus, an equivalent judgment in

the succinct types calculus can also be derived. This effectively establishes a relation

between expressions in λ-calculus and proof trees constructed with the succinct types

calculus and allows an implementation to (efficiently) check existence of proof tree in

the succinct types calculus to decide the type inhabitation problem.

Theorem 2.5.2 (Soundness and Completeness) If Γo `λ e : τ is a judgment in

long normal form then the following holds:

Γo `λ e : τ ⇔ e ∈ RCN(Γo, τ,L(e))

This theorem is amenable to justification of soundness and completeness of the overall

approach and synthesis process. With respect to the implemented reconstruction

algorithm, a term will be reconstructed (and thus a candidate snippet will be offered

to the developer) if and only if the term can be derived in λ-calculus.

From the fact that InSynth reasons only about the subset of Scala encodeable in

the λ-calculus, the soundness and completeness of proof directly applies.
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2.5.2 Soundness and completeness of the implementation

To claim that the implementation of the approach to synthesis driven by types is

correct, we show that both modules that comprise InSynth as well as their coupling

satisfy correctness properties given in the previous section.

The implementation of the pattern synthesis algorithm directly follows the algo-

rithm for finding type inhabitatnts in succinct types calculus presented in Section

2.4.2. The algorithms incrementally searches the space of type inhabitants by ap-

plying rules given in Figure 2-3, thus it can be easily shown that it preserves both

soundness and completeness.

In order to be correct, the reconstruction needs to reconstruct encoded solutions

(and only those) into valid code snippets in the domain language. Generated code

snippets are valid if under an assumption that proof trees obtained from the type

inhabitation solver phase encode valid expressions and include correct program dec-

larations (this follows from the correctness of the solver), the reconstruction phase

synthesises code snippets that, when inserted at the given program point, type-check

to the given type and the overall program compiles successfully. We need to show

that soundness and completeness theorem defined and proved in Section 2.5.1 holds

with respect to the implementation of the reconstruction phase.

We will claim that each step of the reconstruction phase retains the correctness

properties:

weighted search This step performs pruning of the initial proof tree in a way that

guarantees at least N expressions to be combined8. The pruned proof tree

represents a subset of nodes from the original proof tree in such a way that the

structure of that subtree is preserved, thus the set of expressions encoded in the

pruned proof tree must be a subset of set of expressions encoded in the original

proof tree.

intermediate transform The intermediate transform directly follows the definition

of succinct types calculus rules for the transformation. Thus, the correctness

of this step directly depends on the correctness of the succinct types calculus

rules and the correspondence between encoded succinct and program declara-

tions. Under the assumption of correctness of the extraction phase and the type

inhabitation solver phase, since the transformation is done according to actual

program declarations, the intermediate transform trees encode the correct ex-

pressions, i.e. type inhabitants.

8if at least N type inhabitants are found and encoded
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code snippet generation This step relies on properties of the target programming

language (Scala) and a valid transformation defined by programming language

syntactic rules and syntactic sugar instances thus the correctness properties

must be preserved.

Quantitative type inhabitation

An important correctness property that complements completeness and soundness is

the one that states that the synthesis approach driven by types and weights solves

the quantitative type inhabitation problem (as presented Section 2.3.4). With respect

to the weight function that gives a non-negative value to each program declaration

visible in the scope, when given number of N desired code snippets as a parameter, the

synthesis indeed returns only max(N,m) code snippets, where m is the total number

of valid type inhabitants, that have the lowest weights and ranks them accordingly.

From the observation that both the search for type inhabitants and code snippet

reconstruction is directed by weights, we can conclude that this property is satisfied.

2.5.3 Completeness of synthesis of expressions in long nor-

mal form

The succinct types calculus rules, given in Figure 2-3, define derivation of terms

in the long normal form. This effectively means that the set of derivable terms

cannot include all terms expressible in the λ-calculus and Scala due to the inherent

constraints of the long normal form. This includes all terms with functions, lambda

terms in simply typed λ-calculus, at the top level. Note that abstractions terms can

be generated, but only in places of a direct application to terms found in the initial

environment.

An important question is whether we can achieve completeness of synthesized

code in the Scala language when deriving new terms with succinct types calculus

rules and whether this is true if we limit our reasoning to purely functional subset of

the Scala language. Due to the limitations of succinct types calculus to generate only

expressions in the long normal form, a straightforward conclusion is that InSynth is not

complete with respect to expressive power of the Scala language. Furthermore, we can

show that our approach is not complete even when we consider extensional equality

between terms. Extensional equality captures the mathematical notion of the equality

of functions: two functions are equal if they always produce the same results for the

same arguments [75]. The extensional equality of two terms translates to equivalence

of behavior of the two expressions under the η-reduction rules [58]. Although, due to
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succinct types calculus rules defined in Figure 2-2, InSynth can synthesize only terms

in the long normal form and is not capable of synthesizing every possible expression,

nor its extensional equivalent, that could be otherwise typed by the developer. The

specific treatment of application terms limit the expressiveness of application terms

to an identifier (or a bound variable).

We argue that InSynth can synthesize behaviorally (extensionally) equivalent ex-

pressions in the long normal form of all expressions otherwise typable by the devel-

oper, only when we restrict our reasoning to the purely functional subset of Scala.

The simple expression (λx : Int.x) y which corresponds to Scala code snippet ((x:Int)

=> x)(y) (which type-checks successfully to Int if y: Int) cannot be synthesized in

InSynth, but its behavioral equivalent (λx : Int.x)[x→ y] or in Scala, just the literal

y, can. In the cases in which we do not restrict the domain of Scala to its purely

function subset, term y can include side effects that modify the environment (e.g.

mutate a data structure or do input/output). If that is the case then the observed

results in cases of evaluating ((x:Int) => x)(y) and y may not be the same.

The aim of our synthesis procedure was to achieve practical value and good per-

formance of synthesizing all code snippets that can be useful to developers in practice.

Inclusion of succinct types calculus allowed us to achieve this but also restricted us

to synthesizing expressions in the long normal form and remain complete only in

the domain of purely functional subset of Scala. However, from our experience and

from the results of the evaluation presented in section 2.6, we can conclude that we

achieved these main goals even with these imposed constraints.

2.5.4 Example of S combinator synthesis

It is interesting to analyze the expressiveness of InSynth by giving it to synthesize

desired types that could lead to synthesizing combinators from the SKI combina-

tory logic [17]9. Combinatory logic may be viewed as a subset of lambda calculus,

the theories are largely the same, becoming equivalent in the presence of the rule

of extensionality. The SKI combinatory logic contains the same expressive power as

lambda calculus and the logic is variable free, i.e. the abstractions are not part of

the logic. Combinators from the SKI combinatory logic can be composed to produce

combinators that are extensionally equal to any lambda term (and therefore to any

computable function whatsoever). The process of obtaining an expression in com-

binatory logic from any given λ-calculus term can be achieved with the abstraction

elimination procedure [75]. InSynth is capable to synthesize combinators from the

9many examples in the literature refer to the combinatory logic as SKI, in spite of the fact that
combinators S and K provide completeness of the theory, while I can be expressed as I = S K K
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SKI combinatory logic, when the appropriate desired type is specified.

We will give an example of the reconstruction process in InSynth, show its inter-

mediate outputs and final results, for the case of synthesis of the S combinator from

the SKI logic [75]. The S combinator is defined as (S x y z) = (x z (y z)) and

by its nature it does not require any predefined program declarations, i.e. it can be

synthesized with the empty program environment10.

The Scala declaration with type of the S combinator (instantiated appropriately

with Scala types Int, Char, String ) can be given as

With an empty initial environment this type has only one type inhabitant which is

encoded by a succinct pattern found in three steps of the pattern synthesis algorithm.

The resulting proof tree as the output of the resolution phase is given in the fol-

lowing figure and it represents nested applications of terms introduced in the context

(by the Abs rule).

In this particular example the weighted search phase does not affect the tree since

there is only one valid expression to be synthesized. The intermediate transformation

phase produces a tree that in this case completely corresponds to the λ-calculus

encoding of the S combinator.

The last phase of the reconstruction phase produces the following Scala code

snippet which successfully type-checks when inserted as the definition of the declared

value S.

2.6 Evaluation of the effectiveness of InSynth

In this section we will present results of the evaluation of effectiveness of InSynth

when synthesizing code snippets in practical scenarios and by analyzing statistics

10the S combinator is structurally the most complex from the SKI combinator set
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of obtained results, argue that InSynth is able to synthesize valid and desired snip-

pets and can indeed be useful to developers in practical software development. This

section focuses on benchmarks that measure how effective InSynth is in synthesizing

code snippets that are removed from existing source code. Note that benchmarks

that use InSynth for synthesis and focus on synthesizing correct code with respect to

specifications is presented in Chapter 4.

2.6.1 Creating benchmarks

There is no standardized set of benchmarks for the problem that we examine, so we

constructed our own benchmark suite. We collected examples primarily from http:

//www.java2s.com/. These examples illustrate correct usage of Java API functions

and classes in various scenarios. We manually translated the examples from Java

into equivalent Scala code. Since only single class imports are used in the original

examples, we generalized the import statements for the benchmarks to include more

declarations and thereby made the synthesis problem more difficult by increasing the

size of the search space.

One idea of measuring the effectiveness of a synthesis tool is to estimate its ability

to reconstruct certain expressions from existing code. We arbitrarily chose some

expressions from the collected examples, removed them and marked them as the

goal expressions that need to be reconstructed (we replaced them with a fresh value

definition if the place of the expression was not valid for InSynth invocation). The
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resulting benchmark is a partial program, similar to a program sketch [67]. We

measure whether a InSynth can reconstruct an expression equal to the one removed,

modulo literal constants (of the integer, string, and boolean type). Our benchmark

suite is available for download from the InSynth web site.

2.6.2 Corpus for computing symbol usage frequencies

Our algorithm searches for those typed terms that can be derived from an initial

environment and that minimize the weight function. To compute initial weights we

use the technique presented in Section 2.3.4. This technique requires, among other

things, an initial assignment of weights to certain terms. In order to derive the

knowledge corpus which dictates this initial weight assignment, we mined declaration

usage statistics from 18 Java and Scala open source projects11. Table 2.4 lists those

projects together with their description.

Project Description

Akka Transactional actors
CCSTM Software transactional memory

GooChaSca Google Charts API for Scala
Kestrel Tiny queue system based on starling
LiftWeb Web framework

LiftTicket Issue ticket system
O/R Broker JDBC framework with support for externalized SQL
scala0.orm O/R mapping tool
ScalaCheck Unit test automation

Scala compiler Compiles Scala source to Java bytecode
Scala Migrations Database migrations

ScalaNLP Natural language processing
ScalaQuery Typesafe database query API

Scalaz ”Scala on steroidz” - scala extensions
simpledb-scala-binding Bindings for Amazon’s SimpleDB

smr Map Reduce implementation
Specs Behaviour Driven Development framework

Talking Puffin Twitter client

Table 2.4: Scala open source projects used for the corpus extraction.

One of the analyzed projects is the Scala compiler, which is mainly written in the

Scala language itself. In addition to the projects listed in Table 2.4, we analyzed the

Scala standard library, which mainly consists of wrappers around Java API calls. We

extracted the relevant information only about Java and Scala APIs, and ignored infor-

mation specific to the projects themselves. In overall, we extracted 7516 declarations

and identified a total of 90422 uses of these declarations. 98% of declarations have

less than 100 uses in the entire corpus, whereas the maximal number of occurrences

of a single declaration is 5162 (for the symbol &&).

11note that these Scala projects involve heavy usage of the common Java API
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2.6.3 Platform for experiments

We ran all experiments on a machine with a 3Ghz clock speed processor and 8MB

of cache. We imposed a 2GB limit for allowed memory usage. Software configura-

tion consisted of Ubuntu 12.04.1 LTS (64b) with Scala 2.9.3 (a nightly version), and

Java(TM) Virtual Machine 1.6.0 24. The reconstruction part of InSynth is imple-

mented sequentially and does not make use of multiple CPU cores.

2.6.4 Measuring overall effectiveness

In each benchmark, InSynth was invoked at valid program points corresponding to

the missing (goal) expressions. InSynth was parametrized with N = 10 and used a

time limit of 0.5s seconds for the core type inhabitation solver and 7s for the overall

reconstruction process . By using a time limit, our goal was to evaluate the usability

of InSynth in an interactive environment (what IDEs usually are).

We ran InSynth with the aforementioned configuration on the set of 50 benchmarks.

Results are shown in Table 2.5. The Size column represents the size of the goal

expression in terms of number of declarations in its structure, as c/v, where c is the

size when coercion functions are counted and v is the size with respect to visible

declarations. The #Initial column represents the number of initial type declarations

that InSynth extracts at a given program point and gives to the solver (size of the

search space). The following columns are partitioned into three groups, one for each

variant of the synthesis algorithm - the algorithm with no notion of term weights,

the algorithm with term weights but without the knowledge corpus (presented in

Section 2.6.2) and finally the full algorithm, with weights application of the knowledge

corpus for initial weight assignments. In each of these groups, Rank represents the

rank of the expression equal to the goal one, in the expression list returned by the

algorithm, and Total represents overall execution time of the synthesis algorithm. The

distribution of the execution time between two main parts of the algorithm is shown

in columns Prove and Recon, for the prover and reconstruction part, respectively. The

last column group gives execution times of two state-of-the-art intuitionistic theorem

provers (Imogen [49] and fCube [21]) employed for checking provability of inhabitation

problems for the benchmarks, encoded as formulas in appropriate syntax.

Table 2.5 clearly shows the differences in both effectiveness and execution time

between the variants of the algorithm. Firstly, the table shows that the algorithm

without weights does not perform well and finds the goal expressions in only 4 out

of 50 cases and executes by more than an order of magnitude slower than the other

variants. This is due to the fact that without the utilization of the weigh function
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to guide the search, the search space explodes while the reasonable solutions are not

found due to maximum snippet and/or time limit. Secondly, we can see that adding

weights to terms helps the search drastically and the algorithm without corpus fails

to find the goal expression only in 2 cases. Also, the running times are decreased

substantially. In 33 cases, this variant finds the solution with the same rank as the

variant which incorporates corpus, while on 4 of them it finds the solution of a higher

rank. This suggests that in some cases, synthesis does not benefit from the derived

corpus - initial weights defined by it are not biased favorably and do not direct the

search toward the goal expression.

The times for Imogen and fCube provers shown in the table are the measured

execution times of checking provability of benchmarks encoded as appropriate formu-

las. The encoding was produced from initial declarations visible at the corresponding

program points (that are otherwise fed to InSynth). We can see that the difference

in times spent in the Prove part of InSynth and those of Imogen and fCube is not

negligible and in favor of InSynth - up to 2 orders of magnitude in case of Imogen

and up to 4 orders of magnitude in case of fCube. Reconstruction of terms in Imogen

was limited to 10 second and Imogen failed to reconstruct a proof within that time

limit in all cases. The results show that, in case of the full weighted search algorithm

with knowledge corpus, the goal expressions appear in the top 10 suggested snippets

in 48 benchmarks (96%). They appear as the top snippet (with the rank 1) in 32

benchmarks (64%). Note that our corpus (Section 2.6.2) is derived from a source

code base that is disjoint (and somewhat different in nature) with the one used for

benchmarks. This suggests that even a knowledge corpus derived from unrelated code

increases the effectiveness of the synthesis process; specialized corpus would probably

further increase the quality of results.

In summary, the expected snippets were found among the top 10 solutions in a

large number of cases and in a relatively short period of time (on average just around

145ms). These results suggest that InSynth is effective in quickly finding (synthesizing)

the desired expressions at various places in source code.
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Chapter 3

Lazy approach to reconstruction

In this chapter we present the idea of lazy enumeration of reconstructed type inhabi-

tants. The idea aims to replace the eager approach implemented for the reconstruction

phase of InSynth, presented in Section 2.4.3, in order to allow reconstructing terms

without shortcomings introduced by the eager approach. We call the reconstruction

presented in previous chapter eager, because it requires the number of desired code

snippets N as a parameter and reconstructs N snippets at once, by traversing a sub-

tree of the given proof tree that is guaranteed to encode N type inhabitants of the

highest rank. Note that the traversal requires the number of desired snippets as a

parameter and always tries to reconstruct a list of snippets eagerly. This may pose a

problem if an appropriate parameter N is not known a priori or if there is an infinite

number of encoded type inhabitants to reconstruct.

Lazy enumeration of reconstructed expressions is implemented within the InSynth

reconstruction phase in order to allow integration into progressive synthesis and ver-

ification steps that is used in the core of our approach to synthesizing correct code

with respect to specifications, presented in Chapter 4. It represents an important

modification to synthesis driven by types and weights and is required in order to

make the synthesis driven by specifications practically feasible with InSynth as an

underlying synthesizer.

We present two flavors of enumeration of reconstructed type inhabitants: un-

ordered and ordered. Both approaches guarantee that a type inhabitant is eventually

enumerated if it is encoded in the proof tree, while the ordered flavor additionally

allows imposing an ordering on the enumeration of inhabitants according to an arbi-

trary weight function.
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3.1 Lazy enumeration of lambda calculus terms

This section presents techniques for achieving lazy enumeration of reconstructed type

inhabitants. Using techniques for building a stream that traverses the proof tree

incrementally, on demand, only when the next element is enumerated, we define an

approach that can be used for the implementation of reconstruction module, presented

in Section 2.4, to allow lazy enumeration of reconstructed code snippets.

3.1.1 Motivation

The reconstruction phase of the synthesis algorithm presented in Chapter 2 uses the

set of found patterns (proof trees that witness succinct terms) and the original type

environment to reconstruct lambda terms that these pattern encode with respect to

the original type environment. The reconstruction algorithm is presented in Section

2.4.3. This algorithm is eager, in the sense that it tries to reconstruct a certain

number of solutions while being bounded by a certain input parameter (the maximal

depth of the tree traversal during reconstruction or the needed number of terms to

reconstruct).

Although InSynth succinct trees can encode infinitely many lambda terms that

are in long normal form, the algorithm presented in Section 2.4.3 needs to terminate

regardless of how many lambda terms are encoded (and thus can be reconstructed).

The termination of the reconstruction algorithm is guaranteed by specifying the (fi-

nite) depth d for the reconstruction process so that it terminates after following at

most d edges from the root of the proof tree (that is the chain of function invocations

is at most d) or after reconstructing a (finite) number n of terms (as it is actually

implemented). Both of these parameters that ensure termination incur the same

limitation to the algorithm.

Due to the eager nature of the reconstruction algorithm, there is a significant

limitation, inherent to it. The reconstruction algorithm enumerates all lambda terms

that can be constructed by traversing succinct trees up to the specified depth (or until

the specified number of terms is found) thus the reconstruction is done eagerly and

can only be bounded by the given input parameter. This means that in cases where

the parameter is not specified (or the bound is large), the reconstruction algorithm

reconstructs will try to reconstruct all encoded solutions. In the cases in which

succinct trees encode infinitely many solutions, this procedure will not terminate. For

practical purposes the eager approach is usually sufficient and this inherent limitation

does not impose problems in finding useful code snippets (in Section 2.6 it was shown

that the reconstruction algorithm achieves very good results). However, there are
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cases in which there is no predefined number that is expected to lead to reconstructing

(enough) useful terms and in those cases this poses a serious limitation. The idea

behind the approach to code generation driven by specifications can produce such

cases (and it usually does since the motivation is to synthesize recursive functions

which incur infinitely many expressions for synthesis). It relies on the ability to

progressively reconstruct terms regardless of how many terms are encoded in the

proof tree.

In the following section we will present an example of a synthesis problem on

practical example in which this limitation prevents reconstructing useful expressions.

Motivating example

We will present an example in which the eager reconstruction algorithm cannot ef-

ficiently reconstruct the required number of terms. For the following program, the

produced proof tree contains many recursive edges. This usually encodes that an

application term f , f can be applied to itself, so that e.g. the result f(f(f(. . .)))

is a valid term of the right type. The eager algorithm searches for a proof subtree

that encodes sufficient number of terms, and in this example, it needs to traverse

recursive edges to inspect terms encoded by them. As we will show, with traversing

recursive edges, the number of terms eligible for reconstruction from the visited nodes

can dramatically explode.

The following example represents code for concatenation of two lists, where lists

are represented with their common algebraic data type representation usually found

in functional programs (functions Cons and Nil).

Algebraic data type of lists (which is recursive) can be given in Scala as:

sealed abstract class List

case class Cons(head: Int, tail: List) extends List

case class Nil() extends List

Listing 3.1: Definition of lists

Next, we define a function that returns content of a list as:

def content(l: List) : Set[Int] = l match {
case Nil() => Set.empty

case Cons(head, tail) => Set(head) ++ content(tail)

}

Listing 3.2: Content of a list
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And define a function for concatenation of two lists as1:

def concat(l1: List, l2: List) : List = ({
(l1, l2) match {
case (Nil(), ) => l2

case ( , Nil()) => l1

case (c1: Cons, c2: Cons) =>

Cons(c1.head, concat(c1.tail, c2))

}
}) ensuring(res => content(res) == content(l1) ++ content(l2))

Listing 3.3: Concatenation of two lists

Notice that the function in this example is implemented as a (complex) control

flow (match) expression and represents the class of programs that we aim to synthesize

in our approach.

Now, if we try to synthesize the expression of the third case statement, i.e. invoke

InSynth at the placeholder of hole in the following code:

def concat(l1: List, l2: List) : List = ({
(l1, l2) match {
case (Nil(), ) => l2

case ( , Nil()) => l1

case (c1: Cons, c2: Cons) =>

}
}) ensuring(res => content(res) == content(l1) ++ content(l2))

Listing 3.4: Code with a cursor for synthesis invocation

The code snippet that we removed, Cons(c1.head, concat(c1.tail, c2)) cannot be

reconstructed because of the explosion in the number of (distinct) terms that need

to be included in the set of reconstructed terms. Although the eager reconstruction

does pruning of proof trees based on the number of terms already found in the search

and their weights, this does not help because the explosion occurs before the pruning

can take effect.

In spite of this example being simplified (declarations were removed to narrow

down the initial environment), it reflects the issues of eager reconstruction in cases of

recursive programs and the explosion of number of terms to reconstruct.

The proof tree produced as a solution to this instance of the type inhabitation

problem in succinct calculus is given in the following figure.

1concatenation function could be defined with only two cases, but the given one can return early
if either of the two argument lists is Nil
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Figure 3-1: Proof tree produced for synthesis in the context as shown in Listing 3.4.
Recursive edges are depicted as thin dashed edges, while thick dashed edges represent
ommited subtrees.

Although the tree looks relatively small, we can see that a part of the proof tree

contains a lot of edges. The proof tree encodes the information that in order to

inhabit the ⊥ type we need to apply a term to the Query (a unique declaration

introduced for the synthesis algorithm, as shown in Section 2.4.1). This term needs

to be of type List and there are three subtrees that can reconstruct a term of type

List - the ones that apply concat, coercion from Nil and coercion from Cons at top

level. Only the first subtree is denoted in full in the figure, while the other two

subtrees are omited for brievity. We can see that the first subtree can be used to

reconstruct terms such as concat(Nil, l1.tail) without following recursive edges and

concat(Nil, concat(Nil, l1.tail)) when recursive edges are followed. Note that although

some subtrees represent application of terms (e.g. the figure shows two nodes that

apply coercion function Cons as List and tail), they cannot be merged into a single

node in general since they are used in different contexts which may have different

type environments. Also note that some two reconstructed terms may be different

but behave equivalently (e.q. Cons(l1.head, l1.tail).tail and l1.tail).

We can get a feeling of the explosion of the terms to be reconstructed by counting

the number of different terms encoded by the proof tree presented in Figure 3-1.

Without following recursive edges, we can reconstruct 90 different terms in total.

When following each recursive edge only once, we can reconstruct 47568 terms. When
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following recursive edges two times this goes to staggering 11370283916 terms! If for

reconstructing the desired snippet we need to follow recursive edges two times (e.g.

in cases of expressions with two recursive calls chained) the synthesis may become

practically unfeasible.

We conclude that the eager approach to reconstruction of terms is not suitable

in cases when we do not have a fixed, specific number of solutions in mind and

even practically unfeasible in some cases. The approach to code synthesis driven by

specification has the idea of progressively getting code snippets from a source, such as

the synthesis process driven by types and weights used in this example, and inspecting

them to determine whether they are useful or not. It therefore cannot predetermine

any particular (finite) number to pass to the eager reconstruction algorithm (even

if it could, the approach would not be practical). A different approach to term

reconstruction is needed. This leads to an idea to reconstruction approach in which

reconstructed terms could be lazily enumerated, such that no term is reconstructed

(and corresponding subtrees of the proof tree are visited) if they are not explicitly

asked for, i.e. if they are not enumerated. Regardless of the limitation of eager

reconstruction, addressing this problem by allowing lazy traversal and enumeration

represents an interesting (and by no means easy) problem from both the theoretical

perspective and implementation.

3.1.2 Algorithms

The goal of lazy enumeration is to provide a systematic way of ordering resulting

terms of the reconstruction process in a way such that the terms can be progressively

reconstructed and enumerated. While traversing the proof tree, the reconstruction is

performed only on the those subtrees that need to be used for reconstructing of the

term being enumerated. This means that terms can be enumerated one by one, in

some predefined order, and the actual reconstruction is performed only when needed.

The idea of lazy enumeration is closely related to the lazy evaluation in program-

ming language theory. Lazy evaluation delays evaluation of procedure arguments until

the last possible moment (e.g., until their values are required by a primitive opera-

tion) and which allows avoiding of repeated computations (i.e. sharing) [3]. As we will

see next, the implementation of lazy enumeration of expressions from proof trees is

natural and easier to define with the lazy evaluation semantics (which Scala language

supports). Lazy evaluation corresponds to call-by-name argument passing defined

in the operational semantics [58]. Lazy evaluation combined with memoization is

sometimes referred to as call-by-need argument passing, in contrast to call-by-name

argument passing (implementations of call-by-name are similar to non-memoized lazy
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evaluation) [3].

Two most important benefits of lazy evaluation that are amenable to our approach

to lazy enumeration of reconstructed terms are the increase of performance due to

avoiding repeated reconstruction of same subtrees of the proof tree and the ability to

construct an enumerable lazy stream (sometimes called lazy list [3]) that can encode

infinite number of reconstructed terms.

Scala provides the possibility to construct lazy streams [53]. In Scala, streams

can be constructed with a value (or a sequence of values that represent the intially

enumerated elements) together with a function that is invoked when new elements

need to be enumerated. Having such mechanism for constructing streams is very

useful and provides means for construcing stream that enumerate inifinite sequences

of values (the provided function can generate infinitely many values). The Stream

class in Scala incorporates these mechanism and also employs memoization such that

previously computed values can be stored and converted from Stream elements to

concrete values [53].

The main goal is to allow traversal of any subtree of the proof tree and reconstruc-

tion of partial expressions only when needed and their memoization, so that those

partial expressions can be reused later. This allows progressive traversal and recon-

struction process when the values need to be enumerated and amortization of the

cost of each subterm reconstruction over total number of times the subterm appears

in the reconstructed terms.

Stream utilities

In order to define the reconstruction process that produces a stream of terms which

allows lazy enumeration, we present few simple objects that are used in the recon-

struction process. The goal of these algorithms is to construct stream objects from

the given parameters which encode appropriate streams. Classes of these objects in

Scala implement a Streamable[T] trait which produces a stream of values of type T.

We will denote a stream that enumerates values a, b, c, . . . in that order with

〈a, b, c, . . .〉.

Singleton stream This stream encapsulates a single value into a stream (of finite

size 1) and serves for transforming leaf terms in the reconstruction.

Algorithm 5 Singleton stream

Require: value v
1: return 〈v〉
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Round robbin stream Produces a stream of values out of streams received as

inputs, such that every value that could be enumerated by any of those input streams

will also be enumerated by the produced stream, at some point of enumeration (even-

tually).

Algorithm 6 Round robbin

Require: array of streams s1, . . . , sn
1: for each si, i = 1, . . . , n make a stream iterator iti
2: ind = 0, values = 〈〉
3: while at least one iterator has next do
4: if itind has next then
5: add next value of itind to values
6: forward iterator itind
7: end if
8: ind = (ind+ 1) mod n
9: end while

10: return 〈 values 〉

For the sake of simpler presentation, stream of values computed by Algorithm

6 that belong to the stream are given as being computed eagerly (and such that

this computation may not halt), but the actual implementation constructs a Scala

stream with a function that gets one value. This process is repeated on each value

enumeration and the values are streamed lazily, on demand.

Mapper stream Mapper stream takes a stream s of type T and a mapping function

f : T → U and produces a stream with values from s mapped with f .

Algorithm 7 Mapper

Require: stream s, mapping function f : T → U
1: { apply f to each enumerated value of s to produce a lazy stream }
2: return 〈 f(s(0)), f(s(1)), f(s(2)), . . . 〉

It represents a simple but necessary algorithm which is needed for constructing

the solution stream in the reconstruction phase.

Binary stream Binary stream takes as input two streams, enumerating values of

types T and U , and a function, a binary operator f of type (T, U)→ V and produces

a stream of values of type V which represent application of f to each combination of

values that can be enumerated from these two input streams.

The algorithm is given in a high level for the sake of simpler presentation. The

main idea is to split the construction of the resulting stream into construction of
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Algorithm 8 Binary stream

Require: non-empty streams s1, s2, binary operator f
1: let n1, n2 be the lengths of streams s1, s2 respectively
2: let sa be a stream of values 〈f(s1(1), s2(1)), f(s1(1), s2(2)) , f(s1(2), s2(2)),
f(s1(2), s2(3)), . . .〉, i.e. values f(s1(i), s2(j)) where i = 1, . . . , n1, j = i, . . . , n2

{combinations of all values s1(i) and s2(j) where i ≤ j}
3: let sb be a stream of values 〈f(s1(2), s2(1)), f(s1(3), s2(1)) , f(s1(3), s2(2)), . . .〉,

i.e. values f(s1(i), s2(j)) where i = 1, . . . , n1, j = 1, . . . , i − 1 and j < n2

{combinations of all values s1(i) and s2(j) where i > j}
4: return stream of values 〈sa(1), sb(1), sa(2), sb(2), . . .〉

two streams - sa and sb in the algorithm. Let us denote ranks of enumerated values

from s1 and s2 with i and j. Stream sa contains results of f applied to combinations

of all enumerated values from s1 and s2 where i ≤ j. Similarly stream sb contains

combinations of all enumerated values where i > j. Due to these conditions on i and

j are disjunctive, the two streams sa and sb enumerate disjunctive combinations of

values from s1 and s2 and alternating between enumerating values from them produces

the needed resulting stream. The resulting stream enumerates applications of f to all

combinations of values with ranks i and j (where i ≤ j together with i > j) so each

needed value can be enumerated eventually. Note that we denote lengths of streams

by n1 and n2. Even though streams may be infinite, the resulting stream is such that

values are enumerated lazily so this does not impose an issue in the implementation.

Binary streams are used in reconstruction of function applications, where we want

to enumerate all possible combinations of parameters applied to a function. Note that

this stream can be infinite (if a parameter can be an application of the same function)

that is why its values have to computed lazily.

3.1.3 Reconstruction using streams

To achieve the goal of streaming reconstructed terms, the reconstruction phase of

InSynth needs to be altered to construct lazy streams. The process of reconstruction

using streams is done after the intermediate transformation step (Section 2.4.3), i.e.

it takes as an input the intermediate representation of proof trees (like the example

given in Figure 2-9) and produces a stream of reconstructed lambda terms. An

intermediate representation tree represents a proof tree translated to encode terms

λ-calculus. It can encode many terms and the size of produced stream is the number

of those encoded terms. Now, instead of eagerly traversing the intermediate trees

and producing exact number of code snippets, the process returns a stream of trees

(that represent terms in λ-calculus) which can be easily transformed to a stream of
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code snippets by mapping that stream with a function that translates an individual

lambda term to its corresponding code snippet in the domain language.

The algorithm that transforms a subtree of intermediate representation tree and

constructs a stream of terms reconstructed from that subtree is given in Algorithm

10.

Algorithm 9 Recursive stream construction (rec)

Require: intermediate representation node r
1: switch (term type of r)
2: case leaf term t:
3: {t is an identifier from environment or a bound variable}
4: return single stream of t
5: case abstraction term, where v1, . . . , vn are variables abstracted from a term:
6: {note that our abstraction nodes can encode multiple variables}
7: let b1, . . . , bm be inner terms that encode body terms of the abstraction
8: let fabs be a function that takes a term t and returns an abstraction term in

the form of (λv1. (λv2., . . . , (λ vn. t)))
9: for all inner node bi from b1, . . . , bm do

10: sbi = rec(bi) {recursively call rec on bi and collect the resulting stream}
11: end for
12: let ps be a round robbin stream made out of collected streams {bs1, . . . , bsm}
13: return mapper stream that applies fabs to values of ps
14: case application term, where P2, . . . , Pn are sets of inner parameter nodes applied

to set of terms, represented by the set of nodes P1:
15: {note that our application can apply multiple parameters}
16: for all inner set of nodes Pi that encodes parameter terms do
17: for all parameter node ti from Pi do
18: psi,j = rec(ti) {recursive transformation of the j-th element of Pi}
19: end for
20: let psi be a round robbin made out of all streams psi,j {from all streams psi,

where j = 1, . . . , li and li is the cardinality of Pi}
21: end for
22: let comb = ps1 {start accumulating stream of term combinations}
23: for ind = 2, . . . , n do
24: make a binary stream b out of comb and psind
25: end for
26: let fapp be a function that takes a combination of terms t1, . . . , tk and makes

an application term (t1 t2 . . . tk)
27: return mapper stream that applies fapp to values of comb
28: end switch

Stream utilities algorithms are invoked from this algorithm for constructing the

of streams (for the sake of brevity, call of these algorithms are denoted in a simple
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manner and we always take the stream from the returned object). Note that the

algorithm takes a tree in the intermediate representation, in which a node contains

sets of inner nodes to encode multiple terms, and produces a stream that enumerates

trees that encode single individual λ-calculus terms.

This recursive procedure constructs an appropriate stream by cases based on the

type of the input term.

• In the case of a leaf node, the corresponding transformed term also represents

a leaf term in the whole expression tree so only a stream with that single term

is returned (line 4).

• In the case of an abstraction node, we have to enumerate an abstraction term

for each body term encoded by that node. This is accomplished with a round

robbin stream constructed out of all streams made by recursive reconstruction

of all body term nodes (line 12) and mapping its value with a function that

makes the appropriate abstraction term (line 13).

• In the case of an application node where the node is of the form (P1P2 . . . PN)

(where Pi are sets of nodes) we have to enumerate all terms (t1t2 . . . tn) where

ti is a term enumerated by a stream of terms psi reconstructed from Pi. Since

for each place of a single subterm in λ-calculus, our intermediate representation

can have a set of terms and each gets reconstructed to a stream of terms, we

reconstruct a set of streams for each parameter node in Pi (line 18). The solution

of enumerating all possible terms that can occur in place of Pi is to construct

a round robbin stream our of all those streams (line 20). All combinations

of streams are then ensured by constructing a chain of binary streams out of

those round robbin streams (lines 22-25). For a given value of ind, the for loop

construct a stream that streams all possible combinations of terms 1, . . . , ind.

The resulting stream is constructed with a mapping function that creates the

appropriate application term (line 26) applied to values from a stream that

enumerates all combinations of terms (line 27).

One important and subtle remark, which is not regarded in the case of application

parameter nodes, is dealing with node links that create cycles, i.e. application terms

which can have themselves or their ancestor terms as parameters (e.g. an application

node (fxf(. . .)) where x, f(x), f(f(x)), . . . can be applied to f). This can lead to a

scenario in which when reconstructing an application term, a parameter stream can

enumerate that application term. In order to avoid non-terminating enumeration due

to such cases, the parameter streams must first enumerate all terms without following
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such recursive links (and this enumeration is guaranteed to terminate) and afterwards

the recursive ones. Lazy enumeration allows us to represent infinite streams build in

such a way and is required in our algorithm.

The main reconstruction algorithm calls the subterm transformation algorithm on

the root node and applies a function that translates a λ-calculus term into a valid

code snippet in the domain language (for Scala it is similar to the one described in

2.4.3).

Algorithm 10 Reconstructing stream of code snippets

Require: intermediate representation tree with root node r
1: let fdom be a function that translates a λ-calculus term into corresponding term

in the domain language
2: return map values of rec(r) with fdom

Synthesis of exactly n solutions can be achieved by simply taking first n values

from the result stream.

3.1.4 Soundness and completeness

We will use terms soundness and completeness for defining properties of this approach

to reconstruction terms with lazy enumeration2. When this approach is used in

the reconstruction phase in the synthesis process driven by types and weight, these

properties directly affect the soundness and completeness properties of the whole

synthesis process (presented in Section 2.5.1).

Let T be the set of terms encoded by an input tree, in the intermediate represen-

tation, with a root node r. Let s be the resulting stream from calling Algorithm 10

on r, with length n, and ti be the i-th term in the enumeration of s.

We define two theorems to state the soundness and completeness properties:

Theorem 3.1.1 (Soundness) No term encoded in the input tree is enumerated twice

from the stream produced by the lazy stream reconstruction algorithm. More specifi-

cally, the following holds:

∀i, j. i 6= j → ti 6= tj

Theorem 3.1.2 (Completeness) Every term encoded in the input tree will be even-

tually enumerated. More specifically, the following holds:

∀t ∈ T. ∃i ≤ n. ti = t

2these words are being used frequently and sometimes recklessly for defining various properties
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It can be shown by reasoning about the properties of the stream utilities and then

reflecting them to the main reconstruction algorithm, given in Algorithm 10 that the

reconstruction procedure produces a stream that respects properties defined by these

two theorems.

The Completeness theorem, Theorem 3.1.2, directly affects Completeness of the

synthesis driven by types, if the reconstruction phase is done with lazy stream recon-

struction. It guarantees that all terms encoded in intermediate proof trees, thus by

discussion in Section 2.5.1 and 2.5.2 all terms derivable in the given environment by

λ-calculus rules, will be enumerated from the resulting stream at some point during

enumeration. Note that the Completeness theorem also implies fair enumeration be-

tween multiple sources of infinite number of reconstructed terms (e.g. if there are two

mutually recursive functions which application represents a valid reconstructed term,

the enumeration process may not enumerate infinite stream of solutions where appli-

cations to the first function are reconstructed, otherwise the Completeness theorem

does not hold).

3.1.5 Evaluation

It can easily be shown that for reconstructing a single term, i.e. enumerating one so-

lution, the complexity is O(n) where n is the size of the input tree - in the worst case

the whole input tree needs to be visited for its reconstruction. However, due to the

memoization of reconstructed subterms, the cost for traversing the tree is amortized

over the number of enumerated elements. More precisely, the complexity of enumer-

ating m terms from the reconstructed stream is O(mn), but gets amortized according

to memoized reconstructed subterms. This means that the asymptotic complexity of

getting a specific number of reconstructed terms is greater than the complexity of ea-

ger reconstruction, which is O(m+n)3. Nevertheless, the lazy enumeration approach

offers significant advantage over the eager one, in cases where only a certain a priori

unknown number of terms is required. The eager approach would need to reconstruct

a specific number of terms regardless of the actually needed number.

The evaluation results and comparison between eager reconstruction and recon-

struction using lazy enumeration are deferred to Section 3.2.5. They show perfor-

mance of reconstruction in couple of examples, when various number of terms are

given as parameters to the reconstruction. These results witness the practical bene-

fits of using lazy enumeration for the reconstruction of terms.

There are two main practical implications that the lazy enumeration approach

3with a conservative assumption that the input tree encodes exactly m terms
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to term reconstruction brings. First one is that the approach allows imposing more

control and limits on the search space of term reconstruction - unnecessary traversal

of subtrees of the input tree can be avoided, while the reconstruction is done only

when needed. The second one is that the enumeration imposes an ordering on the set

of synthesized terms. This can make enumeration of a finite sequence of reconstructed

terms faster and even feasible in cases of infinite number of encoded terms.

3.2 Ordered lazy enumeration of lambda calculus

terms

This section will present a modification of the idea of lazy enumeration of recon-

structed lambda calculus terms that restricts the order in which reconstructed terms

are enumerated. This idea is implemented within the InSynth reconstruction to

achieve enumeration of reconstructed terms ordered by term size and used to speed

up the synthesis approach presented in this chapter.

3.2.1 Motivation

Although lazy enumeration of reconstructed terms provides the possibility for progres-

sive synthesizing of terms according to some order, this order is not strictly defined

and so that the order in which terms are reconstructed is arbitrary and depends on

the input tree given to the reconstruction process. This may be insufficient to produce

good results in cases where we need to synthesize (that is, enumerate) some desired

snippet as fast as possible.

In our approach to synthesizing programs according to specifications, we use the

idea of lazy enumeration to progressively synthesize terms and then to examine them

and determine whether they can be useful (for construction of a correct program).

Therefore, the number of terms that is enumerated and examined directly affects the

performance of the overall synthesis. The goal is to be able to enumerate the desired

reconstructed term as soon as possible, i.e. the desired term should have as low rank

as possible.

If we return back to the motivating example for the lazy enumeration, we can

evaluate the lazy enumeration technique on the code given in Listing 3.4. After

implementing the lazy enumeration reconstruction algorithm and integrated it into

InSynth, we ran the synthesis at the place given by the cursor. The desired code snip-

pet was the one that we removed, Cons(c1.head, concat(c1.tail, c2)). After running

several tests, this snippet was enumerated with the different ranks ranging from more
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than 3500 up to more than 10000 (note that the ordering is not deterministic and

completely depends on the input tree, thus we can get different rankings). This means

that a lot of examples needed to be examined, and as we will show in Section 4.3.7,

this incurred high execution times of the synthesis process and made it unpractical.

3.2.2 Algorithms

The idea of improving the synthesis approach is to impose a stricter ordering on the

enumeration that would result in an ability to enumerate terms that are more likely

to be useful early. We observed that in the majority of scenarios the size of desired

expressions (the one needed for construction of more complex expressions correct

with respect to given specifications) is relatively small. This brought us to the idea

of imposing ordering on the enumeration of reconstructed terms based on their size.4

The idea presented in this chapter extends the general idea of lazy enumeration

with the flexibility of defining ordering of the enumeration. It is important that

the properties that hold for the general idea of lazy enumeration, namely soundness

and completeness defined in Section 3.2.4, also hold in the case of ordered lazy enu-

meration. Although the algorithms that achieve ordered lazy enumeration provide

flexibility that allows an easy way of defining custom ordering of terms, for the pur-

pose of the improving performance of synthesis, we will focus on the ordering based

on size of terms.

We will extend the notion of stream of reconstructed terms by including an addi-

tional stream that enumerates values that are used to define the order of enumeration.

We denote these values as weights. Conceptually, each stream of terms is now associ-

ated with a stream of weights. This additional stream of weights completely defines

the ordering imposed on enumeration of terms thus should be defined carefully. In the

case of ordered lazy enumeration of reconstructed terms by their size, the additional

stream represents the appropriate stream of term sizes. This effectively means that we

have a pair of streams, such that for each term enumerated from the first stream the

size of that term is enumerated from the second (thus it only makes sense to enumer-

ate these paired streams simultaneously). In the following sections we will focus on

lazy enumeration of reconstructed terms that enumerates terms in a non-decreasing

order of their sizes.

4note that such ordering may not be deterministic
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Ordered stream utilities

We present a few simple objects that are used in the reconstruction process of ordered

lazy streams (they are similar to their unordered counterparts, presented in Section

3.1.2). Their implementations in Scala implement same interfaces thus make the

reconstruction process with streams easily configurable (one easily change between

flavors of lazy enumerated streams). These objects provide an additional stream that

evaluates weights and thus are able to represent pairs of streams as described in the

previous section.

The algorithms presented in this section are general enough to allow imposing

other ordering besides the ordering on term size. Generally, we can think of ordered

streams as streaming values and weights. In our case values are reconstructed terms

and weights are their sizes. We will denote an ordered stream that enumerates values

a, b, c, . . . and weights w1, w2, w3, . . . in that order with 〈a : w1, b : w2, c : w3, . . .〉.
In order to guarantee a non-decreasing order of enumeration, each stream is con-

structed such that it enumerates its terms in a non-decreasing order of their weights.

This allows our algorithms to compose streams into more complex ones that respect

the same guarantees on ordering.

Singleton stream This stream is analog to the unordered counterpart with an

addition that it takes a single weight.

Algorithm 11 Ordered singleton stream

Require: value v, weight w
1: return 〈v : w〉

Round robbin stream Round robbin stream takes as an input a set of ordered

streams and produces an ordered stream that enumerates all values from the set of

input streams, ordered by their corresponding weights.

As in Algorithm 6 we describe that values are computed eagerly while in the

actual implementation they represent a stream that can be lazily enumerated. Note

that breaking ties is especially important for the completeness property - without it,

it could happen that we have an infinite stream of values with the same, minimum

weight and that stream would be always enumerated even if we had other streams

with values of the same weight. Changing priorities allow us to break ties fairly in

such cases.
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Algorithm 12 Ordered round robbin

Require: array of ordered streams s1, . . . , sn
1: for each si, i = 1, . . . , n make a stream iterator iti
2: ind = 1, values = 〈〉
3: while at least one iterator has next do
4: {let vi : wi be the next element of iti}
5: choose j such that wj = mink=1,...,nwk where k belongs to indices of iterators

itk which have next element
6: {ties are handled by letting (k − ind) mod n as a priority function}
7: add vj : wj to values
8: forward iterator itj
9: ind = (j + 1) mod n {priorities change}

10: end while
11: return 〈 values 〉 {stream of pairs}

Mapper stream Mapper stream is analog to its unordered counterpart with an ad-

ditional requirement that the parameter mapping function f : T → (U,W ) produces

pairs of values (u,w) : (U,W ) such that values of W are non-decreasing (function f

is monotonic on weights [10]). When applied, the function must produce pairs that

respect the ordering.

Algorithm 13 Ordered mapper

Require: stream s, mapping function f : T → U
1: { apply f to each enumerated value of s to produce a lazy stream }
2: return 〈 f(s(0)), f(s(1)), f(s(2)), . . . 〉

Binary stream Binary stream takes as input two ordered streams and a binary

operator that takes two pairs of values and produces a new pair. For the binary

ordered stream, it is also important but harder to guarantee a stream of values with

non-decreasing weights. Combinations of values are defined by the binary operator

f . f must be monotonic on weights and must produce pairs of values that respect

the ordering.

Since our focus is to order reconstructed terms by their sizes, the purpose of

ordered binary streams is to provide means for combining streams of parameters

into a stream of their combinations. With respect to weights, the resulting stream

projected on weights represent additions of weights from both streams. We will

sacrifice generality for better presentation and assume that the binary operator for

combining weights is fixes to be the addition operator, +, while f operates only on

terms.
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Algorithm 14 Binary stream

Require: streams s1 = 〈v1(1) : w1(1), . . . , v1(n1) : w1(n1)〉, s2 = 〈v2(1) :
w2(1), . . . , v2(n2) : w2(n2)〉, binary operator f

1: let q be a queue of pairs of indices
2: q = (0, 0), values = 〈〉
3: while q is not empty do
4: let (i, j) = min(a,b)∈q(w1i + w2j) {pick (i, j) from q such that sum of weights

of those indexes from s1 and s2 is the least}
5: remove (i, j) from q
6: add the pair (f(v1i, v2j) : w1i + w2j) to values
7: if i = j then
8: enqueue (i+ 1, j), (i, j + 1), (i+ 1, j + 1)
9: else if i > j then

10: enqueue (i+ 1, j)
11: else
12: enqueue (i, j + 1)
13: end if
14: end while
15: return 〈values〉

Note that function on weights is a simple addition operator but could be general-

ized with the only requirement that it needs to be monotonic on weights.

We denote accessing i−th value from stream j with vj(i) while the similar notation

we adopt for weights (wj(i)). The algorithm starts by initializing a queue with the

heading pairs from both input streams, s1 and s2. The algorithm proceeds by scanning

the queue and picking a pair of indexes (i, j) such that sum of weights at s1 and s2 at

given indexes is minimal. This guarantees that the produced stream respects the non-

decreasing ordering on weights. For the sake of simplicity, the accesses to streams

are described to made with indexes while in the actual implementation they are

progressively enumerated (with iterators). Afterwards, these indexes are incremented

such that all combinations of two streams are examined and the appropriate non-

decreasing ordering is satisfied. For example, if we have two infinite streams in non-

decreasing order, s1 and s2, one can always that the minimal sum of values is s1(1) +

s2(1) (i.e. the sum of head weights). The next sum by this ordering could be s1(1) +

s2(2) or s1(2) + s2(1) depending on the actual weights. If the next two sums are

s1(1) + s2(2) and s1(2) + s2(1) in that order, to determine the next sum, one must

examine sums s1(1)+s2(3), s1(3)+s2(1) and s1(2)+s2(2), etc. This process continues

and guarantees, given two streams in non-decreasing order of their weights, a resulting

ordered stream on sums of weights.
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3.2.3 Reconstruction using ordered streams

The algorithms used in the reconstruction using ordered streams are identical to the

ones presented in Section 3.1.3 (the implementation of the reconstruction relies on

a common interface so that reconstruction using different flavors of streams can be

changed easily and even combined). The algorithm does not have to be changed and

only requires that for each leaf term in the input trees an appropriate weight of the

term is associated (size 1 in the case of ordering by term size) and that the algorithm

at each step constructs streams that enforce ordering. An important remark is that

a special care needs to be made in cases where we have recursive function calls. As

described in Algorithm 9 parameters to function application are encapsulated within

an ordered round robbin stream. Since the ordered round robbin needs to check all

input streams to determine the minimal weight, weights should be examined with-

out actual enumeration of parameter streams. Otherwise, enumerating a parameter

stream that contains a recursive call could lead to non-termination of the algorithm.

The output of the reconstruction phase is a stream which enumerates λ-calculus

terms, in the non-decreasing order on the term size (with respect to a standard

definition of the size of a term in λ-calculus [58]).

3.2.4 The ordering property

As we mentioned in the previous sections, the idea of ordered lazy enumeration of

reconstructed terms should retain properties of lazy enumeration and add the restric-

tion of ordered enumeration.

In addition to Theorem 3.1.2 and 3.1.1, the following theorem also holds in the

case of ordered streams constructed by the reconstruction algorithm (we use the same

notation as the one in Section 3.2.4):

Theorem 3.2.1 (Ordering) Reconstructed terms are enumerated in a non-decreasing

order on term sizes. More specifically, the following holds:

∀i, j ∈ {1, 2, . . . , n}.i < j → size(ti) ≤ size(tj)

By reasoning on individual ordered stream constructions and the reconstruction

algorithm with ordered stream, it can be shown that the resulting stream indeed

represents a lazy stream of reconstructed terms for which soundness, completeness and

ordering hold. An important property of all intermediate streams constructed during

the whole reconstruction process is that they all enumerate terms with non-decreasing

order on term sizes. An interesting remark holds for recursive calls within the input
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tree that can be enumerated as parameters - they inherently guarantee enumeration

of strictly larger terms than any of the parameters without recursive calls. Moreover,

combinations with their terms are monotonic with respect to the term size (e.g.

applying stream x, f(x), f(f(x)), . . . to f results in f(x), f(f(x)), f(f(f(x)))).

3.2.5 Evaluation

Similarly as in the case of reconstruction using unordered streams, enumerating a

single term in this case can take O(n) time, where n is the size of the input tree.

This is due to the fact that in the worst case, the whole tree needs to be traversed to

reconstruct a term. Interestingly, in the case of reconstruction using ordered streams

when a term is constructed from subterms, the algorithm needs to examine minimal

weights of all subterm streams in order to determine which values should be used for

the reconstruction of the next term.

The ordered round robbin needs to examine the minimal weight of each input

parameter stream. This leads to the complexity of O(p), where p is the number of

input streams, for enumerating a single element. Moreover, the ordered binary stream

algorithm combines two streams into the resulting ordered stream of their sums. This

algorithm may need to examine sum of weights for O(k) combinations of subterms,

where k is the number of enumerated elements from the ordered binary stream. More

specifically, the complexity of enumerating a combination of elements from an ordered

binary stream is linear in the number of already enumerated combinations. The binary

stream is used for enumerating application terms (combining application parameters)

while the round robbin is used for enumerating parameters thus the upper bound is

O(p+ k) = O(m), where m is the total number of terms possible to reconstruct from

the given input tree, an upper bound of both p and k.

This means that the worst-case complexity for enumerating a single term is O(n+

m), that is, bounded by the size of the tree and total number of terms encoded.

Enumeration of k terms from such stream raises the complexity bound to O(k(n+m)).

Although the memoization of reconstructed subterms is employed, this does not help

the worst case - the cost for traversing the tree and inspecting weights of subterms

is amortized over the number of enumerated terms that are constructed from them,

but in the worst case, all subterms need to be inspected.

The asymptotic complexity of getting a specific number of reconstructed terms

is greater than for the cases of eager or unordered lazy reconstruction. However,

the complexity in the average case is far away from the pathological worst case and

memoization drastically improves performance. We can conclude that performance

in practice correspond to average case complexity from the results of the evaluation
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presented in the next section.

Evaluation on benchmarks

Table 3.1 presents comparison of performance between the eager reconstruction and

reconstruction using two presented flavors of lazy enumeration, unordered and or-

dered. The platform that we used for running the experiments was identical to the

one described in Section 2.6.

Reconstruction # reconstructed expressions average
Example code method 10 100 1000 10000 100000 speedup

List concatenation

Eager 73/544 513/825 N/A N/A N/A 1.00
Unordered 174 238 1093 5688 165975 3.30
Unordered (mem.) 16 58 356 3439 101505 24.11
Ordered 30 41 208 1279 14093 19.13
Ordered (mem.) 13 27 93 658 7841 36.20

Finite combinations

Eager 140/144 135/139 164/168 642/647 N/A 1.00
Unordered 24 83 654 7392 95069 2.00
Unordered (mem.) 14 43 358 4613 64725 3.53
Ordered 19 29 115 1201 12894 3.59
Ordered (mem.) 17 22 64 1078 9158 4.50

Recursive calls

Eager 38/84 5082/5084 N/A N/A N/A 1.00
Unordered 7 62 946 N/A N/A 47.00
Unordered (mem.) 4 33 677 N/A N/A 87.53
Ordered 2 15 989 N/A N/A 190.47
Ordered (mem.) 1 9 407 N/A N/A 324.44

Table 3.1: Results of the evaluation of the lazy enumeration approach to reconstruction.
The first column partitions the results of three examples in the evaluation and gives their names. The second column
denotes the reconstruction method (note that mem. denotes enumerating from a stream with memoized elements).
The following columns represent the execution time of the reconstruction process in milliseconds. The last column
denotes the average speedup of each reconstruction method when having the eager approach as baseline.
Note that N/A denotes that reconstruction could not finish and the average speedups do not consider these values.
The times for eager evaluation are given as x/y, where x and y are execution times with and without inclusion of the
time spent in the combinator phase, respectively.

There are three examples that were used in the evaluation. They were chosen

such that each reflects a category of cases that can occur when reconstructing terms

during a synthesis process:

List concatenation This example reflects the majority of cases that occur in prac-

tice. It is explained in more detail in Section 3.1.1 and represents one of the

examples that motivated the approach to reconstruction using lazy enumera-

tion. The synthesized terms for this examples are encoded by the proof tree

that is not negligible in size, neither in terms of height nor width. It contains

recursive edges that represent recursive calls in multiple places thus it encodes

an infinite number of terms.

Finite combinations This example reflects an extreme in which the tree that en-

codes terms is relatively small but the number of encoded terms is big due to
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many possible combinations of subterms that can be used in for reconstruction

of the resulting term. The number of terms that can be reconstructed in this

example was set to 100000.

Recursive calls This example reflects the case in which recursive calls are encoded.

The proof tree is small and contains only one non-recursive and one recursive

edges. This examples directly implements the case in which we can synthesize

x, f(x), f(f(x)), f(f(f(x))), . . . as solutions. It presents to what extent can

reconstruction approaches deal with encodings of recursive calls.

We measured time for 5 reconstruction approaches: eager approach (presented

in Section 2.4.3), unordered and ordered lazy enumeration (presented in last two

sections) together with their modifications in which a half of the total number of

terms to reconstruct are enumerated before the measured experiment (denoted with

(mem.) in Table 3.1). The idea for last two approaches is to evaluate the effects

of memoization and benefits it provides in cases a stream enumeration is stopped at

some point and then restarted. Note that in case of eager reconstruction this is not

possible and restarting the reconstruction comes with no benefits.

We measured time needed for reconstruction of 10, 100, 1000, 10000, and 100000

terms. The resulting times are given in milliseconds. With N/A we encoded cases in

which the reconstruction phase failed to return (the reason in all cases was exceeded

memory limits during the reconstruction of the program, which was set to 2GB).

Note that the total exectuion time for the eager approach is presented as x/y, where

x and y are execution times with and without inclusion of the time spent in the

combinator phase, respectively. This was done to emphasize the impact that the

combinator phase, that explores the initial proof trees and prunes them, has on the

whole reconstruction. Additionally, in the last column we give average speedups of

all approaches to reconstruction with respect to times needed for the eager approach,

including the combinator step. Note that average speedups were calculated over all

specified number of terms to reconstruct for which the eager approach terminated

(the time is not denoted with N/A).

We can conclude that employing lazy enumeration for reconstruction allowed us to

achieve reconstruction in several cases in which the eager approach was not feasible.

Furthermore we can see that the lazy enumeration approach outperforms the eager

one in almost all cases. This is due to two facts: one is that the combinator step,

which is not needed in case of lazy enumeration, can take significant amount of

time since it needs to traverse the proof tree and prune it; and the second one is

that requiring a specific number of combinations can result in producing more terms
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than the required number, thus incurring greater overhead. Note that for the finite

combinations example, in which the tree does not require pruning but encodes a lot of

combinations, once we go over 100 terms to reconstruct, the eager phase is faster since

when it reaches a certain point, it quickly combines many subterms. On the other

hand, the overhead for invoking reconstruction per each enumerated term becomes

significant in the case of lazy enumeration. Finally, the recursive calls example shows

poor performance of eager reconstruction which is due to the fact that it effectively

represents a generation and traversal of a degenerate tree of height equal to the

number of terms to reconstruct.

An interesting remark is that the ordered lazy enumeration, while employing

mechanisms that incur greater worst-time complexity and more overhead than the

unordered counterpart, outperforms the unordered counterpart in almost all cases.

This is due to the fact that ordering terms by their size results in less time needed

for the actual reconstruction (which directly depends on the size of the term that is

reconstructed).

We can see that ordered lazy enumeration justifies its motivation and not only

provides ordering of terms by their size, that can be useful for the synthesis approach

but also offers better performance because of this ordering.

Ordered lazy enumeration approach offers the same advantages over the eager

reconstruction and makes a lot of reconstruction instances feasible in practice, as we

can see from the presented results. Moreover, the additional imposed restriction on

the order of the enumeration adds an important value since it enforces (some degree

of) determinism (and predictability) into the enumeration. This ordering restrictions

bring significant improvement for the synthesis approach, mainly to its performance,

and offer flexibility for reusing various techniques and heuristics that affect ordering

and dictate the reconstruction (even filter out many solutions).
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Chapter 4

Code generation driven by

specifications

This chapter presents ideas behind the code synthesis approach driven by specifica-

tions. By specifications we mean formal specifications - precise statement of properties

that a program should exhibit (what the system should do, not necessarily how the

system should do it) [10]. Besides formal specifications we also consider specifications

of program behavior with input/output examples.

Instead of synthesizing only simple expressions that type-check at a given place

in the code (as described in Chapter 2), this approach has more ambitious goal - it

focuses on synthesizing whole functions that are correct according to certain correct-

ness properties associated with them. This approach utilizes existing tools for code

generation (e.g. a tool like InSynth that generates code driven by types), together

with tools that check satisfiability (or validity) of program correctness properties.

For that purpose, the approach relies on Leon, a framework that operates on a func-

tional subset of Scala and offers a semi-decision procedure for checking satisfiability

of expressive correctness properties of recursive first-order functional programs [71].

Within this approach, Leon is used for verification and evaluation of generated code.

The domain language of synthesis is again a subset of Scala language. Special

construct, hole, that marks the body of a function to be synthesized has been made

available to the developer. Specifications that drive the synthesis process are also writ-

ten in the Scala language itself. Formal specification can be given as annotations1

in terms of preconditions and postconditions, with require and ensuring constructs,

respectively.2. Additionally, input/output example specification can be given with

passes, a construct that takes a mapping of values and evaluates to true or false in

1not to be mistaken with general programming language annotations
2these two constructs are part of the Scala language standard library
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the context of the given function. This approach is implemented as a plugin for the

Scala compiler, which internally uses InSynth and Leon. It processes Scala source

files and tries to synthesize correct functions that can be implemented as arbitrarily

complex expressions that follow a certain control flow structure (if or match). We

describe implementation of our system and from the evaluation of synthesis on sev-

eral examples that represent widely-used algorithms and practical tasks, we conclude

valuable insights into the potential of this approach.

4.1 Checking satisfiability of correctness proper-

ties using Leon

In this section we present Leon, a tool that is employed for checking satisfiability

of correctness properties of programs (i.e. for checking validity of programs) and

evaluation of programs according to given input/output examples. We will describe

how Leon is implemented and organized and how can we benefit from it for the

purpose of our synthesis approach. Additionally, we make a brief introduction to

software verification, its motivation, applicability and limitations in order to achieve

better understanding of how can, and in what extent, Leon be useful to our synthesis

approach.

4.1.1 Background in formal verification

Due to the increase of complexity of modern designs, quality and reliability of software

(and hardware) was becoming harder to achieve. In order to remedy this, researchers

started to study formal verification techniques which have the goal of proving or

disproving correctness of intended algorithms underlying a system, with respect to a

certain (formal) specifications.

We will present some key techniques and results that lie at the foundations of

many techniques used in verification of modern software. Understanding these can

help understanding the principles and limitations of checking satisfiability of program

correctness using Leon.

Formal specification

Formal specification is a mathematical description expressed with precise statements

of properties that a program should exhibit [10]. Given such a specification, it is

possible to use formal verification techniques to demonstrate that a candidate system

design is correct with respect to the specification.
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The formal specification had a great impact on the software engineering. A formal

approach to software engineering that relies on formal specification during implemen-

tation, design by contracts, emerged [51]. It has its root in formal verification (and

Hoare logic [32]). The idea is that a software component should have a very precise

interface, expressed by its contract. Each contract can then be individually tested

or automatically verified. In the case of purely functional programs, a component is

comprised of a single function that is annotated with a contract. Our approach to

synthesis is defined and mainly driven by specified contracts of individual functions.

Such contract has two main parts3:

Precondition a boolean expression composed of the function parameters

Postcondition a boolean expression composed of the function parameters and the

function returned value

The goal of the verification process is then to check that if the precondition holds,

then the postcondition also holds. More specifically, to get an answer if the result of

executing the code for each possible input, that satisfies the precondition, satisfies the

postcondition. This property alone is sufficient to prove that the function is correctly

implemented.

More specifically, if we denote formulas for precondition and postcondition with

P and Q respectively and compute the formula that expresses the function imple-

mentation Fc, then the verification needs to check validity of the following:

(P ∧ Fc)→ Q

Note that the resulting formula is quantifier free and the sets of free variables of P ,

Q, Fc need to be disjoint.This approach reduces a formally specified function to a

finite set of formulas, called verification conditions, such that their validity implies

the correctness properties of the function [10]. Traditionally, verification conditions

are denoted with Hoare triples,

{P} Fc {Q}

We adopt the expression that if Hoare triple holds then the denoted verification is

valid. More specifically, if {P} Fc {Q} holds then the implementation reduced to

Fc is indeed correct with respect to P and Q. We will extensively use verification

condition in terms of Hoare triples in the subsequent sections.

3in case of imperative programs an additional part exists, an invariant, which defines unchanging
correctness properties
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One important remark is that this way, correctness is checked for a function in-

dividually and in order to guarantee correctness of the whole programs, all the invo-

cation of functions must respect their preconditions. Function invocation which does

not respect the precondition does not respect the contract and its result cannot be

guaranteed to satisfy the postcondition.

Formal verification

Although many advances in the field of formal verification were made, the question

of whether a program meets its specifications cannot be answered (with certainty) in

the general case. Since the formal specifications of a program are written as a mathe-

matical description, to answer the question whether a proram meets its specifications

an appropriate mathematical proof needs to be constructed. Theorem provers are

specialized software that automate mathematical proofs. Depending on the underly-

ing logic, the problem can vary from easy to undecidable. This means that in some

cases such question cannot be answered with certainty. Additionally, in some cases

there exists only a semi-decision procedure for answering the question (an effective

procedure that will always say ’yes’ if the answer to the question is positive, or it will

say ’no’ or ’I do not know’ otherwise [10]). One way to work around the undecid-

ability is to limit the underlying logic the theorem prover reasons about to decidable

fragments that are of interest. Perhaps the most studied class of provers is the SAT

solvers, that only consider propositional logic [10]. SAT is one of the quintessential

NP-complete problems.

An important class of solvers, that present important drivers of advances in verifi-

cation of modern software and hardware, are the solvers that reason about Satisfiabil-

ity Modulo Theories (SMT) which is a generalization of SAT to other theories [18,5].

These solvers reason about specialized theories specific to certain language properties

(integers, data structures, . . . ) and thus can be more efficient in the domain of those

theories. Leon uses an existing SMT solver and extends its supported theories. It

reasons about theories supported by the solver with addition of recursive functions.

4.1.2 Leon

Leon is an automated system for verifying functional Scala programs and finding

counterexamples to the validity of user-specified properties [72]. Leon uses existing

semi-decision procedures for verification of purely functional programs. It builds

upon an existing SMT solver (Z3 [18]) to provide a procedure for handling recursive

function definitions. Thus, Leon can be used for all tasks where SMT solvers are used,
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including verification, synthesis, and test generation [71]. These programs are written

in purely functional subset of Scala and their formal specifications can be expressed

using existing Scala language constructs4.

Leon can check satisfiability of expressive correctness properties of recursive first-

order functional programs. Recall that recursive functions are expressive enough to

give full Turing-completeness power to a programming language, without the need

for loops [3]. Leon uses a procedure for checking the satisfiability of formulas modulo

recursive functions. The procedure is based on successive unrolling of definitions of a

recursive function which adds more information about the behaviour of the function.

A top level loop alternates under-approximation and over-approximation of the for-

mula, asking the underlying solver each time, until it converges to a solution (or it

loops forever). In the phase in which the formula represents an under-approximation,

all function invocations appearing in the formula are replaced with uninterpreted

symbols before the formula is sent to the solver. Since the solver has the freedom

to assign any meaning to such functions, we can check with certainty if the formula

is unsatisfiable. Otherwise, the procedure proceeds to the over-approximation phase.

In the phase in which the formula represents an over-approximation, it is made to

force taking only branches that correspond to terminal cases of recursive functions (if

terminal cases do not exist, the procedure may not terminate). If the solver says that

the formula is satisfiable then we accept this answer with certainty. The requirement

that each function terminates is very important and directly affects the correctness

properties of Leon itself, thus our approach to synthesis must address the issue of

synthesizing expression that could lead to non-terminating recursive calls.

An interesting remark is the technique of “lucky tests” that can speed up the

verification process in Leon. If in the over-approximation phase solver returns that

the formula is satisfiable, it could be that the solver guessed a valid assignment. Since

the evaluation in Leon is fast (it amounts to executing the specification) this can be

check and the satisfiable answer can sometimes be reported early. Leon was evaluated

on verification of 60 functions from implementations of practical algorithms and data

structures. The results show that Leon can be effective and efficient in verification

and with average execution time below half a second represents an excellent fit for

the verification tool in our synthesis approach.

Leon framework

Leon verification system has at its core an implementation of the procedure described

in the previous section. Before invoking the procedure, Leon takes the input a pro-

4with transformations presented in [7], Leon can be used also for imperative programs
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gram, written in a purely functional subset of Scala, and produces verification condi-

tions for all specified postconditions, calls to functions with preconditions, and match

expressions in the program [71]. Leon is written as a Scala compiler plugin which

operates after the early stages of the compilation process, including parsing and type-

checking. Immediate advantages of this approach directly benefit from these early

phases and include parsing of Scala code and its constructs, type-checking and type

inference.

Leon supports a purely functional subset of Scala which is Turing-complete. It

supports core notions such as integers, booleans, arithmetic and comparison opera-

tions, maps, sets as well as case classes for expressing recursive datatypes together

with pattern-matching expressions over such types [71]. Additional support in terms

of lists, tuples, arrays and imperative programming construct has been described

in [7]. A Scala program suitable as input to Leon is written as an object with col-

lection of case classes and functions. Contracts can be expressed with require and

ensuring5. After initial phases of the Scala compiler, Leon employs its own parsing

step which produces abstract syntax trees specific to Leon. These abstract syntax

trees effectively mirror the original Scala code but are tailored for efficient reasoning

about the program within Leon. This includes verification (generation and analysis

of verification conditions), counterexample generation, and evaluation6.

Leon defines a lot of useful constructs and annotations for its operation in its

extensible library. This library can be extended with additional constructs meant for

interaction with the developer. We incorporate constructs needed for our synthesis

approach into it.

The aim of the synthesis approach presented in this chapter is to utilize the current

Leon infrastructure and integrate Leon into the synthesis process (together with the

synthesis approach driven by types, described in Chapter 2) with a goal of reusing

the available techniques, tools and framework for synthesizing complex programs

according to their specifications.

4.2 Adapting code synthesis to code verification

Since InSynth supports synthesizing Scala code, the integration with Leon can be

straightforward - InSynth would synthesize the code, this code would be inserted into

appropriate places in Scala source files after which Leon could be invoked to process

5 invariant construct is supported for annotating loops in the extension for imperative programs
6recently this was extended to support compilation of code to JVM and synthesis, effectively

making an infrastructure around the Leon core
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the sources. Although this approach could in principal work (and it was actually

implemnted and tested), it cannot offer enough flexibility in invoking tools in the Leon

framework. More importantly, since that way the Scala compiler needs to invoked

each time we want to either synthesize code with InSynth or verify it with Leon and

that incurs too much overhead.

In order to integrate the approach to code synthesis driven by types effectively,

we needed to modify InSynth to conform to the Leon framework. This effectively

means that the domain language of InSynth needed to be changed. Reasoning of

the synthesis process needed to be changed from Scala code to Leon abstract syntax

trees. By modifying InSynth and changing its domain language we also modified its

expresiveness. We modified InSynth in such a way such that it can reason about the

whole functional subset of Scala supported in Leon (i.e. that can be encoded by Leon

abstract syntax trees) with the exception of control flow expressions. The aim is to

reuse InSynth for generating only leaf and condition of control flow expressions that

are sufficient for representing implementations of practical algorithms. The synthesis

procedure itself would use these expressions to determine the structure and construct a

correct control flow expression. Note that this approach is able to synthesize recursive

code and thus retains Turing completeness of the code it can synthesize.

Instead of parsing directly Scala source files, InSynth is modified to parse Leon

abstract syntax trees. It scans all functions and class definitions withing the Leon

program and adds appropriate declarations to the initial succinct type environment.

Additionally, regardless of the program given as input it adds all primitive operations

and constants supported by Leon, such as arithmetic, comparison operators, boolean

constants etc. As will be described in Section 4.3.1 the special hole construct which

extends the Leon library determines the body of the function to be synthesized so that

the function parameters are also added to the environment. Note that all fucntion

declarations are visible to the synthesis process so the recursive calls can be syntheized

without special reasoning about them. Instead of denoting a Scala declaration (from

the given program) each declaration now represents a partial expression encoded in

the Leon abstract syntax trees. Due to design flexibility of InSynth (as mentioned in

Section 2.4) it was indeed enought to modify only the parsing phase and the last step

of the reconstruction phase (the code generation) in order to fully adapt InSynth to

the Leon framework.

Although InSynth is implemented as an interactive tool (an Eclipse IDE plugin,

see Section 2.4.4), due to this integration it is modified to be used within the Scala

plugin implementation of this synthesis approach.
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4.3 Synthesis driven by specifications

In this section we will present the approach to synthesizing correct programs with

respect to specifications. We will refer to previous sections and describe how does pre-

viously presented techniques and tools combine together within the synthesis process

that is driven by specifications.

4.3.1 Motivation

In Section 2.6 we saw that the approach to code generation driven by types and

weights (and its implementation in InSynth) can be very useful and effective in as-

sisting developers in practice. The motivation behind InSynth is that the developer

would benefit from having offered a list of code snippet suggestions while developing

in a context which large number of API calls is exposed. As we observed, the usual

scenario is that the developer knows which type of object he needs while he is unsure

of the exact combination of API calls that are used to compose the desired, and rela-

tively small, code snippet. Weights mined from a corpus of projects can significantly

contribute to the quality of synthesized code snippets. As it can be concluded from

Section 2.6, the more specialized corpus is, the more benefits weights can have to the

quality of suggested code snippets.

InSynth aims at synthesizing short code snippets but not entire full-fledged func-

tions that accomplish a complex task or an algorithm. But what happens if switched

focus of InSynth and try to use it for synthesizing whole algorithms? What hap-

pens when the exposed API is relatively small but number of possible expressions

to synthesize explodes due to their combinations (such example was introduced for

the motivation for lazy enumeration approach described in Section 3.1.3)? Can we

reuse (fast) synthesis driven by types and weights for more ambitious synthesis goals?

After all, the synthesis approach focuses on synthesizing functional code, while even

the most complex algorithms are expressed as single, self-contained expressions in

pure functional languages.

Evaluation of correctness properties of code synthesized with InSynth

We will present an evaluation of InSynth in the context of synthesizing small examples

that express simple and practical algorithms in a purely functional subset of Scala,

the one used for writing programs for Leon (see Section 4.1). The results of this

evaluation have given very useful insights and represent the main motivation behind

the approach to code synthesis that employs both InSynth and Leon.
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The experiments were done on multiple examples that have their programs writ-

ten in Scala, together with their formal specifications (mainly just postconditions),

such that their validity can be checked with Leon. In all experiments, we took valid

programs with multiple functions (e.g. a code implementing list operations with ob-

jects that implement list algebraic data types together with methods that return size

of the list, insert element, etc., as in the example given in Section 3.1.1), removed

bodies of certain functions and marked them for synthesis. For all examples, prior

to their modification for this experiment, Leon could verify all functions according to

their formal specifications. At the marked places (holes), we invoked InSynth.

The synthesized code snippets were put back at the place of invocation while

the rest of the code was left unchanged. This allowed us to automatically synthe-

size many code snippets and check their validity in the original program code. We

implemented the approach that synthesizes a set of snippets for a single hole and

plugs each snippet into the code that is otherwise intacted. The inherent limitation

of this approach prevents us from testing InSynth in scenarios where multiple code

snippets can be synthesized in different functions that are directly related for proving

validity7. Interestingly, in some cases, synthesized snippets were different from the

removed ones but still lead to a valid program.

The examples were taken and implemented from various collections of widely used

and well known examples. Some of those include functional program examples found

in [54], publicly submitted “tasks” found at [16] and existing Leon benchmarks [72].

Synthesizing whole function bodies

In the first batch of experiments, for certain functions, we removed the body of the

function and replaced it with a hole, i.e. InSynth synthesized bodies of functions.

Since most of these examples involve control flow statements in their code (if and

match) and InSynth does not explicitly reason about if statements (it can synthesize

only conditions and branches of an if ), we needed to include them explicitly.

One limitation of InSynth is that it cannot synthesize match statements - it cannot

“refine” declarations to appropriate subtypes based on case patterns (nor can it ex-

tract fields). These statements can be expressed with if statements while preserving

the semantics of pattern-matching [71]. If that is done, the context can be enriched

inside the case statements (e.g. matching a standard abstract data type represen-

tation of List, as presented in Section 3.1.1, incurs that in one case statement the

matched expression is Nil, while in the other it is Cons, and additional head and tail

7besides such an approach being cumbersome, an attempt to perform it was made, and lead to
bad (and expected) results
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fields can be visible).

The experiments did not produce favorable results for using this approach in

practice. Even when the initial environment was extended to encode the “refining”

of declarations, InSynth was able to synthesize valid code in just a very few exam-

ples. InSynth was able to synthesize bodies of few very simple, trivial non-recursive

functions (e.g. checking if a list is empty) and very few recursive ones, when the

“refinement” was done explicitly (e.g. returning size of the list). In all cases the rank

of valid code snippets was very high (even three orders of magnitudes higher than

results presented for synthesis of individual holes, as will be shown later) thus making

such synthesis approach practically unusable.

Synthesizing “holes” within function bodies

In the second batch of experiments we evaluated InSynth in similar circumstances,

but here, instead of synthesizing whole function bodies, we removed certain (simple)

expressions such that when removed, the “structure” of code remains unchanged. We

synthesized branches (and conditions) of if and case statements of match statements.

In case of a match we removed case statements and introduced additional boolean

conditions that would be needed if we were to do the conversion from that match to

if (express that match with an appropriate if statement). The following example

shows the experiment setup in the case of code for the list concatenation:

def concat(l1: List, l2: List) : List = ({
(l1, l2) match {
case (Nil(), ) => l2

case ( , Nil()) => l1

case (Cons(l1Head, l1Tail),

Cons(l2Head, l2Tail)) =>

Cons(l1Head, concat(l1Tail, l2))

}
}) ensuring(res => content(res) ==

content(l1) ++ content(l2))

Listing 4.1: Valid code for concatenation

of two lists

def concat(l1: List, l2: List) : List = ({
val cond1: Boolean =

l1 match {
case Nil() =>

case Cons(l1Head, l1Tail) =>

val cond2: Boolean =

l2 match {
case Nil() =>

case Cons(l2Head, l2Tail) =>

}
}) ensuring(res => content(res) ==

content(l1) ++ content(l2))

Listing 4.2: Transformed code with

”hole” expressions removed
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The example illustrates that instead of matching a expression with a match, equiv-

alent code can be written as if with an appropriate condition8. Note that this ap-

proach does not suffer from the limitation of “refining” mentioned in the previous

section since the case patterns remain and the fields of matched expressions are intro-

duced into the environment. The goal is not to solve the “refining” issue but rather to

see if valid expressions can be synthesized under the assumption that the “refining”

issue is not a concern (it presents one of the challenges that need to be solved when

using this technique, as it is described later, in Section 4.3.2).

We evaluated this approach on the set of multiple examples. We strove to remove

expressions inside match and if statements of functions that implement the core

functionality. InSynth was able to synthesize the desired code snippet in more than

90% of cases. The parameters to the synthesis process were as follows: 1 second

time limit and 500 code snippets to synthesize. The synthesis invocations in which

the desired code snippet was not found were mainly due to the lack of reasoning

about arithmetic operations and certain integer constants (e.g. the division operator

/ and constant −1). Explicitly introducing such operators and constants improved

the results significantly. Table 4.1 shows results for examples of 5 chosen algorithms

that implement both well-known and simple algorithms, and that reflect the overall

experiment results.

Table 4.1 represents results of synthesizing holes in the structure of 6 representable

functions. We can see that InSynth managed to synthesize the desired code snippet

in almost all cases without explicit assistance, and in all cases in which the context

of synthesis was altered to aid the synthesis. Since InSynth cannot reason about

arithmetic operations and all constants, some code snippets could not be synthesized

regardless of the parameters that drive the synthesis. However, for all those examples

it was possible to modify the context of synthesis (by adding necessary declarations

with appropriate weights) to make the desired snippet found with a rank lover than

50 (although by doing so, the quality of returned snippets could drop in the general

case).

This shows that application of the synthesis approach driven by types and weights

looks promising, especially if the context can be modified (specialized) for the syn-

thesis task at hand. Note that no corpus was used to affect the weights in these

examples.9 For some examples, such as the sort function of the insertion sort algo-

rithm, all the needed snippets for holes (in isolation) are found with rank 15 or less

(less than 6 on average), while for some more complicated ones, such as the insert

8if expressions can be more general than matching thus approach to synthesizing if expressions
can itself synthesize more general algorithms

9this offers room for potential improvement for this synthesis approach
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Test Method Rank

Insertion Sort sortedInsert 51.8
isEmpty(list) 0
Cons(e, Nil) 13
∗X <= e N/A (47)
Cons(x,sortedIns(e, xs)) 161
Cons(e, l) 38
sort 5.67
isEmpty(list) 0
Nil 2
sortedIns(x, sort(xs)) 15

List search linearSearch 15.8
isEmpty(list) 0
∗∗-1 N/A(38)
∗LHead = c N/A (26)
linearSearch(lTail, c) 10
size(l) 5

Merge sort sort 85.33
isEmpty(list) 0
split(list,length(list)) 3
merge(mergeSort(p.fst), mergeSort(p.snd)) 253

List concatenation concat 22.2
isEmpty(l1) 0
l1 1
isEmpty(l2) 1
l1 0
∗∗∗Cons(lHead, concat(lTail, l2)) 109

Red black tree insert 239.25
isEmpty(tree) 1
balance(c, ins(x, a), y, b) 405
Node(c,a,y,b) 144
balance(c,a,y,ins(x, b)) 407

Average 70.01

Table 4.1: Results of measuring effectiveness of InSynth in terms of synthesizing correct code. The first column denotes
the description of the algorithm used in that example. The second column gives name of the function in which the
code is synthesized and the desired code snippet. The third column denotes the ordinal of the desired snippet or
average over ordinals for corresponding set of examples. The ordinal in parentheses represents the result after we
modified the context.
* denotes examples in which an additional declaration had to be introduced (>=,=)
** denotes the example in which a general constant for that type was found (by default 0 in case of Int)
*** example in which a code snippet different than the removed one was found that satisfies the correctness properties

function for the red black tree the rank upper bound is 407 (and the average is less

than 240).

For all these examples, we removed all simple expressions that alone do not com-

prise a control flow statement (in our examples most of them are if and match state-

ments) but are sufficient for construction a correct function if filled in at right places.

Therefore, if we knew the control flow structure of a function (or we had a way for

finding it out), together with places where synthesized expressions need to be put, we

would be able, in principle, to synthesize entire functions for all these examples.

As we saw in the previous section, the approach where whole functions are syn-

thesized does not give good results. By intuition, if we think about control flow

expressions, the results match the expected. If we consider the simple if term, it is

comprised by a combination of three expressions (with appropriate types, one of them
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being boolean). If we assume a simple procedure that enumerates sub-expressions and

combines them to make a larger expression, and denote the expected rank of the de-

sired expression in the case of synthesis of all three expressions in if with r1, r2, r3,

without loss of generality, we can conclude that the expected rank of the desired if

expression is O(max(r1, r2, r3)3). This can lead to a logical explanation of bad results

and the practical limitations of this approach.

Since these results witness that the synthesis driven by types can synthesize sub-

expressions (“hole” expressions) within a control flow expression efficiently, an idea

for a technique that progressively synthesizes one sub-expression at a time in order to

construct a more complex one with control flow, naturally emerges. If we consider the

level of performance of the type inhabitation problem in succinct calculus, presented

in Section 2.6, in which proof trees that encode thousands of expressions are found

in less than 50ms, we can get an idea of an approach to use this synthesis for a quick

and gradual “construction” of complex expressions.

4.3.2 Synthesize and verify approach

Up to this point in this document, we presented tools and techniques that can:

• synthesize code (InSynth, driven by types and weights, Chapter 2)

• enumerate synthesized expressions (lazy enumeration, Section 3.1.3)

• verify correctness properties of code (Leon, Section 4.1)

Additionally, we presented a set of examples that represent implementations of var-

ious commonly used algorithms that demonstrated a motivation for an approach

to synthesize valid programs by constructing complex control-flow expressions from

more simple ones (Section 4.3.1). These examples are written in a functional subset

of Scala that lies at the intersection of the ones used by InSynth and Leon, and for

which appropriate modifications were made in order to enable all three mentioned

techniques to be combined and used for a common domain language (Section 4.2).

Having all this in mind a straightforward idea that comes up is to use the widely-

familiar “generate and test” approach. This method, sometimes called “trial and

error” or “guess and check”, has been successfully applied in various areas of science

including computer science (it lies in the basis of many techniques, including ones

from the field of artificial intelligence [64]).

Generate-and-test search algorithm is a very simple algorithm and boils down to:

1. generating a candidate for a solution
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2. test to see if this is the expected solution

3. if the solution has not been found, repeat from the first step

In the scenarios where more than one solution can be found, instead of quiting when

finding the solution, we can proceed to find other solutions. Generate-and-test al-

gorithm is guaranteed to find a solution if done systematically and there exists a

solution.

This approach seems as a straightforward solution whenever we have means to gen-

erating a candidate and testing it. Interestingly, the previous work on the synthesis

driven by types, using quantitative type inhabitation [30,31], describes an implemen-

tation in which the developer can specify correctness properties (with Scala assert

and ensuring) and provide test cases which serve to filter out synthesized code which

is not valid10. In our experiments done in Section 4.3.1, we used InSynth to synthesize

code snippets which were then inserted into programs and verified with Leon. Note

that both of these examples effectively use the “generate and test” technique to some

extent.

For the purpose of synthesis of correct programs, the aim is to do the generation

part (synthesis) with InSynth and the testing part (verification) with Leon- thus, on

some occasions we refer to this approach as, “synthesize and verify”.

From the experiments presented in Section 4.3.1, we concluded that the synthe-

sis driven by types, by itself, is not sufficient for effective and efficient synthesis

of complex expressions. Although we presented a systematic way for enumerating

synthesized terms, and theoretically, for each problem out there, regardless of the

complexity of its solution, the desired expression can be enumerated at some point,

this “brute force” approach is far from being practical. Moreover, results have shown

that synthesizing individual, simple expressions that make a correct program when

inserted at certain points (“holes”), can be done effectively and due to presented

performances of used tools, also efficiently.

The idea of abducing conditions

The main idea that allows the synthesis approach to combine mentioned techniques

comes from the area of abductive reasoning [37]. Abductive reasoning, sometimes

also called “inference to the best explanation”, is a method of reasoning in which

one chooses a hypothesis that would, if true, explain the found evidence in the best

way. In the context of logical reasoning, it is analogous to the inductive reasoning

10after the search algorithm returns candidate snippets, they are inserted one by one in the user
code and tests are run - if at least one test fails, it is discarded [30]
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(inferring consequence b from some argument a, where b does not necessarily follow

from a) applied in the opposite way (inferring, or “abducing”, a as an explanation

of consequence b). The type of reasoning was studied and applied in various areas

of science including philosophy and computer science. Abductive logic programming

exists as an extension of the logic programming paradigm and allows specifying some

predicates in an incomplete manner and requiring the computation system also to

explain certain observations [38].

Since we are able to effectively synthesize valid “hole” expressions that belong

to the appropriate control flow structure, they can be viewed as parts of the whole

algorithm that are executed only in certain cases. These cases are unambigously de-

fined by the conditions and case patterns in appropriate if and match terms. If we

could apply the idea of abductive reasoning to allow guessing (“abduce”) the appro-

priate condition (the explanation for our code), we could synthesize a program which

behaves correctly in certain cases. Such program could effectively encode certain cor-

rect branches (or equivalent match case expressions) of the complete program. More

specifically, if we have the goal to synthesize a function with a given postcondition,

we can introduce an appropriate condition as the precondition of the function, and

afterwards verify the resulting function for correctness (as described in Section 4.1).

If verified, such function satisfies its postcondition only in cases encoded by the in-

troduced precondition - the function effectively encodes the behavior of the correct

function in those cases. Progressively applying this technique of abducing individ-

ual preconditions can result in incremental construction of a program which behaves

correctly in more and more cases, eventually constructing the correct program.

Constructing partial solutions We will give an illustrative example of how can

abducing appropriate condition lead to the synthesis of programs that behave cor-

rectly in certain cases.

Let us consider the greatly exploited example that presents an implementation of

concatenation of lists, presented in Listing 3.3. As we can see, the postcondition of the

concat function is res => content(res)== content(l1)++ content(l2), while the precondition

is omitted (it is just true). Let us assume that we have a source that can generate

expressions of type List and boolean.

Having the goal to synthesize the correct body of concat, if we try to plug expres-

sion l1 as the body, the function would of course not be correct. But we may observe

that l1 actually represents the correct result in the cases where l2 is equal to Nil().

More specifically, the following function can easily be verified:

def concat(l1: List, l2: List) : List = ({
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require(l2 == Nil())

l1

}) ensuring(res => content(res) == content(l1) ++ content(l2))

This effectively means that the expression l1 behaves correctly in the cases which

satisfy the precondition l2 == Nil(). Thus, the expression covers a certain partition of

the space of inputs and may represents a valid branch in the complete program (as

in this case, l1 corresponds to a case expression). From the formal verification point

of view, this expression captures a subset of basic paths in a valid program [10].

Note that after verifying such function we can proceed to cover more cases by

solving the same problem in which the goal is not to synthesize the body of the

function, but rather an expression that produces a correct function when inserted at

the place of hole as in the following code:

def concat(l1: List, l2: List) : List = ({
if (l2 == Nil()) l1

else hole

}) ensuring(res => content(res) == content(l1) ++ content(l2))

We can think of the body b in this case as a partial expression that represents

correct behavior of the function in some cases and can be given an expression e so that

it constructs a correct function body, b(e). More specifically, if we denote abduced

conditions as p1, p2, . . . , pn and the body and postcondition of the function with r

and q, then the following Hoare triple holds {p1 ∨ p2 ∨ . . . ∨ pn} b(e′) {q}, regardless

of the expression e′ put instead of hole. Furthermore, if a correct function exists then

exists an expression c such that {true} b(c) {q} holds (it must exists since plugging

the body of such correct function must produce another correct function).

4.3.3 The synthesis algorithm

In this section we will describe a general version of the synthesis algorithm that

is given a collection of expressions and knows how to verify the program but does

not explicitly use any particular tools11. The algorithm directly follows from the

“synthesize and verify” technique described in the previous section. It is presented

in Algorithm 15.

The algorithm applies the idea of abducing conditions to progressively synthesize

and verify branches of a correct function. The input to the algorithm is a function

f with a precondition p and a postcondition q, and a collection of expressions s.

For the sake of brevity, the algorithm gets a single collection of expressions which

11the algorithm can easily be changed to work with a concrete code synthesizer
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Algorithm 15 Synthesize a correct program

Require: function f with a precondition p and postcondition q, a collection of ex-
pressions s

1: sol = (λx.x) {maintain a partial solution}
2: repeat
3: get an expression b from s
4: assign e as the body of f
5: if program is correct then
6: assign p and (sol b) as the precondition and body of f
7: return f {a correct program is synthesized}
8: else
9: try to synthesize a branch {calls Algorithm 16 with f, s}

10: if a branch with condition c is synthesized then
11: update sol to (λx. (sol (if c then b else x)))
12: assign p ∧ ¬c as a precondition of f
13: end if
14: end if
15: until s is not empty

contains all necessary expressions that are tested at the place of both condition and

a branch expression (as described in the previous section). The formal description of

the implementation will follow so that the algorithm here can be presented as simple

as possible.

The initial precondition of f in the algorithm is p and it gets refined by adding

clauses by a conjunction (line 12). Let p′ denote conjucted clauses at any given

time in the algorithm, or more specifically, let the precondition at any given time be

p ∧ c1 ∧ . . . cn = p ∧ p′. The algorithm maintains the partial expression (solution) in

the variable sol (line 1). sol is encoded as a function in λ-calculus and when applied

to a term t such that {p ∧ ¬p′} t {q} holds, then {p} (sol t) {q} also holds. This

means that sol effectively encodes a partial solution of all synthesized branches in the

algorithm at any given time. If sol is a applied to a term that represents a solution for

all cases not covered by the partial solution, the resulting term is an expression that

represents a correct function body. Note that sol encodes the correct program for

all cases which satisfy p ∧ ¬p′, while the precondition of f is p ∧ p′ (the precondition

defines a partition of the space of inputs).

The algorithm repeats enumerating all possible expressions b from the given col-

lection (line 3). For each b it plugs b as the body of the function, f (line 4) and

checks the correctness of the resulting function, i.e. {p ∧ p′} b {q} (lines 5-14). If

the resulting function is verified, then, from the previous discussion, we know that

we found a needed part of the solution and that (sol b) represents a correct function
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body (i.e. {p} (sol b) {q} holds). The algorithm constructs the function and stops

(lines 6-7). Otherwise, the algorithm tries to find an expression that represents the

needed precondition c in order for b to be a correct body, i.e. for {c} b {q} to hold

(it tries to abduce the precondition that could lead to correctness of the given body)

(lines 9-13). In effect it synthesizes a branch of an if expression that corresponds to

valid behavior of the whole function in certain cases.

The branch guessing is done as described in Algorithm 16. If the branch is found,

the partial solution is updated to include the additional branch (lines 11-12). sol

now represents a function such that when applied to a term, produces a function

that is correct for all inputs that satisfy c together with preconditions of previously

found branches. The current precondition is updated with the negation of c so that

the solution in the next iteration covers cases where c does not hold. The algorithm

repeats (at line 15) and it will eventually, given the appropriate terms in the collection

s, find an expression b that forms complete body of a correct function.

Algorithm 16 tries to guess a branch of the desired function.

Algorithm 16 Synthesize a correct branch

Require: function f with a body b, precondition p and postcondition q, a collection
of expressions s

1: for all expressions c from s do
2: assign p ∧ c as the precondition of f
3: if program is correct then
4: return c {return the “abduced” precondition}
5: end if
6: end for

The algorithm enumerates expressions from s and searches for a valid condition

expression - that is, an expression c such that the Hoare triple {p ∧ c} b {q} holds.

If the function is called as explained for Algorithm 15, this effectively means that a

branch of an expression that represents a correct function body, with respect to initial

given precondition and postcondition, is found and its condition extends the space of

inputs covered by the partial solution. This condition c is returned as a result.

Note that both algorithms return the first found solution. Instead of returning

the first solution, algorithms could collect and return multiple solutions (this may be

useful if such solutions can be compared and ranked).

4.3.4 The synthesis problem formalized

The rough definition of the synthesis problem is: in the context of a given program,

given a formal specification of a function in terms of its postcondition (and optional
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precondition12), return an expression that satisfies it. More specifically, if we denote

the given precondition and postcondition with p and q, the returned expression r

has to satisfy {p} r {q}. Setting the context of a given program means that formal

specification and the returned expression (which represents the body of the function)

can use all appropriate declarations given in the program (types, functions).

Up to this point we did not address in detail the fact the synthesis can be specified

with input/output examples. Effectively, with input/output examples, the specifica-

tion of the function to synthesize can be extended. As mentioned in Section 4.3.2,

evaluation of the synthesized code on the specified input/output examples can fil-

ter out invalid solutions thus replace or strengthen the formal specification. As we

will present in Section 4.3.5, specified input/output examples (or even input examples

alone) can also provide means for improving the performance of the synthesis process.

The following definition of the synthesis problem includes the (optional) specifi-

cation with input/output examples.

Definition 4.3.1 (The problem of synthesizing a correct program) In the con-

text of a given program, given formal specifications of a function f , in terms of its

postcondition q, optional precondition p and optional input/output example pairs IO,

return an expression r such that {p} r {q} holds and outputs of evaluating r on

example inputs from IO match the according example outputs from IO.

The previous definition has been made general so that it does not describe any

particularities of the approach that solves the defined problem. It formalizes the

general requirements of the problem we want to solve. Since our approach to syn-

thesis focuses on reusing existing techniques and tools for synthesis and verification

of code, the problem we want to solve is more specific and includes the availability

of existing techniques and tools for generating (synthesizing) expressions, verifying

them according to formal specifications and testing against specified input/output

examples. Such specific context of the problem allows using the algorithms defined

in Section 4.3.3.

4.3.5 Implementation

Although the generality of used algorithms allows using different techniques and tools

for code generation, verification and testing, the techniques and tools presented so

far fit nicely into the requirements. These are mentioned in Section 4.3.2 and include

two main tools that are used in this approach: InSynth and Leon13.

12if the precondition is omited we can consider it to be true
13the lazy stream enumeration technique emerged as a necessity for this approach due to inherent

limitations of the eager enumeration
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With the intention to use InSynth and Leon we needed to adopt a common frame-

work and a domain language for these tools. As described in Section 4.2 and 4.3.1

InSynth was modified to conform to the internal abstract syntax tree representation

of Leon. This allows the synthesis approach to work with a functional subset of Scala

that lies at the intersection of the ones used in InSynth and Leon. InSynth still solves

the type inhabitation problem in the succinct types calculus but now reconstructs

terms in the form of abstract syntax trees in Leon. The synthesis process is im-

plemented as a Scala compiler plugin that adds a separate phase to the compilation

process. The synthesis phase occurs after the initial phases of the compilation process,

similarly as in Leon, and invokes both InSynth for synthesis and Leon for verification

and testing, repeatedly during the synthesis process.

The developer can write his programs in the Scala programming language and

specify formal specifications the same as it is described in Section 4.1. This inherently

implies all benefits and limitations of Scala programs imposed by Leon.

Introducing of additional constructs for the synthesis

Additional language constructs needed to be defined in the Leon library for the pur-

pose of specifying synthesis problems.

Hole The notion of a “hole” resembles the cursor that specifies the program point

of synthesis in InSynth (see Section 2.4.4). A hole construct is written in place of

a body of a function which we want to synthesize, that is, it specifies the function

which we want to synthesize. This function needs to be correctly defined in terms of

its signature and the contract (precondition can be omitted). The return type of the

function which we want to synthesize needs to be known. If the return type is not

specified in the signature, then hole needs to be parametrized by the desired return

type of the function (either explicitly or with a parameter14).

Note that hole designates the function for which we want to synthesize a correct

body and thus denotes the place where an arbitrarily complex expressions can be put

and thus differs from “hole” expressions mentioned in Section 4.3.1.

Specification in terms of input/output examples Since besides giving the

formal specification with precondition and postcondition we allowed specifying the

function with input/output examples, we introduced a construct that allows the de-

veloper to do this. For each synthesis problem, an additional construct passes is

14in which case the desired type can be infered by the Scala compiler
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available which takes three parameters: an input/output example map and two vari-

ables binding inputs and outputs during the evaluation of tests, respectively. The

input/output example map maps from types A to B where A corresponds to the

tuple defined by the function arguments, while B is the return type of the function.

Each mapping defined in this map, map an input example to corresponding output

example that will be checked during test evaluation. The binding variables specify

expressions to be evaluated, and determine input values and reference output values

in the evaluation. This allows flexibility in controlling the testing process (e.g. it

allows specifying properties that should hold for certain fields of the result value). If

invalid parameters are passed to this construct, i.e. these three parameters do not

have appropriate types, the type-check phase of the compilation process will fail.

An example of a program in which a function is marked to be synthesized and pro-

vided with formal specification and input/output examples for the synthesis process,

is given below:

object ListOperations {
val mapping = Map[List, List](

(Nil(), Nil()) −> Nil(),

(Cons(0, Nil()), Cons(1, Nil())) −> Cons(0, Cons(1, Nil()))

)

def concat(l1: List, l2: List) = ({
hole[List]

}) ensuring(res => content(res) == content(l1) ++ content(l2) &&

size(res) == size(l1) + size(l2) && passes(mapping, (l1, l2), res))

}

Listing 4.3: An example of code that sets up the synthesis

The example shows the definition of the function concat which should concatenate

two lists15. The main ListOperations object represents the highest level of encapsula-

tion currently supported (and required) by Leon. We omit the import statement neces-

sary for the Leon constructs, declarations of types (List, Cons and Nil) and definitions

of size and content functions that are defined within the same object for brevity. hole

marks the function body to be synthesized and declares the returning type of the

function. A precondition is omitted while the ensuring construct specifies the post-

condition, content(res) = content(l1)∪ content(l2)∧ size(res) = size(l1) + size(l2).

The behaviour of the function is also specified with input/output examples. passes

15with respect to usual and natural implementation of size and content on lists
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construct specifies that keys from mapping serve as inputs and values from mapping

serve as reference outputs for when evaluating the behavior of the synthesized func-

tion. An interesting remark is that the input/output example map actually makes the

specification of the behavior of the function stronger, since its second input/output

example pair restricts concatenation of two lists of size 1 to have a particular order

of elements.

Algorithms that use InSynth and Leon, that are used in the actual implementation

of the synthesis approach, are very similar and based on algorithms given in Algorithm

15 and 16, but different in a couple of subtle details due to issues inherent of their

practical realization. Two things need to be taken care of in the implementation of

these algorithms:

• dealing with infinite number of reconstructed terms: Since most of the mo-

tivating examples implement algorithms with recursive functions, the number

of synthesized terms that have the function’s return type are infinite. When

using the reconstruction with lazy enumeration, they can be enumerated from

a stream that does not have a finite size16. Using the Algorithm 15 and 16

without modifications, could thus lead to non-terminating executions.

• dealing with refinement of types: As mentioned in Section 4.3.1, without re-

fining types of declarations in appropriate branches in the code, the desired

terms cannot be synthesized. In the implementation, this is solved by explicitly

tracking possible types for each declaration in every branch during the synthesis

process.

After a branch is synthesized, in some cases, refining can be done automatically

(e.g. in the else branch of, if (list == Nil()) then { . . .} else { . . .}, we can be

sure that list has the actual type of Cons17) If the synthesis approach cannot

progress with current declarations in the scope, types of certain declarations are

refined and the process is repeated.

The presentation of these algorithms is deferred to the following section, which

also includes integration of the technique for filtering with input/output examples,

together with other optimizations and subtleties.

16this actually presents the main motivation behind lazy enumeration of reconstructed terms, as
described in Section 3.1.1

17with respect to usually adopted implementation of the list abstract data type
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Filtering with input/output examples

This section describes the implementation of the synthesis approach, and presents

various techniques and heuristics that are applied in order to improve its performance.

Motivations behind these optimizations can be gathered from analyzing the evaluation

results in Section 4.3.7.

The technique that promises the most benefits to performance of the synthesis

process is filtering (or ranking) of expressions with the set of input/output examples.

The rationale behind filtering with input/output examples has the assumption that

executing an expression on a given input, and evaluating the result, can be faster

than the verification of the expression, in the context of a given function. The goal

is to use such examples to quickly test expressions before forwarding them for verifi-

cation. Such early evaluation of expressions based on examples can determine which

expressions are unlikely to be the correct ones and avoid their verification. The idea

was motivated by good results that resulted from filtering expressions when finding

an appropriate branch expression, as given in Algorithm 15. In cases where complex

branch expressions needed to be synthesized, aignificant speedups were achieved by

filtering out many expressions quickly - expressions that otherwise took a lot of time

for verification.

Implemented algorithms

We now present algorithms that lie at the core of the synthesis approach and closely

resemble its implementation. They solve the synthesis problem as formalized in Sec-

tion 4.3.4 and employ InSynth for synthesis of expressions and Leon for checking

satisfiability of correctness properties and evaluation of tests. They resemble algo-

rithms given in Algorithm 15 and 16, but had to be modified to overcome practical

limitations and allow using input/output examples.

Algorithm 17 takes a function f with assigned precondition and postcondition, a

set of input/output examples io and the desired type T of the function which we want

to synthesize. The main difference with respect to Algorithm 15 is that in this case

the algorithm maintains a priority queue of expressions, that are ordered based on the

number of input/output example pairs that evaluated correctly. More specifically, an

example input evaluates correctly if it satisfies p, while the evaluation result satisfies

q and is equal to the appropriate pair example output18. This effectively means that

in each iteration of repeat at line 4, a finite number of expressions is evaluated from

18outputs can be omitted and in that case inputs serve solely for evaluation in order to improve
performance, but not for additional specification
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Algorithm 17 Synthesize a correct program, implementation

Require: function f with a precondition p and postcondition q, set of input/output
examples io, desired type T

1: initialize an empty priority queue q
2: initialize declaration refinement mapping
3: sol = (λx.x)
4: repeat
5: invoke InSynth with desired type T and to stream of expressions s
6: if q is empty then
7: for i← 1 to n do
8: let e be the next expression removed from s
9: evaluate the expression on the set of examples from io

10: enqueue e in q with number of passed examples
11: end for
12: end if
13: dequeue an expression b from q and assign it as the body of f
14: check satisfiability of correctness properties of f with Leon
15: if program is correct then
16: restore initial precondition p, and assign sol, (sol b) as the body of f
17: return f {a correct program is synthesized}
18: else
19: try to synthesize a branch {calls Algorithm 18 with f}
20: if a branch with condition c is synthesized then
21: update sol to (λx. (sol (if c then b else x)))
22: assign p ∧ ¬c as a precondition of f
23: refine types of declarations and empty q
24: end if
25: end if
26: until s is not empty or timeout

the stream and ranked according to evaluation results. The rest of the algorithm is

familiar from Algorithm 15 - expressions are now dequeued from q and assigned as

the body of f . The function is checked for satisfiability of correctness properties (line

15). If the check passes, the expression is used to form the full synthesized function

and the function is returned.

Otherwise, we did not synthesize a correct function, and the algorithm for synthe-

sizing a branch is called (line 19). If the algorithm synthesizes a branch successfully,

the queue is emptied and postcondition of f is updated so that synthesizing appropri-

ate expression can continue in the next iteration. Additionally, variable refinements

are maintained and the declaration refinement is done each time a branch is syn-

thesized and its condition can enable variable refinement. If the algorithm cannot
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synthesize a branch with expression b, the expression is discarded.

Algorithm 18 Synthesize a correct branch, implementation

Require: function f with a body b, precondition p and postcondition q
1: initialize an empty set of models cm
2: invoke InSynth with desired type of boolean and to stream of expressions s
3: for all finite number of expressions c streamed from s do
4: if c prevents all models in cm then
5: assign p ∧ c as the precondition of f
6: check satisfiability of correctness properties of f with Leon
7: if program is correct then
8: return c {return the “abduced” precondition}
9: else

10: add new counterexample model to cm
11: end if
12: end if
13: end for

The algorithm for synthesizing branches is given in Algorithm 18. The main addi-

tion to this algorithm with respect to the one given in Algorithm 16 is the filtering of

condition examples based on counterexample models derived when checking satisfia-

bility with Leon. After each check with Leon, if it was unsuccessful a counterexample

model that witnesses the unsatisfiability is retrieved and added to to set of counterex-

ample models cm. A condition expression c is considered only in the case such that,

if c is satisfied then all models from cm cannot be satisfied (i.e. ∀m ∈ cm. c→ ¬m).

This is somewhat similar to the counterexample guided iterative refinement approach

(as described in Chapter 5) but used for the purpose of filtering out already synthe-

sized expressions.

Due to practical reasons, similarly as in Algorithm 17, the algorithm enumerates

only a certain finite number of expressions n, and if none of them can make a correct

branch, the search stops. This imposes an inherent limitation to the process - if

a correct boolean condition can be enumerated, but with a rank higher than n, our

process will never check it and will give up. This issues can be remedied by organizing

the search similar to the breadth-first search19.

Note that input/output example pairs are often used way for specifying behavior of

the program. Although such specification is naturally given in input/output example

pairs, our approach can benefit solely from given input examples, as the evaluation

of input examples can help ranking of expressions according to the satisfaction of the

postcondition. The more basic paths in the program they exercise, the more useful

19this is considered as future work
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the input examples are. It will shown in the Section 4.3.7 that giving right input

examples, can significantly improve performance of synthesis.

Note that further extension to these algorithms are possible. The algorithm could

be modified to return found partial solutions in the case of exceeding the imposed

time limit. The approach progressively constructs solutions to the synthesis problems

and in each iteration maintains the invariant that the partial solution is correct when

certain precondition is met, as discussed in Section 4.3.2 (initially, such precondition

is false and the solution does not cover any input to the function).

4.3.6 Correctness properties of the synthesis

In this section we define correctness properties of the approach to synthesis driven

by specifications and show that those properties hold. An important property that

naturally emerges in order for this kind of synthesis to be sensible, is that code

that does not satisfy given specifications should never be synthesized. This means

that the developer should never get a program that behaves badly since that clearly

defeats the purpose of the problem that we want to solve and can bring bad and

unpredictable consequences. It is imperative that we guarantee that all synthesized

code will be correct with respect to given specifications and allow the synthesis process

to terminate without returning a solution (this is similar to the definition of the semi-

decision procedure [10] and represents a common behaviour of various algorithms

used in practice). Moreover, since the approach can be modified to return partial

solutions working for only certain cases, we should prove that if a partial solution is

returned, it behaves correctly according to given specifications.

The additional important property that can be stated for this synthesis approach,

is that the approach should be able to synthesize a correct solution if one exists.

This in general represent a property that can be hardly satisfied in practice. In our

approach we will restrict this property to reason about the underlying tools used

which may not be sufficient to find a solution even if one exists.

The two mentioned statements resemble semantics of two classes of properties,

frequently used in mathematics and computer science - soundness and completeness

[10] (these are also used in Section 2.5). We will refer to the mentioned correctness

properties as the soundness and completeness property, respectively.

Soundness and completeness

Note that our synthesis approach directly relies on correctness of tools that are used

for generation, verification and evaluation of code. In order to be able to guaran-
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tee correctness, the correctness of underlying tools must also be guaranteed. Similar

statement holds for the domain of operation and expressiveness of the underlying

tools. It is reasonable to expect that the technique used for this approach can synthe-

size correct code only if it applies correct underlying tools and the the expressiveness

of those tools is sufficient for the given problem.

In our case, the used algorithms imply that all programs that can be synthesized,

can be represented as control flow expressions in which leaf and condition expressions

themselves can be synthesized by the underlying synthesizer. Similarly, all programs

that can be synthesized according to used algorithms can be verified for correctness

and evaluated against input examples. The correctness properties need to take into

account these remarks.

Theorem 4.3.2 (Soundness) If the synthesis returns a function f as a result, then

the function f must satisfy given formal specification and input/output examples, with

respect to the verification tool used.

More specifically, {p} r {q} has to be verifiable with the underlying verifier, where b

is the body of f and p, q are the precondition and postcondition defined by the formal

specification of f , respectively. In addition, if a set of input/output example pairs

is defined, all given inputs must evaluate to appropriate outputs and the evaluation

result must satisfy q, with respect to the underlying evaluator.

Theorem 4.3.3 (Completeness) If there exists a correct program to the given syn-

thesis problem that represents an expression encodable with a control flow term, and

all leaf and condition expressions of this term can be synthesized with the underly-

ing synthesizer when given enough time, then a solution to the synthesis problem is

returned.

The proof that these two properties hold directly stems from observation of algo-

rithms that are used for the implementation. It is easier to first show that general

algorithms, given in Algorithm 15 and 16 respect these properties and then by build-

ing upon these results, show that the more specific algorithms, the ones given in

Algorithm 17 and 18, also hold. An important remark is that the main algorithm will

always gradually add only correct branches so that the partial solution respects the

invariant that it encodes the correct behavior with respect to conditions that guard

it. Note that since Leon can verify only terminating programs, the evaluation of in-

put/output examples on enumerated expressions is important and it filters out the

ones that can lead to non-terminating executions. The branch synthesis algorithm will

try but never return a condition that does not guard an expression that represents a
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correct behavior. Since an exhaustive enumeration is done, eventually all expressions

of the right type will be checked, including the correct one, if one can be synthe-

sized and enumerated. These remarks together with the assumption that underlying

tools are correct in their behavior can lead to explanation that both soundness and

completeness properties hold for our synthesis approach driven by specifications.

4.3.7 Evaluation

We evaluated our synthesis approach on several examples that represent implementa-

tions of various widely-known and practical algorithms and data structures, including

the examples introduced in Section 4.3.1. The examples are written in a purely func-

tional subset of Scala and specifications are given with constructs hole and passes

(which together represent the domain language of our synthesis, as described in Sec-

tion 4.3.5).

Platform and settings for our experiments We used the same platform for

conducting all experiments presented in this work, and the platform is described in

Section 2.6. The algorithm that drives our implementation closely resembles the one

given in Algorithm 17. This algorithm depends on and can be tuned by a couple

of input parameters. The most influential parameter values that we adopted for the

experiments were:

• Algorithm 18 tries to synthesize a branch and gives up after examining boolean

snippets 20

• initially, 5 counter-example models are derived and put into the cm set, before

algorithm for branch synthesis is invoked

• after performing synthesis of potential body expressions of type T , 50 expres-

sions were tested and enqueued according to the input/output examples

• we ran the procedure without imposing a time limit

We selected these particular values of parameters by the results we got after series of

experimental, trial and error runs.

Code synthesis and results

For each synthesis problem we will present:

• code of the original implementation
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• code on which the synthesis process was invoked

• code after the synthesis

We will include the code from the original implementation so that it can serve as

a comparison to the resulting, synthesized code. The original implementation was

verified to be correct with Leon, prior to running the experiments20. The code on

which the synthesis process was invoked illustrates how we specified synthesis prob-

lems and characterize our experiments. The code shows the formal specification and

input/output example pairs that were used to drive the synthesis. Note that, for

the purpose of readability, we gave specifications with input/output examples in a

separate commented section that follows the main code, rather than with the passing

construct. We will use a simple way do denote lists - e.g. with [x, y, z] we denote a

list with elements x, y, z or more precisely Cons(x,Cons(y, Cons(z,Nil()))) in our

examples. Lastly, the code after synthesis represents the whole annotated function

after its body was synthesized and inserted at the appropriate place in the code.

We will introduce a couple of representable examples in more detail and after-

wards present a table that shows results and statistics of experiments ran with these

examples.

List concatentation

The algorithm for concatenation of two lists (Section 3.1.1) was frequently exploited

for demonstrative purposes in this chapter. Here, we will use it to examine the

performance of our synthesis approach. The code for this example uses the previously

adopted algebraic data type list representation and functions size and content.

The original code from the example for the function that performs list concatena-

tion is given in Listing 3.3.

The following code served as the input to our synthesis:

def concat(l1: List, l2: List) = ({
hole[List]

}) ensuring(res => content(res) == content(l1) ++ content(l2) &&

size(res) == size(l1) + size(l2))

/∗ passes: ([], []) −> []; ([1], []) −> [1]; ([1], [3]) −> [1, 3];

([1, 3], [5]) −> [1, 3, 5] ∗/

As the result, the following code was synthesized in 5784ms:

def concat(l1: List, l2: List) = {
if (l1.isInstanceOf[Nil]) l2

20note that not all examples could be verified, e.g. the linear search algorithm
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else if (l2.isInstanceOf[Nil]) l1

else Cons(l1.head, concat(l1.tail, l2))

}

It is interesting to note that the second branch is not necessary, but does not

hurt the correctness of the code and even results in faster execution in cases in which

second input list is empty. Also note that a different solution, that would respect the

given postcondition but allow permutation of elements between the lists is prevented

from synthesizing due to the specified input/output examples. The execution time

was almost 6 seconds and this shows that the generate-and-test approach can incur

a lot of time while searching for a solution even with the help of counter-example

evaluation and ranking.

Insertion sort

This example represents a purely functional implementation of the insertion sort

algorithm [15]. A version of the insertion sort algorithm implemented in this example

sorts lists encoded as algebraic data structures21 with integer elements (there is no

loss of generality in storing integers as opposed to values of other types inside the

list, as long the values can be compared with ¡= as given in the example below).

The code includes definitions of functions size, content (introduced in Section

3.1.1), appropriately annotated with formal specifications, together with the function

isSorted that represents a predicate for sorted lists (it returns true if the order of

elements in the list is non-decreasing):

def isSorted(l: List): Boolean = l match {
case Nil() => true

case Cons(x, Nil()) => true

case Cons(x, Cons(y, ys)) => x <= y && isSorted(Cons(y, ys))

}

The sorting algorithm is implemented with two main functions:

sortedIns This function takes a list and an element to be insert and inserts the

element at the right place in the input list. The implementation of this function

that can be verified for correctness is:

def sortedIns(e: Int, l: List): List = {
require(isSorted(l))

l match {
case Nil() => Cons(e,Nil())

21the usual representation we referred to multiple times in this work
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case Cons(x,xs) =>

if (x <= e) Cons(x,sortedIns(e, xs))

else Cons(e, l)

}
} ensuring(res => contents(res) == contents(l) ++ Set(e)

&& size(res) == size(l) + 1 && isSorted(res))

}

The precondition requires that the input list is sorted while the precondition

requires that the new list is equal to the input list with the element inserted

which respects the right order of its elements.

sort This is the main function that does the sorting. It takes a list (unordered) as an

argument and returns a new list that represents the input list with its elements

sorted. The function uses sortedIns function introuced previously.

def sort(l: List): List = (l match {
case Nil() => Nil()

case Cons(x,xs) => sortedIns(x, sort(xs))

}) ensuring(res => contents(res) == contents(l)

&& isSorted(res) && size(res) == size(l))

The function recursively goes through all elements of the input list and uses

recursive calls to eventually achieve unfolding that inserts each element into

a sorted, gradually filled list. The postconition states that the list should be

sorted, while it should not change in terms of its size and contents.

In our experiments we tried to synthesize functions sortedIns and sort. In the

following text we will present the code that is given to the synthesis process and the

resulting, synthesized code, in the case of both of these functions.

The sorting function, sort The code given to the synthesis process is:

def sort(l: List): List = ({
hole(l)

}) ensuring(res => contents(res) == contents(l)

&& isSorted(res) && size(res) == size(l))

/∗ passes: [] −> []; [1] −> [1]; [1, 3] −> [1, 3];

[1, 3, 5] −> [1, 3, 5]; [10, 7, 5] −> [5, 7, 10] ∗/

The following code was synthesized in 4304ms:

def sort(l: List): List = ({
if (l.isInstanceOf[Nil])

l
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else

sortedIns(l.head, sort(l.tail))

})

Note that the code exactly corresponds and encodes the body in the original

code. This effectively means that process had two iterations of the main loop of

the algorithm given in Algorithm 15 and that in the first, a correct branch was

found (the one that represents Hoare triple, {l.isInstanceOf [Nil]} l {q}, where q =

contents(l) = contents(Nil) ∧ isSorted(l) ∧ size(l) = size(Nil)).

The sorted insert function, sortedIns The code given to the synthesis process

is:

def sortedIns(e: Int, l: List) = {
require(isSorted(l))

hole[List]

} ensuring(res => contents(res) == contents(l) ++ Set(e)

&& isSorted(res) && size(res) == size(l) + 1)

/∗ passes: (3, []) −> [3]; (9, []) −> [9]; (3, [5, 7, 10]) −> [3, 5, 7, 10];

(6, [5, 7, 10]) −> [5, 6, 7, 10]; (9, [5, 7, 10]) −> [5, 7, 9, 10]; ∗/

The following code was synthesized in 19763ms:

if (l.isInstanceOf[Nil]) Cons(e, l)

else if (e == l.head) Cons(e, l)

else if (e < l.head) Cons(e, l)

else sortedIns(l.head, sortedIns(e, l.tail)))

It is interesting that in this case the synthesized body of the function does not

exactly correspond to the one found in the original code with respect to the branching

structure of if terms. Note that it represents a correct body, moreover implements

the same behavior as the one in the original, with respect to given specifications.

More specifically, our tool synthesized an additional branch, i.e. two branches with

conditions e == l.head and e < l.head and the same branch expression Cons(e, l). This

is due to the fact that after synthesizing the first branch, while synthesizing with the

precondition !l.isInstanceOf[Nil], the term e == l.head was enumerated and verified as

correct before the term e <= l.head. Of course, in the following iteration, the pre-

condition was updated to !l.isInstanceOf[Nil] ∧ !e == l.head and the process found

that the same branch expression Cons(e, l) is valid under the precondition e < l.head.

Afterwards the else expression, sortedIns(l.head, sortedIns(e, l.tail)), was enumerated and

validated.
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Merge sort

The following example represents a purely functional implementation of the merge

sort algorithm [15]. It operates on the same representation of lists as the previous

example.

The original code includes functions size, content and isSorted that are imple-

mented in the same way as in the previous example. These functions are used to

specify the postcondition of the mergeSort function to be synthesized. The usual

functional implementation of merge sort has two additional functions: merge that

takes two sorted lists and merges them into a sorted list and a function that does the

splitting of the input list in half [16]. Note that splitting is usually implemented with

the help of built-in functions (like take) if they are available (which does not hold in

our case, thus we introduced explicitly).

We introduced functions merge and split in our program with the behaviour ac-

cording to the previous description, together with their formal annotations. For the

sake of brevity, we will present these functions without their bodies:

def merge(a : List, b : List) : List = {
require(isSorted(a) && isSorted(b))

...

} ensuring(res =>

isSorted(res) && contents(res) ==

contents(a) ++ contents(b))

Listing 4.4: merge function

// Pair encodes (List, List)

def split(list: List): Pair = {
...

} ensuring(res => contents(list) ==

contents(res.fst) ++ contents(res.snd))

Listing 4.5: split function

The code given to the synthesis process is:

def mergeSort(list : List) = ({
hole[List]

}) ensuring(res => contents(res) == contents(list) && isSorted(res))

/∗ passes: [] −> []; [10] −> [10]; [5, 10] −> [5, 10]; [10, 5] −> [5, 10];

[5, 10, 15] −> [5, 10, 15]; [15, 10, 5] −> [5, 10, 15]; ∗/

The following code was synthesized in 79937ms:

def mergeSort(list : List) =

if (list.isInstanceOf[Nil]) list

else if (isSorted(list)) list

else merge(mergeSort(split(list).fst), mergeSort(split(list).snd)))

An interesting remark about the synthesized solution is that it indeed represents

correct code but an additional, unnecessary branch was synthesized, once more. The

branch checks if the list is sorted and if true, returns the list without recursively calling
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the sort function. This is in fact interesting since the given code even performs faster

than the original code on input examples where the list is already sorted. There are

3 input examples that represent already sorted lists, so the unnecessary synthesized

branch got favored in the second iteration of the algorithm. After the expression was

dequeued, the synthesize branch algorithm managed to find the appropriate condition

for the branch. Finally, the last, most complex expression was synthesized.

Comparison of the results

Table 4.2 presents the overview of the synthesis results on the four previously de-

scribed, representative examples.

Example Synthesized Unnecessary Total Given Execution time (s)
name and function branches branches size examples Ver. Test. Overall

Concatenation 3 Yes 15 4 3.8 0.37 5.39
Insertion sort, sortedIns 4 Yes 27 5 14.63 0.72 19.76

Insertion sort, sort 2 No 10 5 3.35 0.23 4.30
MergeSort 3 Yes 16 6 51.46 5.1 79.94

Table 4.2: Results of the evaluation of synthesis of correct programs with respect to specifications.
First column gives the example name. The following two columns state how many branches the
synthesized solution contains and whether some of those were unnecessary for satisfying correctness.
The following two columns give the cumulative size of the synthesized if expression together with
how many input/output examples were provided as the input specification. Last three columns give
execution time spent for verification, execution of tests and overall (synthesis and overhead).

The table shows that in all four examples our approach managed to synthesize

correct code successfully. Note that the total size of synthesized if expressions was

calculated by summing up sizes of all contained branch and condition expressions.

Additionally, note that we did not explicitly measure synthesis time (and execution

time of the enumeration of reconstructed terms) but left it as the cumulative execution

time together with overheads in the whole process.

From the overview of the complexity of synthesized solutions, in terms of synthe-

sized branches and total size of the expression, we can see that relatively complex,

with size ranging from 10 to 27, but still correct expressions were synthesized with

providing relatively little input/output example pairs to the synthesis process. Syn-

thesis of the sortedIns function produced an expression of the largest size, namely

27, while the synthesis of mergeSort has proved to be the most difficult and took

almost 80s to produce a solution. The classification of the execution time shows that

the verification takes the largest portion of the execution time, while the execution

of tests is relatively fast. This is expected since only a few of them is being executed
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for each enumerated expression.

Although we did not generalize our implementation to the extent to be able to pro-

vide an evaluation on a larger set of examples and to tune and analyze how individual

techniques and parameter values affect the synthesis process, the results presented in

this section can serve to get valuable insights into practical possibilities, limitations

and further improvements of our approach to generating correct programs.
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Chapter 5

Related work

Previous work on the type driven synthesis This line of work was started

with the initial versions of our approach driven by types and the InSynth tool [60,

31, 29]. In the demo tool a theorem prover was used for classical logic for synthesis.

Based on an extensive evaluation and various implementation improvements, the

important conclusion was that the code completion problem is more related to the

type inhabitation problem. Our current approach also provides a method to mine

initial weights of declarations, which was very important for obtaining useful results.

Code snippet search Several tools including Prospector [46], XSnippet [66], Strath-

cona [34], PARSEWeb [74] and SNIFF [14] that generate or search for relevant code

examples have been proposed. In contrast to all these tools we support expressions

with higher order functions. Additionally, we synthesize snippets using all visible

methods in a context, whereas the other existing tools build or present them only if

they exist in a corpus. Prospector, Strathcona and PARSEWeb do not incorporate

the extracted examples into the current program context; this requires additional

effort on the part of the programmer. Moreover, Prospector does not solve queries

with multiple argument methods unless the user initiate multiple queries. In con-

trast, we generated expressions at once. We could not effectively compare InSynth

with those tools, since unfortunately, the authors did not report exact running times.

We next provide more detailed descriptions for some of the tools, and we compare

their functionality to InSynth. Prospector [46] uses a type graph and searches for the

shortest path from a receiver type, typein, to the desire type, typeout. The nodes

of the graph are monomorphic types, and the edges are the names of the methods.

The nodes are connected based on the method signature. Prospector also encodes

subtypes and downcasts into the graph. The query is formulated through typein and

typeout. The solution is a chain of the method calls that starts at typein and ends
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at typeout. Prospector ranks solutions by the length, preferring shorter solutions.

On the other hand, we find solutions that have minimal weights. This potentially

enables us to get solutions that have better quality, since the shortest solution may

not be the most relevant. Furthermore, in order to fill in the method parameters,

a user needs to initiate multiple queries in Prospector. In InSynth this is done au-

tomatically. Prospector uses a corpus for down-casting, whereas we use it to guide

the search and rank the solutions. Moreover, Prospector has no knowledge of what

methods are used most frequently. Unfortunately, we could not compare our imple-

mentation with Prospector, because it was not publicly available. XSnippet [66] offers

a range of queries from generalized to specialized. The tool uses them to extract Java

code from the sample repository. XSnippet ranks solutions based on their length,

frequency, and context-sensitive as well as context-independent heuristics. In order

to narrow the search the tool uses the parental structure of the class where the query

is initiated to compare it with the parents of the classes in the corpus. The returned

examples are not adjusted automatically into a context—the user needs to do this

manually. Similar to Prospector the user needs to initiate additional queries to fill

in the method parameters. In Strathcona [34], a query based on the structure of the

code under development, is automatically extracted. One cannot explicitly specify

the desired type. Thus, the returned set of examples is often irrelevant. Moreover, in

contrast to InSynth, those examples can not be fitted into the code without additional

interventions. PARSEWeb [74] uses the Google code search engine to get relevant

code examples. The solutions are ranked by length and frequency. In InSynth the

length of a returned snippet also plays an important role in ranking the snippets but

InSynth also has an additional component by taking into account also the proximity of

derived snippets and the point where InSynth was invoked. The main idea behind the

SNIFF [14] tool is to use natural language to search for code examples. The authors

collected the corpus of examples and annotated them with keywords, and attached

them to corresponding method calls in the examples. The keywords are collected

from the available API documentation. InSynth is based on a logical formalism, so it

can overcome the gap between programming languages and natural language.

There are several tools for the Haskell API search. The Hoogle [56] search engine

searches for a single function that has either a given type or a given name in Haskell,

but it does not return a composed expression of the given type. The Hayoo [59]

search engine does not use types for searching functions: its search is based on function

names. The main difference between Djinn [63] and our system is that Djinn generates

a Haskell expression of a given type, but unlike our system it does not use weights to

guide the algorithm and rank solutions. Recently we have witnessed a renewed interest
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in semi-automated code completion [57]. In their tool Perelman et al. generate partial

expressions to help a programmer write code more easily. While their tool helps to

guess the method name based on the given arguments, or it suggests arguments

based on the method name, we generate complete expressions based only on the type

constraints. In addition, our approach also supports higher order functions, and the

returned code snippets can be arbitrarily nested and complex: there is no bound

on the number and depth of arguments. This allows us to automatically synthesize

larger pieces of code in practice, as our evaluation shows. In that sense, our result is

a step further from simple completion to synthesis.

An approach that develops a search-engine that answers semantic code-search

queries, deals with how an API is used, in a way that consolidates, distills, and ranks

matching code snippets was presented in [50]. The presented tool, Prime, receives a

query in a form of partial code, does a textual search of similar code on the web and

uses consolidation techniques to merge multiple code snippets and rank the results.

In Prime, the developer must have a general idea about the implementation in the

desired code snippet in order to be able to provide a sensible query. While Prime uses

semantic search to synthesize potentially complex algorithms it does not guarantee a

correct code or even a code that type-checks.

Exsting support in IDEs InSynth is similar in operation to Eclipse content assist

proposals [73] and IntelliJ [35], and it implements the same behaviour. More advanced

solutions appeared recently, like the Eclipse code recommenders [12, 20], which use

and expand knowledge base of API calls statistics in order to find the appropriate

expressions and offer them to the developer with appropriate statistical confidence

value. InSynth is fundamentally different from this approach (it even subsumes it) and

can synthesise code fragments that never occurred in code previously. Such solutions

can explore only the provided code snippets from the repository and do not perform

synthesis of source code in the developer’s run-time environment.

Proof assistants The synthesized code in our approach is extracted from the proof

derivation. Similar ideas have been exploited in the context of sophisticated depen-

dently typed languages and proof assistants [8]. Our goal is to apply it to simpler

scenarios, where propositions are only partial specifications of the code, as in the

current programming practice. Agda is a dependently typed programming language

and proof assistant. Using Agda’s Emacs interface, programs can be developed incre-

mentally, leaving parts of the program unfinished. By type checking the unfinished

program, the programmer can get useful information on how to fill in the missing
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parts. The Emacs interface also provides syntax highlighting and code navigation fa-

cilities. However, because it is a new language and lacks large examples, it is difficult

to evaluate this functionality on larger numbers of declarations.

Type driven synthesis and logical frameworks The use of type constraints

was explored in interactive theorem provers, as well as in synthesis of code fragments.

SearchIsos [19] uses type constraints to search for lemmas in Coq, but it does not use

weights to guide the algorithm and rank the solutions. Having the type constraints,

a natural step towards the construction of proofs is the use of the Curry-Howard

isomorphism. The drawback of this approach is the lack of a mechanism that would

automatically enumerate all the proofs. By representing proofs using graphs, the

problem of their enumeration was shown to be theoretically solvable [78], but there is

a large gap between a theoretical result and an effective tool. Furthermore, InSynth

can not only enumerate terms but also rank them and return a desired number of

best-ranked ones.

Grammatical frameworks Our work has a couple of related points with gram-

matical frameworks [61, 4]. A relation between abstract and concrete syntax used in

grammatical frameworks can be observed in the way the synthesis driven by types

represents and produces code snippets. The intermediate representation can be seen

as the abstract syntax and the domain language as concrete, while extracting program

declarations and reconstructing reduce to parsing and linearization of syntax trees,

respectively. Techniques such as partial evaluation and tree transformations used in

grammatical frameworks may be applied to proof trees in the reconstruction of type

inhabitants.

Comparison with intuitionistic provers As having a witness term that a type

is inhabited is a vital ingredient of our tool, one could think of InSynth as a prover for

propositional intuitionistic logic (with substantial additional functionality). Among

recent modern provers are Imogen [49] and fCube [21]. These tools can reason about

more expressive fragments of logic (they support not only implication but also intu-

itionistic counterparts for other propositional operators such as ∨,⇒,⇔, and Imogen

also supports first-order and not only propositional fragment). Our results on fairly

large benchmarks suggests that InSynth is faster for our purpose, which is not entirely

surprising because these tools are not necessarily optimized for the task that we aim

to solve, and often do not have efficient representation of large initial environments.

The main purpose of our comparison is to show that our technique is no worse than
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the existing ones for our purpose, even if we only check the existence of proofs. What

is more important than performance is that InSynth produces not only one proof, but

a representation of all proofs, along with their ranking, which is essential for our

application: using synthesis as a generalization of completion.

Synthesis with input/output examples One of the first works that addressed

synthesis by examples, put inductive synthesis on a firm theoretical foundation and

largely influenced our work is the one by Summers [70]. It is an explanation based

generalization approach that initially constructs a non-recursive program (in terms of

Lisp datatype S-expression) from traces and conditions that explain each input/out-

put example and then generalizes the program according to similarities in traces. The

approach thus widely relies on algorithmic processes and only partially on search. Our

approach infers traces implicitly by constructing recursive programs with if conditions

and recursive calls, instead of S-expressions. While it drastically relies on searching

and usually synthesizes branches that cover multiple example pairs, it lacks the gen-

eralization step and thus is not effective in cases in which overspecialization of the

synthesized program may occur.

Several more recent works present extensions of the classical approach to induc-

tion of functional Lisp-programs [39, 33, 40]. They present extensions which include

synthesizing a set of equations (instead of just one), multiple recursive calls and sys-

tematic introduction of parameters. Interestingly, many of the shortcomings of these

approaches, like reasoning about arbitrary datatypes, multiple parameters in I/O ex-

amples, nested recursive calls and user-defined declarations, are not present in our

work. Reasoning about more than structural problems, specifically in the generaliza-

tion part, is interesting extension of these approaches that can also be incorporated

in our approach for solving the overspecialization issue.

Inductive programming and programming by demonstration Inductive (logic)

programming, which explores automatic synthesis of (usually recursive) programs

from incomplete specifications, most often being input/output examples, represents

an interesting field of research in machine learning [23, 52]. Our approach strongly

relates to approaches in inductive programming that generate all correct programs

and test against the specification.

Although they focus on solving conceptually different and more specific problems,

more specifically synthesis of string manipulation operations, a couple of approaches

from the area of programming by demonstration influenced the ideas behind our

approach [24, 44]. They present interesting ideas for learning from input/output
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examples that may be generalized and incorporated in our approach to synthesis

driven by specifications.

Synthesis procedures and frameworks Several works address the approach of

generalizing decision procedures into synthesis procedures that synthesize functions

mapping inputs to outputs in decidable theories, such as linear arithmetic and sets [42]

and systematic derivation of synthesis procedures with inference rules for combina-

tions of theories [36,41]. Synthesis driven by specifications presented in our work does

not require limiting the synthesis to decidable theories and can be incorporated into a

synthesis procedure framework as a rule that searches for solutions in run-time. Our

approach is thus related to the run-time approach of constraint solving from the area

of constraint (logic) programming [43].

Counter-example guided iterative synthesis Due to recent advances in the

field of SMT solvers, numerous papers begin to emerge that consider using for syn-

thesis approaches based on the counter-example guided iterative synthesis [25]. The

counterexample guided iterative synthesis technique provides a procedure for deal-

ing with quantifier alternation in formulas. That effectively means that if the right

underlying logic is supported, an effective procedure for synthesis in that logic ex-

ists. We were motivated by this technique for optimization purposes in our approach

that synthesized correct code. The main difference in our approach is that we use

counterexamples derived from models returned by the solver to filter out already

synthesized expressions.
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Chapter 6

Conclusions

We presented the design and implementation of a code completion inspired by com-

plete implementation of type inhabitation for simply typed lambda calculus. Our

algorithm uses succinct types, an efficient representation for types, terms, and envi-

ronments that takes into account that the order of assumptions is unimportant. Our

approach generates a graph representation of all solutions, from which it can extract

any desired number of solutions. To further increase the usefulness of generated re-

sults, we introduce the ability to assign weights to terms and types. The resulting

algorithm performs search for expressions of a given type in a type environment while

minimizing the weight, and preserves the completeness. The presence of weights in-

creases the quality of the generated results. To compute weights we use the proximity

to the declaration point as well as weights mined from a corpus. We have deployed

the algorithm in an IDE for Scala. Our evaluation on synthesis problems constructed

from API usage indicate that the technique is practical and that several technical

ingredients had to come together to make it powerful enough to work in practice.

Our tool and additional evaluation details are publicly available.

Additionally, we presented an approach to synthesizing correct programs with

respect to specifications provided by the developer. Synthesizing correct code with

respect to specifications of its behavior is a very challenging tasks. Our approach

was motivated by works that laid foundations of software synthesis with examples

and theorem proving. Our observation was that techniques and tools presented in

those works are too restrictive in their expressiveness to be useful in practical modern

software development. Our goal was to start from an approach that is able to solve

the code synthesis problem in the general case and use it as the core for a more

sophisticated procedure that would provide necessary flexibility for refinement and
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improvements until it converges to the appropriate practical value. The technique

that lies at the core of our approach is based on few well-known and simple concepts

but goes beyond the scope of possibilities of existing techniques and presents a great

potential if utilized in a right way. Our approach has the aim enhance the technique

by utilizing the existing state-of-the art tools for synthesis and verification.

We implemented a Scala compiler plugin that allows developers to describe be-

havior of an arbitrarily complex program both in terms of formal specifications and

input/output example pairs and goes through the provided source code and fills out

missing bodies of functions marked for synthesis. The technique uses state-of-the

art synthesizer and verifier, namely InSynth and Leon. From the intial results of the

evaluation of our tool on synthesizing several practical algorithms with a range of

complexities, we can get a feeling of the potential and practical value that this ap-

proach can bring. The results show that our approach is able to synthesize code in

those examples and while not showing great efficiency it provides insights into the

potential for improvements.
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