A convex optimization approach for image recovery from
nonlinear measurements in optical interferometry
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Abstract—Image recovery in optical interferometry is an ill-posed
nonlinear inverse problem arising from incomplete power spectrum
and bi-spectrum measurements. We formulate a linear version of the
problem for the order-3 tensor formed by the tensor product of the
signal with itself. This linear problem is regularized by standard convex
{1 —relaxations of sparsity and low rank constraints and solved using the
most advanced algorithms in convex optimization. We show preliminary
results on small size synthetic images as a proof of concept.

Interferometry is a unique tool to image the sky at otherwise
inaccessible resolutions. The set of visibilities measured provides an
incomplete Fourier coverage of the brightness intensity as a function
of angular direction, in vector form z € RY with components ;.
However, at optical wavelengths, the phase of the complex visibilities
is affected by atmospheric turbulence. The measurable quantities
are power spectrum data \j:l-|2, and phases associated with the bi-
spectrum &; - &; - T [1]. This poses a nonlinear inverse problem for
image reconstruction, which is sensitive to the optimization strategy.

Generalizing the Phase Lift approach [2], we formulate a linear ver-
sion of the problem for the order-3 tensor X = z@z®xz € RYXN*N
with components X, which arises from the tensor product of
the signal with itself. The total flux is measured independently
and we consider a normalized signal such that 27 T = To = 1,
Zo representing the zero-frequency. Thus, the linear measurement
model y = A(X) € CM encompasses both power spectrum and bi-
spectrum measurements, for a measurement operator A defined as a
selection operator after Fourier transform along all tensor dimensions.

In this setting, prior information is essential to regularize the ill-
posed inverse problem in the perspective of image reconstruction.
Firstly, we adopt a sparsity prior on the tensor to acknowledge some
signal sparsity K < N. While {op—minimization would promote
sparsity explicitly we adopt the common ¢;—convex relaxation.
Secondly, convex reality and positivity constraints are also enforced
to acknowledge the fact that we deal with intensity images. Thirdly,
in order to counter-balance the large increase of dimensionality when
solving for X instead of x, we rely explicitly on the fact that X’
is formed by the tensor product of x, whose components sum to
unity, so that summations over one or two indices respectively lead
to the order-2 tensor C(X) = z ® x € RV*Y and to the signal x
itself. We enforce the semi-definite positivity of C(X) and its rank-
1 structure by resorting to nuclear norm minimization. The nuclear
norm of an order-2 tensor is defined as the ¢; —norm of its singular
values vector. Its minimization should be understood as the convex
relaxation of the minimization of the rank function counting the
number of singular values. Finally, we also resort to a re-weighting
scheme consisting in approaching both ¢p—minimization on X and
rank minimization on C(X) by solving a sequence of weighted ¢1
and nuclear norm minimizations, each initialized to the solution of the
previous problem. The fundamental symmetry of the tensor A over
index permutation is also enforced by ensuring that any operation
performed preserves the symmetry. The weighted ¢; and nuclear

norm minimization problem thus reads as:
min [|C(X)[1Y + X such that ly — A(X)|]2 < e,

and  C(X)>=0,X>0, (1)

where the symbols || - || and || - ||} respectively denote weighted

nuclear and ¢; norms. In the weighted nuclear norm, the singular
values of C(X) are essentially divided by their value at the previous
iteration, in order to approximate the rank function. In the weighted
£1—norm, each tensor component Xjj, is essentially divided by
some robust estimation of its value from the previous iteration, in
order to promote ¢p—minimization. This estimation is obtained by
symmetrized sums over two dimensions in order to promote structure
in the tensor sparsity. In the first iteration, no weighting is applied.
A non-weighted ¢; —norm is not a meaningful prior function as the
tensor values sum to unity. We thus set A = 0 at the first iteration.

We solve this complex problem taking advantage of the versatility
of convex optimization, using a combination of the Douglas-Rachford
and dual forward-backward algorithms. The solution is low rank
and we extract x as the principal eigenvector of C(X). We want to
highlight the fact that in this framework the results do not depend
on the initialization of the algorithm, in stark contrast with common
non-convex approaches.

Figure 1 shows an example of reconstruction of a 16 x 16 synthetic
image from M = 0.75N measurements affected by 30dB of input
noise, along with a phase transition diagram for random 8 x 8 images,
representing the probability of good reconstruction in the sparsity-
undersampling plane in a noiseless setting. In both cases equal

numbers of random power and bi-spectrum data are considered.
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Figure 1. Left and centre: 16 X 16 image and reconstruction with M =
0.75N: SNR= 37.2dB. Right: phase transition diagram for 8 x 8 images.

The principal drawback of this approach is the dimension of the
problem, leading to computation time and memory requirements
issues. Advanced algorithmic, coding and hardware solutions need
to be investigated in this perspective.
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