
Scala Macros, a Technical Report

Eugene Burmako, Martin Odersky

École Polytechnique Fédérale de Lausanne (EPFL)
first.last@epfl.ch

Abstract. Metaprogramming is a powerful technique of software de-
velopment, which allows to automate program generation. Applications
of metaprogramming range from improving expressiveness of a program-
ming language via deep embedding of domain-specific languages to boost-
ing performance of produced code by providing programmer with fine-
grained control over compilation. In this report we introduce macros,
facility that enables compile-time metaprogramming in the Scala pro-
gramming language.

Keywords: Compile-time Metaprogramming, Macros, Multi-stage Pro-
gramming, Language Virtualization

1 Introduction

As its name suggests, Scala (which stands for “scalable language” [1]) has been
built from the ground up with extensibility in mind. Such features as abstract
type members, explicit selftypes and modular mixin composition enable the pro-
grammer to compose programs as systems of reusable components [2].

The symbiosis of language features employed by Scala allows the code written
in it to reach impressive levels of modularity [3], however there is still room for
improvement. For example, the semantic gap between high-level abstractions
and the runtime model of Java Virtual Machine brings performance issues that
become apparent in high-performance scenarios [5]. Another example is state of
the art in data access techniques. Recently established standards in this domain
[4] cannot be readily expressed in Scala, which represents a disadvantage for
enterprise software development.

Compile-time metaprogramming has been recognized as a valuable tool for
enabling such programming techniques as: language virtualization (overload-
ing/overriding semantics of the original programming language to enable deep
embedding of DSLs) [6], program reification (providing programs with means
to inspect their own code) [8, 10], self-optimization (self-application of domain-
specific optimizations based on program reification) [11, 12], algorithmic program
construction (generation of code that is tedious to write with the abstractions
supported by a programming language) [7, 8].

Our research introduces new concepts to Scala programming languages en-
abling metaprogramming techniques that address modern development chal-
lenges in an approachable and structured way [9].

2 Intuition

Here is a prototypical macro definition in our macro system:

def m (x : T) : R = macro implRef

At first glance macro definitions are equivalent to normal function definitions,
except for their body, which starts with the conditional keyword macro and is
followed by a possibly qualified identifier that refers to a macro implementation
method.

If, during type-checking, the compiler encounters an application of the macro
m(args), it will expand that application by invoking the corresponding macro im-
plementation method, with the abstract-syntax trees of the argument expressions
args as arguments. The result of the macro implementation is another abstract
syntax tree, which will be inlined at the call site and will be type-checked in
turn.

Example 1. The following code snippet declares a macro definition assert that
references a macro implementation Asserts.assertImpl.

def assert (cond : Boolean , msg : Any) =
macro Asserts . assertImpl

A call assert(x < 10, "limit exceeded") would then lead at compile time to
an invocation:

assertImpl (c) (<[x < 10]> , <[" limit exceeded "]>)

where c is a context argument that contains information collected by the
compiler at the call site (receiver of the macro invocation, symbol tables for
enclosing lexical scopes, etc.), and the other two arguments are abstract syntax
trees representing the two expressions x < 10 and "limit exceeded".

In this document <[expr]> denotes the abstract syntax tree that represents
the expression expr, but this notation has no counterpart in our extension of the
Scala language. The canonical way to construct abstract syntax trees is to use
the types in the compiler library, which for the two expressions above looks like
this:

Apply (
Select (Ident (newTermName ("x")) , newTermName (" $less ") ,
List (Literal (Constant (10))))

Literal (Constant (" limit exceeded "))

The core of our macro system is described in sections 3 through 6 and is
inspired by the notions from LISP [13], Scheme [14] and Nemerle [8]. Sections 7
through 9 describe a peculiar feature of Scala macros that makes use of staging
to bootstrap macros into a hygienic and quasiquoting metaprogramming system.
Subsequent sections conclude the report.

3 Baseline

Let us examine a possible implementation of the assert macro mentioned in
Example 1 to explore the foundations of Scala macros:

object Asserts {
def assertionsEnabled = . . .
def raise (msg : Any) = throw new AssertionError (msg)
def assertImpl (c : Context)

(cond : c . Expr [Boolean] , msg : c . Expr [Any])
: c . Expr [Unit] =

if (assertionsEnabled)
<[if (! cond) raise (msg)]>

else
<[()]>

}

As the listing shows, a macro implementation takes several parameter lists.
First comes a single parameter, of type Context. This is followed by a list of
parameters that have the same names as the macro definition parameters. But
where the original macro parameter has type T, a macro implementation param-
eter has type c.Expr[T]. Expr[T] is a type defined in Context that wraps an abstract
syntax tree of type T. The result type of the assertImpl macro implementation
is again a wrapped tree, of type c.Expr[Unit].

Parameters of a macro implementation are dependently typed, being a part
of a dependent method type [15]. Such type annotations statically ensure that
artifacts passed into a macro belong to the context that services a macro ex-
pansion. This type-checking facility is important from a practical standpoint, as
it prevents accidental mix-up of compilation stages. For example, without de-
pendent typing it would be possible to inadvertently refer to runtime trees and
types (obtained from a reflection context) in a compile-time macro (that uses
the compiler context).

The macro being discussed is static, in a sense that it has a statically known
receiver (such receivers are called “objects” in Scala parlance). It is possible,
however, to define instance macros and use them in a prefix fashion, analogously
to instance methods, e.g. receiver.a_macro(args). In that case, abstract syntax
tree corresponding to receiver is passed to the macro implementation in Context.

4 Expression Trees

An expression tree of type Expr[T] encapsulates an abstract syntax tree of type T

together with its type. Heres the definition of Expr as a member of the compiler
library exposed to macro implementations:

case class Expr [T : TypeTag] (tree : Tree) {
def eval : T = . . .
lazy val value : T = eval

}

Implicit in the contract for Expr is that the type of the reified tree conforms
to the type parameter T (which is also reified by the virtue of the TypeTag context
bound, as described in subsequent sections). Expr values are typically created by
the compiler, which makes sure that this contract is kept.

Note that the method eval which when called on a value of type Expr[T] will
yield a result of type T. The eval method and the value value play a special role
in tree splicing as described in subsequent sections.

5 Polymorphic Macros

Macro definitions and macro implementations may both be polymorphic.
Type parameters in an implementation may come with TypeTag context bounds

[16]. In that case the corresponding TypeTags describing the actual type argu-
ments instantiated at the application site will be passed along when the macro
is expanded.

Example 2. The code below declares a polymorphic macro definition Queryable

.map that references a polymorphic macro implementation QImpl.map:

class Queryable [T] {
def map [U] (p : T => U) : Queryable [U] = macro QImpl . map [T , U]

}

object QImpl {
def map [T : c . TypeTag , U : c . TypeTag]

(c : Context)
(p : c . Expr [T => U])
: c . Expr [Queryable [U]] = . . .

}

As outlined in [16], context bounds provide a concise notation for declaring
implicit parameter sections that captures suitable type class instances from lex-
ical scope. For example, method QImpl.map is desugared into the following form:

object QImpl {
def map [T , U]

(c : Context)
(p : c . Expr [T => U])
(implicit evidence$1 : c . TypeTag [T] ,
implicit evidence$2 : c . TypeTag [U])

: c . Expr [Queryable [U]] = . . .
}

Now consider a value q of type Queryable[String] and the following macro call
(the explicit type argument [Int] can be omitted, in which case it will be inferred
by the compiler):

q . map [Int] (s => s . length)

The call is expanded to the following macro invocation:

QImpl . map (c) (<[s => s . length]>)
(implicitly [c . TypeTag [String]] , implicitly [c . TypeTag [Int]])

The implicitly function is used to summon suitable (i.e. marked as implicit
and having a conformant type signature) type tags from the lexical scope of the
call site. Shortly put, implicit search starts with the innermost enclosing scope
and proceeds from the inside out (details about the implicit resolution algorithm
may be found in [17]).

Of course, macro runtime does not expect the programmer to know about
macro contexts, to create the type tags manually and to put them into local
variables visible from macro call sites. In a common case when type tags are
not declared explicitly, implicit search will fall back to the outermost scope,
declared in the standard library. This outermost scope hosts implicit macros
that are capable of materializing type tags for arbitrary types.

6 Type Tags

A value of type TypeTag[T] encapsulates a representation of type T. A TypeTag

value simply wraps a Scala type, while a ConcreteTypeTag value is a type tag that
is guaranteed not to contain any references to type parameters or abstract types.

case class TypeTag [T] (tpe : Type) { . . . }
class ConcreteTypeTag [T] (tpe : Type) extends TypeTag [T] (tpe)

Implicit in the contract for all Tag classes is that the reified type represents
the type parameter T. Tags are typically created by the compiler, which makes
sure that this contract is kept. The creation rules are as follows:

1) If an implicit value of type TypeTag[T] is required, the compiler will summon
it from the enclosing lexical scope or make one up on demand using the implicit
search algorithm described in the previous section.

2) The implicitly created value contains a value of type Type that is a reified
representation of T. In that value, any occurrences of type parameters or abstract
types U which come themselves with a TypeTag are represented by that TypeTag.
This is called type splicing.

3) If an implicit value of type ConcreteTypeTag[T] is required, the compiler will
make one up on demand following the same procedure as for TypeTags. However,
if the resulting type still contains references to type parameters or abstract types,
a static error results.
As an example that illustrates type splicing, consider the following function:

def f [T : TypeTag , U] = {
type L = T => U
implicitly [TypeTag [L]]

}

Then a call of f[String, Int] will yield a result of the form:

TypeTag (<[String => U]>)

Note that T has been replaced by String, because it comes with a TypeTag in
f, whereas U was left as a type parameter.

Type splicing plays an important role in the design of the metaprogramming
system, because Scala uses the erase-types model to compile polymorphic types
[18]. In this model, when the program is compiled down to executable form, type
arguments of the invocations are removed, and type parameters are replaced by
their upper bounds. With implicit parameters it becomes possible to capture
type arguments during the compile-time to retain them at runtime [3], and type
splicing scales this technique to complex types.

7 Quasiquoting and Hygiene

The macro scheme described so far has the advantage that it is minimal, but also
suffers from two inconveniences: tree construction is cumbersome and hygiene is
not guaranteed. Consider a fragment of the body of assertImpl in Example 1 :

<[if (! cond) raise (msg)]>

To actually produce the abstract syntax tree representing that expression
one might write something like that:

c . Expr (
If (Select (cond , newTermName (" unary_$bang ")) ,

Apply (Ident (newTermName (" raise ")) , List (msg)) ,
Literal (Constant (()))))

Cumbersome enough as this is, it is also wrong. The tree produced from a
macro will be inlined and type-checked at the macro call site. But that means
that the identifier raise will be type-checked at a point where it is most likely
not visible, or in the worst case they might refer to something else. In the macro
literature, this insensitivity to bindings is called non-hygienic [19, 8].

In the case of assertImpl, the problems can be avoided by generating instead
of an identifier a fully qualified selection

Select (Ident (newTermName (" Asserts ")) , newTermName (" raise "))

(to be completely sure, one would need to select the full path starting with the
root package). But that makes the tree construction even more cumbersome
and is very fragile because it is easily forgotten.

However, it turns out that macros themselves can be used to solve both these
problems. A corner-stone of the technique is a macro called reify that produces
its tree one stage later.

8 Reify

The reify macro plays a crucial role in the proposed macro system. Its definition
as a member of Context is:

def reify [T] (expr : T) : Expr [T] = macro . . .

Reify accepts a single parameter expr, which can be any well-typed Scala
expression, and creates a tree that, when compiled and evaluated, will recreate
the original tree expr. So reify is like time-travel: trees get re-constituted at a
later stage. If reify is called from normal compiled code, its effect is that the
abstract syntax tree passed to it will be recreated at run time. Consequently, if
reify is called from a macro implementation, its effect is that the abstract syntax
tree passed to it will be recreated at macro-expansion time (which corresponds
to run time for macros). This gives a convenient way to create syntax trees from
Scala code: pass the Scala code to reify, and the result will be a syntax tree
that represents that very same code.

Moreover, reify packages the result expression tree with the types and values
of all free references that occur in it. This means in effect that all free references
in the result are already resolved, so that re-typechecking the tree is insensitive to
its environment. All identifiers referred to from an expression passed to reify are
bound at the definition site, and not re-bound at the call site. As a consequence,
macros that generate trees only by the means of passing expressions to reify are
hygienic.

So in that sense, Scala macros are self-cleaning. Their basic form is minimal
and unhygienic, but that simple form is expressive enough to formulate a reify

macro, which can be used in turn to make tree construction in macros concise
and hygienic.

Example 3 : Here is an implementation of the assert macro using reify.

object Asserts {
def assertionsEnabled = . . .
def raise (msg : Any) = throw new AssertionError (msg)
def assertImpl (c : Context)

(cond : c . Expr [Boolean] , msg : c . Expr [Any])
: c . Expr [Unit] =

if (assertionsEnabled)
c . reify (if (! cond . eval) raise (msg . eval))

else
c . reify (())

}

Note the close correspondence with the meta-notation of Example 1.

9 Splicing

Reify and eval are inverses of each other. Reify takes an expression and produces
a tree that, when evaluated with eval, yields the same result as the original
expression. This is also expressed by their types. reify goes from T to Expr[T],
and eval goes from Expr[T] back to T.

The reify macro takes advantage of this relationship by short-circuiting em-
bedded calls to eval during the process that we call tree splicing (compare this
with type splicing described above):

reify (expr . eval) translates to expr

This principle is seen in action in Example 3. There, the contents of the
parameters cond and msg are spliced into the body of the reify.

Along with eval, value also gets special treatment:

reify (expr . value) also translates to expr

Similar to eval, the value value also makes reify splice its tree into the
result. The difference appears when the same expression gets spliced into multiple
places inside the same reify block. With eval, reify will always insert a copy of
the corresponding tree (potentially duplicating side-effects), whereas value will
splice itself into a temporary variable that will be referred by its usages.

The notion of splicing also manifests itself when reify refers to a type that
has a TypeTag associated with it. In that case instead of reproducing the types
internal structure as usual, reify inserts a reference to the type tag into its result.

reify (expr : T) translates to expr typed as TypeTag [T] . tpe

Tagging a type can be done either automatically, by writing a TypeTag con-
text bound on a type parameter of a macro implementation, or manually, by
introducing an implicit TypeTag value into the scope visible by reify.

Note the close resemblance of type splicing in reify and type splicing during
TypeTag generation. In fact, here we are talking about the same algorithm. When
producing a TypeTag for a type, corresponding implicit macros call reify (which,
in turn, calls TypeTag generators to resolve potential splices using the implicit
search algorithm).

10 Related Work

The history of compile-time metaprogramming dates back to the times of LISP
[13], which was introduced in 1950s. Since then a fair amount of languages:
statically typed [7] and dynamically typed [20], minimalistic [14] and having
rich syntax [8] - have adopted macros. Our research builds on this notion of
compile-time program transformation.

Hygiene is an important idea brought up in Scheme. The problem of inadver-
tent name clashes between the application code and generated macro expansions
has been well-known in the Lisp community. Kohlbecker et al. [19] have solved
this problem by embedding the knowledge of declaration sites into symbols that
represent values and declarations in the program, making macro expansions hy-
gienic.

We acknowledge this problem, but our means of achieving hygiene do not
require changes to the type-checking algorithm. By making use of reify, a stag-
ing macro, we statically ensure that cross-stage bindings do not occur. Similar
approach has been used in MacroML [21], which implements a macro system in
a staged language MetaML [22]. Our arrival at this conflux of ideas happened
the other way around - we built a staged system with macros.

As a language with syntax, Scala has to work hard to achieve homoiconicity.
The incovenience of manipulating abstract syntax trees in their raw form is a
well-known problem, and it affects rich languages to a greater extent than it
affects minimalistic ones. Traditional solution to this problem is a quasiquoting
DSL that lets the programmer encode ASTs in a WYSIWYG manner [26, 8, 27].

Our answer to this challenge is the same staging macro reify that we use to
achieve hygiene. Code passed to reify becomes an AST one stage later, which
provides a quasiquoting facility without the need to introduce a special domain-
specific language.

Finally, as a language virtualization platform, Scala macros are conceptually
close to Scala-Virtualized [23] which virtualizes base language constructs (e.g.
control flow) and even data structures [24]. However, our approach to virtual-
ization is different. Scala macros expose general-purpose Scala trees and types
and provide low-level manipulation facilities, whereas Scala-Virtualized is good
for embedded DSLs, in particular when the DSL expression trees do not exactly
correspond to Scala trees [25].

11 Conclusions

We have presented a minimalistic macro system for Scala, a language with rich
syntax and static types. This macro system builds up a metaprogramming facil-
ity on a single concept - compile-time AST transformer functions.

Other metaprogramming facilities usually include additional concepts of quasi-
quoting and hygiene to make themselves suitable for practical use. We have
shown, however, that it is possible to implement both on top of our minimalistic
core.

Acknowledgements

The authors would like to thank Vladislav Chistyakov, Jan Christopher Vogt,
Stefan Zeiger, Adriaan Moors and the entire Scala community for insightful
discussions and helpful comments.

References

1. Odersky, M., Spoon L., and Venners B., Programming in Scala, Second Edition.
Artima Press, 2010.

2. Odersky, M., and Zenger M., Scalable Component Abstractions. ACM Sigplan No-
tices, 2005.

3. Odersky, M., and Moors, A., Fighting Bit Rot with Types (Experience Report: Scala
Collections). Theoretical Computer Science, 2009.

4. Box, D., and Hejlsberg, A., LINQ: .NET Language-Integrated Query, Retrieved
from http://msdn.microsoft.com/en-us/library/bb308959.aspx, 2007.

5. Dragos I., Optimizing Higher-Order Functions in Scala, Third International Work-
shop on Implementation Compilation Optimization of ObjectOriented Languages
Programs and Systems, 2008.

6. McCool, M. D., Qin, Z., and Popa, T. S., Shader metaprogramming, Proceedings of
the ACM SIGGRAPHEUROGRAPHICS conference on Graphics hardware, 2002.

7. Sheard, T., and Peyton Jones, S., Template Meta-programming for Haskell, Haskell
Workshop, 2002.

8. Skalski K., Syntax-extending and type-reflecting macros in an object-oriented lan-
guage, Master Thesis, 2005.

9. Scala Macros, Use cases, Retrieved from http://scalamacros.org/usecases.html,
2012.

10. Attardi, G., and Cisternino, A., Reflection support by means of template metapro-
gramming, Time, 2001.

11. Seefried, S., Chakravarty, M., and Keller, G., Optimising Embedded DSLs using
Template Haskell. Generative Programming and Component Engineering, 2004.

12. Cross, J., and Schmidt, D., Meta-Programming Techniques for Distributed Real-
time and Embedded Systems, 7th IEEE Workshop on Object-oriented Real-time
Dependable Systems, 2002.

13. Steele, G., Common LISP. The Language. Second Edition, Digital Press, 1990.
14. The Revised [6] Report on the Algorithmic Language Scheme, Journal of Functional

Programming, volume 19, issue S1, 2010.
15. Odersky, M., Cremet, V., Rckl, C., and Zenger M., A Nominal Theory of Objects

with Dependent Types, 17th European Conference on Object-Oriented Program-
ming, 2003.

16. Oliveira, B., Moors, A., and Odersky, M., Type classes as objects and implicits, 25th
Conference on Object-Oriented Programming, Systems, Languages & Applications,
2010.

17. Odersky, M., The Scala Language Specification, Version 2.9, 2011.
18. Schinz, M., Compiling Scala for the Java Virtual Machine, PhD thesis, 2005.
19. Kohlbecker, E., Friedman, D., Felleisen, M., and Duba, B., Hygienic macro expan-

sion, Symposium on LISP and Functional Programming, 1986.
20. Rahien, A., DSLs in Boo: Domain-Specific Languages in .NET, Manning Publica-

tions Co., 2010.
21. Ganz, S., Sabry, A., and Taha, W., Macros as Multi-Stage Computations: Type-

Safe, Generative, Binding Macros in MacroML, International Conference on Func-
tional Programming, 2001.

22. Taha, W., and Sheard, T., MetaML: Multi-Stage Programming with Explicit An-
notations, 1999.

23. Moors, A., Rompf, T., Haller, P., and Odersky, M., Scala-Virtualized, Partial Eval-
uation and Program Manipulation, 2012.

24. Slesarenko A, Lightweight Polytypic Staging: a new approach to Nested Data Par-
allelism in Scala, Scala Days, 2012.

25. Rompf, T., and Odersky, M., Lightweight Modular Staging: A Pragmatic Approach
to Runtime Code Generation and Compiled DSLs, 2010.

26. Bawden, A., Quasiquotation in Lisp, Proceedings of the ACM SIGPLAN Workshop
on Partial Evaluation and SemanticsBased Program Manipulation, 1999.

27. Mainland, G., Why it’s Nice to be Quoted: Quasiquoting for Haskell, Applied Sci-
ences, 2007.

