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Abstract. A multi-stage secret sharing (MSS) scheme is a method of
sharing a number of secrets among a set of participants, such that any
authorized subset of participants could recover one secret in every stage.
The first MSS scheme was proposed by He and Dawson in 1994, based
on Shamir’s well-known secret sharing scheme and one-way functions.
Several other schemes based on different methods have been proposed
since then. In this paper, the authors propose an MSS scheme using All-
Or-Nothing Transform (AONT) approach. An AONT is an invertible
map with the property that having “almost all” bits of its output, one
could not obtain any information about the input. This characteristic
is employed in the proposed MSS scheme in order to reduce the total
size of secret shadows, assigned to each participant. The resulted MSS
scheme is computationally secure. Furthermore, it does not impose any
constraint on the order of secret reconstructions. A comparison between
the proposed MSS scheme and that of He and Dawson indicates that the
new scheme provides more security features, while preserving the order
of public values and the computational complexity.

Keywords: Multi-stage secret sharing, All-or-nothing transforms,
Resilient functions.

1 Introduction

In order to provide both security and availability for a given secret, one way is
to distribute it among a number of shareholders (participants). The distribution
should be accomplished in such a way that any subset of participants, the size of
which is at least equal to a given number, be able to reconstruct the secret, using
their shares (shadows). More specifically, a (¢, n)-threshold secret sharing scheme
refers to the procedure of assigning each of the n participants a private share,
such that every subset of at least ¢ participants could recover the secret. This
concept was introduced by Shamir [I] and Blakley [2] in 1979, independently.
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Later, various features like verifiability of the shares [3], resistance against the
presence of a number of cheaters [4], dynamic change of the threshold and the
number of participants [5] were added to the threshold secret sharing scheme.

A (t,n)-threshold secret sharing scheme is called perfect if less than ¢ partic-
ipants neither could reconstruct the secret, nor obtain any information about
it. It has been shown that in a perfect secret sharing scheme, the size of the
shares should at least be the same as the size of the secret [6]; in the case of
equality, the scheme is referred to as ideal. Now, suppose that there are more
than one secret to be shared among a group of participants. The dealer may
run a perfect threshold secret sharing scheme for each of the secrets and send
the related shares to each of the participants via a secure channel. In this way,
even though the problem is solved, the difficulty of managing the possible large
number of shadows arises. That is, each participant needs to keep multiple shad-
ows to participate in each run of the secret sharing. Besides, protecting shares
from an unauthorized access becomes more difficult, due to the increase in the
number of shares assigned to each shareholder.

The concept of multi-stage secret sharing (MSS) was introduced by He and
Dawson in 1994 [7] to solve the above mentioned problem. An MSS scheme is a
method of distributing many secrets among a set of participants, while each of
them gets only one master shadow. In an MSS scheme, the secrets are recovered
one by one in different stages, possibly according to a pre-specified order. MSS
schemes usually need a number of public values. The shareholders, who wish to
participate in a secret reconstruction stage, derive the corresponding sub-shadow
from their master-shadow and these public values.

The MSS scheme in [7] was based on the Shamir’s polynomial secret sharing,
a one-way (hash) function and the concept of “shift values”. Later, various MSS
schemes were presented based on different methods such as coding approach
[8], congruence relations and Chinese Reminder Theorem [I0] and linear equa-
tions [9]. The computational complexity and number of public values are two
important factors for comparing the efficiency of MSS schemes and a number of
publications appeared to reduce the value of these parameters [11] and [12].

In this paper, the authors employ All-or-Nothing Transforms(AONT) to re-
alize the concept of an MSS scheme . An AONT is an invertible and randomized
transformation T, which reveals no information about x even if almost all the
bits of T(z) are known. This concept was first introduced by Rivest [I3] and
further improved by Canetti et al. [14]. In the proposed MSS scheme, AONT is
utilized so as to dramatically reduce the size of secret shadows corresponding to
a particular secret. Therefore, one could share more secrets among the partici-
pants by assigning each of them several private values (shadows), the total size
of which is equal to the size of each secret. Regarding the information theoretic
lower bound of shares proposed in [15] and [6], an unconditionally secure MSS
scheme is impossible. More Precisely, to achieve an unconditionally secure (per-
fect) secret sharing scheme, the size of each shadow should be at least equal to
the sum of the sizes of different secrets. This contradicts the definition of the
MSS schemes, which are proposed to reduce the size of the shares. Hence, the



A Multi-stage Secret Sharing Scheme 451

proposed scheme aims to provide the computational security. The authors com-
pare the new MSS scheme with that of He and Dawson. This comparison shows
that the new scheme provides more security features, while the computational
complexity and number of public values remain almost the same. Moreover, the
secrets should be reconstructed according to a pre-specified order in [7], while
they can be recovered with an arbitrary order in the proposed scheme.

The rest of the paper is organized as follows. In section[2] we briefly review the
MSS scheme proposed by He and Dawson. In section B the concept of AONT
is described and some of its features are illuminated. The authors propose the
new MSS scheme in section @l A thorough analysis of the new scheme together
with a comparison between the proposed scheme and that of He and Dawson is
presented in the subsequent section. Finally, a summary of the whole paper is
given in section [Gl

2 He and Dawson’s MSS Scheme

In this section, we briefly explain the earliest MSS scheme proposed by He and
Dawson.

Let p be an odd large prime number. All the values in this scheme are chosen
from the field GF(p). Let s1, 2, ..., s, denote m secrets to be shared according
to (t,mn)-threshold schemes among n participants. Suppose that f: GF(p) —
GF(p) is a one-way function. For any x and any nonnegative integer k, rr (2)
resembles k successive application of f to x. Let z1,z9,...,x, be the public
identities of the n participants. The dealer performs the following steps.

1. Choose n random values y1, s, ..., Yy, and privately send y;,i = 1,...,n, to
the ith participant as his/her shadow.
2. For j = 1,...,m, choose a random polynomial of degree t — 1 with the

constant value equal to s;:
9;(x) = s+ a1o + az2® + ..+ @y ot (1)

and compute g;(z;) and d; ; = g(x;) — I (y;) for every 1 < i < n. The
values d; ; are called shift values. Publish all shift values.

The secrets reconstruction process should be conducted in m successive stages
with jth secret s; reconstructed at the (m-j+1)th stage. When a shareholder p;
wants to participate in the jth secret reconstruction stage, he/she should submit
the value g,,, ;1 (z;) which can be calculated by adding the sub-shadow f™7(y;)
to the public value d; ,,— ;1. Having ¢ points on the function g,,, ;4 (z), one could
obtain s,,—j+1. The pre-specified order of secret reconstruction in this scheme is
needed to guarantee that no information leaks about the shadows corresponding
to the undisclosed secrets from the revealed ones.
A security analysis of this scheme is given in section
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3 All-or-Nothing Transforms

The concept of AONT was first introduced in [I3]. However, more general de-
scriptions of it and its applications are presented in [14].

Definition 1. An I-AONT is a randomized polynomial time computable trans-
formation T : {0,1}" — {0,1}* x {0,1}” such that [Z4):

— For any string x, given (all the bits of) T(x), one can efficiently recover x.

— Any polynomial time adversary that learns all but [ bits of the secret part of
T(x), obtains “no information” about x, where the first s bits of the output
indicates the secret part and the last p bils of it represents the public part.

Indeed, all-or-nothing transforms allow to encode any x in such a way that the
encoding is easily invertible, and still, an adversary who learns all but [ bits of
the secret part of the encoded data, cannot extract any useful information about
x. Therefore, using AONT, we can protect an arbitrary secret x by storing T(x)
in an “exposure-resilient” way. That is, even if almost all the bits of T(x) are
exposed, no information can be revealed about x.

AONT could be categorized into three classes: AONT with perfect security,
AONT with statistical security and AONT with computational security (for an
exact definition, see [I4]). However, the last class of AONT involves parameters
taken from a wider range of values. In addition, in an MSS scheme, we look for
computational security rather than perfect security. Hence, this class of AONT
is taken into consideration hereafter.

There are many approaches towards devising AONT, some of which are apply-
ing a hash function to the message, using a scheme based on an FFT-like arrange-
ment of randomized multi-permutations and an approach based on secret Sharin%
schemes [[3]. Another construction for an AONT T : {0,1}" — {0,1}" x {0,1}
is presented in [I4] in which the process of creating an I-AONT is seen as that
of a one-time-pad encryption. Here, the encryption of z € {0, 1}]C is just x P R,
where R is a random string of length k derived by inserting an [-exposure re-
silient function f : {0,1}* — {0,1}" on a secret value r, that is R = f(r). An
[-exposure resilient function is a concept tightly related to I-AONT, which means
that knowing all but [ bits of the input, no one could gain any information about
the output[I6],[T4]. The I-AONT output is the pair (v, € f(r)). The following
theorem [I4] has been obtained from this construction and it will be used in the
design of the proposed MSS scheme.

Theorem 1. Assume | < s < poly(l) where m = poly(k) indicates that m is
polynomialy bounded in k. There exist functions T : {0,1}" — {0,1}* x {0,1}"
(with secret output of length s and public output of length k), such that T is a
computationally secure -FAONT with | < k < poly(s).

A reasonable setting seems to be s = O(k) (that is just slightly smaller than k)
and [ = [s] to have excellent exposure-resilience [14].
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4 The Proposed AONT Approach to Multi-Stage Secret
Sharing

In this section, we propose an MSS scheme based on I-AONT with computational
security. The value of parameters in the new scheme are derived from the results
of theorem [I1

4.1 Reducing the Share Size in a Secret Sharing Scheme

Before considering the special case of an MSS scheme, here we explain how one
could reduce the size of shares in a secret sharing scheme, using an AONT. To
clarify the technique, the well-known Shamir’s threshold secret sharing scheme
is utilized. However, it could be implemented on any other perfect secret sharing
scheme. The security level of the resulted scheme depends on the secrecy of the
AONT; that is, the scheme would have statistical or computational security if
an AONT with the same level of security is used. As stated before, we just focus
on computationally secure ones.

All secret sharing protocols consist of two processes: distribution and recon-
struction. In the distribution process, a dealer shares a secret and distributes the
shares among participants. In the secret reconstruction process, the shareholders
exchange their shares and reconstruct the secret. In the following, we describe
each process for the secret sharing scheme with reduced share size.

:Let S denotes a secret that the dealer wishes to share among a set {p1,...,pn}
of n participants according to a (¢, n)-threshold secret sharing scheme. Let p be
a large prime number such that S € GF(p). The dealer first chooses ¢ — 1 arbi-
trary random coefficients ay, as, . .., a;—1, uniformly distributed over GF(p), and
constructs the following polynomial:

fx)=8S+az+ar®+...+ a2t (2)
Next, he/she chooses n distinct nonzero values z1,...,z, € GF(p) as the iden-
tities corresponding to the m participants and calculates y1 = f(x1),...,9n =

f(xy), which are values in GF(p). Suppose that all elements in GF(p) have
size k, that is, they could be represented by k bits, where k = [logap|. The
dealer chooses a computationally secure I-AONT T : {0,1}" — {0,1}" x {0,1}"
with s = O(k) and [ = s° for some small 0 < € < 1. Then he/she computes
the values T(y1), T(y2),-.-.,T(y,) and publishes the k + s — [ least significant
bits of each (least significant s — I bits of the secret part and all k bits of
the public part). Finally, the dealer sends the [ most significant private bits
of T(y1), T(y2), ..., T(yn) to the n participants as their secret shadows and pub-
lishes the map T and its inverse.

: Let a subset of t participants {pi,,...,p; } come together in order to re-
construct the secret. By appending the corresponding (k + s — 1)-bit public
values to their [-bit shadows, the shareholders could obtain the whole bits of
T(yi, ), T(Yin)s - - - » T(ys,). Next, they could efficiently recover y;,,...,y;,, using
the inverse transform T~'. Having ¢ points on the secret polynomial of degree



454 M. Fatemi, T. Eghlidos, and M. Aref

t — 1, the participants are able to calculate the polynomial and recover the con-
stant coeflicient S.

Note that in the above scheme, the size of each share is [ /k times of the secret
size which is a small fraction, due to the choice of I~AONT parameters. Indeed,
l/k 5 s¢/s for some small 0 < € < 1. Below, a multi-stage secret sharing scheme
for m secrets is represented where m denotes |k/l].

4.2 Sharing Multi Secrets

Let Si,...,S, € GF(p) denote the m secrets to be shared among the par-
ticipants pi,...,pn, according to (¢,n)-threshold secret sharing schemes. The
dealer performs all steps mentioned in the distribution process of section EII
for each secret. Let y; ; = fj(x;) for 1 < ¢ < nand 1 < j < m, where f;(z)
is the polynomial used for sharing the jth secret. In this case, the shadow of
the ith shareholder is the concatenation of the first [ bits taken from each of
T(yi1), T(yi2),- -, T(yim). Likewise, the public values are comprised of the last
k+ s —1 bits of each T(y; ;), for 1 <i<nand1<j<m.

Now, let a group of ¢ participants {p;,,...,p;, } wish to collaborate on recon-
structing the secret S in a stage. Each of them first attaches those [ private bits
from his/her shadow, which are related to the jth secret, to the corresponding
k + s — [ bits of the public values. In this way, they could recover the val-
ues T(yi,.5), T(Yin5),- - -+ T(¥i, ;). Then, using the inverse map, the cooperating
participants are able to derive the values v;, j, ¥i, 5, - - - ¥i,,j- Finally, using the
Lagrange interpolation, the participants could recover the secret S;.

t t
T — Ty _
f](l‘) = Z Yiu,j H ‘ z,,} =S5;+a T+ a27j$2 +...+ Clt_ijt ! (3)
u=1

In the proposed scheme, the total size of each shadow assigned to a participant
is m x I bits which is m x [ /k times of the secret size. Regarding that m = |k/l],
we have m x l/k = |k/l] x I/k 5 1. This implies that the share size does
not exceed the secret size. Also, the total size of public values in this scheme is
mx (k+s—1)xn bits, which is |k/l| x (k+s—1)/kxn < |k/l| x (2k—1)/kxn =
[k/l] x (2—1/k) xn < (2m — 1) x n times of the secret size.

It is easy to check that in the proposed scheme, there is not any constraint on
the order of secret reconstruction and the participants could disclose the secrets
at any order they wish. Moreover, the threshold corresponding to the various
secrets could be different. Indeed, it suffices to make use of secret polynomials
with different degrees. A comprehensive analysis of the proposed MSS scheme
and a comparison with that of He and Dawson is presented in the next section.

5 Investigation of the Proposed Scheme

In this section, we discuss about the security and performance of the proposed
scheme in two parts. In the first part, it is shown that the scheme provides
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computational security. In the subsequent part, efficiency of the scheme is inves-
tigated and a comparison with some of other MSS schemes, especially that of
He and Dawson’s scheme is made. The reason behind this choice of the reference
scheme is due to the simplicity of its structure. Moreover, it is the first scheme
which introduced the concept of multi-stage secret sharing [7]. The comparison
results show that the proposed scheme achieves two additional security features,
while preserving the same order of computational complexity and public values.

5.1 Security Analysis

So as to demonstrate that the proposed scheme provides computational security,
we state the following two theorems.

Theorem 2. In the proposed scheme, a group of participants whose number is
less than the threshold t, do mot gain any information about any of the secrets
Sj,1<j<m.

Proof. To prove this assertion, we assume that there are at most ¢t — 1 par-
ticipants who conspire to discover the secret S; in one stage. To achieve this
goal, the collaborating participants need to recover ¢ points of f;(z) (as defined
in B). However, they have at most ¢ — 1 points of it. Since the secret polyno-
mial coefficients are randomly chosen from GF(p) with a uniform distribution,
the secret takes all the values in GF(p) with the same probability when the
unknown point of f;(x) varies over GF(p) (p is a large prime number). Hence,
the cheaters (collaborating participants) obtain no information about the secret.
From the other side, since T(x) is a computationally secure I-AONT, knowing
at most k + s — [ bits from T(x), makes it computationally infeasible to gain
any information about x. Hence, the public values do not leak any information
about the shares of non-attendant participants.

Theorem 3. In the proposed scheme, there is no information leakage from re-
constructed secrets to the non-disclosed ones.

Proof. Since all coefficients of every secret polynomial (including the secrets)
are chosen uniformly at random from GF(p), the shares generated by one of
them are independent from those generated by the others. Hence, there is no
information leakage from the reconstructed secret(s) and the revealed shares to
the non-disclosed ones. The two above theorems ensure that the proposed scheme
offers the desired level of security.

5.2 Comparative Results

Here, we compare the proposed MSS scheme with that of He and Dawson from
the following points of view: Number of public values and share size, the com-
putational complexity of the scheme, and security features.

Before investigating the special case of He and Dawson’s scheme [7], we should
remark that the schemes in [§] and [12] focus on reconstructing the secrets simul-
taneously. However, the scheme proposed in [7] and that of this paper have the
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privilege of recovering the secrets in different stages. Hence, it does not seem rea-
sonable to compare these two types of multi-secret sharing schemes. In addition,
in [I0] there is an increase in the share size as a consequence of applying the
Chinese Reminder Theorem on different sub-shadows. Indeed, in this scheme,
the share size is equal to the sum of the secret sizes.

The comparison results between the proposed MSS scheme and [7] are pre-
sented in Table [l Tt could be inferred from the results that the share size in
both schemes is nearly the same as the secret size. Note that if the number of
shared secrets in the proposed scheme be less than m = |k/l], the share size
would be smaller than the secret size. Besides, the number of public values of
the proposed scheme has the same order as in [7]. Precisely speaking, it is two
times of the number of public values in the scheme presented in [7].

The scheme proposed by He and Dawson employs a one-way function in ad-
dition to the Shamir’s threshold secret sharing scheme. However, the proposed
MSS scheme based on I-AONT approach utilizes an all-or-nothing transform to-
gether with the Shamir’s secret sharing scheme. The construction of the applied
AONT is based on a one-time pad encryption and a resilient function. Also,
resilient functions have structures based on one-way functions [I4]. As a conse-
quence, both schemes make use of similar structures with the same number of
times (Tabel [T).

Table 1. Comparison of the proposed scheme with that of He & Dawson

He-Dawson’s Prposed
scheme scheme
share size to
secret size ratio 1 mxl/kg1
No. of
public values mXxmn 2m—1)xn
Computational mX Shamir’s scheme mXx Shamir’s scheme
complexity  (m — 1) X n one-way function m x n AONT
Shadow memory mXxn n

In the MSS schemes proposed in [7] and [I7], once a number of bits of a
participant’s master-shadow reveals, the security of all of his her sub-shadows
gets compromised. This is a consequence of deriving different sub-shadows from
a master-shadow. This problem is inhibited in our scheme by deriving different
sub-shadows independently.

As a final point, we indicate that in the He and Dawson’s scheme, once a partic-
ipant receives his/her master shadow y;, he/she has to compute all sub-shadows
FWa), F2Wi)s oo f™ 2 (i), ™ Y(ysi) since f™(y;) is supposed to be the first
sub-shadow he/she would use. This is implicitly equivalent to an increase in the
share size. That is, each shareholder needs m x k bits of memory (shadow memory)
to store m units of k-bit sub-shadow. The larger the share size, the more suscep-
tible shares to the information leakage. On the other side, once a sub-shadow is
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exposed, all of the subsequent sub-shadows, derived from it, get revealed. This
is resulted from applying a one-way function to the participants master shadows
in order to derive their different sub-shadows. The proposed scheme brings this
problem to an end by independently generating the sub-shadows.

6 Conclusions

In this paper, the authors have considered secret sharing schemes with several
secrets and proposed a new approach, based on [-AONT, for multi-stage se-
cret sharing schemes. Under these functions, any bit string is converted to an
exposure-resilient one, that is, having “almost all” bits of the output, one could
not obtain any information about the input. Using this property, the authors
have reduced the share size such that the total size of sub-shadows assigned to
a participant for reconstructing different secrets has become as small as a secret
size. To the best of author’s knowledge, this is the first time that [-AONTs (re-
silient functions) are used to realize secret sharing schemes. The proposed MSS
scheme is compared with that of He and Dawson. The results indicate that the
new scheme has removed the security drawbacks in their scheme, which are re-
sulted from deriving different sub-shadows by applying a one-way function on the
previous sub-shadow. Still, the number of public values and the computational
complexity of the scheme have the same order as those of [7].
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