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Abstract—The theory of compressed sensing studies the prob-
lem of recovering a high dimensional sparse vector from its
projections onto lower dimensional subspaces. The recently
introduced framework of infinite-dimensional compressed sensing
[1], to some extent generalizes these results to infinite-dimensional
scenarios. In particular, it is shown that the continuous-time
signals that have sparse representations in a known domain can
be recovered from random samples in a different domain. The
range M and the minimum number m of samples for perfect
recovery are limited by a balancing property of the two bases. In
this paper, by considering Fourier and Haar wavelet bases, we
experimentally show that M can be optimally tuned to minimize
the number of samples m that guarantee perfect recovery. This
study does not have any parallel in the finite-dimensional CS.

I. INTRODUCTION

Real-world signals are inherently analog or continuous-
time and we often observe them through digital measuring
devices. Imaging devices such as digital cameras and magnetic
resonance imaging (MRI) machines are well known examples
that measure light fields and brain signals, respectively. A
linear measuring process consists of sampling the signal using
certain sampling kernels. The samples of a continuous-time
signal f can be regarded as its coefficients in an infinite-
dimensional sampling domain S with a basis made of the
sampling kernels. In general, infinite number of samples is
required to precisely represent f . By adapting the sampling
kernels to a specific type of signal, it is possible to reduce the
infinite dimensional representation to a finite one. However, in
most of the acquisition devices, the sampling kernels are lim-
ited by the physics of the device, and are rarely controllable.
Therefore, it is very likely that a finite collection of samples
captured by a measuring device result in a poor approximation
of the signal.

An approach to reconstructing a satisfactory approximation
of the signal is to calculate its coefficients in another domain
R that efficiently represents the class of signals subject to
the measurement. This means that any signal f in this class
has sparse or fast decaying coefficients in R and N -term
approximations of f in R rapidly converge to the signal.
Wavelets are examples of the representation domains that pro-
vide fast converging approximations for piecewise continuous
signals with pointwise singularities. Also, piecewise smooth
images have compressible coefficients in the curvelet [2] and
contourlet [3] domains.

First introduced in [4] and further improved in [5], consis-
tent reconstruction is concerned with the problem of calculat-
ing the coefficients of a signal in a domain from its samples in
a different domain. The consistent reconstruction method uses
N samples in the sampling domain to calculate N coefficients
in the reconstruction domain. Adcock and Hansen revisited
this problem in [6], [7] and they argued that in general, N
samples may not be enough to stably find N coefficients in
R. Also, they introduced a new generalized sampling (GS)
approach to stably recover N coefficients in R from M
samples in S, where usually the stable sampling rate M is
larger than N .

With the GS framework, we can perfectly reconstruct the
signals that have sparse coefficients in a known domain R
from a finite number of samples. However, similar to the
finite-dimensional compressed sensing (CS) [8], [9], we are
interested to take advantage of the sparsity of coefficients to
reduce the number of samples. This problem can be considered
as an infinite-dimensional variant of the CS problem where
the goal is to recover a sparse vector x from linear mea-
surements y = Ux. It is shown that if the sensing matrix
U has the so-called restricted isometry property (RIP) of
order 2k, any k-sparse vector x can be uniquely recovered
from the measurements y = Um×nx [10]. However, verifying
the RIP condition for a matrix is computationally hard. In
[11], Candès and Romberg considered orthonormal matrices
U ∈ Rn×n and they showed that in this case the coherence
µ(U) = maxi,j ui,j can be used to determine the subsampling
rate m.

Adcock and Hansen recently extended this idea to GS to
address infinite-dimensional compressed sensing [1]. In this
theory, a set of k-sparse coefficients in R with the support
of nonzero coefficients in {1, ..., N} are recovered with high
probability from m samples in S chosen uniformly at ran-
dom from the range {1, ...,M} by solving the basis pursuit
problem. The subsampling rate m depends on the coherence
of the underlying sensing matrix. In addition, the parameters
(N, k,M,m) should satisfy a balancing condition (refer to
II-B).

The infinite-dimensional CS developed in [1] is a promising
framework that allows us to obtain far better approximations
of signals and images. However, it is not clear in this theory
how the parameters (M,m) change with respect to (N, k)
and what are the optimum values of the sampling rate m and
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the support range M . In this paper, we study this problem.
Specifically, we study the change of m as a function of M for
some specific choices of sampling and reconstruction domains
and find the optimum values of (M,m) for given values N
and k, through the experiments.

The paper is organized as follows. In Section II, we define
the problem and briefly review GS and infinite-dimensional
CS theories. In Section III, we study the balancing condition
in infinite-dimensional CS and discuss the optimum choices of
sampling rate and support. Also, we present some experiment
results to calculate the optimum values of (M,m) for some
given pairs (N, k) when the sampling and reconstruction
kernels are Fourier exponentials and Haar wavelets. We use
the optimum values calculated in this section to recover the
sparse coefficients of different signals in Section IV. Finally,
we conclude the paper in Section V.

II. PROBLEM DESCRIPTION

Let H be a Hilbert space and S,R ⊆ H represent the
sampling and reconstruction spaces with the orthonormal bases
{ψj}∞j=1 and {φi}∞i=1, respectively. Let f =

∑∞
i=1 αiφi be the

signal we wish to recover and suppose that we have access to
the collection of samples

β1, β2, ... with βj = 〈f, ψj〉. (1)

The problem throughout this paper is to recover the best
approximation of f in terms of {φj}∞j=1 from the samples
in (1). Equivalently, we seek the best approximation of the
coefficients α = [α1, α2, ...]

T from measurements β =
[β1, β2, ...]

T = Uα, with

U =

 〈φ1, ψ1〉 〈φ2, ψ1〉 . . .
〈φ1, ψ2〉 〈φ2, ψ2〉 . . .

...
...

. . .

 . (2)

A. Consistent reconstruction and generalized sampling

The consistent reconstruction of f is a point f̂ ∈ R that
generates the same samples 〈f̂ , ψj〉 = βj , j = 1, 2, .... If we
represent the orthogonal projection of f onto S by PSf =∑∞

j=1 βjψj , this is equivalent to

f̂ ∈ R : PSf = PS f̂ . (3)

When the two subspaces satisfy R ⊕ S⊥ = H, equation (3)
has a unique solution that can be found by solving the infinite-
dimensional system of linear equations Uα = β [4]. Clearly
in practice, we have access to a finite number of samples.
Therefore, we must consider truncations of this linear system
and seek the first N coefficients αN of α. This is equivalent to
looking for the N -term approximation of f in R, i.e. PRN

f =∑N
i=1 αiφi.
We may think of solving this problem by taking N samples

in S and considering the consistency condition in the N -
dimensional subspace SN :

f̂ ∈ RN s.t. PSN f̂ = PSN f.

S2  1

 2

PS2
(R1)

f

R1

f̂
�1 PS2

f

f̃

S1

Fig. 1. Generalized sampling reconstruction f̃ of f in R1 from samples in
S2.

The above equation has a stable solution only if

RN ⊕ S⊥N = H. (4)

If we define the angle between two subspaces R,S as

cos(θRS) = inf
r∈R
‖r‖=1

‖PSr‖,

then the condition in (4) is equivalent to cos(θRNSN ) 6= 0.
In general, this condition may not hold for an arbitrary N ,
even if the infinite-dimensional spaces satisfy R ⊕ S⊥ = H
[6]. The generalized sampling approach to this problem is
to increase the number of samples M > N such that the
condition cos(θRNSM ) 6= 0 is met. In this case, the projection
of RN onto SM is an N dimensional subspace PSM [RN ] =

span{PSMφi}Ni=1. Now, we find an approximation of PRN
f

by verifying the consistency condition in this subspace [7]

f̂ ∈ RN s.t. PPSM
[RN ]f̂ = PPSM

[RN ]f. (5)

Note that PPSM
[RN ]f = PPSM

[RN ]PSM f can be derived from
the samples.

In Figure 1, we try to explain the GS reconstruction through
an example in R3. In this example, we find the approximation
of f in R1 from two samples in S2. Note, that since R1 is
orthogonal to S1 = span{ψ1}, one sample of f in S1 is not
sufficient for the stable approximation of f in R1.

The solution of the GS equation in (5) is a stable approxi-
mation of f in RN and it satisfies

‖f − f̂‖ ≤ 1

cos(θRNSM )
‖f − PRN

f‖.

Also, the coefficients of f̂ can be calculated as αN =
((UM,N )∗UM,N )−1(UM,N )∗βM , where UM,N is the M×N
subsection of U .

B. Infinite-dimensional compressed sensing

Now, assume that the coefficients α are k-sparse with a
support ∆ ∈ {1, ..., N}. In this case, we can perfectly recover
f from equation (5). The infinite-dimensional CS approach
in [1] exploits the sparsity to reduce the number of samples.
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Fig. 2. The acceptable range of sampling rate m and sampling support M for samples in the Fourier domain and sparse coefficients in the Haar domain,
N = 200 and (a) k = 30, (b) k = 40. The blue and red plots display the minimum values of m as a function of M that are dictated by the balancing
property and the equation (7) with ε = 0.05, respectively. The black lines show the stable sampling rate in GS. The green regions display the acceptable
ranges of (M,m).

The price of the subsampling, however, is to trade the stable
recovery in GS with a probabilistic recovery.

Before we recall the main results in [1] for recovery of
sparse or compressible signals in R, we need to define the
balancing property.

Definition 1. Let U be the isometry matrix in (2). Then M
and m satisfy the balancing property with respect to U,N and
k if

‖(UM×N )∗UM×N − IN×N‖ ≤
(

4

√
log2(4M

√
k/m)

)−1

,

‖(UM×N )∗UM×N − diag((UM×N )∗UM×N )‖mr ≤
1

8
√
k
,

where ‖U‖mr denotes the maximum `2 norm of different rows
of U .

Theorem 1. Let U be an isometry matrix with the coherence
µ(U) = maxi,j |ui,j |. Let the coefficients α ∈ `1(N) in R
can be written as α = α0 + α1 with α0,α1 ∈ `1(N) and
supp(α0) = ∆ ⊂ {1, ..., N} and supp(α1) = {1, ..., N}.
Also let ε > 0 and Ω ⊂ {1, ...,M} be chosen uniformly at
random with |Ω| = m. If β = Uα and α̂ is a minimizer of

inf
η∈`1(N)

‖η‖`1 s.t. UM×N
Ω ηN = βΩ, (6)

then with probability exceeding 1− ε we have

‖α̂−α‖ ≤ (
20M

m
+ 11 +

m

2M
)‖α1‖`1 ,

given that (N, |∆|,M,m) satisfy the balancing property and
m satisfies

m ≥ CMµ2(U)|∆|(log(ε−1) + 1) log
(MN

√
|∆|

m

)
, (7)

for a universal constant C.
In case that α1 = 0 and α is a k-sparse vector with k =

|∆|, the equation (6) has a unique solution that coincides with
α with probability greater than 1− ε.

III. OPTIMAL SAMPLING RATE

Theorem 1 indicates that a signal with a k-sparse represen-
tation in RN can be recovered with high probability from m
random samples in SM , if m fulfills the condition in (7) and
(N, k,M,m) satisfy the balancing property with respect to
U . The condition (7) has a simple structure and we can easily
track the change in m based on changes in M,N and k. On the
contrary, it is not clear which values of (N, k,M,m) satisfy
the balancing property with respect to a given U and how
changes in (N, k) affect the sampling rate m and sampling
support M . In other words, it is not clear what the subsampling
gain of this theory is with respect to the stable sampling rate
of GS, for a given sparsity.

In this section, we investigate the balancing property
when the underlying sampling and reconstruction domains are
formed by Fourier exponentials and Haar wavelet functions in
L2[0, 1]. This special choice of basis functions has applications
in the MRI problem.

We use the following setup to find efficient sampling rates
for fixed pairs of N and k. First, we find all values of M in
the range {k, k+1, ...,Mmax} such that the submatrix UM×N

satisfies the constraint

‖(UM×N )∗UM×N − diag((UM×N )∗UM×N )‖mr ≤
1

8
√
k
.

The upper bound Mmax on the range of samples is usually
determined by the sampling device. We point out that in
general, the maximum row norm in the above equation does
not change monotonically with M . Thus, we should find
the acceptable values of M by checking all numbers in
{k, k + 1, ...,Mmax}.

In the next step, for each verified M , we find the minimum
m that satisfies (7) and the first constraint in Definition 1.
Finally, we accept the pair (M,m) if m < min(M,M1) where
M1 denotes the stable sampling rate in GS corresponding to
N .
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Fig. 3. The acceptable range of sampling rate m and sampling support M
for samples in the Haar domain and sparse Fourier coefficients with N = 200
and k = 20.

Figures 2(a) and 2(b) display the acceptable pairs (M,m)
for N = 200,Mmax = 2000 and two different sparsity values
k = 30, 40, for sampling in Fourier and reconstruction in Haar
domains. Figure 3 depicts the same variables for k = 20,
when the sampling and sparsity domains are reversed. In
these figures, the minimum values of m as a function of
M satisfying the balancing property and the equation (7) are
indicated in blue and red, respectively. The error probability
is ε = 0.05. Also, the black lines display the stable sampling
rate corresponding to N = 200.

The green region in each figure shows the acceptable range
of (M,m). The optimal sampling rate is determined by the
point in this region that corresponds to the smallest m. For
instance, Figure 3 shows that a signal with 20-sparse Fourier
coefficients in the range {1, ..., 200} can be recovered with
probability greater than 0.95 from 58 samples that are chosen
uniformly at random from the first 760 coefficients in the Haar
domain. This means that we get a large subsampling gain
by solving the basis pursuit problem in equation (6). On the
contrary, Figure 2(b) illustrates that we do not get too much
subsampling gain by replacing the basis pursuit problem in (6)
with the stable reconstruction in GS for the specific values of
the parameters in this plot.

IV. NUMERICAL EXPERIMENTS

In this section, we use the optimal values of (M,m) in Fig-
ure 2(a) to recover signals having sparse representations in the
wavelet domain from randomly chosen Fourier coefficients.

In the first experiment, we consider signals of the form

f(t) =

200∑
i=1

αiφi(t),

with only 20 nonzero coefficients, where {φi(t)}i∈N are Haar
wavelets on [0, 1]. In the second experiment we consider
signals of the form

f(t) =

200∑
i=1

α0,iφi(t) +

200∑
i=1

α1,iφi(t),

TABLE I
THE APPROXIMATION ERRORS FOR THE WAVELET COEFFICIENTS

(AVG. 100 TRIALS)

‖α− α̂‖`∞/‖α‖`∞ SNR

Noiseless coefficients 0.1024× 10−6 104 dB

Noisy coefficients 0.7921× 10−3 64.1 dB

where the coefficient vector [α0,1, ..., α0,200]T is 20-sparse and
[α1,1, ..., α1,200]T has a small `1 norm. For each case, we take
m = 144 Fourier samples chosen uniformly from the first
1280 Fourier coefficients and we recover the signal by finding
the solution to (6). Table I summarizes the approximation
errors in the wavelet coefficients. The results in this table are
averages over 100 trials.

V. CONCLUSION

We studied the sampling problem of infinite-dimensional
signals that have sparse representations in a known domain.
We adopted the random sampling approach of compressed
sensing. Unlike the finite-dimensional case, the sampling
scheme involves a pair (M,m), where m samples are ran-
domly chosen among a size M subset of possible sampling
kernels. For a given setup, there are various pairs which
provide high probability of reconstruction. A counter intuitive
result is that the required number of samples m does not nec-
essarily decrease as M increases. We experimentally showed
that one can find the optimum M that results in the minimum
number of samples. We also observed that by swapping the
sampling and sparsity domains, the optimal sampling schemes
drastically change.
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