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Abstract

In Switzerland and most other developed countries, the building sector is one
of the most important sources of energy consumption and its related adverse
environmental impacts. As the reduction of greenhouse gas emissions and the
abandonment of nuclear power have become key policy objectives, considerable
e�ort is undertaken to reduce energy demand, particularly in buildings, and to
expand the use of renewable energies. For this reason, it is crucial to develop
strategies and solutions, which optimally exhaust the possibilities to improve the
e�ciency of these systems.

Dynamic simulation models are increasingly used to gain a more precise un-
derstanding of the underlying processes of energy �ows in buildings. However,
many of the fundamental phenomena are still not su�ciently understood, result-
ing in potentially signi�cant errors. The description of occupants' behaviour still
leaves substantial room for improvement in the simulations; in particular, there
is a lack of comprehensive and validated stochastic models predicting residen-
tial occupancy and activities, as well as their variations between individuals and
households. However, the stochastic nature of residential behaviour is central
regarding uncertainties in residential buildings' energy demand.

This thesis develops adequate bottom-up models to predict time-dependent
residential occupancy and activities, as well as household appliance ownership
as a function of individual characteristics, and further proposes an innovative
approach to relate the use of electrical appliances to the activities performed.
The models are calibrated with detailed survey statistics of individuals' time use,
as well as households' appliance ownership and appliances' power consumption.

The approaches to predict presence are based on time-inhomogeneous �rst-
and higher-order Markov processes, where sub-population-speci�c behaviour is
represented by corresponding parameters in the time-dependent transition prob-
abilities and duration distributions. These explanatory variables have been rigor-
ously selected on the basis of statistical signi�cance using backward elimination.
The higher-order approach is validated by establishing the relationship to the
�rst-order model, and by comparing the results. The variation of the model
predictions for di�erent sub-populations is illustrated and discussed.

Similar approaches have been applied to simulate time-dependent residential
activities, based on multinomial logit models predicting starting probabilities for
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activities, and modelling their durations by means of survival analysis. An ini-
tial model reproducing average population behaviour was re�ned by including
explanatory variables relating to demographic sub-populations, as well as by de-
scribing activity transitions according to the Markov property. The explanatory
variables have also been selected on the basis of statistical relevance, and cross-
validation tests show that the model re�nements improve the predictive power.

Approaches to the modelling of the probability of electrical appliance own-
ership as a function of household characteristics are then presented. For the
elimination of insigni�cant predictors due to correlation e�ects, two di�erent
methodologies are presented, which predictions are validated, and their predic-
tive power compared.

Finally, an approach has been elaborated, providing an activity-dependent
prediction of electrical appliance use. Single appliances' power consumption is
assigned according to their monitored distributions. The approach has then been
applied to predict the residential load pro�le distribution of simultaneously used
appliances, which are in good agreement with the measured data.

It is demonstrated how these models can be integrated into a bottom-up mod-
elling framework, allowing to directly investigate the dependence of the residential
electricity load pro�le distribution on the household's speci�cities, individual ap-
pliances' power demand characteristics, as well as future behavioural changes.
This versatile approach results in a valuable methodology to predict electricity
demand pro�les in various scenarios, which can be used, for instance, to assess
the reliability of decentralised power generation infrastructures, being subject to
considerable �uctuations.

Keywords

Building simulation, Behavioural modelling, Residential occupancy, Load pro�le
of electricity usage, Markov process, Discrete choice modelling, Survival analysis,
Principal components



Résumé

En Suisse, ainsi que dans la plupart des pays industrialisés, le secteur du bâti-
ment est l'une des sources principales de consommation d'énergie, impliquant des
impacts environnementaux. La réduction des émissions de gaz à e�et de serre et
l'abandon de l'énergie nucléaire étant devenus des objectifs clés sur le plan poli-
tique, un e�ort signi�catif est nécessaire a�n de réduire la demande énergétique,
en particulier dans le secteur du bâtiment, et d'accroître l'utilisation des énergies
renouvelables. Pour cette raison, il est crucial de développer des stratégies qui
exploitent de manière optimale les possibilités d'amélioration de l'e�cacité de
ces systèmes.

L'utilisation croissante de modèles de simulation dynamique, a pour but d'ob-
tenir une compréhension plus précise des processus sous-jacents aux �ux d'énergie
et à l'utilisation d'électricité dans les bâtiments. Cependant, beaucoup de phéno-
mènes fondamentaux ne sont pas encore su�samment compris, ce qui peut mener
à des erreurs signi�catives. La description du comportement des utilisateurs dans
les simulations peut être considérablement améliorée ; on constate un manque de
modèles stochastiques véri�és prédisant la présence et les activités résidentielles,
ainsi que la variabilité entre individus et ménages de ces dernières. Pourtant, le
caractère stochastique du comportement résidentiel est essentiel pour comprendre
et prédire les �uctuations de la demande énergétique et électrique des bâtiments
résidentiels.

Cette thèse développe des modèles désagrégés adéquats pour modéliser l'uti-
lisation des appareils électroménagers, ainsi que pour simuler la présence et l'ac-
tivité en fonction du temps et des caractéristiques individuelles des personnes.
Elle présente ensuite une approche novatrice associant l'utilisation des appareils
électriques aux activités pratiquées. Les modèles sont calibrés sur la base de
statistiques détaillées sur l'utilisation du temps, la possession d'appareils électro-
ménagers et la consommation individuelle mesurée de divers appareils.

Les modèles prédisant la présence des individus sont basés sur des processus
de Markov d'ordre premier ou supérieur et non-homogènes. Le comportement
caractéristique d'une sous-population est capturé par des paramètres spéci�ques
compris dans la dé�nition des probabilités de transition et des distributions de
durées. Ces variables indépendantes sont rigoureusement choisies par élimination
descendante. Le modèle d'ordre supérieur est validé en le confrontant avec celui de
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premier ordre. La variation des prédictions relatives aux diverses sous-populations
est illustrée et discutée.

En outre, une approche similaire a été appliquée, a�n de prédire les activités
résidentielles en fonction du temps, à l'aide de modèles logit multinomiaux quan-
ti�ant les probabilités de commencement des activités. Les durées des activités
sont modélisées sur la base d'une analyse de survie. Un premier modèle repro-
duisant la moyenne comportementale de la population a ensuite été détaillé en
incluant des variables indépendantes représentant les sous-populations démogra-
phiques, puis en introduisant les transitions entre activités ayant la propriété de
Markov. Seules les variables indépendantes signi�catives ont été sélectionnées, et
des tests de validation croisée indiquent que les modèles détaillés ont une capacité
de prédiction supérieure.

Par ailleurs, la modélisation des probabilités de possession d'appareils électro-
ménagers en fonction des caractéristiques des ménages est présentée. A�n d'éli-
miner les variables indépendantes devenues insigni�antes par e�et de corrélation,
deux méthodologies di�érentes sont proposées. Leurs prédictions sont validées,
incluant une comparaison de leur capacité prédictive.

Finalement, une approche a été élaborée, pour modéliser l'utilisation des ap-
pareils électroménagers en fonction de l'activité des personnes. La puissance élec-
trique individuelle des appareils est prédite en fonction de leur distribution em-
pirique. Cette approche a ensuite été appliquée a�n d'inférer la distribution du
pro�l de charge total des appareils utilisés simultanément, avec des résultats en
accord avec les mesures.

L'intégration de ces modèles dans un système de modélisation désagrégée
permet d'étudier directement la dépendance du pro�l de charge aux spéci�cités
des ménages, aux caractéristiques individuelles de puissance consommée des ap-
pareils, ainsi qu'aux possibles changements comportementaux. Cette approche
polyvalente mène à une méthodologie concrète permettant de prédire des pro�ls
de charge dans divers scénarios, qui peuvent être utilisés, par exemple, pour éva-
luer la �abilité des infrastructures énergétiques décentralisées, qui sont sujettes à
des �uctuations de puissance considérables.

Mots-Clés

Simulation du bâtiment, Modélisation du comportement, Présence résidentielle,
Pro�l de charge, Utilisation d'appareils électriques, Processus de Markov, Modé-
lisation des choix discrets, Analyse de survie, Composantes principales.



Zusammenfassung

In der Schweiz und anderen Industrieländern ist der Gebäudesektor einer der
wesentlichen Verursacher von Energiebedarf, sowie den damit verbundenen Um-
weltbelastungen. Da die Verringerung der Treibhausgasausstöÿe und der Ausstieg
aus der Nuklearenergie eines der wesentlichen politisches Ziele darstellt, bedarf
es erheblicher Anstrengungen, den Energieverbrauch � insbesondere im Gebäu-
desektor � zu verringern und erneuerbare Energiequellen besser auszuschöpfen.
Deshalb ist es von zentraler Bedeutung, Strategien und Lösungswege zu erarbei-
ten, um möglichst wirksam die E�zienz der relevanten Abläufe und Systeme zu
verbessern.

Dynamische Simulationsmodelle werden immer häu�ger verwendet, um ein
besseres Verständnis der zugrunde liegenden Abläufe von Energie�üssen und
Elektrizitätsnutzung in Gebäuden zu erlangen. Die fehlende quantitative Be-
schreibung vieler relevanter Phänomene kann jedoch erhebliche Fehler in den
Berechnungen nach sich ziehen. Hierbei bietet die Beschreibung des Verhaltens
von Personen in Gebäuden beträchtliches Verbesserungspotenzial; insbesondere
existieren bisher keine fundierten stochastischen Modelle, welche die Anwesen-
heit und die Aktivitäten einzelner Personen in Gebäuden vorhersagt, sowie Un-
terschiede in Abhängigkeit der Charakteristika der Personen oder der Haushalte.
Die stochastische Natur im Verhalten von Personen ist jedoch von wesentlicher
Bedeutung, hinsichtlich der Schwankungen des Energie- und Elektrizitätsbedarfes
in Wohngebäuden.

In dieser Doktorarbeit werden zweckentsprechende Bottom-up-Ansätze aus-
gearbeitet, mit welchen der Besitz von Elektrogeräten in Haushalten, sowie die
zeitabhängige Anwesenheit und Aktivitäten in Haushalten vorhergesagt werden
können, in Abhängigkeit der Charakteristika der Einzelpersonen und Haushalte.
Desweiteren wird ein innovativer Ansatz präsentiert, mit welchem ein Zusam-
menhang zwischen dem Gebrauch von Elektrogeräten sowie der währenddessen
nachgegangenen Aktivitäten hergestellt wird. Diese Modelle stützen sich auf de-
taillierte Daten aus Erhebungen bezüglich des Zeitbudgets, des Besitzstandes von
Elektrogeräten und von Verbrauchsmessungen einzelner Elektrogeräte in Haus-
halten.

Die Modelle zur Vorhersage der Anwesenheit in Wohngebäuden basieren auf
zeitlich inhomogenen Markow-Prozessen erster und höherer Ordnung, bei denen
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individuell geprägtes Verhalten von Subpopulationen dargestellt wird durch ent-
sprechende Parameter in den zeitabhängigen Übergangswahrscheinlichkeiten und
Dauerverteilungen. Die erklärenden Variablen wurden gemäÿ dem Kriterium der
statistischen Signi�kanz in einer Methode der Rückwärtselimination ausgewählt.
Der Ansatz höherer Ordnung wurde validiert, indem die das Modell erster Ord-
nung bestimmenden Gröÿen in jene des ersteren übersetzt wurden. Die geringfü-
gigen Di�erenzen zwischen den Vorhersagen beider Modelle sind auf Näherungen
in der Berechnungsmethode zurückzuführen. Die Abhängigkeit der prognostizier-
ten Verteilungen der Anwesenheitspro�le wird für verschiedene Subpopulationen
veranschaulicht und erläutert.

Die Modelle zur Vorhersage von Aktivitäten an Wohnorten basieren auf ähn-
lichen Ansätzen, wobei Aktivitätsbeginne durch Multinomial-Logit-Modelle und
deren Dauern durch Verweildaueranalyse modelliert werden. Ein Ausgangsmo-
dell, welches das durchschnittliche Verhalten reproduziert, wurde verfeinert, in-
dem Erklärungsvariablen eingebunden wurden, welche das spezi�sche Verhalten
von demogra�schen Subpopulationen und Übergänge zwischen Aktivitäten gemäÿ
der Markow-Eigenschaft widerspiegeln. Auch hier wurden Erklärungsvariablen
eliminiert, welche keine statistische Signi�kanz aufwiesen. Tests von Kreuzvali-
dierungsverfahren zeigen, dass die verfeinerten Modelle eine verbesserte Vorher-
sagekraft aufweisen.

Danach werden Ansätze zur Vorhersage des Besitzstandes verschiedener Elek-
trogeräte in Abhängigkeit von Haushaltscharakteristika vorgeschlagen. Zwei Me-
thodiken werden präsentiert, in denen statistisch unbedeutende Erklärungsvaria-
blen eliminiert werden, welche daraufhin validiert werden und dessen Vorhersa-
gekraft miteinander verglichen wird.

Schlieÿlich wird eine Methodik ausgearbeitet, in der die Benutzung von Elek-
trogeräten als bedingte Wahrscheinlichkeit von zu diesem Zeitpunkt nachgegange-
nen Aktivitäten de�niert ist. Der Elektrizitätsverbrauch einzelner Elektrogeräte
wird hergeleitet aus den entsprechenden empirisch gemessenen Verteilungen. Es
wird dann ein darauf basierender Ansatz präsentiert, mit dem die Verteilung des
elektrischen Lastverlaufs von gleichzeitig betriebenen Elektrogeräten hergeleitet
werden kann. Die Prognosen des Modells stimmen gut mit den gemessenen Wer-
ten überein.

Diese Arbeit zeigt auf, wie die einzelnen Modelle in einem gemeinsamen Rah-
men miteinander kombiniert werden können. Dies erlaubt es die unmittelbaren
Abhängigkeiten der statistischen Verteilung des Lastpro�ls von Eigenschaften des
Haushaltes und der Verbrauchswerte der einzelnen Elektrogeräte, sowie zukünf-
tigen Verhaltensveränderungen abzuleiten. Die vielseitig anpassbare Methodik
stellt einen wissenschaftlich wertvollen Ansatz dar, mit welchem die Verlässlich-
keit von Infrastrukturen der dezentralisierten Elektrizitätsversorgung untersucht
werden kann, welche beträchtlichen Produktionsschwankungen unterliegen kön-
nen.
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Chapter 1

Introduction

1.1 General context

As ever since the beginning of industrialisation, energy security has been of central
importance in policy. During the last decades, energy demand has attracted
increasing concern, its mitigation being a top government priority today. Since
the Fukushima Daiichi nuclear disaster in 2011, it was agreed in many countries
to rely less extensively on nuclear power generation, which necessitates a more
intensive use of alternative energy sources. The need for signi�cant structural
changes regarding economic, societal and in particular environmental aspects is
now commonly acknowledged, considering predictions of global economic and
population growth. In order to support a more sustainable development, one of
the most important tasks is research and development that foster a more e�cient
and parsimonious energy use.

1.1.1 Energy in residential buildings

Residential buildings are responsible for a very important fraction of energy use.
According to estimations, this sector is responsible for 16 to 50 % of the global
energy demand across countries [1]. In the 27 member states of the European
Union, it accounted for about one quarter of the total energy use in the year
2007 [2], showing a steady increase during the last decade [3]. This growth is
caused by numerous factors related to improved living standards, such as the
increasing use of active cooling and electrical appliances. Regarding the total
electricity demand, the residential sector is responsible for more than one quarter,
which increased by 1.6 % per year from 708 TWh to 801 TWh in the period from
1999 to 2007 [4].

Therefore, the improvement of the energy performance in buildings, as well
as of the development and promotion of decentralised electricity generation from
renewable sources is becoming increasingly important. As the latter is already
taking place [5], considerably more e�ort has to be devoted to research assuring
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CHAPTER 1. INTRODUCTION

the security of electricity supply. As furthermore, the building envelope e�-
ciency improves, the part of energy used by electrical appliances, as well as their
contribution to casual heat gains in buildings increase. It is thus crucial to de-
velop a sound theoretical basis, that accurately describes the comprehensive set
of energy-related processes in buildings, as well as in electrical grids, in order to
realistically predict the systems' responses to changes of the boundary conditions.

1.1.2 State of the art

Building performance simulation

Much e�ort has been put into the development of dynamic simulation programs,
in order to investigate the dependence of the energy demand of buildings on their
characteristics and those of the environment. Pioneering research was provided
by Winkelmann and Selkowitz [6], Arumí-Noé and Northrup [7], Clarke [8] and
Gough [9], where it was focussed on the dynamical modelling of energy exchanges
of buildings with the exterior environment. The predictions of heating energy
demand and air temperature issued from multiple simulation tools have already
been empirically validated for di�erent cases [10]. The development of dynamic
thermal building simulation programs has led to sophisticated tools like ESP-r,
which allows for the simultaneous simulation of �uid �ow, heating, ventilating
and air-conditioning, as well as energy conversion and control systems [11].

Whereas deterministic processes in buildings are relatively well captured in
dynamic simulation programs like ESP-r, in�uences originating from building
occupants are insu�ciently described. For instance, �eld surveys showed that in
a sample of 28 equally designed houses, there were variations in gas consumption
in winter of up to a factor of two [12]. In a more recent study, the average
electricity demand of nine identical houses was varying by a factor of up to three
and six, respectively on an annual, and a monthly basis [13]. In a study conducted
by Iwashita and Akasaka [14], it was found that 87 % of the total air change in
the investigated dwellings was caused by occupant behaviour.

As there is a considerable demand of energy-e�cient buildings [15], the weight
of user behaviour on the buildings' energy balance is increasing. This underlines
the need of detailed behavioural models, that allow for a more accurate descrip-
tion of the variation of speci�c users, in order to optimise building design [16].
Interesting approaches for the prediction of occupants' behaviour towards the
building envelope were recently developed, but their use of electrical appliances
is much less investigated.

Electricity demand

Since the origin of electri�cation, electricity loads were studied in the context of
planning purposes and electricity pricing [17]. Regarding building energy simu-
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lation, the main purposes of electricity demand prediction are:

• The integration of all important energy-related processes.

• The correct prediction of casual heat gains.

• The dimensioning of on-site generation of renewable energy systems.

Today, residential electricity use takes up an important part in total residential
energy use (see Section 1.1.1) and, furthermore, electricity generation from renew-
able sources is steadily increasing [2]. With the prospect of the associated increas-
ingly decentralised electricity supply to the residential sector, there is increasing
interest in topics like active load management, as well as micro-generation and
local energy storage technologies [18]. This underlines the requirement of a de-
tailed understanding of the involved processes, in order to assure competitive
performance of micro-grids. For the latter, the reliable matching of electricity
generation with the demand is of signi�cantly higher complexity than on large
scales, due to an increased degree of statistical �uctuations. To address this, nu-
merous political, academic and economic e�orts are aimed at fostering micro-grid
technologies [19]. Regarding the intensi�ed e�orts that the electricity supply is
to rely more on renewables energies and less on conventional power generation
infrastructure, the power supplied becomes less constant, which underpins the
increased need to match demand and supply. Here, one of the main challenges
consists in an accurate description of the stochastic nature of the latter two [5, 20�
25].

1.2 Scope of this work

Figure 1.1 summarises interactions between human beings and building compo-
nents, as well as electrical appliances. Interactions with window openings enhance
natural ventilation. Actions on manually controlled shading devices in�uence so-
lar heat gains, as well as the use of arti�cial lighting. The latter, as well as
the use of many electrical appliances result in considerable impacts on electricity
demand. The use of electrical appliances and individuals present also involve
casual heat gains which have, together with natural ventilation and solar gains,
important in�uences on heating demand. The latter also depends considerably
on the insulation of the building envelope. As all the above interactions are re-
lated to residential presence and activities, and much e�ort is spent to improve
building insulation in the last years, the relative importance of the impact of
human behaviour on buildings' energy demand increases.

Although there has been considerable e�ort to support the dynamic stochastic
modelling of individuals' residential occupancy, activities and the use of electrical
appliances, as well as actions on building components [e.g., 26�29], there is no
existing approach which accurately accounts for signi�cant variations between
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Figure 1.1: Interactions between humans and building components with impacts
on heating and electricity demand.

individuals. Either the calibration procedures are designed to match average
behaviours, or the level of detail was not tested for statistical signi�cance of pa-
rameters. When applying such models, this can often lead to model predictions,
which tend to reproduce either average behaviour, or excessively that of indi-
viduals of the dataset, with additional statistical noise, resulting in inaccurate
distributions.

The scope of this work is the development of models predicting residential
presence and activities, as well as the ownership and the use of individual elec-
trical appliances. Much attention will be put on the trade-o� between the level
of detail and parsimony, simultaneously ensuring model robustness and a high
level of accuracy of the predicted time-dependent stochastic variables, in order to
develop a generalist approach which is not restricted to the calibration dataset.

1.3 Hypothesis

Current models of residential load prediction and building performance simulation
are undermined by an insu�cient accounting of variations in the time-dependence
of residential occupancy and activities as a function of individual characteristics.
However, behavioural patterns are complex regarding their mutual interactions
to each other. These interactions complicate the basis for a stochastic treatment,
which is required to capture the sources of variability. Therefore, we propose the
following hypothesis (also shown in Figure 1.2) to guide our developments:

The electricity demand of households can be optimally

modelled as a result of the activities performed by

4



1.4. STRUCTURE OF THIS WORK

their occupants. Residential use of electrical appli-

ances is determined by residential activities, which are

themselves determined by residential occupancy.

This approach enables a generalisable formulation of the model and a correct
prediction of �ne resolution power demand accounting for occupants' behavioural
diversity and the considered contexts. Furthermore, a joint probabilistic approach
considering the stochastic nature of occupancy, activity and appliance use pat-
terns enables an estimation method of the variability of electricity demand.

  

Probability being 
Present

Conditional 
probability to perform 
activity whilst being 

present

Conditional 
probability to use 

electrical appliance 
whilst performing 

activity 

Figure 1.2: Dependences and in�uences (indicated by arrows) of the di�erent
sub-models.

1.4 Structure of this work

In Chapter 2, we present a detailed description of the general characteristics,
as well as the time-dependence of the data from the time use survey that was
used to calibrate the models of Chapters 3 and 4. We then present in Chapter 3
the model developed to predict the residential occupancy, as a function of time
and individual speci�cities. We go on to describe the model that predicts the
time-dependent activities of residential occupants, which also was formulated in
dependence of individual characteristics (Chapter 4).

As a next step, in Chapter 5, we present a model to predict the ownership
of multiple electrical appliances, depending on the household characteristics. Fi-
nally, a detailed methodology resulting from the above stochastic models is de-
veloped to predict the activity- and occupancy-dependent use of electrical ap-
pliances, allowing to construct the load pro�le distribution of their simultaneous
use. The general bottom-up1 modelling framework is discussed and synthesised
in Chapter 7.

1Disaggregated models will be referred to as �bottom-up� models.
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Chapter 2

Time use data

This chapter presents the time use data that provided the basis for the calibra-
tion of the models to predict residential occupancy and activities. The general
included informations, as well as the statistical properties of the included popula-
tion characteristics in the data are described. Furthermore, the time-dependence
of residential presence and activity patterns are described in detail. The relevance
of the dataset for our research method is investigated, together with a detailed
discussion of statistical artefacts, arising from the measurement methodology and
error-prone data.

2.1 Multinational time use study database

The time use data that are considered in this work are available in electronic
format in a database that is managed by the Centre for Time Use Research
of the University of Oxford [30]. This Multinational Time Use Study (MTUS)
database contains the harmonised information of multiple time use surveys that
were conducted in the period from 1961 to 2011 in Australia, Austria, Belgium,
Bulgaria, Canada, Denmark, Finland, France, Germany, Hungary, Israel, Italy,
the Netherlands, Norway, Slovenia, South Africa, Spain, Sweden, the United
Kingdom and the United States [31].

The data collected in the surveys comprises information of individuals who
completed questionnaires describing the chronological course of activities jMTUS

in their diaries in time increments of varying duration (depending on the sur-
vey) throughout 24 h, starting at varying times (also depending on the survey).
The activities jMTUS are speci�ed according to a list of 41 di�erent activity types
(called the �MTUS 41-activity typology�, cf. Figure 2.7) and, furthermore, the
information in which type of place y the respondents were located can take 9
di�erent values (cf. Figure 2.6), which will be described in more detail in Sec-
tion 2.1.1. As a result of the harmonisation of the data of the di�erent TUSs,
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not all of the characteristics in the MTUS are available in the datasets of the
national surveys.

In Figure 2.1, we show an example of the activity chains ax(t) and occupancy
chains yx(t), describing in which types of place they were performed as a function
of time for three di�erent individuals x of the database (the legend will be pro-
vided in Figures 2.6 and 2.7). As the activity and location codes of the surveys
are discretised according to the mentioned typologies, the temporal information
of each individual corresponds to a staircase function of di�erent episodes. The
marked data points indicate times where a new activity is started.
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Figure 2.1: Examples of occupancy (left) and activity (right) chains of three
individuals of the French TUS.

In addition to the diary plans recorded by the respondents, a detailed list of
demographic and socio-economic characteristics is included in the database, con-
taining information such as the timing of the survey, the household composition,
the respondent's employment/education status, as well as health classi�cations.
The variable names together with a short description of these characteristics is
provided in Table 2.1. Each of these characteristics can take several discrete val-
ues. In non-trivial cases, these are shown in Table 2.2, where in some cases, the
original value set was aggregated to a coarser resolution.

Table 2.1: List of diary, demographic and socio-economic characteristics in the
database.

variable description

countrya Country or region of study
country Country where study was conducted
survey Year the survey began
swave Longitudinal study wave marker
msamp Multiple samples using the same diary instrument
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2.1. MULTINATIONAL TIME USE STUDY DATABASE

hldid Household identi�er
persid Person/diarist identi�er
id Diary identi�er
parntid1 Person identi�er of 1st parent of diarist
parntid2 Person identi�er of 2nd parent of diarist
partid Person identi�er of spouse or partner
day Day of week diary kept
month Month diary kept
year Year diary kept
diary Diary order
badcase Marker of low-quality cases
hhtype Household type
hhldsize Number of people in household
nchild Number of children under 18 in household
agekidx Age of youngest child in household (categories including adults)
agekid2 Age of youngest child in household
incorig Original household income
income Total household income - grouped
ownhome Whether diarist's household owns or rents home
urban Urban or rural household
computer Does household have a computer
vehicle Does household have a access to a private vehicle
sex Sex
age Age
famstat Individual level family status
cphome Unmarried child living in parental home
singpar Whether diarist is a single parent
relrefp Relation to household reference person
civstat Civic status
cohab Respondent is cohabiting
citizen Whether the diarist is a citizen of the country
empstat Employment status
emp In paid work
unemp Unemployed
student Whether diarist is a student
retired Whether diarist has retired
empsp Employment status of spouse/partner
workhrs Hours paid work last week including overtime
empinclm Original monthly income from employment or self-employment
occup Occupation
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sector Sector of employment
educa Educational level-original study code
edtry Harmonised level of education
rushed Whether diarist generally feels rushed
health Diarist's general health
carer Diarist looks after an adult or child with a disability
disab Diarist has a disability or long-term limiting health condition

Table 2.2: Value sets of the non-trivial variables in Table 2.1.

variable value set description

hhtype 1 One person household
couple Couple alone
couple+ Couple + others
other Other household types

agekidx no No children in household
0-4 Youngest child aged between 0-4
5-12 Youngest child aged between 5-12
13-17 Youngest child aged between 13-17
18+ Youngest child aged 18+

incorig <3.5 Less than 3,500 (in French Francs)
3.5-10 3,500 to 10,000
10-21 10,000 to 21,000
>21 More than 21,000
n.s. Doesn't know.

ownhome own Own (outright or on mortgage)
rent Rent
other Other arrangement

urban urban Urban/suburban
rural Rural/semi-rural

vehicle N No
1 1 car or motorcycle
2+ 2+ 1 cars or motorcycles

famstat 18-39,- Adult aged 18 to 39 with no co-resident children <18
18+,<5 Adult 18+ living with 1+ co-resident children aged

<5
18+,5-17 Adult 18+ living with 1+ co-resident children 5-17,

none <5
40+,- Adult aged 40+ with no co-resident children <18
<18,parents Respondent aged <18 and living with

parent(s)/guardian(s)
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<18,n.s. Respondent aged <18, living arrangement other or
unknown

cphome N Not a child in parental home
Y Child in parental home

civstat Y Diarist in couple, lives with spouse/partner
N Diarist not in a couple

empstat full Employed Full Time
part Employed Part Time
n.s. Employed, unknown status
no Not in paid

empsp n.s. n.s.
full Employed full-time
part Employed part-time
unknown Employed unknown hours
no Not in paid work

occup n.s. n.s.
Manage Management (senior management, not supervisors)
Fin Finance and legal professionals
Sci Science and engineering professionals
Civil Civil and social service professionals
Educ Education and social science professionals
Other Other professionals
Health Health, education, and social care support,
Clerical Clerical and o�ce support
Secur Security and armed forces
Sales Sales, services, creative support, and cleaning,
Farming Farming, forestry, and �shing
Construct Construction, assembly & repair, moving goods,

transport, extraction
Self-empl Self-employed non-professionals

sector n.s. n.s.
Public Public sector
Private Private sector

edtry 1 uncompleted secondary or less Not completed
ISCED level 3

2 completed secondary Completed ISCED level 3
and/or attendance at level 4

3 above secondary education ISCED level 5 or above
rushed n.s. n.s.

Almost Almost never
Sometimes Sometimes
Often Often
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In addition to the episodes, the aggregated time spent with each of the activ-
ities is also available for the surveyed individuals. All the speci�ed information
is available in di�erent versions of the database. For this work, versions 5.53 and
6.0 of the database have been merged together using the unique pair of house-
hold and person identi�ers, to make use of the full individual chronological diary
information (cf. Figure 2.1; only available in version 6.0) and the full set of demo-
graphic and socio-economic characteristics (Table 2.1; only available in version
5.53), that were recorded in this TUS. Furthermore, the classi�cation of respon-
dents being minor is stored in separate �les which have also been integrated. For
a more detailed description of the database and de�nition of the characteristics
and the corresponding value sets, we refer the reader to the description of the
database [31].

2.1.1 French time use survey

General characteristics

The modelling approaches presented in this thesis could be calibrated with data
from any of the surveys contained in the MTUS as long as the temporal infor-
mation of the episodes is available. However, in this work, we only use the data
from the French time-use survey (TUS) conducted from 16 February 1998 to 14
February 1999 [32], and collected by the French National Institute of Statistics
and Economic Studies [33], as the country and the period of this survey corre-
sponds to those of the electricity measurements that are used to calibrate the
model in Chapter 6.

This dataset relates to a subset of the French population of n = 15441 in-
dividuals from 7949 households, whose recorded diary plans are in 10 min time
increments throughout 24 h, starting and ending at midnight. In this survey, mul-
tiple members of the same household were interviewed by means of two household
visits. The response rate was 91.1 % for households, and 88.3 % for individuals,
whose age range was from 15 to 80 years. Besides primary activities, secondary
activities, as well as information on who else was present was also recorded [34].

The distributions of characteristics of this population regarding a variable
selection of the lists in Tables 2.1 and 2.2 are presented in Figures 2.2 to 2.51.
The weekday the data was recorded is relatively uniformly distributed, ranging
from 10.5 % for Mondays to 16.9 % on Thursdays. The months are also relatively
uniformly covered, ranging from 7.6 to 11.0 %, apart from March, August and
December which lie between 4.1 and 5.6 %. 47 % of the respondents are male,
and 24.6 % are retired.

The distribution of the characteristics in the TUS does not exactly �t to that
of the whole population. For instance, with a share of 24.8 % of retired persons
in the TUS, these persons are over-represented compared to the real population

1The variable �cday� denotes the calendar day which is also part of the episode variables.
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share of 16.0 % in the year 2000 [35, 36]. Neither the month nor the weekday are
accurately covered. In order to apply the models in scenarios whose population
characteristics di�er from those of the calibration dataset, a disaggregated model
formulation is important.

Time-Dependence

In Figure 2.6, we show the proportions of the population of the French TUS being
in a given location as a function of the time of day. In the questionnaires of the
French TUS, the variable specifying the type of place y was only recorded for the
values 1 and 3 (the other values were deduced from the speci�ed activity types
in the diary plans). As in this work, only residential presence and activities are
investigated, y is treated as a binary variable, re�ecting whether y is equal to 1
(at home) or not (which will be denoted 0).

The populations' activity shares are shown in a stacked presentation in Fig-
ure 2.7 as a function of the time of day, regardless of the type of place, which
we herein refer to as the activity pro�le. For every activity in the legend, the
�rst number in the parentheses indicates the daily mean percentage of time that
activity is conducted, whereas the second indicates the percentage of time the
activity is performed at home (the remainder being carried out elsewhere). The
41st activity type �unclassi�ed or missing� does not occur in the French TUS
and was therefore not listed in Figure 2.7. According to these statistics then,
respondents are on average engaged in conversation for only 1.3 % of their day
(as a primary activity); with a little over two thirds of these conversations taking
place within the home.

The activity pro�le often shows kinks at half and full hours, due to a rounding
of the time values by the respondents (respondents appear to prefer to allocate
activities to 30 min or 60 min intervals than to 10 min ones or to bias activity
starts to these time units; cf., Figure 4.2). Furthermore, the shares of activities
conducted at the end of the day often di�er signi�cantly from those at the be-
ginning of the day. Again this is due to erroneous allocations of activities by the
subjects at the boundaries of the day of the questionnaire. This issue is overcome
to a large extent in other surveys, by de�ning the beginning/end of the monitored
time period early in the morning (e.g., 4 am in the US-American TUS [37]).

In this work, only the actions which take place whilst the individuals are
at their own homes are investigated. This information may also be error-prone
(probably due to errors in the data processing procedures to generate the har-
monised activity codes) rather than in the responses of the subjects), as some
of the activities (e.g., �visit friends at their homes�) have a non-zero share which
is performed at the own home, although excluded by de�nition. However, these
errors are only in the order of magnitude of one percent and thus will be ignored.

For reasons of clarity and readability, as well as to simplify the estimation of
the multinomial logit models that will be presented in Chapter 4, certain of these

13



CHAPTER 2. TIME USE DATA

0

0.05

0.1

0.15

day

S
u

n

M
o

n

T
u

e

W
ed

T
h
u

F
ri

S
at

0

0.01

0.02

0.03

0.04

cday

5

1
0

1
5

2
0

2
5

3
0

0

0.02

0.04

0.06

0.08

0.1

0.12

month

Ja
n

u
ar

y
F

eb
ru

ar
y

M
ar

ch
A

p
ri

l
M

ay
Ju

n
e

Ju
ly

A
u
g

u
st

S
ep

te
m

b
er

O
ct

o
b

er
N

o
v

em
b

er
D

ec
em

b
er

0

0.1

0.2

0.3

0.4

0.5

0.6

sex

M F

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

age

<
1

8

1
8

−
2

7

2
8

−
3

9

4
0

−
5

9

>
=

 6
0 0

0.1

0.2

0.3

0.4

0.5

0.6

hhtype

1

co
u
p

le

co
u

p
le

+

o
th

er

0

0.1

0.2

0.3

0.4

0.5

0.6

nchild

0 1 2 3 4 5 6 7
1
0 0

0.1

0.2

0.3

0.4

agekidx

n
o

0
−

4

5
−

1
2

1
3

−
1

7

1
8

+

0

0.1

0.2

0.3

0.4

0.5

incorig

<
3
.5

3
.5

−
1

0

1
0

−
2

1

>
2

1

n
.s

.

Figure 2.2: Distribution of the characteristics of the French TUS (see Table 2.2).
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Figure 2.4: Distribution of the characteristics of the French TUS. (see Table 2.2)
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Figure 2.6: Presence pro�le for the di�erent types of place in the TUS.
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Figure 2.7: Activity pro�le of jMTUS monitored in the TUS, regardless of the type
of place y, where the activities were performed. The �rst number in the legend
shows the index number j of the merged activity category in Figure 2.8. The
�rst number in the parentheses shows the daily mean percentage the activity is
performed, the second one which percentage is performed at home.

activities have been merged together in cases where they have a similar impact
on a building's energy balance or the use of electrical appliances. These merged
activity types are shown in Figure 2.8, which corresponds to the probability
distribution of activities that are performed whilst being at home, which will be
referred to as residential activity pro�les.

In Figure 2.9 we show a summary of median durations of residential activities
of the TUS as a function of the hour of the day when they were started, indicated
by the height of each single-coloured area. The scarcity of events during the
night time ampli�es the weight of erroneous recordings in the database leading
to a much longer mean duration during this period (we assume that the activity
type in the database has sometimes been mistaken for another one when the
questionnaire data on paper was copied into electronic format; during the night
time this is likely to lead to a replacement of sleeping by another activity, which
increases the mean duration of the other activity substantially). Therefore, we
do not show the whole range of activities between 12 am and 6 am to focus on
the rest of the day which is more reliable (cf. Figure 4.3 for an illustration of
these truncated activities). Furthermore, the weight of these errors is negligible
(cf. Figures 2.8 and 2.10). At the end of the day the means decrease because of
the truncation of the questionnaires which stop recording after midnight.

In Figure 2.10 we show a stacked histogram of the numbers the activities
that have been started by the n individuals of the TUS sample population as a
function of the time interval on the x-axis. Between 1 am and 5 am the total
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Figure 2.8: Pro�le of the merged activity types j (see legend) whilst individuals
are at home. The merged activity category consists of all the activity types in
Figure 2.7, which have the same index j as in the beginning of the line in the
legend.
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Figure 2.9: Stacked median durations of residential activities jMTUS of the TUS
started during the hour interval given on the x-axis. Activities jMTUS which are
performed for less than 0.5 % of the time throughout the day are not shown. For
readability, the y-axis is bounded to a maximal value of 25 h.

number of started activities is considerably lower than during the rest of the day.
This intuitive situation can also be explained by the fact that sleeping is the
activity which is most often started in the two intervals before 1 am and which
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has a high average duration at that time of day (cf. Figure 2.9). As a summary
of the Figures 2.9 and 2.10, it can be seen that the probability to start an activity
varies more with the time of day than does the average duration of the activity.
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Figure 2.10: Stacked histogram of the total counts of activities started in the
corresponding time interval shown on the x-axis.

As mentioned, the models to predict residential presence and activities are
calibrated with these data, implying that the TUS data is assumed to re�ect
reality. Although, the data does obviously not always agree to reality (e.g., the
abrupt changes at midnight, incorrect copying of data in the database, the round-
ing artefacts or other incorrect statements of the questionnaires' respondents),
the elucidation of the discrepancies between the monitored data and reality is
di�cult to provide and is a research topic in itself [cf., e.g. 38, 39]. According
to the rounding at half and full hour intervals, the standard errors of the time
values in the monitored data may be coarsely estimated to respectively 15 min
and 30 min. However, the uncertainties might increase with the mean duration
of the considered activity type, and also depend on the activity type (for in-
stance, there might be a more important uncertainty in the time speci�cation of
sleeping). It is thus not straightforward to estimate uncertainties which appear
in the starting/end times (cf. Figures 2.6 and 2.8), as well as in the durations
of residential presence and activities (cf. Figure 4.2). As the focus of this work
is elsewhere, the data artefacts which are due to erroneous speci�cations of the
survey respondents will not be studied, unless explicitly stated.
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2.2 Conclusion

The high time resolution of the TUS, as well as its considerable time-of-day vari-
ation provides a powerful source of information for dynamic modelling of human
behaviour. Thus, these data will be used to calibrate the models predicting resi-
dential presence (Chapter 3) and activities (Chapter 4). The high level of detail
of individuals' characteristics in the TUS data allows to investigate in depth their
in�uence on behavioural patterns. The latter is also crucial to adjust resulting
predictions for the non-representativeness of the distribution of some of the char-
acteristics in the sample of the TUS.
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Chapter 3

Bottom-up stochastic modelling of

residential occupants'

time-dependent presence

Two novel bottom-up modelling approaches together with a set of calibration
methodologies are presented to predict the time-dependent probabilities of resi-
dential building occupants' presence by (i) a �rst- and (ii) a higher-order inhomo-
geneous Markov process. These models are calibrated depending on individual
speci�cities (of the individual, the household, the household members, the week-
day) using French time-use survey data (of 1998/1999), and are based on (i & ii)
the transition probabilities and (ii) the presence duration probability distribution.
A high convergence speed of both approaches is empirically demonstrated, and
the higher-order approach is then validated by establishing the relationship to the
one of �rst-order and comparing their predictions. Furthermore, their predictive
power is compared. These models are used to derive the distribution of presence
pro�les over synthetic populations with di�erent sets of characteristics. Finally,
it is demonstrated how the models can be implemented in dynamic simulations
to model presence as a dichotomous variable.

3.1 Introduction

As passive design standards of buildings allow to more e�ectively exploit solar
radiation and conserve solar and casual heat gains, buildings' energy and en-
vironmental performance becomes more sensitive to the presence [40], activities
and activity-related behaviours of their occupants [41], such as the use of shading
devices, windows and electrical appliances [see 16, 42]. In particular individuals'
behavioural diversity has a great impact on buildings' energy demands [43, 44].

The modelling of occupancy in buildings is also of great importance in elec-
tricity demand side management and electricity load modelling, as it determines
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the possibility of occupants' interactions with buildings [45�54], as well as for
energy demand in general [55]. As decentralised electricity generation from re-
newable sources becomes more and more important, we need to better match the
load pro�les of neighbourhoods with (small-scale) power generation. For a better
design/sizing of the latter or for structural changes like the �smart grid� concept
[e.g., 56�58], we need to model more accurately the stochastic nature of electrical
appliance use in single buildings [49, 59]. In particular, one has to account for
the variations over time (of day) and of behaviour (use [60], investments, etc.)
between individuals and households (cf. [61] for a comprehensive modelling study
of this in o�ce buildings).

With regard to the prediction of presence probabilities, a bottom-up model
is needed that is calibrated on the signi�cant characteristics of individuals, to
faithfully encapsulate the full range of personal speci�cities. Such an approach
also lends itself well to the modelling of future scenarios to explore responses
to changes in occupancy behaviour as well as to the population's demographic
characteristics. Last but not least, an important requirement for a sound model is
that it should be easy to recalibrate it with other datasets, in order to investigate
di�erences between countries or temporal changes.

3.1.1 Previous research work

In the research �eld of electricity demand modelling, Capasso et al. developed an
approach where active residential occupancy (at home and not sleeping) is mod-
elled stochastically in order to predict daily electricity load pro�les [62]. Torriti
presents an approach to predict occupancy variances in single-person households,
in order to estimate electricity demand related to watching television in di�er-
ent European countries [46]. Widén et al. present a time-inhomogeneous Markov
chain approach, calibrated with time use data, to predict residential presence
probability pro�les in order to model domestic lighting demand [63] and electric-
ity demand in general [20].

Tanimoto et al. present a methodology calibrated with time use data that
generates residential occupancy patterns for workdays, Saturdays and Sundays
and eight classi�cations of individuals' attributes [25]. Richardson et al. model
the individual's occupancy probability by the proportion of the sample population
of a time use data set [64].

Regarding stochastic models of occupancy in o�ces, Wang et al. propose
an approach to predict multiple-zone occupancy based on a �rst-order time-
homogeneous Markov chain with an additional movement process which was
calibrated to simulate occupancy in o�ces [65]. Wang et al. predict occupancy
based on an approach, which was calibrated with movement sensor data collected
during one year in 35 single person o�ces in an o�ce building [66]. Dong and
Lam used a sensor network [68] to calibrate a model that can predict occupancy
in o�ce buildings [67].
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One of the most widely used models has been elaborated by Page et al., where
occupancy in an o�ce (�zone�) is simulated as a time-inhomogeneous Markov
chain. However, as the calibration dataset is only based on �ve o�ces in the same
university building, the model cannot be considered representative for the variety
of di�erent behaviours. Furthermore, the calibration methodology is based on a
mobility parameter which is ill-de�ned in case of a zero denominator [69]. Liao
et al. model occupancy based on an approach extended to multiple zones, which
shows similar results than those of Page et al. [71]. Furthermore, they also use a
covariance graph model to reproduce presence proportions in the zones, based on
the hypothesis that these proportions are correlated to each other, which implies
that individuals do not behave independently of each other [70]. In both works,
the models are calibrated with measurements based on movement sensors. Liao
et al. furthermore use questionnaire survey data to calibrate the model for multi-
ple person o�ces. When comparing the two models' predicted occupancy pro�les
with the observed ones, it is apparent that the applied calibration procedures are
vulnerable to over�tting observation artefacts.

In transport research, occupancy and activities in di�erent types of place are
of interest in order to predict activity-travel patterns. In this context, much
e�ort was put on the dependence of behaviour on socio-demographic charac-
teristics [e.g., 72�74]. Although also incorporating the modelling of activity
durations [cf. 72], the approaches were not validated with observed occupancy
patterns.

3.1.2 Limitations of existing models

From the above review we conclude that:

• Existing occupancy models use simulations, in order to derive approxi-
mate expectation values of presence pro�les. Uncertainties are reduced
by increasing the number of simulation replicates, which can be very time-
consuming.

• Published research does not provide a common robust and validated ap-
proach that models consistently variations of presence pro�les and durations
based on individual speci�cities (for instance personal/household character-
istics).

• Existing occupancy models are often calibrated with non-representative
datasets that are peculiar to speci�c situations.

• The issue of long absences is mostly neglected.

The objective in this chapter is to establish a bottom-up approach, which
allows residential occupancy to be modelled as a function of time and individual
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speci�cities. The time-dependence is crucial for the use in dynamic building simu-
lations and bottom-up modelling of the residential use of electrical appliances, as
the probabilities to be present varies signi�cantly with time of day. The bottom-
up nature of the approach is also needed to enable its application for scenario
testing based on populations with di�erent characteristics to those of the cali-
bration dataset. Both the nature of the model formulation, which can be readily
calibrated to other datasets, as well as the application results for populations
with di�erent socio-demographic characteristics suggest that this new model is
better adapted to building simulation and electrical appliance use modelling than
previous variants.

3.2 Methodology

The occupancy status y at a given time of day t represents a dichotomous random
variable Y . It will be shown in Section 3.3 that Y can signi�cantly depend on the
time of day, as well as on other characteristics (of the individual, the household,
the household members, the weekday) x. In order to predict p(x, t) (which will
be referred to as presence pro�le, and also denoted by p(t), if the dependence on
x is not discussed), the probability of residential presence as a function of time
of day and x, two approaches will be presented. In the following, we will show
how these models are analytically derived and calibrated, in order to meet the
requirements that were proposed in Section 3.1.2.

3.2.1 Stochastic models

A straightforward approach to predict p(t), the probability of residential pres-
ence (y = 1) as a function of time t, is to assign a probability deduced from the
observed presence proportion pobs(t) of the whole sample population C at each
time step tn [cf. 64].1 However, this approach leads to an individual-independent
model (IIM). Furthermore, this corresponds to a stochastic process of zeroth or-
der, meaning that a state does not depend on the previous one(s). In a dynamic
simulation this leads to a strongly �uctuating random variable of the presence
state (which will be explained in more detail together with Figure 3.6), whose
state has to be determined anew at each time step. As in many applications the
occupancy duration is of substantial importance [e.g., 75, 76], this approach will
not be investigated in detail in the remainder of this chapter. Instead, two ap-
proaches will be presented in the following, where the durations of the occupancy
states are modelled more consistently, using a �rst-order Markov process and a
higher-order approach based on survival analysis. In general, the presence pro�le
at the beginning of a given day depends on what has happened at the end of the
day before. For reasons of simplicity, it will be assumed that the pro�les that

1This corresponds to a time-inhomogeneous Bernoulli process.
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will be derived in the following approaches have a 24 h periodicity (meaning that
when, for instance a Saturday ends the behaviour after midnight corresponds to
that of a Saturday and not a Sunday).2

First-order Markov process

Regarding time-dependent residential presence, there are 4 di�erent transitions
(0 7→ 0, 0 7→ 1, 1 7→ 0, or 1 7→ 1), denoting �to stay away�, �to arrive�, �to leave�
and �to stay at home�, respectively. The corresponding transition probabilities
will be denoted by t00, t01, t10 and t11, respectively, which satisfy

t00 + t01 = t10 + t11 = 1. (3.1)

These transition probability elements will be regrouped in the transition matrix

T =

(
t11 t01
t10 t00

)
. (3.2)

Approximating the continuous-time occupancy as a discretised chain, the proba-
bility of being present corresponds to a sequence of random variables (Y1, Y2, . . .),
and the probability of being at home can be modelled as a �rst-order (memory-
less) Markov process (FOMP).

pr(Yn+1 = yn+1|Yn = yn, Yn−1 = yn−1, . . .) = pr(Yn+1 = yn+1|Yn = yn). (3.3)

This implies that the time evolution of the probability of being present is governed
by the master equation

dP

dt
= TP , (3.4)

where P = (p, 1− p)ᵀ denotes the vector of the probabilities of being present or
absent. In order to generate time-dependent pro�les, the transition probability
matrix T (t) has to depend on the time of day t. In the discretised approximation
of the Markov chain, it follows from Equations (3.1) and (3.4) that the probability
of being present at the succeeding time step tn+1 in the Markov chain can be
calculated from the present one tn:

p(tn+1) = t11(tn) p(tn) + t01(tn) (1− p(tn)) . (3.5)

This means that the probability of being present at tn+1 is given by the probabil-
ity to be present at the time step before times the probability that he/she stayed

2A periodicity of one week would be more coherent, as presence is modelled as a function
of weekday (cf. Figure 3.1). However, this increases calculation time by a factor of seven.
Furthermore, the models are validated (cf. Sections 3.3.2 to 3.3.4) by comparing the predictions
to the observations of the TUS, where individuals' diary plans are also recorded during 24 h
(cf. Section 2.1.1).
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t11(tn) p(tn) plus the probability of arriving when not having been present at the
time step before t01(tn) (1− p(tn)). By incrementing the time step successively,
one can calculate the time evolution of p(t). However, as the initial value is un-
known, the solution of Equation (3.4) cannot be immediately calculated. But the
structure of the master equation secures that the in�uence of states to succeeding
ones decreases with time to zero (under condition that all elements of T (t) are
smaller than one at least for one t). Thus, one can chose an arbitrary initial value
and repeat the calculation over several days (periods), so that the calculated p(t)
will asymptotically approach its exact solution. As the transition probabilities of
a state change are smaller than 1 (in case of a non-deterministic model; cf. Fig-
ures 3.2 and 3.3 [69]), this implies that the sequence p(tn), (tn ∈ {t1, . . . , tlast})
is asymptotically approaching a continuous function when (tn − tn−1)→ 0 (tlast
denotes the last time step of the day).

Higher-order Markov process

The modelling of p(t) as a �rst-order Markov chain, avoids it to �uctuate exces-
sively, like in the example mentioned in the beginning of Section 3.2.1. However,
the memorylessness of the Markov process implies that the probability distribu-
tion function (PDF) of residential presence durations f(t) is not being modelled
consistently, as the transition probability t10 does not depend on the beginning
time of the residential presence. In other words, the probability of a presence
to end in the time interval [t, t + dt] only depends on p(t), but not on the exact
history how this evolved before t. It has been shown that for time-homogeneous
Markov processes this memorylessness of Equation (3.4) corresponds to exponen-
tial f(t) [77, 78].

To model the distribution of presence durations f(t) more realistically, an
approach based on the generalized master equation [79�81] will be applied. Here,
the basic characterising quantity is given by the survival function, which repre-
sents the probability that the presence did not end before time t:

S(t) = pr (Tend > t) = 1−
∫ t

0

f(t′)dt′, (3.6)

where Tend denotes a random variable indicating the time the presence duration
ends. As the durations of residential presence depend signi�cantly on the time of
day ts they are started (cf. Section 3.2.2 and Figure 3.6), the survival functions
and the corresponding PDFs do so as well, which will be denoted by Sts(t) and
fts(t).

In order to predict the time evolution of p(t), a model will be applied, which
will be described in Section 4.2.1. A residential presence is started at t with
a probability given by t01(t) (cf. Section 3.2.1), and afterwards the presence
duration is determined according to fts(t), which will be explained in detail in
Section 3.4.1.
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It was shown that a continuous-time random walk (CTRW) corresponds to the
generalized master equation, if the survival functions are not exponential [78, 82].
However, instead of simulating the residential presence by a CTRW to derive
an approximative pro�le of p(t), we will present a solution, which is similar to
Equation (3.5). In the discretised approximation, the equation determining the
probability of residential presence takes the form

p(tn) =
∞∑

i=1

(1− p(tn−i)) t01(tn−i) Stn−i
(ti). (3.7)

In this formula, the probability of being present at tn is given by the sum over the
past of all terms that in�uence this probability. (1−p(tn−i)) t01(tn−i) corresponds
to the probability that a presence was started at time tn−i (more precisely in the
time interval [tn−1, tn−i+1)), and the multiplication by Stn−i

(ti) gives the fraction
of these started presences, which did not end before tn. By summing up over the
whole past, every contribution to the present p(tn) is captured in this equation. In
this approach only residential presences have higher-order memory, whereas there
is a memory e�ect of �rst-order for absences, likewise in Equation (3.5).3 As in
this model the impact of states on a later state is also decreasing with time passed,
this equation can be approximated by replacing ∞ with tmax. This corresponds
to a memory e�ect of tmax time steps and to an approximation, where St(t) is
set to zero for t > tmax. Thus, this represents a higher-order Markov process
(HOMP), where the probability to be in a state depends on the tmax preceding
states.4

The exact solution of Equation (3.7) can be approached recursively, by choos-
ing tmax arbitrary initial values and continuing the stepwise approximation until
the desired precision is reached. The results that are shown in this chapter in
Section 3.3 are based on a value of tmax = 24 h, corresponding to 24 ∗ 6 = 144
previous time steps.

3.2.2 Model calibration

The model calibration is a very important and non-trivial part in order to estab-
lish a robust bottom-up model that, at the same time, re�ects the variety among
individual behaviours. For the calibration of the HOMP of Section 3.2.1, the two

3This means that the number of preceding states, which in�uence the probabilities of the
following states is not the same for all states, likewise in a variable order Markov model [83].
However, in the approach presented here, the order is pre-de�ned (one for absences; tmax for
presences).

4In Equation (6.6) of Section 6.3.1, it will be demonstrated that Equation (3.7) corresponds
to the convolution of the survival function of durations with the corresponding starting prob-
ability. However, this simpli�ed notation is only valid, in the special case of a system where
the starting probabilities are independent of the state itself, and where the survival function is
independent of the time of start, unlike Equation (3.7).
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time-dependent quantities t10 as well as fts are needed, whereas for the FOMP of
Section 3.2.1, only T is needed. As, in addition to the time of day, these quan-
tities depend on individual speci�cities x, they will be denoted by T (x, t) and
fts(x, t), when the individual-dependence is discussed. To assure the robustness
of the models, the individual-speci�c calibration of these quantities has to be
tested for statistical signi�cance of the in�uence of the parameters.

Transition probabilities

The transition probabilities are calibrated on an hourly resolution [cf. 40] with
all the occupancy states that overlap with the corresponding hour interval.5 To
determine the four elements of T , there are only two unknowns (cf. Equa-
tion (3.1)). Thus, at a time t there are two choices an individual with char-
acteristics x = (x1, . . . , xM) in state y can make. One of them is to remain in the
current state (present/absent), and the other one is to make a transition. This
corresponds to a binary choice, and accordingly, 2x24 logistic regression models
were estimated to calibrate T (x, t).

t01(x, t) =
1

1 + exp(−(β01
0 (x, t) + β01

1 (x, t) x1 + . . .+ β01
M (x, t) xM))

, (3.8)

t10(x, t) =
1

1 + exp(−(β10
0 (x, t) + β10

1 (x, t) x1 + . . .+ β10
M (x, t) xM))

. (3.9)

In order that the transition probabilities encapsulate a large quantity of sig-
ni�cant parameters, a backward elimination technique was applied, which will
be explained in detail in Chapter 5. However, in the latter, there is a set of 16
predictors, whereas in the utility functions of Equations (3.8) and (3.9), there are
M = 64 dummy variables (cf. the y-axis of Figure 3.1), which were tested for
signi�cant in�uence. Thus, it would not be possible to estimate an initial model
for the whole set of parameters. Therefore, the initial model was restricted to
dummy variables, for which there was a signi�cant di�erence in choice behaviour,
when they are considered in isolation from all other dummy variables. This was
done by splitting the corresponding sample into two distinct parts (according to
the value of the dummy variable) and comparing the resulting two proportions
that a state transition is performed (using the two-proportion z test). Parameters
were only included in the initial model, if the two proportions were signi�cantly
di�erent at the 5 % level of con�dence.

As mentioned, the transition probabilities were calibrated for a each individual
x to re�ect the transitions during a time step of one hour

P (t+ 1 h) = T h(t)P (t). (3.10)

5A time step of one hour was chosen for the calibration, in order to eliminate the rounding
artefacts in the temporal information of the TUS respondents (cf. Figures 2.6 and 4.2).
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For a homogeneous discrete Markov chain with transition probability T , it can
be shown using the Chapman-Kolmogorov equation that the transition matrix of
n time steps is given by T n [84]. Therefore, the transition matrix for a time step
of 10 min T 10 min(t) is given by

T 10 min(t) = T h(t)1/6. (3.11)

The transition probabilities T 10 min(t) were derived in this manner for the 2x24
T h(t), and afterwards, the values of T 10 min(t) were derived in the 10 min resolu-
tion by interpolating between these hourly values.

The parameter values of T h(t) are illustrated in Figure 3.1.6 The values on
the left-hand side that are shown for every t (in hourly resolution) correspond to
the parameter values of the linear utility function of t01(t) (cf. Equation (3.8)),
regarding the binary choice between coming home and staying away. On the right-
hand side, they are shown for the utility function of t10(t) (cf. Equation (3.9)),
regarding the binary choice between leaving and staying at home. The utility
functions of t00 and t00 are �xed to zero. The parameter values are represented
by circles, which are colour-coded according to the scale shown at the top of each
graph. The values of the standard errors of these parameters are represented by
the colour of the surrounding squares. Here, the value of the standard error was
added to or subtracted from the corresponding parameter value for negative and
positive values, respectively.

The time-dependent distributions of t01(x, t) and t10(x, t) over the sample
population of the TUS are shown in Figures 3.2 and 3.3, respectively. The 24·6 =
144 values (10 min resolution) of the time-dependent density of these distributions
were estimated, by the empirical probability distribution for every t using a bin
width of 1/144 times the length of the y-axis. These distributions are classi�ed by
the shown selection of their percentiles, as well as their mean values. Furthermore,
the density of these distributions is illustrated by the greyscale in the background
of the percentile curves.

Distributions of durations

The changing hazard rates f(t)/S(t) of the duration PDFs were incorporated in
the HOMP, by describing the PDFs as Weibull distributions. The individual-
speci�c calibration of the duration PDFs7 will be explained in detail in Sec-
tion 4.2.1. However, the average duration of residential activities in Section 4.2.1
is considerably shorter than those of presences discussed in this chapter. There-
fore, the e�ect of censored events at midnight (where the time period of the survey
starts/ends) is more severe than in the former case. To capture more realistically

6The numerical parameter values are available online [85].
7The numerical parameter values of the Weibull functions of the individual-dependent du-

ration PDF fts(x, t) are available online [85].
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Figure 3.1: Parameter values (cf. Table 2.2) of the binary choice between coming
and staying away (left), and staying at home and leaving (right), which are used
to calibrate the individual-speci�c and time-dependent transition probabilities
T (x, t).
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Figure 3.2: Distribution of t01(t) over the sample population.
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Figure 3.3: Distribution of t10(t) over the sample population.
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the durations that outreach midnight, the right-censored events (presences that
last until the end of the surveyed period) in all hour intervals were removed. In
this way, the distribution of durations fts,u(t) which end before midnight was
derived. For the censored events, it was assumed that the distribution of the
remaining duration after midnight is described by that derived for the �rst hour
interval of the day (between midnight and 1 am) f1. Thus, the distributions
(which are used in the model) are given by

fts(x, t) = (1− ρts(x)) fts,u(x, t) + ρts(x) f1(x, t− (24 h− ts)), (3.12)

where ρts(x) denotes the proportion of durations started at ts that are censored
for the sample sub-population with characteristics x, and f1(x, t) is by de�nition
zero for negative durations. The distribution of the values of ρts(x)) is shown in
Figure 3.4. The mean value of ρts(x)) over the sample population is shown in for

12 AM  6 AM 12 PM  6 PM 12 AM
0

0.2

0.4

0.6

0.8

1

time of day

ρ t
s
(x

)

Figure 3.4: Distribution of the fraction of right-censored presence durations at
home.

every hour interval in Figure 3.6 in the corresponding sub-graph. 8

The values of the cumulative distribution function Fts(x, t) = 1 − Sts(x, t)
for one arbitrarily chosen individual x are shown in Figure 3.5 as a function
of the presence duration t and the hour interval when the presence was started
[ts − 30 min, ts + 30 min]. According to Equation (3.12), the value of ρts(x))
determines the value of Fts(x, t) and the value of ts determines the value of t,
where F1(x, t − (24 h − ts)) starts to be non-zero. This can lead to pronounced
bimodal distributions for some of the starting times ts (for instance, at 4.30 PM
or 8.30 PM).

8The distribution f1(x, t− (24 h− ts)) in Equation (3.12) corresponds to the distribution of
the sum of the two random variables of censored events before midnight (given by the Dirac δ
distribution δ(t− (24 h− ts)) and the distribution after midnight (the distribution of the sum
of two random variables is given by the convolution of the distributions of the single random
variables [84]).
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Figure 3.5: Illustration of the value of the Weibull CDF Fts(x, t) of one individual
x as a function of presence duration t and hour interval when the presence was
started [ts − 30 min, ts + 30 min].
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In order to apply Equation (3.7) on the basis of a 10 min time step, Equa-
tion (3.11) had also to be used to derive t01 in this resolution. However, in this
case, the �rst column of T h(t) is given by t10(t) = St(1 h) and Equation (3.1).
This can lead to complex-valued presence probabilities, in which case only the
real part will be shown.

In order to link the zeroth- and �rst-order modelling approaches to survival
analysis, their PDFs will be derived. That of the �rst-order Markov process fM,ts
of Section 3.2.1 can be recursively determined in a discretised approximation:

fM,ts(t) =

(
1−

t∑

1

fM,ts(t− 1)

)
t10(t). (3.13)

As it would not be possible to apply Equation (3.4), if t10 was dependent on
the presence begin, the latter was not considered in the predictor set for the
calibration of t10. The survival function of the IIM is given by

S0,ts(t) =
t∏

t′=ts+1

pobs(t
′), (3.14)

which also de�nes the corresponding PDF f0,ts(t).
In Figure 3.6, a comparison of the empirical PDFs (EPDFs) of observed non-

censored presence durations with those of the described models is shown in de-
pendence of ts, the time of day when the presences were started. Here, these
distributions were all derived in a 10 min resolution for the whole sample pop-
ulation, i.e. also the FOMP and the HOMP independently of the individual
characteristics x. The graphs are bounded to the value space of the EPDFs. The
strong �uctuations of the IIM appear as a strong weight on short presence dura-
tions in f0,ts(t) for all ts. Hence, there is no agreement with the EPDFs. As the
EPDFs are censored for durations that exceed midnight, the values of fM,ts in the
�gure were divided by the mean non-censored fraction (1 − ρts(x)), in order to
be in accordance to Equation (3.12) and make them comparable to the censored
EPDFs. These distributions can capture the bimodal character of the EPDFs in
some intervals (for instance, between 12 PM and 1 PM). However, as the FOMP
transition probabilities were not calibrated depending on the presence start, there
are sometimes large deviations from the EPDFs (for instance, between 1 AM and
4 AM or between 5 AM and 6 AM). The PDFs used in the HOMP were de�ned
as Weibull distributions, which were �tted to the EPDFS. However, the Weibull
distributions cannot capture the multimodal character of the EPDFs.

Table 3.1 shows a statistical evaluation of the goodness of �t of the models
in Figure 3.6 as a function of the number of the time interval ts. Nobs indicates
the number of uncensored observations in the corresponding EPDF. kdf denotes
the number of degrees of freedom of the corresponding model. For the IIM, this
corresponds to the number of time intervals of the EPDF (cf. Equation (3.14)),
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whereas for the FOMP, kdf is given by twice the number of hour intervals be-
fore midnight (cf. Equation (3.13)). As the durations PDFs in the HOMP are
represented by Weibull distributions, there are always two degrees of freedom.
The values of the Akaike Information Criterion (AIC) [86] and of the more con-
servative Bayesian Information Criterion (BIC) [87] depend on the log-likelihood
L:

AIC = −2L+ 2kdf , BIC = −2L+ kdf lnNobs. (3.15)

The value of L of the IIM is inferior to that of the other two models for all time
intervals, except for the 23rd time interval, where the that of the FOMP is 2.6 %
larger in magnitude. In average the magnitude of L is approximately twice as
high for the IIM than for the two Markov processes. The mentioned exception is
not of great signi�cance, as the EPDF in the corresponding interval is based on
only 33 observations. Furthermore, a comparison of AIC and BIC between the
IIM and the FOMP shows that the latter is preferable, because of the smaller
kdf . The goodness of �t of the PDFs of the FOMP are superior to those of the
HOMP in the �rst, the twelfth, as well as the 18th to the 21st interval according
to the BIC. This also holds for the AIC, in addition to the eleventh and the 22nd
interval. During the night, the most signi�cantly inferior goodness of �t of the
FOMP may be explained by the small relative appearance of events compared to
the �rst interval after midnight, where Nobs is more than two orders of magnitude
larger. Therefore, these PDFs have a peak which is dominated by that of fM,1(t)
(shifted by the di�erence of the corresponding starting interval).
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Figure 3.6: Empirical (obs.), zeroth-order (IIM), �rst-order Markov (FOMP) and
�tted Weibull (HOMP) probability distributions of residential presence durations
(in min) that were started in the indicated time interval. The number top right
of each plot shows the mean right-censored percentage ρts(x).
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IIM FOMP HOMP

ts Nobs kdf L AIC BIC kdf L AIC BIC kdf L AIC BIC

1 13187 143 −1.48 · 1005 2.97 · 1005 2.98 · 1005 48 −5.55 · 1004 1.11 · 1005 1.12 · 1005 2 −5.82 · 1004 1.16 · 1005 1.16 · 1005
2 81 110 −1.31 · 1003 2.84 · 1003 3.10 · 1003 46 −3.65 · 1002 8.22 · 1002 9.32 · 1002 2 −3.55 · 1002 7.14 · 1002 7.19 · 1002
3 55 110 −7.71 · 1002 1.76 · 1003 1.98 · 1003 44 −2.51 · 1002 5.90 · 1002 6.78 · 1002 2 −2.42 · 1002 4.88 · 1002 4.92 · 1002
4 34 108 −5.28 · 1002 1.27 · 1003 1.44 · 1003 42 −1.67 · 1002 4.18 · 1002 4.82 · 1002 2 −1.60 · 1002 3.23 · 1002 3.26 · 1002
5 26 96 −2.85 · 1002 7.62 · 1002 8.83 · 1002 40 −1.31 · 1002 3.42 · 1002 3.93 · 1002 2 −1.23 · 1002 2.50 · 1002 2.52 · 1002
6 37 92 −5.61 · 1002 1.31 · 1003 1.45 · 1003 38 −1.99 · 1002 4.73 · 1002 5.35 · 1002 2 −1.79 · 1002 3.61 · 1002 3.64 · 1002
7 88 99 −5.21 · 1002 1.24 · 1003 1.48 · 1003 36 −3.95 · 1002 8.61 · 1002 9.51 · 1002 2 −3.44 · 1002 6.92 · 1002 6.97 · 1002
8 193 94 −1.13 · 1003 2.45 · 1003 2.76 · 1003 34 −7.63 · 1002 1.59 · 1003 1.70 · 1003 2 −7.22 · 1002 1.45 · 1003 1.46 · 1003
9 399 78 −3.37 · 1003 6.90 · 1003 7.21 · 1003 32 −1.55 · 1003 3.16 · 1003 3.28 · 1003 2 −1.53 · 1003 3.06 · 1003 3.07 · 1003
10 563 85 −5.73 · 1003 1.16 · 1004 1.20 · 1004 30 −2.20 · 1003 4.46 · 1003 4.59 · 1003 2 −2.18 · 1003 4.37 · 1003 4.38 · 1003
11 722 79 −8.02 · 1003 1.62 · 1004 1.66 · 1004 28 −2.78 · 1003 5.61 · 1003 5.74 · 1003 2 −2.81 · 1003 5.63 · 1003 5.64 · 1003
12 1243 70 −1.58 · 1004 3.18 · 1004 3.21 · 1004 26 −4.82 · 1003 9.69 · 1003 9.82 · 1003 2 −4.91 · 1003 9.83 · 1003 9.84 · 1003
13 2710 68 −3.04 · 1004 6.10 · 1004 6.14 · 1004 24 −1.04 · 1004 2.09 · 1004 2.10 · 1004 2 −1.04 · 1004 2.07 · 1004 2.07 · 1004
14 1889 62 −1.68 · 1004 3.37 · 1004 3.41 · 1004 22 −7.08 · 1003 1.42 · 1004 1.43 · 1004 2 −6.87 · 1003 1.37 · 1004 1.38 · 1004
15 611 57 −6.50 · 1003 1.31 · 1004 1.34 · 1004 20 −2.29 · 1003 4.63 · 1003 4.71 · 1003 2 −2.25 · 1003 4.50 · 1003 4.51 · 1003
16 441 53 −3.56 · 1003 7.22 · 1003 7.44 · 1003 18 −1.55 · 1003 3.14 · 1003 3.22 · 1003 2 −1.50 · 1003 3.00 · 1003 3.01 · 1003
17 668 45 −4.42 · 1003 8.93 · 1003 9.13 · 1003 16 −2.14 · 1003 4.31 · 1003 4.38 · 1003 2 −2.13 · 1003 4.27 · 1003 4.28 · 1003
18 846 41 −5.54 · 1003 1.12 · 1004 1.14 · 1004 14 −2.60 · 1003 5.23 · 1003 5.29 · 1003 2 −2.76 · 1003 5.51 · 1003 5.52 · 1003
19 837 35 −4.05 · 1003 8.17 · 1003 8.34 · 1003 12 −2.44 · 1003 4.90 · 1003 4.95 · 1003 2 −2.67 · 1003 5.35 · 1003 5.36 · 1003
20 681 29 −2.67 · 1003 5.41 · 1003 5.54 · 1003 10 −1.96 · 1003 3.94 · 1003 3.99 · 1003 2 −2.18 · 1003 4.37 · 1003 4.38 · 1003
21 346 23 −1.13 · 1003 2.31 · 1003 2.40 · 1003 8 −1.04 · 1003 2.09 · 1003 2.12 · 1003 2 −1.07 · 1003 2.14 · 1003 2.15 · 1003
22 77 17 −2.30 · 1002 4.95 · 1002 5.35 · 1002 6 −2.14 · 1002 4.40 · 1002 4.54 · 1002 2 −2.22 · 1002 4.49 · 1002 4.53 · 1002
23 33 9 −7.94 · 1001 1.77 · 1002 1.90 · 1002 4 −8.15 · 1001 1.71 · 1002 1.77 · 1002 2 −6.96 · 1001 1.43 · 1002 1.46 · 1002
24 13 5 −3.17 · 1001 7.34 · 1001 7.62 · 1001 2 −1.94 · 1001 4.29 · 1001 4.40 · 1001 2 −1.94 · 1001 4.28 · 1001 4.39 · 1001

Table 3.1: Goodness of �t indicators of the presence duration PDFs of the models in Figure 3.6 with the observed PDF.
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3.3 Results

In this section, we show the results obtained with the models that were described
in the previous section. As it was mentioned in Section 3.2, the two described
models yield solutions of the presence pro�les for each individual (described by
its predictor value set) x that can be asymptotically approached. The conver-
gence during the period of three days of the presence pro�les p(x, t) predicted
by the two models of Section 3.2 of three individuals is shown in Figures 3.7
and 3.8. The value sets x1, x2 and x3 of the three pro�les were arbitrarily chosen
from three individuals of the sample population. As in the recursive derivation
of the presence pro�les the initial value(s) (cf. Equations (3.5) and (3.7)) is/are
not known, and therefore arbitrary value(s) had to be chosen, this can lead to
nonphysical presence pro�les which are not bounded between zero and one (cf.
Figure 3.8). However, these errors vanish during the convergence. The discrepan-
cies of the pro�les between the second and the third day have already diminished
substantially.
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Figure 3.7: Convergence of the presence pro�les of 3 arbitrarily chosen individuals
derived from the FOMP.

A statistical evaluation of the distribution of the maximum discrepancies ∆p

between the pro�les of subsequent daily periods T and T − 1 is illustrated in
Figures 3.9 and 3.10 as a function of T . The value of ∆p is approximately ex-
ponentially decaying for both models. At the fourth period T , the maximum
value of ∆p is 6.0 · 10−3 for the HOMP and 3.2 · 10−5 for the FOMP. Thus, the
latter represents a more e�cient methodology to estimate the expectation value
of the presence pro�le of an inhomogeneous Markov chain than simulation [cf.,
e.g., 69]. Nevertheless, when estimating the expectation value as the mean of a
sample of nr Monte Carlo simulations (where the convergence speed is propor-
tional to 1/

√
nr), the convergence speed is inferior to that of both of the models.

The errors of the predictions of both of the Markov processes are dominated by
the uncertainties in the TUS data that were discussed in Section 2.1.1.
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Figure 3.8: Convergence of the presence pro�les of 3 arbitrarily chosen individuals
derived from the HOMP.
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Figure 3.9: Distribution of the maximal di�erence of the presence pro�les of the
HOMP between subsequent daily periods as a function of the number of the daily
period. The lines are drawn to guide the eye.

To illustrate the resulting predicted presence pro�les p(x, t) of the two mod-
els, we show the converged curves of 30 arbitrarily chosen individuals x in Fig-
ures 3.11 and 3.12.9 The pro�les of the two models vary substantially depending
on the time of day as well as on the individual characteristics x. A quantitative
evaluation of the corresponding time-dependent distributions will be provided in
Section 3.3.2, and the in�uences of the values of the individuals {x1,x2, . . . ,xn}
of the population C on the pro�les will be considered in Section 3.3.4.

9The resulting presence pro�les as a function of x are available online for all individuals of
the sample population C [85].
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Figure 3.10: Distribution of the maximal di�erence of the presence pro�les of the
FOMP between subsequent daily periods as a function of the number of the daily
period. The lines are drawn to guide the eye.
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Figure 3.11: Sample of the presence pro�les of 30 arbitrarily chosen individuals
predicted by the FOMP.

3.3.1 Validation of the survival model

In order to validate the HOMP, it was applied using fM,ts , the presence duration
PDFs of the �rst-order Markov process of Section 3.2.1 (cf. Equation (3.13)).
As it was mentioned in Section 3.2.1, the maximal memory was chosen to be
tmax = 24 h = 144 · 10 min. The 24 h periodicity of T leads to the peculiarity
that Sts(24 h) gives a constant value, independent of ts (as Sts(24 h) =

∏
t t10(x, t)

for all ts). A comparison of the resulting presence pro�le of an arbitrarily chosen
individual of the sample population with the pro�le resulting from the �rst-order
Markov property (3.5) and the master equation (3.4) is shown in Figure 3.13. The
di�erences between both curves might arise from the approximation Sts(tmax +
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Figure 3.12: Sample of the presence pro�les of 30 arbitrarily chosen individuals
predicted by the HOMP.

1) = 0, as well as to the interpolation of the transition probability elements that
was described in the context of Equation (3.11).
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Figure 3.13: Comparison of the resulting presence pro�les of the HOMP using
Equation (3.13), and the FOMP.

3.3.2 Presence pro�le distributions

Apart from the in�uence of the predictor variables x on single individuals' pres-
ence pro�les predicted by the models of Section 3.2, the distribution of those pro-
�les over a synthetically generated population is of interest, when such a model
is applied in a scenario. In order to compare the properties of the synthetic
population to the observations (in terms of the distribution of characteristics and
correlations among the latter), it was chosen to be equal to the sample population
of the TUS, that was used to calibrate the models. When the models are used in
applications in order to make aggregate forecasts, the individuals of the synthetic

43



CHAPTER 3. MODELLING OF RESIDENTIAL PRESENCE

population have to be weighted in order to bring it in line with the population
from which it was drawn or to the scenario population [cf., e.g., 88].

By calculating the presence pro�les that are shown in Figures 3.11 and 3.12
for the entire synthetic population, the time-dependent probability distributions
fp(t) can be estimated, which are shown in Figures 3.14 and 3.15. These distri-
butions were derived in the same manner as it was described in conjunction with
Figures 3.2 and 3.3.

In Figure 3.14, the presence pro�le distribution fp(t) over the population,
predicted by the FOMP, has a high level of uncertainty over the whole day (by,
for instance, de�ning the con�dence intervals as the 5th and the 95th percentiles).
The uncertainty is larger during the day, where the distribution furthermore has
a bimodal character. The reason for this will be discussed in Section 3.3.4. The
average of the distribution shows good agreement with the observed presence
proportion. The maximum overestimation is 11.5 % at 6 PM, and the maximum
underestimation of 17.1 % takes place at 9 AM. In general, the predictions during
the night are too small, probably due to the censoring of the arrivals at midnight
(see di�erence between the observed presence proportions at the beginning/end
of the day), which had to be omitted when estimating the logistic regression
models for t01.

In Figure 3.14, we show the distribution over the population fp(t), that is
predicted by the HOMP. During the day, the bimodal character and the level
of uncertainty are similar to the distribution predicted by the FOMP. During
the night, the level of uncertainty is smaller. This might be due to the fact
that then, the variety of the behaviour between individuals is overestimated by
the FOMP, as then there are too many �uctuations (cf. Figure 3.6). Another
reason might be that the calibration procedure of the individualised fts(x, t)
for the HOMP does not capture as much the variety of individual behaviour.
The average of the distribution shows not as good agreement with the observed
presence proportion. The maximum overestimation is 18.3 % at 12 PM, and the
maximum underestimation of 21.6 % takes place at 7 AM.

In particular, during the night there are large discrepancies, which can be
explained by the representation of fts(x, t) by Weibull distributions, where dura-
tions that end in the small hours are overestimated in the �rst hour interval of
the day (cf. Figure 3.6). To illustrate this, the average survival function after
midnight f1(x, t) is shown in the �gure (denoted by �S(t)�) for the small hours
multiplied by the average value of fp(t) at midnight as the distribution after mid-
night has an important weight on the shape of the pro�les (cf. Equation (3.12)).
The overestimated proportion of shorter presence durations is translated into a
too strong decrease of this survival curve.

From 7.30 AM on, there is an increase of the maximum of fp(t) and in the
slope of its average. This is due to the increase of t01 for a signi�cant part of the
population, which starts to take place then (cf. Figure 3.2), and to the description
of absences by a HOMP. In other words, remaining absence durations depend in

44



3.3. RESULTS

reality on their starting times, which is not considered in the FOMP. In this
model, likewise the FOMP, the predictions during the night are also too small,
due to the mentioned censoring of the arrivals at midnight.
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Figure 3.14: Distribution of the presence pro�les of the synthetic population
predicted by the FOMP.
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Figure 3.15: Distribution of the presence pro�les of the synthetic population
predicted by the HOMP.
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3.3.3 Model performance comparison

To compare the predictive power of the two models, the log-likelihood L of the
models was calculated. The value of the FOMP is −9.82 · 105 and the one of the
HOMP is −1.05 · 106. The log-likelihood of the individual-independent model
(IIM), (which was introduced at the beginning of Section 3.2.1), amounts to
−1.08 · 106.

The time-dependence of the quality of predictive power can be measured with
the time-dependent log-likelihood Lt, which is evaluated at every time step t, and
for which L =

∑Lt(t) holds (it is summed over all time steps of the day). The
curves of Lt of the three models are shown by the thicker lines in Figure 3.16. The
value of the FOMP is above that of the IIM for all time steps, although the former
was calibrated in a coarser time resolution. The di�erence is smaller during the
small hours than during the rest of the day, as then there are less signi�cant
individual-dependent di�erences in behaviour than during the day. The value
of the HOMP is above that of the FOMP, from 8.30 AM to 11.00 AM, from
12.40 PM to 2 PM, from 3.50 PM to 4.40 PM and at 8.40 PM. Furthermore,
it is below that of the IIM from midnight until 8.00 PM, which is due to the
inappropriate shape of the used Weibull distributions to �t the empirical PDFs.
To illustrate that, the value of Lt of the Weibull survival curve (cf. Figure 3.15) is
also shown, illustrating that the worse performance is due to the underestimation
of the average pro�le. In addition, the subtotals of Lt restricted to presences (1)
and absences (0) are also shown for the FOMP and the HOMP. Comparing these,
it appears that presences are predicted with a superior predictive power, when
they are predicted with the higher order memory from 8.20 AM to 22.50 PM.
However, this might be related to the higher mean presence probability that is
predicted by the HOMP in this period. In Section 3.3.4, further exempli�cations
of the time-dependence of the better predictive power of the individual-dependent
models will be provided.

In order to capture the distribution of the quality of predictive power over
the individuals of the population C, L was also calculated for every individual
x, which will be denoted as Lx (L =

∑
x∈C Lx). The distribution of Lx of the

3 models is shown in Figure 3.17. The distribution of the IIM is substantially
lower for values of Lx above -50 and larger for values below -190 with respect
to the other two models, meaning that there are signi�cantly more very inaccu-
rate predictions and less very good ones, when behaviour is not treated in an
individual-dependent manner. The HOMP is performing worse for values above
-50, but better for values below -150 compared to that of the FOMP, implying
that the proportion of very bad predictions can be reduced when departure tran-
sitions are dependent on a longer memory. The worse proportion of very good
predictions is probably due to the worse predicted mean presence pro�le during
the night (cf. Figure 3.16).
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Figure 3.16: The log-likelihood Lt of the models as a function of time of day,
as well as of the individual-independent survival curve after midnight (cf. Fig-
ure 3.15) and the sub-totals for presences (1) and absences (0).
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Figure 3.17: Distribution of the log-likelihood Lx of the three models over the
synthetic population.

3.3.4 Population characteristics dependence of predicted

presence pro�le distributions

In order to illustrate the dependence of the models' predicted presence pro�le
distributions fp(t) on the individual characteristics x, these distributions will
be shown for distinct sub-populations of the synthetic population. The graphs
in Figures 3.18 to 3.23 are all constructed in the same manner, which will be
demonstrated by the example of Figure 3.18, where the sub-population distri-
butions correspond to a splitting of the synthetic population according to the
weekday. In all Figures 3.18 to 3.23, the presence probability during the night is
underestimated due to the censoring of arrivals at midnight, which was mentioned
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in Section 3.3.2.

FOMP

In Figure 3.18, the part of the population predictions on Saturday and Sunday
is speci�ed by (we) and illustrated in magenta, whereas workdays (wd) are illus-
trated in cyan. The distributions are visually speci�ed by their minima/maxima,
as well as their mean values, which are indicated by the curves. Furthermore, the
presence pro�le probability distributions of the sub-populations fp(t) are shown,
which were derived in the same manner as it was described in conjunction with
Figures 3.2 and 3.3. The magnitudes of the superposition of the two distri-
butions are colour-coded according to the scale that is shown top-right. The
minimum probability of being absent in the forenoon is up to more than twice
larger for workdays than for the weekend. The minimum presence probability in
the forenoon during the weekend is more than 3 times larger as at workdays.

In the forenoon, the two sub-population distributions are rather unimodal,
whereas in the afternoon, both of them are rather bimodal. This behaviour will
be explained together with Figure 3.20. At the evening and during the night, the
observed presence pro�le during the weekend is higher than that at workdays, in
opposition to the mean predicted pro�les. In contrast, the maxima of the pre-
dicted presence distributions show the same relationships, whereas the minimum
in the small hours is considerably lower at workdays than at the weekend.10 Ac-
cordingly, on a Sunday, the arriving and leaving probabilities that precede the
presence probabilities before midnight are over- and underestimated, respectively.

In Figure 3.19, the distributions of the two sub-populations of men and women
are illustrated. In this case, the di�erences between the observed and the pre-
dicted mean are smaller than in Figure 3.18, but the sign of these di�erences
is correctly predicted for the averages, the maxima and the minima of the dis-
tributions. For men, the distributions are larger than for women, which can be
explained by the arriving and leaving probabilities, which are respectively signif-
icantly higher and lower, almost during the entire day. The observations are well
reproduced by the average model predictions. The largest deviations occur in the
morning, whose reason is discussed with Figure 3.20.

In Figure 3.20, the two sub-population distributions of individuals working in
a full-time and those not being in paid work are shown (empstat: �full�/�no�; cf.
Figure 3.1). In contrast to Figures 3.18 and 3.19, in this case the set union of the

10These low night-time presence probabilities at workdays might be related to people working
in night shifts, for whom in reality presence probabilities are probably even lower than the
predicted ones during this period, implying that these overestimated presence probabilities
entail an underestimation of the remaining ones. Another explanation is related to the 24 h
periodicity when estimating the pro�les. The latter implies that before the small hours on
Friday (in the evening), the probability of arriving is underestimated, and the probability of
leaving is overestimated (see the corresponding parameter values of Thu/Fri in Figure 3.1).

48



3.3. RESULTS

time of day

p(
t)

 

 

12 AM  6 AM 12 PM  6 PM 12 AM
0

0.2

0.4

0.6

0.8

1

min/max wd

min/max we

mean wd

mean we

wd obs

we obs

f p
(t
)
(w

e)

fp(t) (wd)
>=0.05 0.25 0

>=0.05

0.25

0

Figure 3.18: Superposed presence pro�le distributions of the sample sub-
populations on weekends (we)/workdays (wd) predicted by the FOMP.
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Figure 3.19: Superposed presence pro�le distributions of the sample sub-
populations of men/women predicted by the FOMP.
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two sub-populations is not equal to the entire synthetic population. Therefore,
the maximum (minimum) of the maxima (minima) of both does not always corre-
spond to the maximum (minimum) in Figure 3.14. Here, the di�erences between
the sub-population presence pro�les distributions are most considerable, which
is again directly related to the arriving/leaving transition probabilities in Fig-
ure 3.1), which are signi�cantly di�erent for the two sub-populations. Here, the
intervals of signi�cant di�erent probabilities are fewer but with higher amplitude
of the parameters. The minimum predicted absence probability for fully employed
is at least 55 % higher during the whole 24 h, and outreaches a factor of four
at 7.40 AM. The mean value of the presence probability of individuals without
paid work is up to 86 % higher at 2.20 PM, compared to fully employed indi-
viduals. The mean predicted probabilities are in very good agreement with the
observation for the employed sub-population; for the non-working sub-population
the largest deviation of -19.6 % occurs at 9.00 AM. The underestimation of the
mean presence pro�le of non-working individuals might be due to a mimicking
of the behaviour of fully employed individuals in the model, related to a removal
of parameters in the backward elimination of the transition probabilities, which
express these di�erences. Comparing Figure 3.20 with Figure 3.18, the bimodal
character of the two distributions in the latter in the afternoon can be explained
by an increase of the presence probability at the weekend, which takes place for
individuals with and without paid work.
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Figure 3.20: Superposed presence pro�le distributions of the sample sub-
populations working in a full-time position (full)/not being in paid work (unempl)
predicted by the FOMP.
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HOMP

In this section, the distributions of the same sub-populations as in Section 3.3.4
will be illustrated and described. As it was mentioned in Section 3.3.2, the
uncertainties of the presence pro�le distributions are smaller than for the FOMP.
Moreover, the extrema of the distributions almost coincide during some periods
of the day. This is related to the individualisation procedure of the presence PDFs
fts(x, t) (cf. Section 3.2.2), which is less diverse than for the logistic regression
models of the transition probabilities11 (in case of coinciding curves, there was
no distinction between the PDFs of the considered sub-populations).

In Figure 3.21, the sub-population distributions during the weekend and at
workdays is shown. During the night, there are small di�erences between the
averages of the two distributions, and furthermore, the mean of workdays passes
under that of the weekend much earlier than the observations. However, the sign
of the di�erence of the two averages better reproduces that of the observations,
compared to the predictions of the FOMP. The extrema of the two distributions
take a similar course and the two distributions in the daytime also resemble those
of the FOMP.
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Figure 3.21: Superposed presence pro�le distributions of the sample sub-
populations on weekends (we)/workdays (wd) predicted by the HOMP.

In Figure 3.22, the distributions of the two sub-populations of men and women
are illustrated. As in Figure 3.19, the di�erences between the two sub-populations

11There were maximally 91 di�erent fts(x, t) (in the �rst interval after midnight), whereas
for the FOMP, the number of di�erent values for the elements in T (x, t) is given by 2K (K:
number of signi�cant parameters in the interval except the ASC; cf. Figure 3.1).
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are smaller than those in Figure 3.21. Furthermore, di�erences between the means
and the extrema also corresponds to that of the observations, except for some
insigni�cant exceptions.
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Figure 3.22: Superposed presence pro�le distributions of the sample sub-
populations of men/women predicted by the HOMP.

In Figure 3.23, the two sub-population distributions are shown for fully em-
ployed and non-working individuals. Likewise for the FOMP, the di�erences
between means of these two sub-populations are most signi�cant in the daytime.
There, the average presence of the working individuals is overestimated by up to
9.6 % at 12.40 PM. Except some exceptions the di�erences of the extrema have
the same sign as the observations.

3.4 Discussion

Two bottom-up models have been formulated to derive asymptotically with fast
convergence the time-dependent residential presence pro�les of individual mem-
bers of statistically signi�cant demographic sub-populations. The approach shows
a good ability to reproduce the observed pro�les of the calibration set. Whereas
a straightforward individual-independent approach would exactly reproduce the
latter, it yields very inaccurate predictions of individual speci�cities. Further-
more, it was shown that the two Markov approaches capture more realistically
the time-dependent distribution of presence durations. In the �rst one how-
ever, being a time-inhomogeneous �rst-order Markov process, the observed time-
dependent presence distributions cannot be ideally reproduced. This can be done
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Figure 3.23: Superposed presence pro�le distributions of the sample sub-
populations working in a full-time position (full)/not being in paid work (unempl)
predicted by the HOMP.

more consistently on the basis of the second approach, which is based on survival
analysis.

The assumptions in this chapter imply that individuals behave individually
of each other, which does not re�ect reality, for people who live in the same
household. The dependence of behaviour between household members could be
tackled with a model calibrated with and predicting occupancy patterns of en-
tire households, which was omitted as this would substantially complicate the
approach.

The predictive power of the �rst-order Markov process was shown to better
predict individual-speci�c behaviour than the individual-independent approach
at every time step of the day, although the former was calibrated in a coarser time
resolution. During the night this superiority is less accentuated than during the
day, where there is more variability between individuals and thus the model cal-
ibration with signi�cant individual-dependent behaviour is more manifold. The
time-dependence of the predictive power of the higher-order Markov process is
comparable, except at time periods, where the Weibull distributions used to �t
the observed duration distributions were not in agreement with the observations.
However, in general there should be a superior predictive power of the survival
approach related to a better representation of the presence distributions. In other
words, in the �rst-order Markov approach the time-dependent durations of pres-
ences of an individual may end at times when it is not realistic. However, the
representation of presence duration distributions with Weibull PDFs is not always
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well re�ecting reality. This was discussed in conjunction with Figure 3.15, where
it was shown that the distribution of presence durations in the �rst hour interval
of the day do not well reproduce the observed ones (cf. Figure 3.6). In general,
the HOMP does not capture the amplitudes of the oscillations of the observed
presence proportion at noon, which might be due to the too coarse calibration
resolution, the approximation of the empirical PDFs by Weibull PDFs, as well as
the di�erences due to approximations that were discussed in Section 3.3.1. How-
ever, the presence patterns are well reproduced, and from noon on, the predicted
mean is in good agreement with the observations.

The worse distribution of the predictive power over the individuals of the
synthetic population of the individual-independent compared to the two other
approaches shows that individual-speci�c modelling decreases the proportion of
very bad predictions. The worse performance of the survival model of very good
predictions compared to that of the Markov model is probably due to the bad
representation of the duration distribution after midnight.

The signi�cant dependence of the predictions on individual speci�cities shows
that the latter should not be neglected in a realistic modelling approach and
the small deviations between the mean predicted probabilities and the observed
means of sub-populations show that the two modelling approaches are appro-
priate to capture/describe the dependence of the presence pro�les on individual
characteristics.

3.4.1 Model application in simulations

All the models for the prediction of occupancy y(x, t) of an individual x at time t
may be applied in dynamic simulation tools. A general scheme for implementing
the HOMP of Section 3.2.1 is provided in Figure 3.24, which consists of the
following steps:

1. When an occupant x is absent, a presence is started with a probability of
the �rst-order transition probability to start a presence t01(x, t), by com-
paring the latter with a uniformly distributed random number r ∈ [0, 1[.

2. (a) If t01(x, t) < r :
The time is incremented by one time step and the occupant stays
absent by setting y(x, t) = 0.

(b) If t01(x, t) ≥ r :
A presence is started, whose length is determined by drawing a dura-
tion ∆t from the corresponding PDF at the current time ft(x,∆t).12

12In a discretised Markov chain the PDF has to be replaced by the corresponding probability
mass function, in order to yield durations which are multiple integers of the length of the time
step.
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The occupancy variable is set to one during the corresponding inter-
val [t, t + ∆t], and then, the time is incremented by ∆t, where a new
absence begins by setting y(x, t) = 0.

3. The procedure is repeated with step 1 until the desired maximal simulation
time is reached.

By replacing step 2b with steps that correspond to the steps 1 and 2a based on
the transition probability for leaving t10(x, t), the procedure corresponds to the
time-inhomogeneous FOMP of Section 3.2.1. In case of very small probabilities
to start a presence, the Markov process is computationally ine�ective, as step 2a
has to be repeated very often until a presence is started. This can be avoided, by
replacing step 2a with a step, corresponding to step 2b based on the distribution
of absence durations, which can be derived as it was shown in Equation (3.13)
for presences.13

Figure 3.24: Flow chart for the application of the FOMP in a simulation.

3.5 Conclusions

In this chapter, we presented several bottom-up approaches to the modelling of
time-dependent residential presence using �rst- and higher-order Markov pro-
cesses based on transition probabilities and presence duration distribution func-
tions. The higher-order Markov process was validated by approximately repro-
ducing the solution of the master equation when the according transition prob-
abilities are transformed into the corresponding presence duration distribution

13In this case the simulation does not need to be discretised, but can be based on continuous
time, only limited to the computational resolution.
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functions. The purpose of these models is to support the more accurate represen-
tation of occupancy pro�les for the use in dynamic building energy simulations
and the modelling of the use of electrical appliances. The model parameters were
calibrated to re�ect the individual behavioural characteristics of observations of
a population of respondents to a time use survey questionnaire, �tting the pa-
rameters to re�ect the individual behavioural characteristics, to support more
accurate and tailor-made predictions � for example to accommodate predictions
for speci�c household demographies or to account for the day of the week. In
developing these models, considerable e�ort has been put into the design of the
calibration methodologies, to avoid including characteristics which are statisti-
cally insigni�cant. The approaches were then validated by deriving the time-
dependent distribution of the presence pro�les of sub-populations, showing that
the individualised calibration does indeed signi�cantly improve the predictive
accuracy.

The �rst-order Markov process reproduced more accurately observed sub-
population presence pro�les than the model of higher order. However, it was
demonstrated that the worse performance of the latter relates to the shape of the
Weibull distributions that were used to model presence durations, and that the
latter cannot be consistently reproduced in a �rst-order Markov process. Thus,
we recommend to use the latter in applications, where there is no particular
importance of presence durations, and the higher-order Markov process otherwise.

In this chapter, residential absences were modelled based on the �rst-order
Markov property. But as results show, that these should also be treated based on
a higher-order memory, a possible future variant of the model might treat pres-
ences in the �rst order and absences in a higher one, or even both states using the
generalized master equation. Furthermore, the Weibull distributions used to �t
the presence PDFs might be replaced by other candidates, such as Bi-Weibull or
kernel density estimations, which are appropriate to reproduce multimodal dis-
tributions. The empirical distributions could also be reproduced more accurately
with a higher degree of individualisation by means of Equation (3.13), when the
corresponding transition probabilities are calibrated in dependence of the pres-
ence start. As the model can be readily calibrated to other datasets, it should
be applied to study di�erences between countries or temporal changes, as well as
for di�erent types of building use, such as workplaces, restaurants, or to consider
travelling periods.
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Chapter 4

Residential activity modelling

A bottom-up modelling approach together with a set of calibration methodologies
is presented to predict residential building occupants' time-dependent activities,
for use in dynamic building simulations. The stochastic model to predict activity
chains is calibrated using French time-use survey data (of 1998/1999), based
on three types of time-dependent quantities: (i) the probability to be at home,
(ii) the conditional probability to start an activity whilst being at home, and
(iii) the probability distribution function for the duration of that activity. The
behaviour of the individual agents in the model is �rst calibrated using a generic
approach, where every individual is assumed to behave the same. A re�nement
is then presented to account for variations in the behaviours of sub-populations,
having speci�c individual characteristics. Furthermore, a statistical approach is
introduced for the modelling of transitions between two successive activity types
as a Markov process. The models are then validated using a cross-validation
technique, and their predictive performance is compared at an individual level,
as well as for aggregated (sub-)populations.1

4.1 Introduction

As passive design standards of buildings lead to a more e�cient use of solar energy
and conservation of casual heat gains, so buildings' energy and environmental per-
formance becomes more sensitive to the presence, activities and activity-related
behaviours of their occupants [41] such as the use of shading devices, windows
and electrical appliances [see 16, 42, 43]. In order to optimise the design of future
high performance buildings and better match their energy demand with local
generation and storage capacity, it will be necessary to consider the stochastic
nature of their occupants. In this regard, the time-dependent activities which

1A preliminary version of the models in this chapter was published at the 12th International
Conference of the International Building Performance Simulation Association [89]. A more
complete article was published in the journal Building and Environment [90].
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are performed in buildings and the behaviours that depend on them are cru-
cial [91]. Examples include, the preference of luminosity whilst sleeping, which
di�ers signi�cantly from those whilst other activities are performed; the likeli-
hood of window opening which is highly increased whilst/after cooking to evac-
uate pollutants, as well as the use of speci�c electric appliances which is highly
correlated with the speci�c activity that is being performed. In this context, the
main bene�ts of stochastic models are to contribute to estimate quantitatively
the uncertainties of the quantities of interest or more generally their distributions.

With regard to the in�uences of human behaviour on single buildings, a
bottom-up approach is needed to faithfully encapsulate the full range and timing
of occupants' presence, activities and dependent behaviours on the buildings' en-
ergy balance. Such an approach also lends itself well to the modelling of future
scenarios to explore responses to changes in the physical composition of build-
ings or the ownership of appliances as well as to changes to the population's
demographic/behavioural characteristics.

4.1.1 Previous research work

In transport research, activity choice modelling is widely applied [92], addressing
correlations between members of the same household [93, 94], the occurrence of
multiple simultaneous activities [95], time-dependence [96] or the dependence on
household characteristics [97].

In the social sciences and economics, models have been developed to forecast
temporal changes in behaviour. Helbing, as well as Gershuny and Sullivan give
a general overview of the subject [98, 99]. However, these models rather focus
on seasonal/annual evolution [cf. 100] rather than the dependence on the time of
day. Fischer and Sullivan model the latter by applying simulations based on ge-
netic algorithms [101]. Furthermore, besides pairs of subsequent activities, even
the likelihood of triples of subsequent activities is taken into account in their
model. However, the activity transition probabilities are not time-dependent (for
instance, in the evening the probability that sleeping will follow the activity of
personal care is typically higher than in the morning). Moreover, the explanatory
variables used in the simulations are not dependent on the characteristics of the
individuals (although a distinction between weekdays and weekends is made).
Numerous studies focus on predicting the use of time depending on personal
and socio-economic characteristics [102]. The latter dependence is investigated
in many di�erent research �elds, where time use survey data is used to describe
quantitatively a given activity [cf. 103�106]. However, these studies do not ac-
count for the dependence of activities on the time of day.

In the context of residential electricity and/or domestic hot water demand pre-
diction, the modelling of activities has already been considered. Torriti presents
an assessment of national di�erences in active occupancy levels in single-person
households [107] and a simple time-dependent home-activity model is presented
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by Capasso et al. [108]. In the more sophisticated approaches, either the model to
predict individual activity chains is based on aggregate proportions and can thus
not capture individual-dependent behaviour or the increased/decreased likelihood
of the occurrence of a sequence of activities [25, 45] (Yamaguchi et al. present
a modi�ed version [48]), or they are based on �rst-order discrete-time Markov-
chains, not being able to model coherently the duration distribution of activities
(as the transition probabilities do not depend on the time the activity was initi-
ated) [20, 40, 63]. Richardson et al. follow an approach where domestic activities
are predicted as the observed fraction of present non-sleeping occupants of the
corresponding weekday type [23]. In this approach, activity durations cannot
be captured coherently and all artefacts of the time use survey data are exactly
adopted. The probabilistic quantities have not as yet been calibrated depending
on individual characteristics. Furthermore, the calibration of the Markov chain
transition probabilities with time use data is susceptible to data scarcity issues,
so that transition probabilities are set to zero if no such a transition occurred in
the survey.

In the context of o�ce building environments a stochastic model was devel-
oped that predicts the occurrences of intermediate activities at work [109]. How-
ever, the calibration data for the model only contains information relating to 8
persons working in academia and thus cannot be considered representative for all
types of working people. Furthermore, the steering quantities of the simulation
do not depend on the time of day.

From the above review, we conclude that:

• Residential activities considerably in�uence building performance, and these
should be modelled dynamically to faithfully represent reality.

• There is no existing approach that models the time-dependence of the
stochastic activities based on physical quantities.

• Existing activity models do not encapsulate individual speci�cities (for in-
stance, personal/household characteristics).

• Published research does not suggest a common robust cross-validation pro-
cedure, which hinders any meaningful comparison of the quality of alternate
models.

• The predictive power of existing models has not been evaluated at an indi-
vidual level, which is crucial for a robust bottom-up approach.

Looking at the state of the art of activity modelling, it is evident that the
detailed validation of models is crucial and, that there is a lack of published
research of many aspects in�uencing human behaviour. This hides model inac-
curacies, when they are applied in contexts which di�er from the one to which
the models are �tted [cf., e.g., 110].
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The objective in this chapter is to establish a bottom-up approach, which
allows residential activities to be modelled as a function of time and individual
speci�cities. The time-dependence is crucial for the use in dynamic building
simulations, as the probabilities to perform activities vary signi�cantly with time
of day. The bottom-up nature of the approach is needed to enable its application
for scenario testing based on populations with di�erent characteristics to those of
the calibration dataset. Both the nature of the model formulation, which can be
readily �tted with other datasets, and the results from cross-validation studies
suggest that this novel model is better adapted to dynamic building simulation
than previous variants.

Summary

A detailed methodology is presented, allowing to predict residential occupants'
activities. In Section 4.2, the steering quantities of the simulation models are
presented and the time-use data used to calibrate them are described. Then,
in Section 4.3, simulation results are presented and the performance of di�erent
grades of re�nements of the model is compared. Moreover, the accuracy of the
di�erent models is veri�ed using a ten-fold cross-validation. In Section 4.4, the
approach is discussed and further possible re�nements are identi�ed, and �nally
it is concluded in Section 4.5.

4.2 Method

In this chapter we focus on the modelling of activities based on the information
of the database described in Chapter 2.

4.2.1 Model structure and calibration

The physical quantities of interest in this chapter are the probabilities pj(t) (j ≤
N) to perform the di�erent activities depending on the time of day. The duration
distributions of the di�erent activities are also of importance, e.g. when applying
the model in dynamic building simulations. In order to model/test scenarios of
populations with di�erent demographic characteristics, it is also important that
the model be formulated to support examination of individual-speci�c variations
of behaviour, likewise to accurately capture the distribution of outcomes at the
scale of one building owing to uncertainties in the household's composition.

At the resolution of the individual, activity chains are characterised by step
functions ax(t), of the activity type j of individual x over time t. In the residential
context this is only of interest during the time periods whilst x is present in their
residential environment. These presence chains are given by time-dependent step
functions equal to one when x is at home and zero otherwise.
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A modelling approach has been formulated with which the pj(t) can be ap-
proximately determined via Monte Carlo simulation. To simulate residential
activities, individuals residential presence/absence chains should be determined
by an independent pre-process (by neglecting in�uences/interactions of the per-
formed activities on the absences/presences, as the latter are modelled in the
post-process of the activity model). Although, this occupancy pre-process is to
be modelled stochastically in general, in this chapter the observed occupancy data
are directly used to assess the performance of the activity model itself, rather than
its combination with an occupancy model.

The algorithm is illustrated schematically in Figure 4.1, which shows how the
time-dependent activity chain of every individual of the synthetic population in
a simulation is generated. After having modelled in a pre-process the occupancy
chains for every individual x, we need to check whether x is at home at time t. If
x is not at home, we forward the simulation time to the next arrival time tarrive of
x. If x is present, the activity j that is started is determined, according to ps,j(t),
the probability to start activity j at time t. Afterwards, the duration ∆t of this
activity is drawn from the fj(t), the duration probability distribution function of
j at t, and the time is incremented by ∆t. The two quantities ps,j(t) and fj(t)
will be explained in more detail in the next paragraph of this section. However, if
the departure time tdepart of x is exceeded, the end time of j is set to tdepart (the
residential activity is forced to end when the individual leaves home). As long as
the departure time is not exceeded, new activities j and the corresponding time
increments are determined repeatedly. Following from an individual's departure,
the time is set to the next arrival tarrive and the procedure is repeated.

Occupancy model
(pre-process)

x
present
at t ?

Determine activity j started at t
Determine ∆ t for j

t tt depart?

t=t depart

t=t arrive

t=t t

Y

Y

N

N

Figure 4.1: Schematisation of the algorithm, which is applied for every individual
of the population.
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This approach is based on two stochastic quantities whilst individuals are
at their residences. First, an activity j is started with the probability ps,j(t) (by

choosing j = minj

(∑j
j′=1 ps,j′(t)

)
≥ r, where r is a uniformly distributed random

variable in [0,1[; cf., e.g., [111]; this procedure corresponds to the inverse function
method to sample from a discrete state distribution [cf., e.g., 69]). Second,
after simulating which activity j is started, its duration ∆t is drawn from the
corresponding time-dependent probability distribution function (PDF) fj(t). In
order to simplify comparability of the simulation results with the monitored TUS
data and to reduce computational overheads, the continuous time values that are
drawn are rounded to the 10 min time resolution of the TUS.

Regarding the calibration of ps,j(t) and fj(t) with the TUS data, there are
censored (truncated) events at the beginning/end of the individuals' diaries if no
information is given at which time outside of the scope of the questionnaire the
�rst/last activity started/ended. A similar case occurs at the end of a period of
residential presence during the day, where it is not known whether the duration
of the activity would have lasted longer if the departure of the individual had
occurred later. This is modelled in the simulation by forcing an activity to end,
as soon as its duration exceeds the time of departure from the residence given by
the presence pre-process.

Starting probabilities

Generic approach The conditional probabilities to start an activity j whilst
being at home ps,j(t) (which will be referred to as starting probabilities) can be
calibrated directly from the corresponding time-dependent ratio of instants the
activity j was started over the total number of times any activity was started at
home at time t by all the individuals x of the population C in the TUS data2. For
ease of notation these conditional starting probabilities will be referred to simply
as �starting probabilities�.

Multinomial logit model of starting probabilities This more complex
approach involves determining starting probabilities accounting for individuals'
characteristics. These starting probabilities have been conceived to depend on
M = 41 dummy variables x1, x2, . . . , xM describing the characteristics of the
individual, assembled in a vector x. The corresponding starting probabilities will

2There are two problems arising when the probabilities in the model are calibrated in this
way. First, for activities which are infrequent at a given time of day, there would be large
uncertainties due to data scarcity issues. Second, this calibration method would be sensitive to
the apparent rounding of time values to half and full hours mentioned in Section 2 (cf., Figures
2.8 and 4.2). Therefore, the starting probabilities were �rst calibrated on hourly averages to
reduce data scarcity issues as well as to level out a bias due to rounding artefacts. Then, the
starting probabilities used in the simulations were deduced by linearly interpolating between
hourly averages to achieve a smooth change in those quantities.
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be denoted ps,j(x, t) and each of the dummy variables xk (k ≤M) correspond to
one of the values of the categories in Table 4.1.

A random utility model (RUM) was used to capture the in�uences of the men-
tioned characteristics in the calibration of the starting probabilities ps,j(x, t) [112,
113]; more precisely, 24 such models have been calibrated for every hour interval
of the day [cf. 40]. In a RUM, every individual has a �nite number of choices
N , in the present case corresponding to the number of all activities that can be
performed in a residential environment. For a given hour interval [t, t + 1 h[,
this approach estimates the N di�erent probabilities (ps,j(x, t))j=1,...,N for all the
individuals x in the sample. For a given hour, the dimensionless utility func-
tions Vj for every choice j in the sample, were de�ned to depend linearly on the
parameters in x = (x1, . . . , xM)

V1(x) = α1 + β1,1x1 + β1,2x2 + . . .+ β1,MxM ,

V2(x) = α2 + β2,1x1 + β2,2x2 + . . .+ β2,MxM ,
...

VN(x) = αN + βN,1x1 + βN,2x2 + . . .+ βN,MxM .

(4.1)

Table 4.1: Dummy variables for the starting probabilities. When there is only
one value speci�ed, this corresponds to a dichotomous situation, where the com-
plementary value is not listed.

category value set

age <26, 26-45, 46-62, >62
carer Diarist looks after an adult or child with a disability
day Mon-Sun
disab Diarist has a disability or long-term limiting health condition
edu Level of education above secondary education
healthy Diarists self-reported general health status good/very good
hh1 Single household
inc Household income above lowest 25 %
noveh Household does not have access to a private vehicle
retired Diarist retired
owner Diarist's household rents home
pc Diarist's household has a computer
sex Diarist male
stud Diarist is a student
urb Diarist lives in urban/suburban area
work Employed full-time, half-time, not in paid work, unknown
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Given these utility functions, the probability of starting an activity j is pre-
dicted using a multinomial logit (MNL) model of the form:

ps,j(x, t) =
eVj(x)∑N
j′=1 e

Vj′ (x)
, j = 1, . . . , N. (4.2)

The alternative-speci�c constants (ASCs) αj and the parameters βj,k (j =
1, . . . , N ; k = 1, . . . ,M) were estimated. This is done by maximising the like-
lihood function, i.e., the probability that exactly the observed outcome of the
choices in the monitored data is predicted. Technically, this is done by maximis-
ing the log-likelihood of the model, by adjusting the values of the ASCs and the
parameters. However, this represents an optimisation problem and in a RUM only
the di�erences of the utility functions of di�erent alternatives in Equation (4.1)
have an in�uence on the choice probabilities in Equation (4.2). To have a unique
optimum of the model in the parameter space, some of the parameters have to
be �xed. Namely, all the parameters and the ASC of one of the choices j, as
well as one of the parameters in every choice when there is a parameter for a
segmentation of the whole �population�, e.g., the parameter of one weekday from
Monday to Sunday. The optimisation of these discrete choice models has been
performed using the open source software Biogeme 1.8 [114�116].3

In order to remove the in�uence of characteristics with insigni�cant parame-
ters in Equation (4.1), two other models for ps,j(x, t) are used in the simulations.
The 24 models for the starting probabilities have therefore been determined us-
ing the initial model given by Equation (4.1) and eliminating all the parameters
where the p value of their t test is not statistically signi�cant (i.e. below a given
threshold α). However, in the new model which is obtained in this way, new pa-
rameters can become insigni�cant, due to multicollinearity. Therefore, backward
elimination was repeated for the newly estimated model, until all parameters of
the model are signi�cant with a p value below α. This backward elimination has
been done with two values of α of 5 % and 10 %. This led to 24 MNL models
for the starting probabilities which incorporate in total 1397 and 1855 signi�cant
parameters βj,k, (corresponding in average to 4.4 and 5.8 parameters per activity
and time step) respectively.4 An MNL model, where there are only ASCs αj
corresponds to the generic approach for ps,j(t) [112].

3The complexity of the model was adapted to the data abundance by merging together to
the same choice j̃ in the MNL model all activity types j which did not occur more often than
50 times. In the simulation this was retranslated to the original activity types by applying
the same generic approach, as in the beginning of Section 4.2.1; meaning that the starting
probability in the simulation was de�ned to be ps,j̃(x, t) times the proportion of j in the total

number j̃. This led to 24 MNL models for the starting probabilities which incorporate in total
7950 parameters βj,k. In average, there were 14.25 choices in the 24 models (including j̃).

4The estimated MNL models are available online [85].
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Probability distribution of durations

After an individual has started an activity j in the simulation, the corresponding
duration is determined by drawing a duration from the corresponding probability
distribution function of durations fj(t). The empirical PDFs of the TUS are unre-
alistic representations for fj(t), due to the rounding artefacts in the respondents'
questionnaires at integer multiples of half an hour (cf. Figure 4.2). Further-
more, using these would entail a substantial data storage overhead for simulation
purposes; therefore, �tted Weibull PDFs are used to describe the distribution of
durations in the simulation model, whereby

f(t) =
k

λ

(
t

λ

)k−1
exp

(
−
(
t

λ

)k)
, (4.3)

in which λ and k are respectively the scale and the shape parameter, which can be
readily �tted using standard algorithms. Moreover, the Weibull PDFs are smooth
by de�nition, removing undesirable rounding artefacts. The scale parameter k
scales the abscissa of the distribution, whereas the shape parameter λ in�uences
its shape (λ < 1 indicates that the termination rate decreases over time, i.e. an
increased �infant mortality�, whereas for λ > 1 the termination rate increases).

Two examples of the Weibull �ts of the empirical duration distributions of
sleeping are shown in Figure 4.2. Obviously, the mean durations of activities
can vary substantially during the day (cf. Figures 4.2 and 4.3); for this reason,
the 24 · N PDFs fj(t) (j = 1, . . . , N ; t = 1, . . . , 24) have been �tted, based
on the empirical duration distributions of all events where j was started in the
corresponding time interval. This introduces data scarcity issues � in particular
during the night � as many of the probabilities are very small, so that in those time
intervals there is an insigni�cant (or even nil) quantity of times the corresponding
activity occurred in the TUS.

By assuming that the PDFs of durations do not change abruptly with time,
this is overcome by taking as a basis to �t the PDF the durations of the corre-
sponding activity at multiple adjacent time intervals, if both the corresponding
scale and shape parameters of the Weibull �ts are not signi�cantly di�erent (ac-
cording to the two sample z tests). This procedure is repeated by including the
Weibull parameters of the subsequent intervals, as long as all parameters in the
set are pairwise not signi�cantly di�erent from each other.

The resulting merged intervals are indicated in Figure 4.3. For each activity j,
the time intervals for which the durations did not di�er signi�cantly to each other
are connected by a line. Furthermore, the mean durations of the started activities
in the corresponding interval are colour-coded according to a logarithmic scale.
The edge length of the squares is proportional to the logarithm of the number
of occasions that the activity was started in that interval (see examples on top
of Figure 4.3). Due to the logarithmic scale, time intervals cannot be visualised
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Figure 4.2: Examples of the empirical PDFs of sleeping (j = 10) started in two
di�erent time intervals, as well as their �tted Weibull distributions fj(t).

where the corresponding activity was started exactly once. Time intervals are
marked with a cross, where the activity was not started at all.
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Figure 4.3: Mean durations of the activity types j (cf. Figure 2.8) that are started
in the time interval (on the x-axis), colour-coded according to a logarithmic scale.
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Individual-speci�c PDFs In contrast to the data scarcity problems which
can arise for some activity types when the duration PDFs are �tted on an hourly
basis, in some hour intervals certain activities j are started very frequently (see
Figure 4.3). This allows us to investigate the statistical dependence of the cor-
responding PDFs on the characteristics of individuals x = (x1, . . . , xm); i.e., the
time-dependent PDFs fj(x, t) can also depend on x.

This was done by subdividing the durations of interest into distinct subsets
according to the properties of a criterion (e.g., seven subsets, each one corre-
sponding to one weekday). Then, the mean duration and its standard error was
calculated for every subset, and the value was checked for statistical signi�cant
di�erence to all the other subsets of this criterion according to a two sample z
test. If the mean duration value is signi�cantly di�erent from all the other values
and, the mean magnitude of the corresponding z test is the highest possible of
all criteria and all their possible values, the PDF is individualised by �tting it
separately for the two subsets, which result of a splitting of the population into
one sub-population where the criterion takes the value and its complement. The
procedure is repeated recursively with each one of the two resulting subsets, as
long as no splitting is possible anymore, according to the speci�ed methodology.

To maintain a meaningful level of statistical explanatory power, splitting into
two subsets was only done if all the subsets of the criterion have an element size
of nmin ≥ 5.

In this way one obtains a binary tree structure where each node corresponds
to the splitting of the duration data according to a given value of a signi�cant
criterion and the branches at the end of the tree correspond to a subset which is
characterised by the values that are taken at each rami�cation of the tree. This
implies that any individual x corresponds exactly to one of the distinct subsets
at the bottom of the tree, and therefore, the corresponding PDFs fj(x, t) are
also individual-dependent, regarding the characteristics that were chosen from
the root of the tree to the end of the branch.

Figure 4.4 shows the subdivision tree for the pairing of activity type and
time interval of (sleeping, [12 am, 1 am[) that has yielded the largest number
of subsets.5 The complete set of these durations (at the root of the tree) is
subdivided at the nodes according to the value (on the right of the equal sign)
of the criterion xi the individuals have. The set of criteria (xi)i=1,...,14 according
to which the population was subdivided and their corresponding possible values
are shown in the legend. For the set which branches o� to the left the criterion
takes the indicated value, for the one which branches o� to the right it does not.
The nodes at the bottom of the graph cannot be subdivided anymore with this
methodology and are used to �t fj(x, t) (in this particular example this leads to
37 PDFs being �tted). The colour of the nodes indicate the mean duration of the
corresponding group.

5The full set of estimated model parameters is available online [85].

67



CHAPTER 4. RESIDENTIAL ACTIVITY MODELLING

In Figure 4.4, the initial duration set is divided into two subsets which are
distinguished by whether sleeping started on a Sunday or not. If it was started
on Sunday, the most signi�cant di�erence in the duration mean occurs by dis-
tinguishing if the individuals are retired or not. If the individuals are retired,
no more signi�cant disaggregation (with resulting subsets greater than nmin) was
possible anymore. The non-retired sub-population was still subsequently split
according to the di�erent possible values of employment status of the TUS (full
time, unknown, part time and not in paid work).
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Figure 4.4: Example of the subdivision methodology (described in Section 4.2.1)
of the complete duration array of sleeping that is started between midnight and
1 am, which is used to estimate the individual-speci�c duration PDF fj(x, t).

Markov model simulation

In reality, the time-dependent probability of transiting from an activity j to a
subsequent activity j′ can be signi�cantly di�erent of the probability that j′

occurs, irrespective of the preceding activity j [cf. 20, 101]. This situation cor-
responds to the �rst-order Markov property, where the next step depends on
the current one only. As our main objective is to model individuals' stochastic
activity choices, it is desirable to include the increased/decreased likelihood of
subsequent states within the individual-dependent MNL models for the starting
probabilities of Section 4.2.1. This can be achieved by adding additional terms
βj′,jxj for all possible activity pairs (j, j′), where the dummy variable xj is one
when the preceding activity is equal to j and zero otherwise.

In practice however, it would not be feasible to include each one of the tran-
sition probability parameters in the MNL models, as for a set of N = 20 activity
types in the MNL model, (N − 1)2 = 361 additional transition parameters would
have to be estimated for each time step. This would substantially increase the
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computation time and introduce once again the challenge of data scarcity. There-
fore, a methodology was followed, whereby an additional transition term βj′,jxj
was only added to the utility functions in Equation (4.1), if the probability that j′

occurs after j in the monitored data is signi�cantly di�erent from the probability
that j′ occurs regardless of the preceding activity j in that time interval. This
was done by checking the two proportion z test of the two shares. Furthermore, as
an additional criterion, the term βj′,jxj was only included if the number of occur-
rences of the transition j 7→ j′ in the TUS data is larger than 5. In this way, only
18.5 % of the whole set of possible transition parameters had to be added.6 To
re�ect this the simulation algorithm should also be modi�ed, by adding the set of
dummy variables (xj)j=1,...,N to the characteristics x describing the individual, to
calculate transition-dependent MNL starting probabilities using Equation (4.2).

4.3 Simulation

In this section, the simulations are performed on 100 replicates of the speci�ed
model. The simulation period and time resolution were chosen to be the same
as in the TUS, i.e., 24 h starting from midnight. This means that the �rst
time step t1 in the simulation corresponds to the �rst 10 minutes after midnight,
and the simulation ends after the last time step tend. The set of activity types
comprises the N = 20 partially merged types that were de�ned in Section 2 and
the actual presence information of the survey is directly used as a simulation
input, as explained in Section 4.2.1.

4.3.1 Model quality assessment

The performance of the simulations can be evaluated by comparing the residential
activity patterns of the simulation to those of the TUS. For this purpose two
indicators are used:

1. Mean relative population share deviation

This indicator shows how adequately the model performs regarding global
predictions of the population average. The indicator is based on the mag-
nitude of the di�erences Dj(t) = pj,sim(t) − pj,obs(t) between the predicted
probabilities to perform a residential activity pj,sim(t) and the correspond-
ing proportions that were observed in the TUS (pj,obs(t) as displayed in
Figure 2.8).

D =
1

p̄

1

N · tend

N∑

j=1

tend∑

t=1

|Dj(t)|. (4.4)

6The estimated MNL models are available online [85].
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Thus, D corresponds to the mean of the ‖·‖1 norm of the vectors Dj(t), ex-
pressed as the relative error with respect to p̄ = 1/N , the mean probability
to perform one of the activity types. To level out the rounding artefacts
in the monitored data, the indicator was based on the hourly averages of
the residential activity pro�les, i.e., tend = 24. As

∑N
j=1 pj(t) = 1 for all

t, D consists of two equal parts where one of them is restricted to all the
positive terms Dj(t) and the other one to all the negative ones (when one
of the activities is overestimated by a certain amount, the sum of all the
others is underestimated by the same amount; cf. Figure 4.6). The possible
range of the value set of D is bounded between zero and one. The value of
D is a measure for the global performance of the model.

2. Percentage of correctly predicted activity time steps

This indicator A backs up the quality of the model's predictions at an in-
dividual level, summarised for the whole population C. It is de�ned by the
ratio of the total number of time steps, where the residential activity chain
of the TUS ax,obs(t) has been correctly predicted by the one of the simula-
tion ax,sim(t) whilst the di�erent individuals x were present over the total
number of time steps where the individuals were present in their residences.
The value space of A is also comprised between 0 and 1, where 1 means that
all residential activity chains of the population C are completely correctly
predicted, and 0 means that no activity chains were correctly predicted.
The value of this indicator where no sleep is considered will be denoted as
Ans.

The �rst criterion is of importance, as research topics which relate to this �eld
often depend on the average behaviour of an aggregate population. However, the
distribution of the behaviour over the population may also be of interest, in which
case knowledge of the variety of behaviour between the individuals is crucial. In
this regard, the second criterion can be used to estimate the discriminating quality
of a predictive model.

4.3.2 Generic model

In the following the simulations are based on the generic starting probabilities
which were de�ned at the beginning of Section 4.2.1, as well as with the generic
duration PDF that was de�ned at the beginning of Section 4.2.1, regardless of
individuals' speci�cities. Figure 4.5 presents the probability distribution of ac-
tivities of the simulated population as a function of time. The model generates
a residential activity pro�le, where the probabilities ps,j(t) are smoothed (with
respect to the artefacts noted in the observed data) as a function of time.

The di�erences on an hourly basis between the simulated and the monitored
data pro�les pj,sim− pj,obs are shown in Figure 4.6. For most of the time intervals
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Figure 4.5: Simulated residential activity pro�le pj,sim(t), using the generic start-
ing probabilities and duration PDFs.

and activities, the di�erences are close to zero, meaning that the observed resi-
dential activity pro�les are in general well reproduced by the simulations. The
largest di�erence of 12.4 % occurs for sleeping in the last time interval, due to
strong increases during the last 10 min of the day in the TUS data (cf. Fig-
ures 2.8 and 4.3).7 There are also noticeable underestimations of the share of
people having �meals and snacks� between 1 and 2 pm of 9.3 %, preceded by an
overestimation of over 2 %. This discrepancy is due to a strong increase of the
TUS population's proportion having �meals and snacks� in the hour after noon
(cf. Figure 2.8). Apart from the other mentioned rounding artefacts, this increase
is probably more likely to agree with reality, due to external time constraints.
Therefore, the methodology to smooth out abrupt changes in pj(t) described in
Section 4.2.1 might decrease predictive power in this case. Accordingly, the same
pattern of over- and succeeding underestimation in the activity to �cook, wash
up� occurs in the hour interval before and after noon, as in reality this activity
often directly precedes �meals and snacks� and thus is subject to the same time
constraints.

Within the last hour interval of the day, the activity �watching TV� is underes-
timated by the simulations (-8.6 %), due to the overestimation of sleeping, which
suppresses the likelihood of performing other activities, as can also be observed in

7This increase has a strong weight when the starting probability of this hour interval is
derived and thus the model overestimates the percentage of sleeping people. Furthermore, the
number of people who are sleeping during the night is underestimated by the simulations. This
is due to the fact that the simulation duration is set to 24 h, implying that the individuals who
began their sleep before midnight are not accounted for in the simulation (an easily resolved
artefact of this particular simulation).

71



CHAPTER 4. RESIDENTIAL ACTIVITY MODELLING

the underestimation of the activities �Dress/Personal care� or �Read�. The con-
verse pattern is observable in the �rst time intervals of the night, where the lack
of the individuals who started sleeping before midnight (because the simulation
duration was set to 24 h and starting at midnight) ampli�es the occurrence of
other activities.

The sum of the areas of all curves above zero divided by the number of time
intervals corresponds toD/2 (de�ned in point 1 in the beginning of Section 4.3.1).
The values of the performance indicators (cf. Section 4.3.1) of this simulation
model (Starting Generic Duration Generic, SGDG), are shown in Table 4.2.
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Figure 4.6: Di�erences between the predicted (pj,sim) and observed (pj,obs ) ac-
tivity pro�les on an hourly aggregated basis. The lines are drawn to guide the
eyes.

4.3.3 Cross-Validation

To validate the models a ten-fold cross validation was applied, by subdividing
the whole TUS data set into ten equally sized distinct subsets, in which the
individuals were chosen randomly (following a uniform probability distribution
for the individuals to be chosen). These subsets were subsequently used as the
validation sets, and the corresponding complementary set (the remaining 90 %)
was used as the training set to calibrate the starting probabilities and the duration
PDFs.

The �nal parameter sets that were determined for the training set of the
whole TUS population were adopted for all cross-validation training sets, and
those parameters were re-estimated for the latter.

The mean values of the indicators introduced in Section 4.3.1 of the ten cross-
validation sets are shown in the corresponding columns of Table 4.2. The small
relative standard errors of the mean values show that the methodology is robust in
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Table 4.2: Performance comparison of the di�erent models introduced in Sec-
tion 4.2.1 (indicator values in %).†

whole population cross-validation sub-population
model D A Ans D A Ans D(Cw) D(Cnw)

SGDG 10.10 39.11 14.83 12.72 ± 0.34 39.09 ± 0.15 14.81 ± 0.07 16.17 14.28
S5DG 10.22 40.35 16.48 12.58 ± 0.36 40.33 ± 0.20 16.43 ± 0.09 11.22 11.14
S10DG 10.19 40.44 16.54 12.57 ± 0.35 40.38 ± 0.16 16.48 ± 0.08 11.20 11.04
S100DG 10.29 40.71 16.87 12.59 ± 0.47 40.62 ± 0.19 16.75 ± 0.11 10.54 11.83

SGDI 9.01 40.18 14.92 11.48 ± 0.46 40.86 ± 0.18 14.89 ± 0.07 15.03 13.52
S5DI 8.44 41.47 16.66 11.22 ± 0.41 42.07 ± 0.21 16.54 ± 0.08 9.09 10.08
S10DI 8.39 41.55 16.73 11.18 ± 0.40 42.12 ± 0.20 16.61 ± 0.08 9.12 9.99
S100DI 8.41 41.80 17.03 11.14 ± 0.44 42.32 ± 0.22 16.86 ± 0.08 8.77 9.91

SMDG 9.06 41.48 16.79 12.42 ± 0.38 40.42 ± 0.16 16.54 ± 0.11 9.73 10.71
SMDI 8.15 42.04 17.19 10.79 ± 0.44 41.89 ± 0.29 16.91 ± 0.10 9.54 8.83

† In the beginning of the abbreviations of the di�erent models, the type of starting probabilities are classi�ed. The
Generic Starting probabilities are abbreviated by �SG�. When there is a number after the �S�, this speci�es the
value of α in percent, which was used during the backward elimination process (cf., Section 4.2.1). �100� represents
the model, for which all initial parameters are kept. Starting probabilities modelled as a Markov process (cf.,
Section 4.2.1) are labelled by �SM� at the beginning. The last two letters indicate whether the Duration PDFs are
modelled Generically (�DG�) (cf., Section 4.2.1) or Individual-speci�cally (�DI�) (cf., Section 4.2.1).

terms of predictive power when applying the model in a scenario, with properties
that di�er to those of the calibration set.

Due to the reduced training dataset size, the chosen performance indicators
are, as expected, worse in this cross-validation, except for the values of A, where
the duration PDFs are individual-dependent (SGDI/S5DI/S10DI/S100DI). This
means that the activity sleeping has been better predicted in the simulations of
the cross-validation, than for the whole population. The reason for this still has
to be investigated in detail.

4.3.4 Model performance comparison

The values of the performance indicators are shown in Table 4.2. The column
�whole population� indicates that the corresponding model was calibrated and
tested using the whole sample population. The column �cross-validation� shows
the results of the cross-validation, which was described in Section 4.3.3. In the
last column the indicator D is evaluated for two distinct sub-populations Cw of
individuals who are in paid work, and Cnw of individuals who are not.

The simulations were run for di�erent combinations of the various models
for which the starting probabilities and the duration PDFs were calibrated (see
Section 4.2.1 and the caption of Table 4.2).
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Whole population

In Section 4.3.2 and in connection with Figure 4.6 in particular, the major devi-
ations between the predicted and the observed population shares performing the
di�erent activities of the SGDG model were discussed. It was shown that the
major contributions to D do not originate from de�ciencies of the modelling ap-
proach, but rather from peculiarities of the way the TUS data was recorded (e.g.,
that the recording period starts and ends at midnight), or from time constraints
arising from some of the activities (e.g., cooking or eating around noon). It is
important to consider this when comparing the performance of di�erent models,
as the quality of the model expressed by D of all of the models that are presented
su�er from those peculiarities. In other words, a major part of the deviations
contributing to D cannot be resolved by the di�erent approaches presented here.

The values of D indicated in Table 4.2 show that the models where the du-
ration PDFs are generic, the starting probabilities have been individualised but
the transition probabilities are not included (S5DG/S10DG/S100DG) perform
slightly worse than the model where the starting probabilities are also modelled
generically (SGDG). This means that an individualised description of the be-
haviour of starting activities worsens the predicted shares, when the activity
durations are generic; but this approach also o�ers greater �exibility in its appli-
cation. Comparing the performance of SGDG with SMDG, shows that the popu-
lation shares are better predicted when transition probabilities are considered in
addition to individual characteristics. Given the individual-speci�c fj(x, t) and
the individual-speci�c ps,j(x, t), additional consideration of the transition proba-
bilities in the starting probabilities improves the prediction of the correct shares
(compare SGDI with S5GI/S10DI/S100DI/SMDI). This suggests that there are
synergetic e�ects regarding the improvement of the prediction of the population
shares when both, ps,j(t) and fj(t) are individualised.

The SGDG model has the worst performance regarding predictivity at an in-
dividual level, expressed by A and Ans. The individual-speci�c modelling of the
starting probabilities and of the duration PDFs improves performance compared
with the generic model. For both cases, when one individual-speci�c part is
used in combination with the generic counterpart (S5DG/S10DG/S100DG or
SGDI), or when both individual-speci�c quantities are used together (S5GI/
S10DI/S100DI), the inclusion of the modelling of transition probabilities from
one activity to another also improves the results of these two performance indi-
cators (compare the results of S10DG with SMDG and S10DI with SMDI).

Comparing the performance of the models with the full set of parameters
{βj,k}j=1,...,N ; k=1,...,M for the starting probabilities with those where the set was
restricted by the backward elimination process (S100DG with S10DG/S5DG or
S100DI with S10DI/S5DI), shows that backward elimination does not substan-
tially decrease model predictivity.
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Sub-population

For the whole population, the SGDG model has a value of D of 10.10 %. When
one considers the corresponding values of 16.17 % and 14.28 % for the two sub-
populations Cw and Cnw, the deterioration of performance is more serious than
the comparison of values of D suggests, recalling the discussion in Section 4.3.4.

The comparison of the values of D for the whole population yielded an im-
provement of about 19 % between the generic model (SGDG) and the best per-
forming one (SMDI). When D is evaluated for di�erent sub-populations with
given characteristics (in the case of Table 4.2 distinguishing between people who
are in paid work or not), there are more signi�cant improvements of 41 % for Cw
and 38 % for Cnw.

The values of D that are achieved for the two sub-populations for the SMDI
model, for instance, are better than those that SGDG yields for the whole pop-
ulation. This suggests that the individual-speci�c models are more appropriate
for scenarios where the characteristics of the target population do not correspond
exactly to those of the TUS sample population.

The improvements of D for the whole population are more signi�cant for the
individual-dependent description of the duration PDFs fj(x, t), than for the start-
ing probabilities ps,j(x, t). In contrast, the improvements of D (deviations be-
tween the predicted and the observed shares) for the two di�erent sub-populations
are more important for the individual-dependent description of ps,j(x, t), than for
that of fj(x, t). However, predictivity also improves for the individual-dependent
description of either fj(x, t) or ps,j(x, t) or of both together.

The inclusion of the Markov property in the starting probabilities in ps,j(t)
only improves the performance for the non-working sub-population Cnw, whereas
it worsens performance for the working sub-population Cw. However, for the
whole population the inclusion of D improves predictivity, as mentioned in Sec-
tion 4.3.4.

The simulation results of D show that there is considerable additional bene�t
in modelling behaviour individually, as long as one is not only interested in the
aggregate performance of the whole population or in proportions which di�er from
the TUS sample population. In these cases the assumption that the individuals'
behaviours can be approximated by average behaviours is too crude.

To illustrate how individual-speci�c behaviour is represented, the observed
and the simulated (S10DI) activity pro�les of the non-working sub-population
are shown in Figures 4.7a and 4.7b, respectively (the colour-coding of the di�er-
ent activities is the same as in Figure 4.5). In the SGDG model, the starting
probabilities are identical for the whole population: regarding the residential ac-
tivity pro�le of a sub-population, the only di�erence lies in the time-dependent
proportion to be at home. Thus, the maximal hourly di�erence between the
residential activity pro�le of the whole population (cf. Figure 4.5) and the sub-
population is less than 0.40 %.
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In the non-working sub-population, many observed activity probabilities pj(t)
(Figure 4.7a) are similar to those of the whole population (Figure 2.8). However,
with respect to the percentage of individuals doing paid work, the observed daily
average is 0.12 %, as compared with a predicted percentage using the SGDG
model of 0.87 %, which corresponds to an overestimation of a factor of more than
7. The corresponding value of the S10DI model is 0.23 %. This overestimation of
88.5 % can be explained, by the removal of insigni�cant parameters in the corre-
sponding models of starting probabilities (cf. Section 4.2.1), indicating that the
speci�cities of the behaviour of these individuals cannot be completely captured
in the model. Furthermore, the mean duration of paid work in the non-working
sub-population is shorter than in the whole population. These di�erences also
cannot be fully captured with the algorithm described in Section 4.2.1. How-
ever, in comparison to the SGDG model, this also shows that individual-speci�c
behaviour is much better captured by this non-generic model.
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Figure 4.7: Residential activity pro�le of the non-working sub-population Cnw.

Integration into Building Simulations

The models presented in this chapter can be integrated into any dynamic building
simulation tool. We will describe here the steps that are to be executed, to
derive the activity chains whilst an occupant x is at home. We assume that
the information of the residential presence/absence chains is provided by a pre-
process for the occupants in the simulation.
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1. The occupancy status (absence/presence) of the individual x at time ti as
well as the time of the next change ti+1 is retrieved.

2. • Case 1:
The occupant is absent. The activity until the end of the occupancy
state duration is set to null. The time is incremented to the next
occupancy state ti 7→ ti+1.

• Case 2:
The occupant is present. An activity j is chosen based on the corre-
sponding starting probability at that time ps,j(x, t). A time increment
∆tj is chosen according to the PDF at that time fj(x, t) (limited by
ti+1− ti if necessary, corresponding to a censoring of the activity by a
departure of the occupant). The time is incremented to ti + ∆tj.

3. As long as the time has not reached the maximum simulation time, the
simulation returns to step 1.

4.4 Discussion

A bottom-up residential activity model has been formulated to support predic-
tions of individual members of statistically signi�cant demographic sub-populations
whilst reproducing well the time-dependent activity probabilities of the entire
population. It has been shown that for this latter, a model of the aggregate pop-
ulation is su�cient; but this appears not to be so in the former case as behaviour
can vary substantially with individual speci�city. To address this, several model
re�nements have been tested. But experience teaches us that human behaviour
can be very diverse. Re�ecting this, it is unsurprising that certain behaviours
have not been included in this model:

• In Section 4.3.4 it was shown that the model performs worse for sub-
population Cw when modelling transitions to calculate the starting proba-
bilities ps,j(t); whereas the corresponding predictions improve for Cnw (com-
pare SMDI to S10DI). This is likely due to the fact that transition probabil-
ities are estimated using data for the whole population; whereas in reality
these may also depend on the speci�c characteristics of a sub-population.
This drawback could be overcome by estimating sub-population-dependent
transition probabilities, as in the work of Fischer and Sullivan [101], where
transition probabilities are calculated separately for workdays and week-
ends. But this would increase the number of transition parameters in pro-
portion to the number of di�erent characteristics to distinguish which may
actually degrade the models' predictive power due to data scarcity issues.
Therefore, this would require preliminary statistical tests to investigate for
which characteristics there are signi�cant di�erences in the values of the
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transition probabilities one is interested in. Another possible weakness of
this model is that the duration PDFs of Section 4.2.1 were not deduced
depending on the previous activity.

• There is also scope for improving model parsimony with respect to the
modelling of sub-populations. For example, it may be appropriate to replace
weekdays with the simple distinction between workday and weekend day.
However, on a Sunday evening many activity probabilities pj resemble those
of a standard workday, whereas on Friday evening activities resemble better
those of a Saturday evening. More parsimony may result from using the
models with the full set of characteristics presented in Section 4.2.1 as
preliminary estimations, and assembling cases in the same dummy variable
when they are not signi�cantly di�erent. In this way one could construct
dummy variables containing a group of two or more di�erent values of a
given characteristic, in which all elements are pairwise not signi�cantly
di�erent from each other.

• Usually, activity modelling is conducted for a much smaller set of activity
types N [cf. 20, 101]. This would allow for more sophisticated calibration
methodologies and testing procedures and improve predictivity, when the
set of di�erent activities is smaller. A large set of di�erent N was chosen
in the presented models, to prove relevance/applicability for wider interest
group of research �elds.

• Although this model has been formulated to predict residential activities
based on pre-processed residential presence, the approach can be readily
applied to predict activities in di�erent types of place or even without re-
stricting it to any type of place by omitting the presence pre-process.

However, the use of a presence model as a pre-process does in principle
increase the versatility of the approach. For instance, one can argue that
the last activity before leaving or before going to bed is subject to more
stringent constraints than those presented here. One could model this by
placing another intermediate process between the presence model and the
activity model. This intermediate process would partially assign activities
during presence, to be treated like absences by the activity post-process.
Sleeping and its preceding and succeeding activities could be modelled in
such a way. Another example includes the modelling of activities which are
correlated between household members. For instance one could model the
increased probability of simultaneous meals, by �rst running the activity
model for the household member who is cooking, and afterwards impose the
same time of eating to the remaining household members that are present;
in this way removing the inherent limitation of Markov chain models that
members behave independently of each other.
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4.5 Conclusions

In this chapter, an approach was presented to the modelling of residential ac-
tivities based on time-dependent probabilities to start activities and their cor-
responding duration distributions. The purpose of this model is to support a
more accurate representation of occupants' energy-related behaviours in building
and urban energy simulation programs. An initial model was �tted to data re-
lating to the entire aggregated population of respondents to the time use survey
questionnaire. Successive re�nements were then implemented by �tting the mod-
els' parameters to demographic sub-populations of the survey dataset, to support
better more individualistic predictions � for example to accommodate predictions
for speci�c household demographies or to account for the day of the week. Tran-
sitions between successive activities were also modelled based on the �rst-order
inhomogeneous Markov property. In developing these re�nements, considerable
e�ort has been put into the design of the calibration methodologies, to avoid
including characteristics which are statistically insigni�cant. Results from vali-
dation tests show that these re�nements do indeed improve model predictability,
when in�uences are included that capture activity transitions and a dependence
on individual characteristics in the starting probabilities and the duration distri-
butions.

The set of variables which potentially in�uence residential activities was re-
stricted in the presented models (cf. Section 4.2.1 and Figure 4.4). But there are
some characteristics recorded in the TUS database that may have a considerable
in�uence on residential occupants' activities, such as parental information, the
employment status of the spouse/partner or household income. Secondary activ-
ities are also recorded in the database. However, this information has so far been
neglected to keep the approach as general as possible and to avoid compounding
the challenges of data scarcity. Nevertheless, a future variant of this model might
usefully consider concurrent activities which have energy implications or simply
to improve the predictability of primary activities. Other potential re�nements
to the modelling approach include:

• sub-population dependent activity transition probabilities,

• the modelling of correlations of activities between members of the same
household, and

• an increase in model parsimony by reassembling dummy variables with
insigni�cant di�erences.

The proposed approach, as well as the calibration and validation methodologies
employed are directly applicable to other environments, such as workplaces and
all other types of places that are de�ned in the calibration database. Future work
should also concentrate on the use of the predictions of this model as an input
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to an algorithm simulating the use of electrical/water appliances, supported by
a reliable prediction of appliance ownership.
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Chapter 5

Appliance ownership

In this chapter, two approaches are presented to predict the probability of the
ownership of M types of electrical appliances, depending on household charac-
teristics, such as income or household size. The models are based on logistic re-
gression and calibrated with data of a Swiss appliance ownership survey of 2005.
The speci�cation of the models enables the choice of a set of predictors which
assures parsimony together with a high degree of signi�cant parameters using
a backward elimination technique. To treat di�culties due to multicollinear-
ity issues, an empirical approach is developed, based on principal components,
which allows to bypass the potentially very time-consuming backward elimina-
tion procedure. The validation and comparison of the two approaches is done by
performing Davidson MacKinnon J tests and by analysing the accuracy of their
predictions for sub-populations of the calibration dataset, revealing a similar level
of performance.

5.1 Introduction

As we are striving towards a more sustainable energy use, decentralised electricity
generation from renewable sources becomes more and more important. To better
match the load pro�les of neighbourhoods with (small-scale) power generation
(and for a better design/sizing of the latter) or for structural changes like those
of the smart grid concept [e.g., 56�58], we need to model more accurately the
stochastic nature of electrical appliance use in single buildings [49, 59]. In par-
ticular, one has to account for the variations over time (of day) and of behaviour
(use [60], investments, etc.) between individuals and households (cf. [61] for a
comprehensive modelling study of this in o�ce buildings). It was shown that the
ownership of electrical appliances in households is signi�cantly dependent on var-
ious drivers, such as personal/dwelling/household characteristics [55, 117, 118].
Obviously, the stock of electrical appliances in single households strongly in�u-
ences their residential electricity demand [e.g. 119, 120]. To model residential
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electricity demand in future scenarios, the accurate bottom-up modelling of ap-
pliance ownership is a crucial requisite [121].

With regard to the prediction of the probabilities of the ownership of electri-
cal appliances, a bottom-up model is needed that is calibrated on the signi�cant
characteristics of households, to faithfully encapsulate the full range of speci�ci-
ties. Such an approach also lends itself well to the modelling of future scenarios
to explore responses to changes in the behaviour how appliances are used as well
as to changes to the population's demographic characteristics. Last but not least,
an important requirement for a useful model is that it should be easy to recali-
brate it with other datasets, in order to investigate di�erences between countries
or temporal changes.

5.1.1 Previous research work

A large literature overview over the wider �eld of consumer behaviour and the
use of sustainable energy is provided by Madlener and Harmsen-van Hout [122].
Appliance ownership is also of interest for other �elds, such as waste management
[123, 124], or even social science [125]. In economics, one of the main interests
regarding appliance ownership exists in predicting replacement purchases [126].
However, the explanatory variables in these models usually do not include per-
sonal/household characteristics [127].

McNeil and Letschert present an approach based on a modi�ed version of
logistic regression, predicting di�usion rates of electrical appliances in di�erent
countries in dependence of national characteristics, and calibrated with data of a
wide international range [128]. However, due to the need to harmonise the data
of the di�erent surveys, these models are only based on a small set of di�erent
predictors, which do not include household speci�cities. Weber and Perrels use
discrete choice models to predict ownership of electrical appliances in Western
Germany [55]. However, the calibration methodology of the models is not pre-
sented in detail, and furthermore, a rigorous validation is missing. Leahy and
Lyons use logistic regression models to predict electrical appliance ownership in
Ireland, where stepwise deletion of variables was applied to remove variables that
are not signi�cant [120]. However, a precise description of the backward elim-
ination methodology is not presented. Matsukawa and Ito use a multinomial
logit model to predict the ownership of electric room air conditioners in Japan,
depending on income, other household characteristics and the consumption of
composite goods [129].

To assure robustness of a model, it is important to reduce the set of predictive
parameters to those that are statistically signi�cant. Ndiaye and Gabriel apply
principal component analysis, in order to predict electricity needs in residential
dwellings as a function of a reduced set of signi�cant predictors [53]. However,
the establishment of a theoretical framework that describes the use of principal
components in the context of logistic regression is to our knowledge rather in
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an early stage. The most comprehensive methodology was discussed by Aguil-
era et al., where a methodology is established how principal components can be
used in logistic regression, in order to manage problems of multicollinearity be-
tween predictors in the model [130]. Several strategies are presented how the
dimensionality in the principal component space can be reduced to eliminate
multicollinearity. However, this methodology is based on the de�nition and the
selection of principal components in the linear case [cf., e.g., 131], and thus this
is not applicable to immediately estimate a model, where all insigni�cant prin-
cipal components can be eliminated at once, but a stepwise procedure has to be
implemented.

Camminatiello and Lucadamo extended the latter methodology to multino-
mial logit models, but, the model validation is based on a small case study, and
a comprehensive quantitative evaluation is not presented, making it very di�cult
to estimate the viability for the present study [132]. Schaefer use principal com-
ponents to evolve an alternative estimator to the one using maximum likelihood,
when there is multicollinearity in predictor data [133].

Barker and Brown evaluate principal components linear regression besides
ridge logistic regression [134]. However, the criterion to decide which principal
components to eliminate is adopted from the method of Kaiser [135], which is
based on factor analysis. Furthermore, the error propagation between the esti-
mates of the principal components and the original scale is treated by means of
bootstrapping and not analytically. Marx presents a methodology for maximum
likelihood estimation when the information matrix for the maximum likelihood
estimation of a generalized linear model is ill-conditioned [136].

From the above review of the state of the art in predicting the ownership
of electrical appliances, we can conclude that a well-documented and detailed
approach, which is readily applicable for calibration with di�erent datasets (for
instance of di�erent countries or years) and where explanatory variables with in-
signi�cant in�uence are eliminated, is missing. The needed approach furthermore,
has to be compatible to encapsulate household-related explanatory variables.

5.1.2 Summary

A detailed methodology is presented to predict the probabilities with which elec-
trical appliances are present in households, depending on their characteristics.
In Section 5.2, the calibration data is detailed and two approaches are devel-
oped how the models can be calibrated and speci�ed, removing insigni�cant pa-
rameters due to multicollinearity. They are based on a backward elimination
procedure of logistic regression models, which are, �rstly, based on the original
predictors and, secondly, on principal components. In Section 5.3, the models
are validated, applied and their predictive power is compared to each other using
Davidson MacKinnon J tests. In Section 5.4, the approaches are discussed and
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further possible re�nements are identi�ed, and �nally the chapter is concluded in
Section 5.5.

5.2 Methodology

Methodologies are presented in this chapter to predict the ownership of electri-
cal appliances i (cf. Table 5.1) in households x̃, which are characterised by a
set of characteristics x̃ = (x1, . . . , xM) (cf. Table 5.2). The choice of the set of
predictors x̃ must be rigorously performed, bearing in mind that the modelling
complexity increases with the amount of predictors, but not necessarily the ac-
curacy. In this study, we propose to use only dummy variables, as this facilitates
interpretation of the estimated model parameters, as well as the implementation
of reliable automatised optimisation algorithms.

5.2.1 Appliance ownership survey

The models are calibrated using data of an electrical appliance ownership survey
[137] conducted in 2005 by the Association of Swiss Electricity Companies [138].
To reduce the complexity of the estimated models, the available set of predictor
variables was simpli�ed to the dummy variables in Tables 5.1 and 5.2, which are
de�ned to be one if the corresponding statement is true (or respectively if the
appliance is present) and zero otherwise1.

To de�ne the dummy variables in Table 5.2, some of the original variables
recorded in the survey have been transformed. In the set of the latter, for every
household member the gender and the age class (1 =̂ < 21, 2 =̂ 21 − 65, 3 =̂
> 65) are recorded. As there are numerous possible combinations of the number
of household members, their gender and age class, the inclusion of a dummy
variable for each combination would not be feasible within the framework of the
modelling approaches presented later. Therefore secondary dummy variables were
introduced, which (likely) correspond to given types of household forms, namely:

• Families are indicated by fam, corresponding to the case, where there are
at least three household members containing a man and a woman (both
not minor) and all the rest are in the �rst age class.

• Flat shares are characterised by shr, corresponding to the case where there
are at least three household members, which are all in the medium age
class.

1The dummy variable apSf was de�ned to be 1, if the dwelling is a single family home,
and 0 if it is an apartment. The variable rur de�nes, whether the place of residence of the
household is situated in a municipality with less than 10000 inhabitants and not within an
urban agglomeration.
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• ag2 corresponds to an average household age of at least 2 and less than 3.

• ag3 is one if every household member is in the third age class.

• olPr means that additionally, the household contains one man and one
woman to specify elderly couples.

• wom speci�es households with at least one woman.

The value of the monthly household income class was also speci�ed in 6 classes
(de�ned by the limits of 3000, 4500, 6000, 9000, 15000 CHF) and the 7th choice
of �not speci�ed�. The mean rental prices of the dwelling of the corresponding
room number [139] was deducted from the mean household income mean value
of the corresponding income class (3000 CHF and 16000 CHF for the lowest and
highest class, respectively), to derive the average disposable income per household
member. The resulting distribution was subdivided in 4 classes using the 5 %,
50 % and 95 % quantiles. The topmost income class was �xed (reference case,
together with the non-speci�ed households), resulting in the remaining 3 classes
inc1, inc2 and inc3.

Regarding the whole set of predictors, it is evident that there are many vari-
ables, which are mutually (anti-)correlated. This needs to be considered, when
developing a model to predict the ownership of appliances, which is described in
the following section.

5.2.2 Logistic regression

As the main interest in this research topic is to predict the equipment of elec-
trical appliances i in households with characteristics x̃, a methodology will be
presented, which allows to estimate the probabilities pi(x̃) that an appliance i is
present in the inventory of a household x̃, using logistic regression:

pi(x̃) =
1

1 + exp (β0 + β1x1 + . . .+ βMxM)
=

1

1 + exp (β0 + βᵀx̃)
. (5.1)

Here, β0 is the alternative-speci�c constant (ASC), β = (β1, . . . , βM)ᵀ represents
the vector of parameter estimates and x̃ represents the vector of predictors char-
acterising the household x̃ = (x1, . . . , xM)ᵀ. In this study, the dummy variables
of Table 5.2 are used in the models2, which were estimated using the software
MATLAB R© [140], unless di�erently speci�ed.

2The probabilities of appliance ownership pi(x̃) might also depend on appliance attributes,
as well as on the ownership of other appliances, which will be neglected.
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Table 5.1: Description of the binary choice variables of appliances i that are
estimated in the models. The di�usion rates over the total population, as well as
sub-populations, de�ned by some of the predictors (of Table 5.2), are shown in
Table 5.7.

abbreviation i description

fr2+ at least 2 fridges
cOv cooker with oven
cnOv cooker without oven
ovSp seperate oven
miwa microwave oven
dwsh dishwasher
cafe co�ee machine
tv1+ at least one TV
tvRe TV receiver
vid video player
dvd dvd player
cons game console
hi� hi� system
pc1+ at least one PC
pr1+ at least one printer
wlTe wireless telephone
st1+ at least one electric heater
efBl at least one energy-e�cient bulb
topF top-opening freezer
frz freezer
coWa collectively used washing machine
prWa private washing machine
tmbl tumbler
boil electric water boiler
radH radiant heater
aqua aquarium
sol solarium
pool swimming pool
wbed waterbed
�Ht �oor heating
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Table 5.2: Description of the binary predictors xj that are considered in the
models. The number in parentheses indicates the observed percentage that the
corresponding variable is equal to 1.

variable name xj description

apSf apartment or single family home (30.7)
fam family (22.6)
shr �at share (3.4)
own owner (42.3)
wom women in household (78.0)
rur urban or rural (13.8)
p3+ 3 or 4 household members (26.8)
p5+ more than 4 household members (0.8)
r3+ more than 2 rooms (87.1)
ag2 medium average age (70.0)
ag3 high average age (26.5)
kid minors in household (29.1)
olPr elderly couple (35.8)
inc1 low household income (12.2)
inc2 medium household income (42.4)
inc3 high household income (40.6)

Preliminary logistic regression models

In general, the set of dummy variables (x1, . . . , xM) is too extensive to �nd a
meaningful solution in the parameter space, due to multicollinearity or even linear
dependence between di�erent (sets of) dummy variables (indicated by extreme
standard deviations of the involved parameters due to model instability). Another
reason for large standard deviations is that the corresponding dummy variable
has no signi�cant in�uence on the binary choice. In this case, the parameter space
was reduced by removing one of the involved dummy variables, and afterwards
re-estimating the resulting model. This procedure was recursively repeated, until
all standard deviations (disregarding the one of the ASC β0) were smaller than
20.3 The results of these estimations are shown in Table 5.3. All estimated
parameters that are presented in this chapter are printed in boldface if they are
signi�cantly di�erent from 0 at the 5 % con�dence level, according to their t test.

The parameters that were excluded due to anomalous standard deviations in
the logistic regression model of the corresponding appliance are marked with a
�/�. These preliminary models are not very trustworthy as they depend on many
parameters βj that are not signi�cantly di�erent from zero corresponding to the

3The value of 20 has twice the maximum magnitude of the estimated parameters of the
constrained optimisation problem, which thus prevents from eliminating signi�cant parameters.
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p value of their t test. Therefore, a backward elimination technique was applied
to derive two other models, which will be presented below.

5.2.3 Backward elimination models

The models that are shown in Table 5.3 include in�uences of many parameters
which do not result in a signi�cant improvement of the predictive power. However,
as in general, there is correlation between di�erent predictors, the estimated
parameters βj are correlated as well. Therefore, one can not immediately obtain
a model depending only on signi�cant parameters by excluding all non-signi�cant
parameters in the models shown in Table 5.3 at once. In this way, the model
would have in general new insigni�cant parameters, and furthermore, it is likely to
exclude parameters which would be signi�cant in a simpler model, not depending
on so many insigni�cant terms.
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Table 5.3: Results of the preliminary model logistic regression

predictors

i ASC apSf fam shr own wom rur p3+ p5+ r3+ ag2 ag3 kid olPr inc1 inc2 inc3

fr2+ -4.85
0.90

1.22
0.30

-0.59
0.39

1.24
0.60

-0.56
0.30

0.83
0.46

-0.15
0.29

-0.08
0.38

0.62
0.78

0.74
0.55

-0.10
0.55

-0.12
0.63

0.98
0.50

0.12
0.37

-0.19
0.57

-0.46
0.54

-0.44
0.52

cOv 1.30
0.55

0.02
0.18

0.10
0.32

0.66
0.46

-1.21
0.17

-0.36
0.23

0.05
0.18

-0.40
0.27

0.31
0.76

-0.13
0.23

-0.25
0.43

-0.10
0.46

-0.18
0.37

-0.07
0.22

0.59
0.35

0.63
0.32

0.31
0.30

cnOv -1.58
0.57

-0.02
0.18

-0.14
0.33

-0.12
0.47

1.49
0.17

0.42
0.26

0.11
0.19

0.28
0.28

-0.90
0.87

0.23
0.26

0.05
0.44

0.04
0.47

0.63
0.38

0.24
0.23

-0.88
0.37

-0.92
0.34

-0.45
0.32

ovSp -1.67
0.58

0.00
0.18

-0.20
0.33

-0.48
0.47

1.46
0.18

0.45
0.26

0.17
0.19

0.46
0.28

-0.12
0.78

0.47
0.28

-0.03
0.44

0.01
0.47

0.54
0.39

0.28
0.24

-1.08
0.37

-1.11
0.34

-0.67
0.32

miwa -2.71
0.55

0.06
0.17

-0.52
0.32

0.40
0.45

0.12
0.16

0.62
0.22

0.14
0.18

0.27
0.26

0.16
0.70

0.70
0.22

1.02
0.42

0.70
0.45

0.36
0.37

-0.25
0.21

0.48
0.34

0.38
0.32

0.45
0.30

dwsh -1.58
0.61

0.03
0.22

0.27
0.42

1.34
0.54

1.16
0.20

0.09
0.23

-0.29
0.21

-0.28
0.34

0.47
1.12

1.13
0.22

0.85
0.47

0.29
0.50

1.56
0.46

0.84
0.22

-0.90
0.38

-0.83
0.34

-0.42
0.33

cafe -1.97
0.54

0.19
0.19

0.36
0.33

0.42
0.48

0.21
0.17

0.15
0.22

0.13
0.19

0.06
0.28

-1.60
0.74

1.30
0.21

0.48
0.41

0.28
0.44

-0.06
0.37

0.40
0.21

0.22
0.34

0.26
0.31

0.39
0.30

tv1+ -0.05
0.86

-0.11
0.40

-0.43
0.65

0.30
1.18

0.28
0.37

0.58
0.39

0.20
0.40

0.31
0.50

/ 0.60
0.34

1.38
0.62

1.95
0.70

-0.12
0.68

0.11
0.43

0.83
0.64

0.62
0.53

0.29
0.48

tvRe -3.64
0.81

0.31
0.26

-0.68
0.38

0.37
0.55

-0.12
0.25

0.88
0.35

0.46
0.23

0.04
0.36

1.27
0.75

0.25
0.35

0.21
0.57

-0.20
0.63

0.35
0.47

-0.30
0.30

0.21
0.56

0.22
0.52

0.40
0.50

vid -1.45
0.54

0.07
0.18

0.04
0.35

0.07
0.45

0.03
0.17

0.81
0.22

0.23
0.19

-0.10
0.28

-0.75
0.70

0.68
0.21

0.62
0.42

0.05
0.44

0.51
0.39

-0.13
0.21

-0.11
0.34

-0.23
0.31

0.05
0.29

dvd -0.05
0.55

0.01
0.19

0.03
0.33

0.17
0.45

-0.29
0.18

0.92
0.24

-0.18
0.19

0.23
0.27

0.16
0.74

0.19
0.23

-0.11
0.43

-1.62
0.47

0.79
0.38

-0.17
0.22

-0.75
0.35

-1.06
0.32

-0.65
0.30

cons -3.28
0.88

-0.41
0.26

-0.08
0.33

-0.78
0.62

0.44
0.25

2.52
0.57

0.27
0.24

0.26
0.30

0.15
0.75

0.61
0.49

-0.79
0.46

-2.25
0.68

0.75
0.44

-1.31
0.35

-0.33
0.59

-0.39
0.55

0.01
0.53

hi� 1.22
0.74

-0.03
0.22

-0.24
0.52

0.06
0.53

0.12
0.20

0.35
0.25

-0.33
0.21

-0.20
0.36

/ 0.37
0.22

0.39
0.59

-0.77
0.61

1.27
0.55

0.04
0.25

-1.16
0.44

-1.20
0.42

-0.45
0.41

pc1+ 0.11
0.90

0.03
0.25

-0.44
0.80

0.79
0.69

0.14
0.22

0.52
0.26

0.16
0.26

0.40
0.45

/ 0.30
0.24

1.19
0.78

-0.77
0.80

2.47
0.79

0.46
0.26

-1.29
0.45

-1.56
0.41

-0.42
0.40

pr1+ 0.47
0.69

0.19
0.22

0.49
0.46

0.76
0.57

0.40
0.20

0.63
0.24

0.18
0.23

-0.15
0.36

0.35
1.12

0.55
0.23

-0.07
0.56

-1.71
0.59

0.90
0.50

0.22
0.24

-1.39
0.40

-1.32
0.37

-0.40
0.36

wlTe 1.03
0.68

0.05
0.22

0.44
0.43

-0.03
0.55

0.15
0.20

0.22
0.24

-0.07
0.22

0.22
0.34

-0.22
0.86

0.14
0.22

-0.28
0.57

-1.54
0.60

0.02
0.47

0.42
0.24

-0.07
0.38

0.19
0.34

0.20
0.33

st1+ -3.33
0.63

1.24
0.20

-0.63
0.35

-0.48
0.49

-0.08
0.19

0.24
0.24

0.04
0.19

-0.01
0.30

-1.34
1.11

0.01
0.23

0.30
0.48

0.92
0.51

-0.01
0.39

-0.32
0.23

0.40
0.40

0.29
0.37

0.52
0.35

efBl -1.79
0.54

0.58
0.17

0.03
0.31

0.37
0.44

0.27
0.16

0.12
0.23

0.18
0.18

0.19
0.26

0.53
0.70

0.28
0.22

-0.37
0.40

-0.45
0.43

-0.02
0.36

0.32
0.21

0.10
0.36

0.31
0.33

0.41
0.32

topF -4.77
0.87

0.54
0.23

-0.44
0.38

-0.14
0.61

0.50
0.24

0.90
0.41

0.42
0.23

0.00
0.34

1.07
0.75

0.34
0.43

0.14
0.57

0.35
0.62

0.56
0.47

0.19
0.32

0.50
0.59

0.56
0.56

0.18
0.56

frz -3.93
0.61

0.68
0.18

0.18
0.33

2.01
0.49

0.65
0.17

-0.22
0.26

0.22
0.19

-0.15
0.28

-0.76
0.73

1.17
0.30

0.67
0.42

0.80
0.46

1.20
0.38

0.77
0.24

0.09
0.39

-0.02
0.36

0.23
0.35

coWa 4.17
0.71

-3.09
0.28

-0.77
0.48

-0.05
0.61

-1.51
0.18

-0.44
0.26

-0.20
0.24

0.28
0.38

-0.51
1.02

-0.48
0.25

0.92
0.57

1.10
0.60

1.11
0.54

0.18
0.25

-0.09
0.43

-0.03
0.38

-0.33
0.36

prWa -4.49
0.70

2.76
0.26

0.51
0.45

0.55
0.59

1.47
0.18

0.18
0.26

-0.04
0.24

-0.39
0.36

0.15
0.97

0.74
0.26

-0.44
0.54

-0.65
0.57

-0.40
0.51

0.08
0.25

0.13
0.43

0.15
0.39

0.44
0.37

tmbl 1.53
0.55

-0.98
0.18

0.17
0.32

1.15
0.45

0.42
0.17

-0.49
0.22

-0.28
0.18

-0.04
0.27

0.53
0.75

0.29
0.20

0.69
0.40

0.52
0.43

0.95
0.36

0.95
0.21

-1.37
0.38

-1.42
0.35

-1.09
0.34

boil -2.56
0.56

1.21
0.18

0.23
0.33

0.25
0.46

0.18
0.17

-0.49
0.23

0.49
0.18

-0.03
0.27

1.02
0.78

0.16
0.22

0.30
0.42

-0.04
0.45

0.22
0.38

-0.07
0.23

0.05
0.37

0.38
0.34

0.27
0.32

radH -4.52
1.03

1.15
0.32

-0.54
0.54

-1.00
0.90

-0.03
0.32

-0.62
0.45

-0.03
0.32

0.65
0.50

/ 0.71
0.50

0.07
0.75

0.40
0.79

-0.09
0.63

0.44
0.43

-0.14
0.63

-0.09
0.58

-0.07
0.56

aqua -6.17
1.81

0.23
0.46

1.97
1.15

2.39
1.12

0.05
0.46

0.82
1.25

-1.00
0.62

-0.33
0.59

0.56
1.23

0.51
1.10

0.15
1.14

-1.04
1.38

-0.05
1.30

0.84
0.87

/ 0.30
0.54

0.33
0.56

sol -6.93
1.52

0.42
0.65

/ -1.14
1.43

1.63
0.81

1.41
1.18

0.47
0.60

0.52
0.96

/ -0.07
1.16

/ -0.90
0.83

-1.37
1.02

-0.80
0.79

/ / 0.94
0.54

pool -6.96
1.46

1.88
0.69

0.33
1.25

-1.35
1.45

1.67
0.90

-2.65
1.40

-1.65
1.06

2.60
1.55

/ / / -0.26
0.54

-1.50
1.39

1.89
1.41

0.78
1.14

-0.64
1.17

-0.04
1.11

wbed -3.90
1.30

-0.52
0.43

/ 0.07
0.95

1.16
0.44

0.77
0.87

-0.01
0.45

1.38
0.78

1.80
1.33

-0.63
0.74

/ -1.56
0.79

-0.37
0.83

0.12
0.72

0.74
1.12

0.10
1.10

-0.08
1.08

�Ht -1.24
0.83

-0.54
0.27

0.60
0.51

1.75
0.79

0.92
0.26

-1.28
0.52

0.51
0.26

0.01
0.43

1.49
0.82

-0.26
0.40

0.22
0.68

-0.05
0.74

1.47
0.67

1.64
0.52

-1.17
0.51

-1.28
0.45

-1.10
0.43
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To overcome this di�culty a backward elimination technique was used, taking
the preliminary models in Table 5.3 as a starting point. Out of the initial model
depending onM predictors,M reduced models were estimated by separately elim-
inating each one of the M parameters. Thus, all the reduced models correspond
to the case that the removed parameter has been �xed to zero. Hence, a likeli-
hood ratio test between the initial and theM reduced models could be performed
to decide, whether the inclusion of the parameter in the initial model results in
a signi�cant increase of predictive power. For this purpose, the likelihood-ratio
statistic was compared to a χ2 distribution with one degree of freedom [112]. If
there was at least one reduced model which could not be rejected at a 5% signif-
icance level, the one with the lowest likelihood-ratio statistic was chosen as the
new �initial� model, and the procedure was repeated until the point where all the
reduced models were rejected.

Ordinary logistic regression

The backward elimination of the previous section was applied using the models of
Table 5.3 as the initial models. This means that for each appliance the predictors
introduced in Table 5.2 were eliminated step-by-step, until a more parsimonious
model was connected with a signi�cant loss of predictive power. The �nal models
resulting of this backward elimination procedure of ordinary logistic regression
(OLR) are shown in Table 5.4. Disregarding the ASCs, the only two parameters
which are not signi�cant are those of the dummy variables rur and own in the
model predicting the ownership of a pool. The correlation between those two
is less than 0.01. However, multicollinearity between parameters causes that it
is not possible to identify directly from the preliminary models (Table 5.3) the
parameters not having a signi�cant in�uence on the prediction. This is apparent,
for instance, looking at the in�uence of women in households on the probability
to own a hi-� system, where the corresponding parameter is insigni�cant in the
preliminary model of Table 5.3, in contrast to the �nal model in Table 5.4.

Principal component logistic regression

In this section, a methodology is presented to overcome the di�culties in �nding a
model that is only dependent on signi�cant parameters (related to the correlation
of parameters, mentioned in Section 5.2.3). The correlation between di�erent
parameters βj originates from correlations of the di�erent predictors xj. This can
be overcome by using principal components as predictors instead of the original
predictors (cf., Table 5.2). The principal components y are de�ned by

y = U ᵀ[x̃− x̃], (5.2)

where x̃ and x̃ represent the set of observations of the original variables (see
Table 5.2) and their means. In principal component analysis for linear regression
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U represents the covariance matrix of [x̃ − x̃]. The parameters (β′0, . . . , β
′
M) of

another logistic regression model can be estimated for each appliance i:

pi(y) =
1

1 + exp (β′0 + β′1y1 + . . .+ β′MyM)
=

1

1 + exp (β′0 + β′y)
. (5.3)

As the purpose of the transformation in Equation (5.2) is to remove correlation
of parameters in the logistic regression model, the matrix U is chosen from the
covariance matrix that was estimated in the preliminary logistic regression mod-
els of appliance i (cf., Section 5.2.2). However, as in logistic regression, the ASCs
β′0 are also correlated with the rest of the parameters, the corresponding covari-
ance matrices are of one more dimension than the vectors of all predictors. The
covariances with β0 are thus omitted in U .

The parameters β′ can be retranslated into parameters β̃, which express the
dependence of the probabilities on the original predictors x̃. Combining Equa-
tions (5.2) and (5.3), it follows that

pi(y) =
1

1 + exp
([
β′0 − β′

ᵀ
U ᵀx̃

]
+ β′

ᵀ
U ᵀx̃

) (5.4)

Here, the term in the brackets represents the alternative-speci�c constant β̃0 and
β̃ = Uβ′. It follows that the covariance matrix of β̃ is given by

Σβ̃ = UΣβ′∗U ᵀ, (5.5)

where Σβ′∗ is derived from the covariance matrix Σβ′ of β′, by omitting the
covariances to the ASC and by setting to zero all rows/columns corresponding
to removed principal components in the backward elimination. This also allows
to calculate the standard errors of β̃, given by the square root of the diagonal
elements of Σβ′ . Furthermore, the variance of β̃0 (which is by de�nition not
correlated to the components of β̃) is given by

σ2
β̃0

= aΣβ′aᵀ, (5.6)

where a = (1,−x̃ᵀ
U).

As the transformation matrix U of the linear transformation of the original
predictors, has full rank (cf., Section 5.2.3) and is thus bijective, it follows that
β = β̃, following from the invariance property of maximum likelihood estima-
tors. This means that the logistic regression models that are estimated using the
principal components are mathematically fully equivalent to the models that are
based on the original predictors.

The major advantage of the PCLR approach is that there is no correlation
between the predictors of the initial model (the correlation values between pa-
rameters β′k and β′l (k 6= l and k, l 6= 1) for all appliances i are in the order
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of magnitude of the computational precision). Thus, the removal of a principal
component does not substantially change the values of the remaining parameters
during the backward elimination. However, the more parameters are removed,
the more the remaining ones are correlated to each other, as the covariance ma-
trix is an estimation, which represents the real covariance only in the asymptotic
mean. The maximal correlation between parameters of all �nal models amounts
to 0.075, which occurred in the model for the ownership of a waterbed (again
omitting correlations to the ASC, which could by de�nition not be treated in the
PCLR approach; see above).

Regarding all the initial models, the maximal absolute value of the t test of
parameters of principal components that were removed in the corresponding �nal
models, amounts to 1.83; the minimal absolute value of the t test of all parameters
that remained was 1.98. As a t test of 1.96 corresponds to a p value threshold
of 5 %, this implies that, as a good approximation to the backward elimination
procedure, all the principal components can be removed from the initial model
at once, when the p value of their t test is not statistically signi�cant. This can
strongly reduce computational time compared to the backward elimination in
case of complex initial models.
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Table 5.4: Results of the original predictor backward elimination

predictors

i ASC apSf fam shr own wom rur p3+ p5+ r3+ ag2 ag3 kid olPr inc1 inc2 inc3

fr2+ -4.41
0.42

0.87
0.20

- 1.08
0.40

- 0.87
0.37

- - - - - - 0.48
0.21

- - - -

cOv 1.38
0.16

- - 0.76
0.36

-1.19
0.13

-0.45
0.17

- -0.42
0.15

- - - - - - - 0.28
0.13

-

cnOv -1.78
0.18

- - - 1.53
0.13

0.63
0.19

- - - - - - 0.54
0.15

- -0.48
0.22

-0.49
0.15

-

ovSp -2.27
0.27

- - - 1.47
0.14

0.63
0.19

- - - 0.52
0.27

- - 0.50
0.15

- -0.47
0.22

-0.48
0.15

-

miwa -1.56
0.22

- - - - 0.49
0.17

- 0.40
0.14

- 0.70
0.21

0.39
0.14

- - - - - -

dwsh -1.68
0.23

- - 1.03
0.44

1.16
0.15

- - - - 1.13
0.22

0.65
0.16

- 1.50
0.21

0.88
0.17

-0.50
0.23

-0.44
0.17

-

cafe -1.21
0.20

- 0.36
0.18

- 0.38
0.13

- - - -1.67
0.70

1.34
0.20

0.32
0.14

- - 0.44
0.15

- - -

tv1+ 0.27
0.47

- - - - 0.67
0.28

- - / 0.70
0.31

1.29
0.42

2.01
0.48

- - - - -

tvRe -3.10
0.29

- -0.78
0.34

- - 0.79
0.29

0.51
0.23

- - - 0.48
0.23

- 0.70
0.31

- - - -

vid -1.37
0.21

- - - - 0.70
0.16

- - - 0.67
0.20

0.65
0.14

- 0.44
0.15

- - - -

dvd -0.05
0.31

- - - -0.27
0.14

0.89
0.18

- - - - - -1.53
0.19

1.08
0.16

- -0.70
0.35

-1.07
0.31

-0.66
0.30

cons -3.90
0.52

- - - - 2.27
0.53

- - - - - -1.43
0.48

1.04
0.24

-1.06
0.30

- - -

hi� 1.40
0.17

- - - - 0.47
0.17

- - / - - -1.11
0.16

0.90
0.21

- -0.75
0.23

-0.80
0.17

-

pc1+ -0.68
0.18

- - 1.36
0.57

- 0.54
0.24

- - / - 1.86
0.17

- 2.81
0.32

0.55
0.23

-0.86
0.26

-1.18
0.19

-

pr1+ 0.20
0.21

- - - 0.53
0.16

0.79
0.18

- - - 0.62
0.22

- -1.70
0.17

0.98
0.21

- -0.98
0.23

-0.90
0.17

-

wlTe 1.27
0.12

- 0.78
0.23

- - - - - - - - -1.33
0.16

- 0.59
0.16

- - -

st1+ -2.57
0.21

1.16
0.14

-0.46
0.18

- - - - - - - - 0.60
0.15

- - - - -

efBl -1.77
0.19

0.82
0.13

- - - - - 0.41
0.16

- - - - - 0.46
0.14

- - -

topF -4.05
0.39

0.60
0.23

- - 0.56
0.23

1.04
0.32

- - - - - - - - - 0.38
0.17

-

frz -3.14
0.32

0.69
0.18

- 1.62
0.39

0.69
0.17

- - - - 1.16
0.30

- - 0.86
0.17

0.57
0.17

- - -

coWa 4.88
0.36

-3.01
0.27

- - -1.50
0.17

- - - - -0.45
0.23

- - - - - - -0.35
0.16

prWa -4.75
0.35

2.71
0.26

- - 1.47
0.17

- - - - 0.79
0.24

- - - - - - 0.34
0.16

tmbl 2.10
0.37

-0.97
0.18

- 0.92
0.36

0.43
0.17

- - - - - - - 0.84
0.17

0.71
0.15

-1.33
0.37

-1.40
0.34

-1.05
0.34

boil -2.35
0.22

1.34
0.14

- - - -0.44
0.17

0.52
0.18

- - - 0.34
0.15

- 0.49
0.15

- - - -

radH -4.26
0.37

1.14
0.22

- - - - - - / - - 0.54
0.23

- - - - -

aqua -5.02
0.58

- 2.49
0.62

2.80
0.78

- - - - - - - - - 1.39
0.65

/ - -

sol -5.44
0.58

- / - 1.80
0.64

- - - / - / - - - / / -

pool -7.64
1.05

1.55
0.66

- - 1.70
0.89

- -1.72
1.03

- / / / - - - 1.12
0.46

- -

wbed -4.14
0.34

- / - 0.87
0.35

- - 1.07
0.35

- - / -1.48
0.75

- - - - -

�Ht -1.82
0.42

- - 1.47
0.60

0.62
0.21

-0.87
0.38

- - - - - - 1.63
0.37

1.23
0.38

-1.18
0.49

-1.28
0.43

-1.14
0.42
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Table 5.5: Results of the principal component backward elimination

predictors

i ASC apSf fam shr own wom rur p3+ p5+ r3+ ag2 ag3 kid olPr inc1 inc2 inc3

fr2+ -4.41
0.40

1.26
0.30

-0.84
0.29

0.18
0.08

-0.54
0.29

0.86
0.34

0.03
0.02

-0.01
0.16

0.35
0.12

0.21
0.08

-0.19
0.11

-0.28
0.15

0.82
0.23

-0.39
0.19

0.07
0.04

-0.10
0.05

0.10
0.05

cOv 1.57
0.22

-0.00
0.17

0.14
0.13

0.82
0.38

-1.16
0.16

-0.20
0.07

-0.07
0.05

-0.50
0.20

0.17
0.07

-0.35
0.05

-0.32
0.08

0.03
0.07

0.06
0.11

-0.07
0.06

0.26
0.13

0.36
0.12

0.17
0.13

cnOv -1.47
0.44

-0.03
0.18

0.41
0.12

0.31
0.18

1.46
0.17

0.30
0.10

0.07
0.05

0.20
0.14

-0.06
0.02

0.29
0.04

-0.18
0.14

-0.25
0.12

0.25
0.10

0.39
0.09

-0.64
0.32

-0.78
0.31

-0.33
0.29

ovSp -1.47
0.44

0.04
0.18

0.22
0.17

-0.59
0.43

1.48
0.17

0.38
0.10

0.07
0.05

0.53
0.21

-0.26
0.08

0.31
0.04

-0.12
0.17

-0.12
0.14

0.12
0.13

0.32
0.10

-1.04
0.33

-1.03
0.31

-0.62
0.31

miwa -2.15
0.42

0.30
0.11

-0.33
0.12

-0.02
0.19

0.18
0.12

0.59
0.18

-0.05
0.03

0.34
0.19

0.06
0.03

0.57
0.17

0.37
0.11

0.06
0.09

-0.14
0.09

-0.55
0.17

0.47
0.29

0.54
0.28

0.50
0.26

dwsh -1.61
0.52

-0.01
0.21

0.29
0.31

1.48
0.44

1.15
0.20

0.20
0.13

-0.32
0.21

-0.33
0.17

0.50
0.19

1.18
0.21

0.94
0.42

0.34
0.45

1.41
0.37

0.72
0.11

-0.61
0.22

-0.88
0.23

-0.53
0.20

cafe -1.68
0.28

0.10
0.09

0.30
0.25

0.42
0.18

0.35
0.09

0.06
0.12

-0.02
0.04

0.05
0.17

-1.41
0.66

1.27
0.20

0.69
0.22

0.52
0.23

0.16
0.28

0.26
0.08

0.02
0.03

-0.22
0.06

0.15
0.05

tv1+ 1.83
0.21

0.06
0.07

0.06
0.08

0.18
0.06

0.26
0.08

0.19
0.05

-0.10
0.04

0.31
0.15

/ 0.61
0.16

0.19
0.15

0.82
0.21

-0.98
0.28

-0.14
0.16

-0.20
0.07

0.27
0.06

-0.19
0.05

tvRe -3.14
0.28

0.15
0.09

-0.45
0.17

0.03
0.01

0.25
0.09

0.98
0.26

0.10
0.02

-0.34
0.14

0.25
0.08

0.23
0.05

0.13
0.11

-0.23
0.09

0.38
0.12

-0.41
0.19

-0.09
0.03

0.02
0.07

-0.00
0.06

vid -1.15
0.18

0.13
0.06

0.27
0.05

-0.06
0.03

0.17
0.07

0.93
0.18

0.01
0.02

-0.06
0.16

0.08
0.03

0.36
0.07

0.28
0.07

-0.16
0.07

0.24
0.06

-0.10
0.19

-0.05
0.03

-0.08
0.06

0.05
0.06

dvd -0.08
0.35

-0.05
0.03

-0.11
0.23

0.63
0.17

-0.10
0.03

0.54
0.07

0.07
0.01

0.29
0.06

0.03
0.02

-0.05
0.04

0.26
0.16

-1.39
0.16

1.02
0.19

0.09
0.09

-0.70
0.32

-1.01
0.29

-0.66
0.27

cons -3.01
0.61

-0.26
0.06

-0.14
0.27

-0.46
0.23

0.03
0.07

2.53
0.58

0.05
0.02

0.50
0.17

0.14
0.75

0.62
0.14

-0.98
0.32

-2.00
0.54

0.95
0.34

-0.82
0.13

-0.57
0.23

-0.82
0.23

-0.54
0.23

hi� 1.52
0.48

0.21
0.06

-0.23
0.29

0.27
0.09

0.17
0.07

0.27
0.07

-0.34
0.21

0.15
0.05

/ 0.02
0.04

0.11
0.21

-1.09
0.20

0.83
0.24

0.01
0.07

-1.23
0.43

-1.10
0.40

-0.42
0.40

pc1+ 1.01
0.50

0.02
0.07

0.06
0.35

0.07
0.15

0.06
0.10

0.72
0.16

0.16
0.04

0.57
0.14

/ 0.26
0.09

0.27
0.28

-1.77
0.28

1.54
0.30

0.44
0.15

-1.28
0.44

-1.50
0.41

-0.37
0.40

pr1+ 0.18
0.39

0.25
0.07

0.24
0.30

1.33
0.35

0.19
0.08

0.76
0.11

0.09
0.02

-0.06
0.13

0.12
0.03

0.16
0.05

0.28
0.18

-1.35
0.18

1.03
0.22

0.40
0.09

-1.35
0.33

-1.13
0.30

-0.35
0.28

wlTe 0.12
0.15

0.11
0.06

0.17
0.04

0.03
0.00

0.09
0.07

0.47
0.06

0.06
0.01

0.18
0.04

0.01
0.00

0.15
0.02

0.57
0.06

-0.56
0.05

0.19
0.05

0.24
0.08

-0.03
0.01

0.05
0.06

-0.03
0.05

st1+ -2.46
0.23

1.18
0.18

-0.13
0.03

0.09
0.02

-0.12
0.18

0.00
0.05

0.00
0.01

0.08
0.03

-0.00
0.00

0.19
0.03

-0.33
0.06

0.33
0.06

-0.13
0.04

0.01
0.08

0.06
0.01

-0.19
0.07

0.15
0.07

efBl -1.55
0.16

0.41
0.05

0.05
0.03

0.02
0.00

0.45
0.06

0.18
0.02

0.06
0.01

0.08
0.03

-0.00
0.00

0.12
0.02

0.12
0.02

-0.09
0.02

0.05
0.03

0.13
0.03

0.03
0.00

-0.12
0.03

0.10
0.03

topF -3.57
0.27

0.49
0.09

0.29
0.09

-0.06
0.03

0.53
0.09

0.34
0.10

0.29
0.07

0.21
0.06

-0.02
0.01

0.19
0.04

-0.26
0.06

0.26
0.06

0.21
0.07

0.37
0.14

0.08
0.02

0.16
0.05

-0.20
0.04

frz -3.52
0.34

0.69
0.07

0.18
0.18

1.87
0.45

0.68
0.08

-0.00
0.11

0.08
0.02

-0.37
0.18

-1.27
0.62

1.15
0.27

0.25
0.27

0.25
0.29

1.11
0.26

0.57
0.09

0.33
0.08

0.03
0.10

0.21
0.10

coWa 4.79
0.34

-3.05
0.27

0.26
0.13

-0.06
0.13

-1.44
0.17

-0.23
0.13

-0.07
0.05

-0.07
0.15

-0.01
0.01

-0.17
0.08

-0.21
0.08

0.08
0.08

0.02
0.14

-0.13
0.13

-0.16
0.03

0.33
0.07

-0.16
0.08

prWa -4.71
0.34

2.75
0.26

-0.14
0.12

0.00
0.13

1.37
0.17

0.07
0.15

-0.01
0.07

0.02
0.16

0.02
0.01

0.71
0.25

0.23
0.08

-0.16
0.08

0.01
0.14

0.20
0.12

0.17
0.03

-0.34
0.07

0.14
0.07

tmbl 1.46
0.50

-0.97
0.17

-0.06
0.17

0.45
0.14

0.45
0.16

-0.13
0.12

-0.04
0.02

-0.11
0.06

0.75
0.29

0.39
0.18

0.65
0.34

0.68
0.37

0.83
0.24

0.65
0.11

-1.47
0.37

-1.48
0.35

-1.32
0.34

boil -2.24
0.26

1.09
0.14

0.09
0.09

-0.08
0.10

0.31
0.15

-0.37
0.11

0.20
0.05

-0.11
0.14

0.02
0.01

0.43
0.14

0.17
0.08

-0.24
0.08

0.23
0.10

-0.28
0.10

-0.18
0.13

0.16
0.10

0.02
0.10

radH -4.12
0.39

1.13
0.31

0.02
0.03

-0.04
0.02

-0.00
0.31
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Figure 5.1: Distribution of the probabilities ppr with which the correct outcome
is predicted for every appliance and every household in the sample.

5.3 Results

5.3.1 Model comparison

The two models in Sections 5.2.3 and 5.2.3 have been derived from the preliminary
model of Section 5.2.2 using likelihood ratio tests, and should thus be favoured
over the latter. The probabilities ppr, with which the models predict the cor-
rect outcome of the observed appliance ownership over the whole set of modelled
appliances and the entire sample population is shown in Figure 5.1. Constant
models refer to logistic regression models which are not dependent on any pre-
dictor. These models correctly predict the observed overall sample di�usion rate.
Preliminary models denote the models that were de�ned in Section 5.2.2. Except
for the constant models, the models show comparable predictive power. Com-
paring the predictions of the constant models with those of others reveals the
need to model appliance ownership in dependence of household speci�cities. The
medians of the distributions are 65.4 %, 78.3 %, 77.9 % and 78.3 % for the con-
stant, the preliminary, the OLR and the PCLR models, respectively. The sum
of logarithms of all ppr corresponds to the sum of log-likelihoods of all appliances
that are shown in Table 5.6.

In order to estimate which one of the two approaches is preferable over the
other, Davidson and MacKinnon J tests [112, 141] were performed using the open
source software Biogeme 1.8 [114�116]. This test is used to decide, which one of
two competing hypotheses H1 and H2 should be preferred:

• H1 : V (x̃) = β0 + βᵀx̃, meaning that the deterministic part of the utility
function V (x̃) (given by the exponent in Equation (5.1)) is described by
the OLR model.

• H2 : V (x̃) = β̃0+β̃
ᵀ
x̃, meaning that V (x̃) is described by the PCLR model.
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In order to test H1 one considers the composite model

Hc : V (x̃) = (1− α)(β̃0 + β̃
ᵀ
x̃) + α(β̂0 + β̂

ᵀ
x̃), (5.7)

where β̂0 and β̂ denote the parameter values that were estimated in the model
of H1. Hence, (β̂0 + β̂

ᵀ
x̃) is the estimated value of the deterministic part of

the utility, and represents a single continuous predictor variable, for which the
parameter α is estimated. If the value of α is signi�cantly di�erent from 0, this
means that one can not reject the Hypothesis that H1 is correct. To test H1 the
same procedure is applied, where the roles of H1 and H2 in Equation (5.7) have to
be interchanged. The results of these tests are shown in Table 5.6 for the OLR,
as well as the PCLR models.

This means that for instance for frz (freezer) the value of α = 0.82±0.38 tests
the hypothesis, whether the OLR model can be rejected compared to the PCLR
model. Thus, the OLR model could be rejected with a 95 % con�dence level.
The other way round, α = 0.50± 0.62 indicates that the PCLR model could not
be rejected.

There are four possible outcomes of the J test [112]:

• In two possible outcomes, only one of the two models is rejected, meaning
that the other model should be preferred.

• Both models are rejected, indicating that better models should be preferred.

• Both models can not be rejected, indicating that the data is not informative
enough to distinguish between the two models.

Omitting the cases where one of both composite models could not be mean-
ingfully estimated, this means that the OLR model was rejected 8 times, whilst
the PCLR model could not be rejected. The PCLR model was rejected 10 times,
whilst the OLR model could not be rejected. Both models were rejected 5 times,
and twice none of them could be rejected, showing in summary that both model
speci�cation methodologies are similarly convincing. The PCLR model is more
often rejected than the ordinal LR model. However, most often the signi�cance
level of the t test of α is not very low, meaning that the models are not rejected
with a very high con�dence level.
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Table 5.6: Results of the Davidson and MacKinnon J tests.

i #(OLR) #(PCLR) L(OLR) L(PCLR) α(OLR) α(PCLR)

fr2+ 4 5 -359.76 -359.24 * 0.70 ± 0.29

cOv 5 6 -731.10 -730.63 0.52 ± 0.36 0.58 ± 0.34
cnOv 5 7 -675.15 -674.61 0.53 ± 0.36 0.61 ± 0.34
ovSp 6 8 -664.38 -661.43 0.52 ± 0.45 0.80 ± 0.31

miwa 4 6 -791.37 -790.45 0.66 ± 0.24 0.62 ± 0.22

dwsh 8 10 -627.24 -626.20 0.63 ± 0.34 0.81 ± 0.33

cafe 6 7 -731.88 -732.73 0.70 ± 0.32 0.59 ± 0.33
tv1+ 4 2 -269.05 -273.36 0.83 ± 0.26 0.45 ± 0.38
tvRe 5 4 -433.76 -434.53 0.79 ± 0.37 0.62 ± 0.39
vid 4 5 -757.12 -757.96 0.98 ± 0.17 0.69 ± 0.42
dvd 7 6 -687.71 -689.67 0.71 ± 0.30 0.51 ± 0.35
cons 4 6 -380.66 -378.22 0.56 ± 0.32 0.72 ± 0.26

hi� 5 7 -588.82 -589.10 0.91 ± 0.41 0.54 ± 0.34
pc1+ 7 8 -486.45 -484.47 0.50 ± 0.33 0.77 ± 0.31

pr1+ 7 7 -587.08 -589.19 0.80 ± 0.27 0.66 ± 0.32

wlTe 3 3 -595.75 -595.93 0.58 ± 0.27 0.51 ± 0.26
st1+ 3 4 -671.97 -672.67 * 0.48 ± 0.39
efBl 3 2 -776.04 -776.06 0.54 ± 0.25 0.56 ± 0.26

topF 4 3 -440.79 -441.73 0.64 ± 0.29 *
frz 6 7 -699.45 -697.26 0.50 ± 0.62 0.82 ± 0.38

coWa 4 6 -519.57 -520.16 0.81 ± 0.35 0.50 ± 0.30
prWa 4 7 -537.33 -539.38 0.97 ± 0.28 0.34 ± 0.30
tmbl 8 6 -781.32 -780.58 0.87 ± 0.36 0.91 ± 0.34

boil 5 8 -728.19 -728.56 0.67 ± 0.31 0.58 ± 0.31
radH 2 4 -311.77 -311.42 0.32 ± 1.36 *
aqua 3 4 -153.72 -152.04 0.64 ± 0.34 0.73 ± 0.29

sol 1 2 -79.80 -78.53 0.74 ± 0.54 *
pool 4 4 -95.50 -94.30 0.60 ± 0.18 0.74 ± 0.28

wbed 3 3 -153.14 -154.76 0.85 ± 0.37 0.42 ± 0.36
�Ht 8 4 -355.95 -353.62 0.58 ± 0.25 0.79 ± 0.24

# speci�es the number of parameters in the model (apart from the ASC), L is the value of the
log-likelihood and α is the parameter to estimate, whether the other model should be rejected,
by testing for statistically signi�cant di�erence from zero. The values are boldface when α is
signi�cantly di�erent from 0 at the 5 % con�dence level.

A star indicates that the composite model of the Davison and MacKinnon J test included pa-

rameters, which could not be meaningfully estimated (either there were extreme standard errors

of parameters, or the parameter value reached the boundaries of the constraint optimisation

problem; usually indicating linear dependences between parameters in the composite model).
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5.3.2 Application and validation

In this section the models are applied to predict the di�usion of the electrical ap-
pliances for sub-populations, to demonstrate the predictive power of both model
speci�cation methodologies. This is done by calculating the probabilities (ac-
cording to Equation (5.1)) that the appliances are present in the 1200 households
of the sample population that was described in Section 5.2.1.

The results are shown in Table 5.7. Dtot indicates the observed di�usion
percentage of the corresponding appliance in the survey dataset, which was de-
scribed in Section 5.2.1. A model containing no other parameters than the ASC
(refered to as �constant model� in Figure 5.1) predicts by de�nition a mean dif-
fusion probability p =Dtot, regardless for which sub-population. In the presence
of other parameters βj, the ASCs in the logit models secure that for the whole
sample population the mean percentage predicted by the model always repro-
duces an average di�usion probability equal to Dtot. However, regarding sub-
populations in the sample the di�usion percentages di�er. These percentages
Dsub are shown in Table 5.7 for the sub-populations, where the corresponding
dummy variable apSf, own, rur, kid and inc3 is equal to one. The mean predicted
di�usion probabilities over these sub-populations psub of the OLR model pO and
and the PCLR model pPC (according to Equation (5.1)) are also shown. The
predicted di�usion rates of the corresponding appliance for the complementary
sub-population pcsub (corresponding dummy variable equal to 0) can be derived via
Dtot=Hsub ·psub + (1− Hsub) · pcsub, where Hsub corresponds to the sub-population
proportion shown in Table 5.2. The PCLR model prediction of the di�usion rate
of dishwashers for the sub-population without minors in the household (kid = 0)
is, for instance, (34.7 %− 17.4 % · 29.1 %)/70.9 % = 41.8 %.

Table 5.7 shows that the predictions of both models are convincing. Analysing
the predictions psub for the whole set of sub-populations where one of the pre-
dictors is equal to 1 (see Table 5.2, not only the �ve shown in the table) and all
appliances, the maximal deviation of the predictions are found to be -22.3 % for
the PCLR model, and -25.1 % for the OLR model. In both cases this maximal
deviation occurred for the top-opening freezer (topF) and the sub-population of
households with more than 4 household members (p5+). The maximal relative
deviation of -70.6 % occurs for the prediction of the PCLR model that more than
one TV is in the household for the sub-population of low incomes (inc1). For the
OLR model, the maximal relative deviation of +116.7 % occurs for the prediction
that more than one TV is in the household for the sub-population of �at shares.

The distribution of the decadic logarithm of the relative error of the predic-
tions η = log ((Dsub − pmod))/ Dsub) is shown in Figure 5.2. The distribution of
the OLR model is not shown for x values below -5, as every time the dummy
variable is included in the OLS model (142 times in total, cf. Table 5.4), the
accuracy of the prediction of the di�usion rate pO is given by the computational
precision (compare Tables 5.4 and 5.7). In other words, the preliminary models
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of Table 5.3 correctly predict the di�usion rates of all sub-populations de�ned by
the dummy variables, which are included in the models. Therefore, the median
of the distribution of η of the OLS model of 0.65 % is smaller than the one of
the PCLR model of 1.1 %. However, the 95 % quantiles amount to 18.4 % and
16.3 %, respectively, showing that the OLR is less robust against outliers than
the PCLR, which is also apparent comparing the maximum of the relative errors
(see above).
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Table 5.7: Predictions of sub-population shares of the OLR and the PCLR models.

apSf own rur kid inc3
app Dtot Dsub pPC pO Dsub pPC pO Dsub pPC pO Dsub pPC pO Dsub pPC pO
fr2+ 90.2 93.5 93.4 93.5 87.4 87.7 86.2 89.1 87.8 87.4 85.4 84.9 85.4 91.6 90.2 91.2
cOv 37.8 31.1 31.1 31.1 54.7 54.5 54.7 42.4 44.8 43.2 45.6 44.4 45.2 39.4 38.7 38.6
cnOv 65.4 73.6 73.5 73.6 45.1 45.3 45.1 57.0 57.7 58.9 55.6 56.3 55.6 63.7 64.0 62.9
ovSp 66.3 74.6 74.7 74.6 46.1 46.0 46.1 57.0 58.4 59.7 56.2 56.8 56.2 65.3 65.3 64.1
miwa 54.1 57.6 58.8 56.4 48.2 47.0 50.7 46.7 49.8 50.1 44.7 45.1 43.7 54.8 55.0 56.0
dwsh 34.7 42.3 42.2 42.3 17.7 17.8 17.7 31.5 32.0 27.4 16.6 17.4 16.6 35.7 36.8 34.9
cafe 37.0 41.7 41.6 41.0 28.1 27.6 28.1 30.3 33.0 32.8 31.5 30.5 30.9 37.0 35.4 38.5
tv1+ 6.3 7.0 6.8 6.9 4.5 5.1 5.2 4.8 6.5 6.0 7.4 8.7 7.0 7.4 7.2 6.7
tvRe 87.7 89.3 89.3 88.4 86.0 84.8 86.5 81.2 85.1 81.2 84.5 84.3 84.5 87.1 88.1 88.0
vid 41.9 45.3 46.0 44.6 37.0 35.4 38.1 33.3 36.9 37.5 27.8 27.9 27.8 41.5 43.1 44.2
dvd 56.1 57.7 58.0 57.6 56.9 55.3 56.9 54.5 49.9 52.0 31.2 32.3 31.2 56.5 56.8 56.5
cons 86.2 88.1 87.6 88.3 83.5 85.2 84.6 80.0 82.8 82.6 66.5 66.5 66.5 87.5 88.7 89.4
hi� 24.5 26.0 26.8 25.6 22.6 21.7 23.8 26.1 25.5 21.9 11.2 12.3 11.2 19.5 19.4 18.9
pc1+ 27.3 30.3 30.0 29.7 23.8 24.5 25.1 20.0 20.2 22.0 4.6 5.3 4.6 22.4 22.2 21.8
pr1+ 32.7 37.3 36.8 36.7 25.6 27.1 25.6 24.2 25.6 26.5 12.0 13.4 12.0 27.7 28.3 27.1
wlTe 23.6 25.6 26.0 24.6 20.7 20.3 22.7 20.6 18.8 20.7 12.6 13.3 13.6 23.4 24.9 23.9
st1+ 71.5 78.2 78.3 78.2 63.8 63.8 63.2 69.1 69.7 69.6 75.9 74.4 75.9 68.8 69.3 71.6
efBl 60.2 66.8 66.2 66.8 49.8 49.5 51.9 52.1 54.9 56.2 55.6 55.6 56.4 59.3 58.6 61.2
topF 86.5 90.9 90.5 90.9 79.3 79.6 79.3 78.8 80.4 83.1 81.9 81.9 82.6 89.7 89.9 89.1
frz 58.2 69.0 69.0 69.0 39.6 39.6 39.6 46.7 49.0 50.1 44.7 44.6 44.7 59.8 60.6 61.9

coWa 48.4 27.8 27.9 27.8 82.1 81.6 82.1 63.0 61.6 60.9 54.7 55.3 57.1 49.5 50.1 49.5
prWa 50.6 70.4 70.3 70.4 17.5 18.3 17.5 38.8 38.6 38.3 43.0 42.8 41.7 49.7 49.2 49.7
tmbl 41.7 38.0 38.2 38.0 42.1 41.5 42.1 48.5 43.9 43.2 39.3 40.4 39.3 40.5 42.6 40.5
boil 61.2 71.3 71.0 71.3 48.8 48.3 50.0 45.5 50.7 45.5 49.0 48.7 49.0 62.8 63.1 62.6
radH 92.3 95.0 95.0 95.0 89.0 88.9 89.0 91.5 91.2 91.2 93.1 92.4 92.2 92.2 92.4 92.6
aqua 96.8 97.5 97.2 97.3 96.1 96.5 96.3 98.2 98.5 96.1 94.0 93.8 94.1 97.3 97.7 97.6
sol 98.7 99.3 99.3 99.1 97.4 97.7 97.4 97.6 98.6 98.3 98.6 98.7 98.5 97.9 97.9 98.7
pool 98.0 99.5 99.5 99.5 95.7 95.9 95.7 99.4 97.7 99.4 98.6 98.3 97.7 97.9 97.3 98.5
wbed 96.8 97.4 97.1 97.7 95.1 95.9 95.1 95.8 95.7 95.6 94.6 93.8 93.9 97.7 97.8 97.2
�Ht 90.6 91.2 91.3 92.1 87.0 87.1 87.0 85.5 88.3 89.4 86.5 86.6 86.5 91.6 90.7 91.6
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Figure 5.2: Distribution of the decadic logarithm of the relative errors of the
predicted sub-population shares of the OLR and the PCLR.

5.4 Discussion

The two approaches to predict appliance ownership in households have been
formulated to take into account individual characteristics of the households. The
accuracy of both models is comparably satisfying regarding the predictions of the
di�usion rate in demographic sub-populations. To address this, two automatised
model calibration algorithms have been tested.

As experience teaches us that human behaviour can be very diverse, it is
unsurprising that the modelling could still be re�ned:

• The inclusion/removal of predictor variables could still improve the pre-
dictive power of the models. For instance, the number of households with
more than 4 persons (p5+) is based on a very small sub-population of 0.8
%, which does not secure statistically signi�cant information. Whilst the
backward elimination of the OLR included a parameter for this dummy
variable only once, it yielded a signi�cant parameter β̃ in 12 of 24 cases for
the PCLR approach. This shows that it is more important for the PCLR to
base the approach on a meaningful initial model (cf. Table 5.3). However,
the validation has shown that the model approaches are nevertheless robust
enough, to yield accurate predictions. Further predictors that could be in-
cluded are, for instance, a dummy variable that men are in the household
or a �ner resolution of income classes.

Unfortunately, the household characteristics that were recorded in the sur-
vey (cf. Section 5.2.1) are not very manifold (fam, shr, olPr are secondary
variables derived of gender and age class information; the latter should con-
tain more than 3 di�erent categories; the employment status of household
members could also be of interest). Furthermore, a more realistic represen-
tation of the disposable income per household member would be based on
the equivalence income (according to the OECD modi�ed scale [142]), but
this can not be exactly derived as the age class information in the survey
is not detailed enough.
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• For several appliances, the number of units was also recorded, which could
be modelled using a multinomial logit approach. However, the backward
elimination of insigni�cant variables (see Tables 5.4 and 5.5) took up to
10 min using MATLAB. In a multinomial logit model, the signi�cance of
parameters is in general choice-speci�c (choice corresponding to the num-
ber of appliances in the household). Therefore, the number of parameters
to estimate is proportional to the number of choices, whereas the number
of correlation coe�cients is proportional to the square of the latter. This
causes the elimination procedure for a multinomial logit model to be much
more time-consuming. In addition, the modelling of choice-speci�c param-
eters in multinomial logit models is not possible in MATLAB, and thus,
would also have to be done using Biogeme, necessitating the calibration
data reimport for each intermediate model during the backward elimina-
tion process, even more increasing the time required.

Looking at the estimated parameters of the two approaches in Tables 5.4
and 5.5, it can be summarized that the type (apartment/single family home),
as well as the type of ownership (tenant/owner) of the dwelling, the presence of
women and children, the age composition and the revenue of households have
an important in�uence on the ownership of electrical appliances. Looking at the
distribution of the predictors (Table 5.2), the demographics of the dataset seem
to be representative for Switzerland. For instance, the Swiss average of the year
2000 of the proportion of single or two person households of about 67.6 % is close
to the survey value of 72.4 % (of 2005) [143]. However, household sizes of more
than 4 are underrepresented in the sample with 0.8 % compared to the national
average of 6.3 %. This could be due to a biased sample population/response rate,
or to misinformation of the questionnaires' respondents.

5.5 Conclusions

In this chapter, we present approaches to the modelling of the probability of
electrical appliance ownership, based on logistic regression models dependent
on household characteristics. The purpose of these models is to support more
accurate predictions, which electrical appliances are in present households with
given speci�cities. Preliminary binomial logit models were estimated, always
using the same set of predictors (occasionally reduced if the standard errors were
too large). To eliminate redundant parameters due to correlations, two backward
elimination approaches were presented, resulting in models with similar predictive
power. In this regard, the approach based on principal components is shown to
be a valuable tool for the speci�cation of parsimonious models, by bypassing the
backward elimination procedure, which can be very time-consuming in case of
complex models.
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The set of predictor variables potentially in�uencing appliance ownership was
reduced to the set shown in Table 5.2. However, the formulation of the approach
allows to automatically derive a signi�cant model based on any type of predictor
set. Other household characteristics, not recorded in the calibration dataset,
may have considerable in�uence on appliance ownership, such as the employment
status or a �ner age resolution of household members. Besides, the ownership of
the number of an electrical appliance could be treated using a multinomial logit
approach, which would require more e�orts for model speci�cation.

For future research, the principal component logistic regression approach
should be tested with more sophisticatedly derived preliminary models (cf. Ta-
ble 5.3), where a wider scope of predictor variables should be included. Moreover,
the approaches should also be calibrated using datasets of di�erent countries and
years to study cultural and temporal di�erences.
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Chapter 6

Load pro�le modelling

In this chapter, we present a bottom-up approach to predict residential load
pro�le distributions resulting from the use of individual electrical appliances in
dependence of residential activities. The modelling of electrical appliance use is
calibrated with measurements of the IRISE campaign, where the electric power
consumption of 98 households and individual electrical appliances have been mea-
sured as a function of time during approximately one year.

This chapter begins with a brief review of the relevant research in the �eld
of electricity load modelling (Section 6.1), followed by a description of the IRISE
dataset (Section 6.2). By comparing the time-dependent probabilities that an
appliance is on/switched on with those that relevant activities are done/started
(cf. Chapter 4) whilst being at home (cf. Chapter 3), the conditional probability
to use/switch on an electrical appliance whilst performing/starting an activity
is derived by means of regression analysis (Section 6.3). The distribution of
residential load pro�les is then treated as the superposition of power consumption
distributions of individual appliances (Section 6.4). We go on to discuss further
improvements in the modelling and the calibration of residential load pro�les, as
well as how this can be implemented in simulations. Finally, we will conclude
and point out further perspectives for research in load pro�le modelling.

6.1 Introduction

As many electrical appliances are controlled by occupants, residential electricity
load curves depend to a great extent on behavioural aspects. It is thus useful to
predict the use of these appliances as a function of the time-dependent residential
activities that are performed whilst being at home. We �rst present a short
summary of previous research conducted in this �eld and outline the requirements
for further developments.
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6.1.1 State of the art

A detailed statistical evaluation of the patterns of appliance use, as well as the
dependence of the use of di�erent electrical appliance types on various factors
(such as socio-economic or household characteristics) is provided by Mansouri
et al. [144]. This study is based on a questionnaire survey of over 1000 house-
holds in the United Kingdom conducted between May and November 1994, where
also appliance ownership, attitudinal, and other socio-psychological factors were
investigated. Firth et al. [145] present a statistical evaluation of annual consump-
tion values of an electricity consumption monitoring campaign of 72 residential
dwellings in the United Kingdom, where they disaggregate the entire household
load into �active� and �standby� appliance groups.

A model to predict residential load pro�les as a function of occupancy, as
well as psychological factors (�proclivity functions�) was developed by Walker
and Pokoski [50]. Schick et al. [146] present a model to estimate load pro�les,
based on demographic statistics and climatic data. A simple prediction model for
the load pro�les of various building types was developed by Jardini et al. [147].
Yao and Steemers [148] present another simple method to predict residential
electricity demand pro�les based on di�erent pre-de�ned occupancy and appliance
consumption patterns, where random noise is added in a not further de�ned
manner.

A pioneering bottom-up model was developed by Capasso et al. [62], where
availability and appliance usage starts are represented by probabilistic functions,
which are used together with socio-economic and load data for appliance duty
cycles to predict residential load pro�les. A similar model to predict residential
load pro�les was presented by Paatero and Lund [149], calibrated with aggregated
statistical data. Apart from the time of day, the model depends on a seasonal
and a social random factor, as well as the weather and the week. However,
these models were not validated, regarding the distribution of the predictions
over households with di�erent characteristics.

Armstrong et al. [150] present a stochastic model to predict electricity load
pro�les of Canadian households. which is calibrated with average national data
about residential electricity use for appliances and lighting [151], as well as with
national census data. This model was also used to estimate national residen-
tial electricity and domestic hot water loads load using neural network tech-
niques [152]. However, the results of another study revealed that the model of
Armstrong et al. does not adequately reproduce either the temporal variability
nor the inter-household variations of the distribution of measured electricity load
data [52].

Dickert and Schegner [153] model load curves of individual residential appli-
ances as a function of switch-on times, duration distributions and power con-
sumption distributions that are normally distributed around their mean value, if
the appliances are in the households according to pre-de�ned penetration rates of
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up to 100 %. Furthermore, they use pre-de�ned rules, e.g., that a tumble-dryer
is used 5 to 60 minutes after the end of the use of the washing machine. The
method is validated by comparing the distribution to literature values and the
predicted load pro�les with measured ones. However, the assumption of normally
distributed random variables is not based on measurements. In Figures 6.2, 6.3
and 6.11a, we show that normal distributions are in most cases a too simplistic
candidate to accurately represent the observed distributions.

Richardson et al. used time use data to derive pro�les of active occupancy
(at home and awake), as well as of di�erent activity types. In a simulation each
household is then populated with appliances, and residential electricity loads
are stochastically modelled based on �xed parameters that were calibrated from
measurements [23, 64].

Tanimoto et al. developed a methodology where time-dependent occupant
behaviour schedules are stochastically generated, and loads from heating, venti-
lating and air conditioning systems are simulated as a Markov chain. The load
pro�les of other electrical appliances are derived from occupancy and behavioural
schedules, by means of the respective utility demand schedules [25, 45, 154, 155].

Widén et al. developed approaches where time use patterns (types of place
and activities) are predicted deterministically or stochastically based on Markov
chains to generate residential electricity loads. The link between occupancy
and activities with the power demand of appliances is provided by determin-
istic conversion functions that are pre-de�ned for the respective pairs of occu-
pancy, (sets of) activities and the appliances. However, the models were not
validated by comparing the distribution of predicted load pro�les with the mea-
sured one [20, 40, 54].

6.1.2 Perspectives

This review underlines the need of a validated methodology which enables to
predict the distribution of residential electricity loads as a function of other in�u-
encing parameters, which is also important from an economic point of view [156].
The importance of the uncertainties of the aggregated load pro�le distribution of
multiple households is increasing with a decreasing number of households. There-
fore, an accurate prediction of the load distribution is particularly important for
the prediction of the aggregated load of households in small-scale neighbourhoods,
in order to match the demand with supply from decentralised power generation
infrastructures.

In this context, the dependence of the model on signi�cant explanatory vari-
ables is crucial, in order to allow for a reliable model application to predict elec-
tricity demand in scenarios with boundary conditions that di�er from those of
the calibration datasets. To enable the accurate application of the model for fu-
ture scenario predictions, it is furthermore important that the model parameters
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be related to observable physical quantities, whose changes can be meaningfully
estimated for such scenarios.

6.2 The IRISE survey

6.2.1 General characteristics

The dataset used to calibrate the models originates from the IRISE campaign [157],
which has been carried out by Enertech [158] and supported by Électricité de
France [159]. In this measurement campaign, the average electricity needs of do-
mestic appliances (in average 9.8 per household) including lighting and cooking
during 10 min time steps have been monitored in Nhh = 98 households in France
during approximately one year from January 1998 to February 1999.

Table 6.1 shows a general summary of the surveyed appliance types l that were
monitored in this campaign. The average electric power consumed at every 10 min
time step was recorded in integer units of Wh/10 min during the measurement
period of about one year. The di�usion rateD denotes the average percentage the
appliances were included in the list of measured appliances in the households.1

The average percentage of time steps the appliances were in use (consuming a
non-zero electric power) is denoted by R. P indicates the mean non-zero value of
consumed power in Watt, as well as its standard error. To account for appliances
which consume power in standby mode whilst not operating, the corresponding
values of R∗ and P ∗ are based on an arithmetic, where every consumption of up
to 18 W = 3 Wh/10 min is considered as standby (being switched o�). According
to these statistics then, the electric ovens were present in 28 % of the households,
consumed in average a non-zero power of 374 ± 657 W during 5.8 % of the time
steps, and an average power above 18 W of 1040 ± 741 W during 2.0 % of the
time steps. The average user and usage characteristics of the IRISE campaign can
be found in the REMODECE database [160], for which general characteristics
are provided by de Almeida et al. [161].

In addition to the appliance measurements, the commune where the household
is situated, as well as its habitable surface and its size are recorded for respectively
84 %, 83 % and 94 % of the households. The distribution of the latter two over
the sample is shown in Figure 6.1.

6.2.2 Time-Dependence of appliance use

In the presented modelling approach, the main aspect of electrical appliance use
re�ecting characteristics of human behaviour lies in the dependence of the proba-
bility pl(t) that the appliance l is in use as a function of time of day, which will be
referred to as switched-on pro�les in the remainder of this work. Figure 6.2 shows

1The list of measured appliances is not exhaustive.

108



6.2. THE IRISE SURVEY

l appliance type D R P (W) R∗ P ∗ (W)

1 Aquarium 7.3 82.8 69 ± 52 78.6 72 ± 51
2 Chest freezer 30.2 69.6 86 ± 47 63.5 93 ± 43
3 Clothes drier 42.7 4.6 823 ± 834 3.5 1069 ± 804
4 Computer site 2.1 36.9 163 ± 86 36.3 166 ± 85
5 Dish washer 50.0 3.0 1137 ± 977 2.9 1191 ± 968
6 Electric Cooker 30.2 10.5 317 ± 591 4.2 778 ± 729
7 Electric deep fryer 1.0 0.1 1240 ± 721 0.1 1240 ± 721
8 Electric heating 26.0 44.0 902 ± 1079 35.4 1118 ± 1099
9 Electric oven 28.1 5.8 374 ± 657 2.0 1040 ± 741
10 Fridge 97.9 64.4 83 ± 77 55.7 93 ± 77
11 Fridge freezer 61.5 71.0 93 ± 85 61.9 104 ± 85
12 Halogen lamp 116.7 4.8 149 ± 152 4.0 173 ± 154
13 Heat pump 3.1 64.4 581 ± 750 40.3 921 ± 770
14 Heat pump water

heater
1.0 51.3 497 ± 168 50.9 501 ± 162

15 Hot plate 10.4 2.4 657 ± 538 2.3 671 ± 535
16 Microwave oven 78.1 4.7 199 ± 244 4.4 213 ± 247
17 Non-Halogen lamp 47.9 4.2 54 ± 40 3.8 58 ± 39
18 TV 133.3 23.8 55 ± 44 18.1 68 ± 44
19 Vertical freezer 28.1 64.6 86 ± 63 58.0 94 ± 62
20 Washing machine 88.5 5.7 452 ± 660 5.5 467 ± 666
21 Washing ma-

chine+clothes drier
8.3 3.4 496 ± 633 3.1 538 ± 642

22 Water heater 36.5 14.5 1568 ± 985 14.4 1575 ± 982
23 Water pump 1.0 40.9 306 ± 171 40.3 310 ± 169

Table 6.1: Appliance types l in the IRISE dataset, with the di�usion rate per
household D, the mean percentages of being switched on (non-zero electricity
use) R (both in percent) and the mean power consumption P whilst being on.
In the values of R∗ and P ∗, values below 18 W are not considered as switched on
(standby).
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Figure 6.1: Distributions of recorded characteristics of the households in the
IRISE dataset.

the switched-on pro�les of cookers, microwave ovens, washing machines, water
heaters, dishwashers and televisions. Here, the appliance types l ∈ {6, 9, 15} (cf.
Table 6.1) were merged together to the generic term of cookers, and l ∈ {3, 20, 21}
to washing machines. In these graphs, the average pro�les over the measurement
period are shown for the individual households (in colour), as well as the average
between all households (in black). The illustrated curves were smoothed using
a moving average over �ve time steps2. The pro�les depend signi�cantly on the
time of day, and show a large variety among di�erent households. However, there
are common patterns of usage behaviour like, for instance, the peaks around
lunch and in the evening for the cooker and microwave oven pro�les.

6.2.3 Power demand of appliances

Besides the switched-on pro�les, the characteristic electric power demand of elec-
trical appliances is of central importance to predict residential load pro�les. As
most of the appliances do not have a constant power need, their consumption can
be characterised by a distribution. In general this distribution depends on the
considered appliance, but as the list of measured appliances (cf. Table 6.1) is too
small to be considered as representative for the variety in reality, the approach
will be based on uniform distributions for each appliance type.

2Likewise, in Chapter 3, the pro�les are de�ned on a 24 h basis, and thus, the moving
average was generated in a cyclic manner based on the modulo operation with a divisor given
by the number of time steps in one day.
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Figure 6.2: Individual households' (coloured) and average (thick line) switched-on
pro�les of a selection of appliances.

Variety of power consumption

Figure 6.3 illustrates the empirical probability distribution functions (EPDFs) of
power consumption whilst being switched on of the appliance types in Figure 6.2.
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The EPDFs were derived in the same manner as R∗ and P ∗ in Table 6.1, meaning
that power values below 18W were considered as parasite consumption (standby).
This lowers the magnitude of the bins of the smallest power consumption. To
illustrate the variety among individual appliances, their respective contribution
to the bins of Figure 6.3 is schematised by di�erent colours. This shows that
the EPDFs of di�erent cookers or washing machines are relatively similar to each
other, whereas those of televisions or water heaters tend to have a very di�erent
relative colour gradation. In other words, the energy consumption characteristics
of cookers depend less on individual characteristics of the appliance or the house-
hold than those of televisions or water heaters. In particular, the latter two types
of appliance tend to have a constant electric power consumption in operating
mode, which is only dependent on the considered appliance.

Time-dependence of power consumption distributions

The distribution of the electric load pro�le fPel
(t) of an appliance l depends on

the appliance's switched-on pro�le pl(t), as well as on f ∗Pel
(t), its time-dependent

power consumption distribution whilst being in use:

fPel
(t) = (1− pl(t)) δ0(t) + pl(t) f

∗
Pel

(t). (6.1)

In order to study the variations of the distribution of power consumption
f ∗Pel

(t) whilst being in use as a function of time of day, the corresponding EPDFs
of measured power demand were derived for several appliance types conditional
on being in use. However, the measurements of power demand per 10 min time
step contain corrupt records. To illustrate this, a selection of quantiles of f ∗Pel

(t)
of televisions is shown in Figure 6.4. Although the mean power consumption of a
common television does not exceed a few hundred Watt (cf. Table 6.1), there are
recordings of over 11 kW in the dataset. However, they occur less frequently than
1 %� of the time steps. Therefore, the islands of these aberrant recordings were
replaced by the mean of the two adjacent values that do not exceed an unrealistic
threshold. The resulting distributions of power consumption f ∗Pel

(t) are shown for
the list of appliance types of Figure 6.5. The thresholds over which measurements
were considered as corrupt were individually chosen for every appliance, and are
shown by the maximum value on the y-axes of the appliances in each graph of
Figure 6.5.

As one would expect, f ∗Pel
(t) does not vary signi�cantly as a function of time

of day for dishwashers, washing machines and televisions, because the operating
mode of these appliances is not in�uenced by human behaviour or other daily
patterns of any kind.3 In contrast, the distributions of cookers and microwave
ovens are signi�cantly increased around noon and 7 pm. This might be explained

3The stronger �uctuations in the small hours are related to statistically insigni�cant data,
due to a less frequent use in this period.
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Figure 6.3: Empirical probability distribution function of power consumption.
Every colour represents an individual household, illustrating its contribution to
the di�erent bins of the distribution.
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by the greater likelihood to prepare food in these periods, which is more likely
to involve the use of multiple hot plates of the cooker, or the operation of the
microwave during longer periods. The rest of the day the use of these appliances
are more dominated by short usage, as for instance, to heat up a small portion of
water, and thus, the power demand is distributed around smaller values in these
periods [cf. 144].
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Figure 6.4: Time-Dependent power consumption EPDF of televisions whilst being
in use f ∗Pel

(t) without data cleaning.

Total power consumption

In addition to the measurements of individual appliances, the total power con-
sumption P i(t) of each household i was also recorded at every 10 min time step.
However, the list of individually measured appliances in the households does not
include the entire appliance stock (cf. Section 6.2.1), and furthermore, the mea-
sured power in an alternating current circuit may not necessarily represent the
real consumed power but be distorted by reactive power. Therefore, the value
of the total site power consumption does not correspond to the sum of the con-
sumption values of the individual appliances.

Figure 6.6 shows the time-dependent distribution of the total electric power
consumption f tot

Pel
(t) of the ensemble of measurements P i(t) in all households. In

Figure 6.6a, the distribution is shown on a logarithmic scale as a function of time
of day.4 The constant minimum of 6 W corresponds to the smallest non-zero

4In contrast to the previous section, the displayed distributions are not conditional on �being
in use�, as the total power consumption is very unlikely equal to zero. However, in the mea-
surements there were occurrences of periods of zero power consumption, which were removed as
this is very unrealistic (regarding standby consumption and appliances constantly in use, e.g.,
fridges) and probably rather due to a malfunction of the metering unit. Thus, the calculation
of these EPDFs was identical to that of f∗Pel

(t) in Figure 6.5.
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Figure 6.5: Appliances' time-dependent EPDF of power consumption f ∗Pel
(t) of

cleaned data, whilst being in use (disregarding standby).
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value. However, the position of the �rst percentile, which is almost constantly at
about 50 W, shows that the smaller values can be neglected. The time-dependent
distribution is not shown for values above 10 kW, as these are also negligible. In
Figure 6.6b, the values of the same distribution are shown below 1 kW on a linear
scale. As there is a relatively high share of electric water heaters in the sample
(cf. Table 6.1), in Figure 6.6c, the distribution was also derived for the di�erence
of the total power consumption and that of the water heater in case of existence
in the household. This distribution is very similar in shape to those of other
published research [e.g., 148, 162, 163].
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Figure 6.6: EPDF of total household power consumption (a,b), and without water
heater (c).
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Peak and base load

The electric load pro�les of households can be separated into peak and base load,
which is of particular interest in the �eld of electricity supply management. It
will be shown that, on the demand side, the two di�erent parts can be derived
from the load pro�les of the di�erent types of appliances. Regarding residential
load pro�les, a substantial part of the base load is generated by a category which
will be referred to as �stu��, which consists of various individual appliances for
which it would be very tedious to model them individually [cf. 27]. However,
it will be shown that the stu� corresponds to an approximately constant statis-
tical o�set. To illustrate this, the average load pro�les fPel

(t) of the di�erent
appliances were derived, which are illustrated in Figure 6.7. These curves corre-
spond to the time-dependent product of the switched-on pro�les and the average
power consumption whilst being switched on. The power consumption value of
stu� was derived by subtracting the sum of consumption pro�les of all individu-
ally monitored appliances in the household from that recorded for the total site
(which should theoretically always be greater or equal than zero, due to the non-
measured individual appliances. The �gure demonstrates that the average power
consumption of the category stu� as a function of time of day is approximately
constant.
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Figure 6.7: Time- and appliance-dependent mean power consumption.

The distribution fPel
(t) of the category stu� is shown in Figure 6.8 for power

values of up to 600 W, which are exceeded by 7.0 % of the distribution. The
mentioned inconsistencies of the power metering lead to a share of 4.8 % of zero
or negative values. Furthermore, the time-dependence of the distribution of stu�
fPel

(t) is illustrated in the sub-plot by the corresponding percentiles, where the
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deciles and the average are printed with thicker lines (see legend). This shows that
the distribution of this statistical o�set is also approximately constant throughout
the day.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

100

200

300

400

500

600

po
w

er
 c

on
su

m
pt

io
n 

(W
)

EPDF

00:00 06:00 12:00 18:00 00:00
0

100

200

300

400

500

600

time of day

po
w

er
 c

on
su

m
pt

io
n 

(W
)

 

 
90

80

70

60

50

40

30

20

10

mean

Figure 6.8: Distribution of power consumption of stu� between 0 and 600 W. In
the sub-plot, the quantiles of this distributions are shown as a function of time
of day, with deciles and the average printed with thick lines (see legend).
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6.3 Activity-Dependent electrical appliance use

In order to predict the use of electrical appliances in dependence of speci�c res-
idential activities, we infer the conditional probabilities that an appliance is in
use whilst an activity is performed. Here, we restrict ourselves to appliances
where human behaviour bears an immediate temporal impact on their power
consumption5. Furthermore, the power consumption of water heaters, as well as
PCs, deep fryers, heat pump water heaters and water pumps have not been mea-
sured in many households (see Table 6.1), and thus do not allow for a meaningful
statistical evaluation.

The electric power consumption loads of electric heatings and freezers rather
depend on seasonal in�uences than on residential activities and will thus not be
treated in this work. A detailed model to predict the loads of freezers has already
been developed by Richardson et al. [23].

Although the use of electric lighting is only related to human behaviour in res-
idential environments where an automatic control system is usually not installed
(even less likely at the time when the measurements of the IRISE campaign were
conducted), the description of the corresponding stochastics cannot be treated
solely by means of the probabilities to be present and/or to perform activities.
Instead, published research shows that, besides (the change of the state of) ac-
tive occupancy, manually controlled lighting patterns in buildings also depend
on irradiation, and thus on seasonal daylight availability, facade orientation and
the blind settings. Therefore, the modelling of lighting will not be treated in
this work, as in the IRISE dataset, much of this information is not included,
and furthermore, published models are relatively detailed and were already vali-
dated [63, 164].

6.3.1 Modelling approaches

The probabilities to perform activities6 pj(t) which are of relevance for residential
appliance use are not related to single individuals but rather to the ensemble of all
household members. Therefore, these probabilities were derived from the TUS,
depending on whether there is at least one member of the household (de�ned
by the variable �hldid�, see Table 2.1) performing the activity. The probability

5The water heater is also in�uenced by human behaviour, where peaks occur after lunch
(probably due to dishwashing) and in the evening (probably due to personal hygiene); but
also during the night, which might rather be related to technical settings (unfortunately, not
known for this dataset) and delayed in time with respect to involved activities (see Figure 6.7).
Therefore, this appliance will not be treated in this analysis.

6In contrast to the probabilities to perform an activity j conditional on being at home (cf.
Chapter 4), the ordinal probabilities to perform an activity have to be considered, given by the
product of the probability to be at home (cf. Chapter 3, and Figure 3.14) with the conditional
probability to perform an activity whilst being at home (cf. Chapter 4, and Figure 4.5).
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pro�les that appliances are in use, as well as those to perform activities7 were
smoothed (cf. Section 6.2.2). Regarding the activity pro�les, this was done
to level out temporal artefacts in the diary plans (cf. Chapter 4). The appli-
ance switched-on pro�les were smoothed, due to the occurrence of signi�cant
peaks, which � we assume � are related to the behavioural speci�cities of the
non-representative number of 98 households of the IRISE dataset.

Appliance use whilst performing activities

In order to derive p(l|{j}), the probabilities that an appliance l is used conditional
on the set of performed activities {j}, regression analysis was carried out, based
on the two time series of 24 · 6 = 144 data points of pl(t), the switched-on pro�le
of the appliance l, and pj(t). A simple approach to calibrate p(l|{j}) could be
based on multiple linear regression

pl(t) = βl0 +
N∑

j

βlj pj(t), (6.2)

where βlj represents the conditional probability that the appliance l is in use
while the activity j is performed, and βl0 corresponds to the probability that l is
on, regardless of any activity.

In general, it is desirable to identify p(l|{j}) as a function of all activities
{j} that may involve the use of the appliance l, as well as of time t. However,
the predictions of pl(t) in the linear regression model of Equation (6.2) are not
bounded between 0 and 1.

As there are furthermore only 144 available data points for the regression
model of each pl(t), this leads to an increasing risk of over�tting with increas-
ing number of activities in {j}. This also has the negative side-e�ect to obtain
signi�cant regression coe�cients whose magnitude is much greater than 1, which
does not have a physical meaning, and would possibly issue from the correlation
between predictions. As there are many activity-appliance pairs which do ob-
viously not have a identi�able relevance to each other, the regression should be
restricted to activities with a clear relationship to the appliance pro�le of l. To
eliminate these inconsistencies, another linear regression model was tested:

logit(pl(t)) = βl0 + βlj logit(pj(t)), (6.3)

where the logit of pl(t) is �tted against the logit of pj(t) of only one activity j.
It follows that

pl(t) =

[
e−βl0

(
pj(t)

1− pj(t)

)−βlj
+ 1

]−1
. (6.4)

7As the time frame of the diary plans of the French TUS ranges from midnight to midnight,
the temporal information during Central European Summer Time (daylight saving time) had
to be adapted to align this information with the appliance measurements.
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appliance βl0 βlj

Cooker -0.77 ± 0.29 0.97 ± 0.07
Dishwasher -4.13 ± 0.09 0.42 ± 0.02
Washing machine -1.63 ± 0.11 0.50 ± 0.03
Microwave -1.76 ± 0.09 0.35 ± 0.02
Television -2.06 ± 0.08 0.84 ± 0.07

Table 6.2: Results of the linear regression models of Equation (6.3).

In Figure 6.9, we show regression diagnostics of the two linear regression
models of Equations (6.2) and (6.3), of the time-dependent probabilities that the
cooker is on.8 In Figures 6.9a and 6.9g, the results of the regression according
to Equations (6.2) and (6.3) are shown. The comparison of the residuals and
the square root of the magnitude of the standardised residuals of the regression
against the �tted values in Figures 6.9b and 6.9d shows that the assumption of
homoskedasticity is violated in Equation (6.2), as the variance of the residuals
tends to increase with the �tted value. Furthermore, the Q-Q plot shows evi-
dence that the distribution of the standardised residuals is heavy tailed, which
represents another violation regarding the necessary assumptions for linear re-
gression. This logit transformation thus corrects the issues of heteroskedasticity,
heavy tails of residuals and in�uential observations.

The distribution of the standardised residuals of the regression model of Equa-
tion (6.3) is left-skewed (see Figure 6.9i) and thus also has a heavy left tail which
is however less accentuated. However, the assumption of homoskedasticity is bet-
ter supported by this model (cf. Figures 6.9h and 6.9j). The Cook's distances
of the data points in the regression model, as well as their leverages are smaller
in the model of Equation (6.3) than in that of Equation (6.2) (see Figures 6.9e,
6.9f, 6.9k and 6.9l).

As the statistical analysis showed that the linear regression of the logit of the
probabilities, de�ned by Equation (6.3), is preferable, this model will be used in
the following. The best results were yielded by de�ning the probabilities that at
least one household member is performing the considered activity, for the reasons
that were explained in the beginning of Section 6.3.1. In Figure 6.10, the results
of this regression analysis (according to Equation (6.4)) are shown for the pairs of
l and j which corresponded most closely to the observations. The corresponding
parameter values βl0 and βlj are shown in Table 6.2.

In Figure 6.10a, we show the linear regression of the switched-on pro�le of

8Regarding the switched-on pro�le of the cooker, the most related activity j in the TUS
is evidently food preparation. Unfortunately, this activity was merged with washing up and
putting away dishes in the �MTUS 41-activity typology� (cf. Figure 2.7). Therefore, the code
of thee 69-category typology �food preparation, cooking� was used, which is also recorded in
the database [31].
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Figure 6.9: Regression diagnostics for (a-f) the linear regression, and (g-l) the
regression with the logit transforms of the variables.

cookers with �food preparation/cooking�. The peaks of the switched-on pro�le at
lunch and in the evening are underestimated, whereas it is overestimated in the
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morning. This might be due to the di�erent character of preparing food at lunch
or in the evening, when it is more likely to prepare a warm meal than the rest
of the day, whereas in particular early in the morning the use of the cooker is
very unlikely when preparing food. This shows that the conditional probability
to use a cooker whilst preparing food is time-dependent. Thus the assumption
of a constant p(l|j) leads to errors in the predictions, which are however not
substantial.

The best-matching regression result to predict the use of the microwave oven
was found with the probability pro�le of starting �meals and snacks� (cf. Fig-
ure 2.10), which is shown in Figure 6.10b. This can be interpreted by the short
mean duration of the use of a microwave oven, which often occurs immediately
before starting a meal. In contrast to the use of a cooker whilst preparing food,
the conditional probability of using a microwave oven when starting to eat is
higher in the morning than at lunch or in the evening, and thus resulting in the
inverse pattern of over- and underestimation than in Figure 6.10a.

The regression predicting the use of washing machines conditional on doing
housework is shown in Figure 6.10c.9 Here, the observed switched-on pro�le
between 7.30 AM and 2 PM is underestimated, whereas it is overestimated in the
evening, which might also be due to a time-dependent conditional probability to
use the washing machine whilst doing housework. Furthermore, the probability
to switch on the washing machine before the night is not well captured and thus
underestimated by the model.

In Figure 6.10d, we show the switched-on pro�le of televisions, as well as the
regression resulting from active occupancy (at home and not sleeping). Inter-
estingly, the regression with the activity �watching TV� yields very poor results.
This might be related to the fact that watching television is not well represented
as a primary activity and is very often performed as a secondary activity. Fur-
thermore, it might be very common that the television is switched on whilst being
at home, and often not switched o� unless people go to sleep or leave.

Modelling starts and durations of appliance use

In Figure 6.10, evidence is shown that the modelling of the time-dependent use
of the appliances l conditional on an activity j that is performed yields relatively
accurate results. However, there is no pro�le of performing or starting an activity
j in the TUS with a shape that approximately coincides with the switched-on
pro�le of dishwashers. The in�uence of human control on dishwashers is com-
parable with that on washing machines, in the sense that only the starting time

9This yielded much better results than the activity �laundry, ironing, clothing repair�, which
is also speci�ed in the 69-category typology [31], probably due to the fact that the use of a
washing machine is usually done in parallel to other activities which can be very manifold and
are thus not well represented by the very speci�c primary activity �laundry, ironing, clothing
repair�.

123



CHAPTER 6. LOAD PROFILE MODELLING

12 AM  6 AM 12 PM  6 PM 12 AM
0

0.05

0.1

0.15

0.2

time of day

p(
t)

 

 

>=1 cooking/prep. food
cooker on
regression results

(a)

12 AM  6 AM 12 PM  6 PM 12 AM
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time of day
p
(t
)

 

 

>=1 starting meal
microwave on
regression results

(b)

12 AM  6 AM 12 PM  6 PM 12 AM
0

0.05

0.1

0.15

0.2

time of day

p(
t)

 

 

>=1 housework
washing machine on
regression results

(c)

12 AM  6 AM 12 PM  6 PM 12 AM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time of day

p(
t)

 

 
>=1 active occupant
TV on
regression results

(d)

Figure 6.10: Regression results of the activity-dependent use of electrical appli-
ances de�ned by Equation (6.4).

is in�uenced and afterwards, the appliance is in use according to a technically
pre-set operation mode. However, after the washing cycle the laundry has to be
hang out to dry without much delay, in order to avoid malodorous smell, whereas
such a constraint is not given with respect to the use of a dishwasher. Therefore,
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the probability that a washing machine is in use is more correlated to residential
activity pro�les, whereas regarding dishwashers, it is rather the probability to
start them which is correlated. Thus, the best results of the regression of Equa-
tion (6.4) was achieved with the probability �set table, wash/put away dishes�10

and the time-dependent probability to switch on the dishwasher pl,s(t), which is
shown in Figure 6.11b.

The empirical duration PDF for dishwashers being on f(t), as well as its
corresponding survival function S(t) are shown in Figure 6.11a, which do not
signi�cantly depend on the time of day. Knowing pl,s(t) and S(t), the switched-
on pro�le is determined as the superposition of every fraction of usage starts in
every time interval [t, t+ dt] which remain switched on at a later time t+ t′ given
by the survival function S(t′). Considering the discretised representation of pl,s(t)
and S(t′), the switched-on pro�les pl(t) are then given by the circular discrete
convolution

pl(t) = S(t) ∗ pl,s(t) ≡
T−1∑

t′=0

(
∞∑

t′′=0

S(t′ + t′′ · T )

)
pl,s(t− t′), (6.5)

where T is the period, i.e. the number of time steps of one day. As S(t) decreases
to zero within about tmax = 2 h < T (cf. Figure 6.11a), Equation (6.5) simpli�es
to

pl(t) =
tmax∑

t′=0

S(t′) pl,s ((t− t′)mod T ) , (6.6)

where the argument of pl,s is taken modulo T .
The result of Equation (6.6), using S(t) of Figure 6.11a and pl,s derived from

Equation (6.3) (cf. Figure 6.11a and Table 6.2) is shown in Figure 6.11c by the
green line. The non-smoothed switched-on pro�le is shown by the blue line, as
well as its moving average of 11 time steps. The latter is in good agreement with
the observed switched-on pro�le.

6.4 Modelling of residential load pro�le distribu-

tions

In this section, a methodology will be presented to construct the load pro�le
distribution as a result of the pro�les of individual appliances. This bottom-up
methodology is based on the switched-on pro�les of individual appliances (see
Section 6.2.2), as well as their power demand distribution whilst being in use
(see Section 6.2.3). As in this work, it is focussed on the use of appliances which
are directly operated by household members, the set of investigated appliances
will be restricted to the �ve that were treated in Section 6.3.

10Probability that at least one household member performs the activity �set table, wash/put
away dishes� of the 69-activity typology [31].
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Figure 6.11: (a) Empirical duration PDF f(t) (red) and the corresponding sur-
vival function S(t) for dishwashers (blue). (b) Activity pro�le pj(t) (red), in
blue the probability that the dishwasher is switched on pl,s(t), as well as regres-
sion results (dashed; cf. Equation (6.4)). (c) In blue, switched-on pro�le of the
dishwasher and smoothed curve (dashed), as well as the convolution (cf. Equa-
tion (6.6)) of the regressed starting probability pl,s(t) with the duration survival
function S(t) (green).

6.4.1 Aggregated load pro�le distribution of multiple ap-

pliances

Figure 6.13 shows the monitored mean pro�les fPel
(t) (cf. Figure 6.7) of the subset

of these �ve appliances. As it was mentioned, the measurements of the individual
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appliances' power consumption in the IRISE dataset was not exhaustive. This
implies that it is unknown, whether the appliance was present in a household,
although non-existing in the list of measured appliances. Figure 6.12 illustrates
how often the 45 di�erent combinations of measured appliances occurred in the
households of the dataset. According to these statistics, in the list of measured
appliances of K(ν = 5) = 10 households, there was one television, one microwave
oven and one washing machine, and in K(ν = 37) = 5 households, there were
two televisions, and one instance of the remaining four appliances.
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Figure 6.12: Number of households K(ν), where the corresponding combination
ν of individual appliances was monitored.

To construct the aggregated power consumption distribution, when the �ve
appliances are simultaneously used, we assumed that the power consumption
distributions, as well as the switched-on pro�les of the individual appliances are
independent of each other. Then, it follows that the distribution of the sum
of the power consumption of multiple appliances fm

Pel
(t) can be calculated by

means of convolution [84].11 However, in this case, the distribution of a single
appliance l is not represented by the distribution whilst being in use f ∗Pel

(t) (cf.
Figure 6.5), but by the distribution regardless whether being in use fPel

(t). The
latter (approximated by its corresponding discretised probability mass function)
is given by the value of the switched-on pro�le pl(t) at the value of 0 W and by
(1− pl(t)) · fPel

(t) for non-zero values (cf. Equation (6.1))12.

11In case of dependent random variables, the distribution of the sum of them depends on the
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Figure 6.13: Mean power consumption pro�les fPel
(t).

In this way, the distribution of the overall power consumption can be calcu-
lated for each combination of appliances ν. For instance, for ν = 4 it follows
that

fm
Pel

(ν = 4, t) = fTV
Pel

(t) ∗ fTV
Pel

(t) ∗ fWM
Pel

(t), (6.7)

where fTV
Pel

(t) and fWM
Pel

(t) respectively denote the load pro�le distribution of a
television and a washing machine, regardless whether being in use. To calculate
the distributions of the di�erent combinations with Equation (6.7), it was as-
sumed that only the distribution of cookers and microwaves are time-dependent
(cf. Figure 6.5). The distribution f tot

Pel
(t) over the entire sample of households is

then given by

f tot
Pel

(t) =
45∑

ν=1

K(ν)/Nhh · fm
Pel

(ν, t) (6.8)

To validate this model, its results were compared with the monitored distri-
bution f tot,m

Pel
(t). For this purpose, the sum of the power consumption of the �ve

appliances was calculated for each household as a function of the measured time,
from which the measured load pro�le distribution of the �ve appliances was de-
duced. The time-dependent value of (1− f tot,m

Pel
(t) = 0) corresponds to the mean

observed probability pro�le that at least one of the �ve appliances is present
in the household and switched on. In Figure 6.14, this value is compared with

joint probability distribution [cf., e.g., 165].
12The standby power that was omitted when deriving the switched-on pro�les will be ne-

glected.
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Figure 6.14: Mean measured probability that any of the appliances is switched
on (red), and probability pro�le resulting of the convolution of Equation (6.7)
using the monitored switched-on pro�les (blue, cf. Figure 6.2).

the theoretical probability pro�le predicted by Equation (6.8).13 The predictions
are in very good agreement with the measurements. Around noon the measured
values are overestimated, and in the evening they are underestimated, respec-
tively corresponding to anti-correlation and correlation of individual switched-on
pro�les.

A set of quantiles, as well as the mean of the normalised non-zero part
(corresponding to the load pro�le distribution whilst being �switched on�) of
f tot,m
Pel

(t) 6= 0 and f tot,∗
Pel

(t) :=
(
f tot
Pel

(t) 6= 0
)
is shown in Figure 6.15. Between 8 AM

and 10 PM, the predicted distribution is in good agreement with the measured
one. Only the maximum is overestimated by a factor of more than 2. In contrast
the 99.9 % quantile is already underestimated. The minima of both distributions
are constantly 6 W, which corresponds to the smallest non-zero measured value.
During the night, the measured distribution is signi�cantly overestimated by the
predictions.

The reason for the overestimated maximum might be an anticorrelation of
very high consumption values in the individual appliances' distributions. How-
ever, these predicted values are not completely reliable, due to numerical impre-
cisions when calculating the convolutions of Equation (6.7)14. Most importantly,
the overestimation might result from the assumption of time-independent power
consumption probability distributions of some of the appliances (the distributions
of dishwashers and washing machines are overestimated during the night). The

13This corresponds to the probability that f totPel
(t) is non-zero as a function of time of day.

14The maximal value of the corresponding cumulative distribution function of f totPel
(t) was in

average 0.98 instead of 1. Furthermore, the theoretical maximum non-zero value of f totPel
(t) is

given by the sum of the maxima of the individual appliances in Figure 6.5, which is also not
exactly reproduced.
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Figure 6.15: Comparison of the measured total power consumption distribution
whilst being non-zero f tot,m

Pel
(t) 6= 0 (red), as well as the calculated one f tot,∗

Pel
(t) =

(f tot
Pel

(t) 6= 0) (blue).
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constant overestimation during the night might also be related to anticorrelation
of the power consumptions15, as for instance, during the night it might be less
probable that the cooker and the microwave are simultaneously used in a very
large extent. However, this might also be most related to the time-independent
description of the power consumption distributions of some appliances (during
the night the monitored data is less statistically signi�cant; cf. Figure 6.5).

6.4.2 Activity-Dependent prediction of load pro�le distri-

bution

In this section, we will investigate the in�uences of the activity-dependent switched-
on pro�les (Section 6.3) on the predicted aggregated load pro�le distribution.
For this purpose, the aggregated distributions of the individual households fm

Pel
(t)

were calculated with the activity-dependent switched-on pro�les (see Figures 6.10
and 6.11).

Figure 6.16 shows a comparison of the predicted probability pro�les that at
least one of the �ve appliances is switched on, based on the measured individual
switched-on pro�les (blue, cf. Figure 6.15), as well as the activity-dependent
ones (green). The di�erences between the two curves can be attributed to the
deviations of the activity-dependent switched-on pro�les and the measured ones,
which are both shown in Figures 6.10 and 6.11.
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Figure 6.16: Probability that any of the appliances is switched on, according to
Equation (6.8), resulting of the measured (blue) and of the activity-dependent
switched-on pro�les (green).

Figure 6.17 shows a set of quantiles and the mean of the predicted nor-
malised non-zero part of f tot

Pel
(t), based on the measured (blue) and of the activity-

15Correlations are neglected, due to the assumption that di�erent distributions are indepen-
dent of each other.
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dependent switched-on pro�les (green). The comparison shows that the descrip-
tion of the switched-on pro�les by the activity-dependent model of Section 6.3
does not result in substantial errors in the predictions of the load pro�le distri-
butions.

time of day

f
to

t,
∗

P
e
l
(t
)
(W

)

 

 

12 AM  6 AM 12 PM  6 PM 12 AM

10
1

10
2

10
3

10
4

max
99.9
99
95
75
50
25
5
1
0.1
min
mean

Figure 6.17: Comparison of the predictions of the load pro�le distribution whilst
being in use f tot,∗

Pel
(t) according to Equation (6.8) of the appliances of Figure 6.13,

based on the measured switched-on pro�les (blue, also shown in Figure 6.15),
and those predicted conditional on residential activities (green, cf. Figures 6.10
and 6.11).

6.5 Discussion

A modelling approach has been formulated to support predictions of the distribu-
tions of residential load pro�les of individually and simultaneously used electrical
appliances. These distributions depend on the load pro�le distributions whilst
being in use, as well as on the time-dependent probabilities that the appliances
are in use. In order to model the in�uences of human behaviour on appliance use,
a methodology was developed to relate the probabilities to use human-controlled
electrical appliances to residential activities performed. It has been shown that
the time-dependence of appliance use and of the load pro�le distributions are ac-
curately predicted by these models, respectively based on linear regression of the
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logits of appliance and activity pro�les and on convolution of the time-dependent
load pro�le distributions. Furthermore, an approach was presented, which also
reproduces the measured distribution of usage durations.

In the model to predict the aggregated load distribution of the simultaneous
use of individual appliances, correlations were neglected. The resulting pro�le
that at least one appliances is in use did not show strong deviations from the
measured curve. In contrast, the predictions of the non-zero load pro�le dis-
tribution during the night show signi�cant deviations from the measured one,
which are probably related to an overestimation of the measured values by time-
independent appliance load pro�le distributions.

It would be desirable to develop a model that predicts the conditional proba-
bility p(l|j) of the use of an electrical appliance l whilst performing an activity j,
as a function of time of day, as well other characteristics (such as the character-
istics of the household/its members, or the weekday), similarly as in Chapters 3
and 4. Furthermore, the household ownership of the appliance l (cf. Chapter 5)
might also have signi�cant in�uences (for instance, the conditional probability to
use the cooker whilst preparing food might depend on, whether there is a mi-
crowave oven in the household). Whereas the latter would have been relatively
easy to additionally record in the IRISE campaign, the acquisition of a represen-
tative dataset with simultaneous recordings of occupancy and activities, as well
as appliance use is complicated in reality, due to the nature of the two di�erent
kinds of survey. Appliance monitoring campaigns are usually longitudinal studies
over a long-time period of a smaller set of households, whereas transversal time
use surveys tend to cover a large sample population, where diaries are usually not
longer recorded than a day. However, if the characteristics of the households and
their members were recorded in the same level of detail than those of the TUS, the
dependence of p(l|j) on the characteristics and on time could be well determined
via the approach shown in Section 6.3 applied on sub-population pro�les.

The two modelling approaches of Section 6.3.1 can be implemented in simu-
lations as a post-process of residential occupancy (cf. Chapter 3) and residential
activities (see Chapter 4). In the approach where appliance use is modelled
as a conditional probability whilst performing an activity (according to Equa-
tion (6.3)), the dichotomous variable whether the appliance is in use can be mod-
elled as a time-inhomogeneous Bernoulli process. When furthermore, appliance
use durations are explicitly modelled, this can then be implemented in the same
way as it was schematised in Figure 4.1. As mentioned, the activity model then
corresponds to the pre-process of the appliance model. In bottom-up simulations
of individual appliance use, the methodology of Section 6.4 is not needed, but
instead, the power consumption of the appliances can be directly generated from
the individual distributions (cf. Figure 6.5). However, the presented approach
can be used to model individual residential load pro�les by directly generating
values from the derived distributions, which saves a substantial amount of com-
putational time.
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In Equation (6.7), it was explained how the load pro�le distribution of simula-
rily used appliances can be obtained by means of convolution. Figure 6.18 shows
schematically, how this methodology can be extended to derive fNH

Pel
(t), the dis-

tribution of aggregated power consumption values of a neighbourhood (NH) of
N households

∑N
i=1 P

i(t). The load pro�le distribution f iPel
(t) of a household

i represents the 24 h periodic time average of the random variable of the to-
tal household demand P i(t). According to the logic of Equation (6.7), the load
pro�le distribution of the neighbourhood as a function of time is given by

fNH
Pel

(t) = ∗Ni=1f
i
Pel

(t), (6.9)

where ∗Ni=1 denotes the convolution of all individual distributions f iPel
(t) for i =

1, . . . , N .16 This makes the approach highly versatile in application, as on the
one hand the individual appliances' load pro�le distributions can be treated in a
high level of detail, either dependent on human behaviour or according to other
models. On the other hand, the unknown appliances can be regrouped into the
statistical o�set of the category stu�.
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Figure 6.18: Methodology to predict the load pro�le distribution fNH
Pel

(t) of the

total power demand
∑N

i=1 P
i(t) of a neighbourhood of N households.

This methodology can be readily implemented to predict residential load pro-
�les for future scenarios with changed boundary conditions. For instance, changes

16The identity of fNH
Pel

(t) with the 24 h periodic distribution of
∑N

i=1 P
i(t) follows from the

reasonable assumption that all P i(t) are pairwise independent from each other for i = 1, . . . , N .
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in residential behaviour only have impacts on the residential activity pro�les pj(t)
of the individual households. Changes in appliance ownership a�ect only K(ν) in
Figure 6.12. Changes in population characteristics would change the frequency
of the 1, . . . , N household characteristics in Equation (6.9). In order to model
changes in individual appliances' power consumption (for instance an increased
di�usion of appliances with an A++ energy label), only the corresponding f ∗Pel

(t)
has to be modi�ed.

6.6 Conclusion

In this chapter, a novel approach was developed which predicts the use of in-
dividual electrical appliances, as well as the resulting aggregated load pro�le
distribution of simultaneously used appliances, based on the residential activities
performed. The approach was limited to electrical appliances which are directly
controlled by occupants, but the methodology can be readily extended to predict
the distribution of the entire residential appliance stock. As it was furthermore
shown that the non-measured appliances correspond to a statistical o�set with
a distribution that is approximately constant with time, the methodology is a
valuable approach for application in the �eld of demand side-modelling or the
smart grid.

The purpose of this model is to support the more accurate estimation of
residential electricity demand, in dependence of household characteristics. The
methodology was designed to provide a theoretical basis to calculate analytically/
numerically the load distributions, but it can also be implemented in simulation
tools to generate concrete outcomes of the distributions.

The methodology provides a robust, adaptable and generalist approach to pre-
dict electricity load pro�les of households or residential neighbourhoods in future
scenarios, in order to investigate for the impact of changes in residential be-
haviour, appliance ownership, population characteristics or individual appliance
power consumption distributions. It was discussed that discrepancies between
observations and predictions could be diminished, using re�ned calibration pro-
cedures that are based on more comprehensive measurement sets. For instance,
the load pro�les may also depend on many other factors, such as the household
size or the habitable surface [49], national di�erences [46] and many others [53],
which was neglected as the sample size of the IRISE dataset does not allow to
calibrate a meaningful bottom-up model that can be considered as representa-
tive. Thus, the characteristics of the two di�erent datasets which were used to
calibrate the models could not be fully aligned. Apart from that, it is of central
importance to investigate the di�erent variables for correlations. Furthermore, it
would be of high interest to apply this methodology to other datasets, in order
to study for temporal or national changes, as well as other characteristics.
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Chapter 7

Conclusion

In this �nal chapter, we review and discuss the key contributions of this research
work, where we developed a bottom-up modelling framework which addresses the
prediction of residential presence and activities, as well as of the distribution of
load pro�les related to the presence and the use of individual electrical appliances
in households.

Summary

A modelling framework was established which provides a robust, adaptable and
generalist approach to predict electricity load pro�les of households or residential
neighbourhoods in future scenarios, in order to take into account the impact of
changes in residential behaviour, appliance ownership, population characteristics
or individual appliance power consumption distributions. Based on survey data
of time use information, as well as of households' ownership of appliances, coupled
with data of a measurement campaign of individual appliance use in households,
careful statistical analysis was carried out, which results in the following advances:

• A validated model for the prediction of the time-dependent probability of
residential presence, as well as of its durations, calibrated with a set of
rigorously selected and signi�cant explanatory variables. The developed
approaches allow the determination of the temporal evolution of time-
inhomogeneous �rst- and higher-order Markov processes with fast conver-
gence.

• A validated model to predict the time- and individual-dependent condi-
tional probabilities to perform residential activities whilst being present at
home, reproducing observed duration distributions, as well as activity tran-
sitions, veri�ed by a classical cross-validation procedure, which is used to
select the optimal model formulation, as well as relevant input parameters.

• A methodology to predict the dependence of the probabilities of house-
holds' ownership of a large range of electrical appliances on the household
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characteristics, which predictions were validated. The approach facilitates
the fast elimination of non-signi�cant parameters in principal component
logistic regression by re-translating the values of the principal components
into the original predictors.

• A model to predict the time-dependent probabilities of the use of electrical
appliances, conditional on the ongoing residential activities, where mea-
sured distributions of usage durations, as well as of load pro�les can be
accurately reproduced.

Contribution of the developed stochastic models

The proposed stochastic models to describe residential occupant behaviour open
new perspectives for the use in dynamic simulation programs for the prediction
of energy �ows. We will present a list of topics of particular interest:

• The impact of individual variations in residential occupancy on buildings'
energy balance can be more accurately investigated.

• The detailed description of the variation in residential activity pro�les also
allows for a more accurate treatment of numerous other processes in build-
ings, such as the interaction of occupants with building components or the
in�uences of activities on environmental comfort in dependence of the in-
dividual characteristics.

• The rigorous and generalist formulation of the individual models provides a
robust basis to investigate temporal and cultural changes of the described
processes, which only requires general input data of the temporally resolved
disaggregated data of time use and appliance measurements, as well as of
the appliance ownership in households.

• The dependence of the models on individual characteristics and the bottom-
up formulation lends itself well to the modelling of future scenarios to ex-
plore responses to changes to the population's demographic/behavioural
characteristics, the di�usion rate of appliances, of appliances power con-
sumption or in the electrical appliance usage behaviour.

Figure 7.1 summarises the modelling framework to predict the distribution
of the load pro�le of a household x̃ consisting of the individuals {x1, . . . ,xn}.
The appliance stock in the household is modelled according to the probabilities
of appliance ownership as a function of household characteristics x̃ (Chapter 5).
The models of Chapters 3 and 4 allow to determine the probabilities to perform
activities j whilst being at home p(xi, t) ·pj(xi, t) for each household member xi.
These enable the modelling of pl(t), the time-dependent probabilities that a (user-
controlled) appliance is in use (Section 6.3). The latter together with the power
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consumption characteristics of the individual appliances in the household are then
used to calculate the load pro�le consumption of the entire household by means of
convolution (Section 6.4). In Section 6.5 it was discussed how this methodology
can be extended to model the electricity load of a residential neighbourhood.

  

household of n persons

x={x1, , x n }

Appliance 
ownership

cooker

⋮
stuff

TV

e.g.

{ p  x1, t  , , p  xn , t }

{ p j x1, t  , , p j xn , t  }

occupancy and activities

switched-on profiles
{ pl t  }∗
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Figure 7.1: Methodology to predict the load pro�le distribution of a household
x̃ accommodating the individuals {x1, . . . ,xn}.

Longer term perspectives

In spite of the mentioned advances, the examples of the following issues show
that there is still considerable scope for further improvements in the modelling
of the studied processes:

• The correlations between occupancy and activities of di�erent members of
the same household, as well as between appliance ownership and appliance
use needs to be investigated in dependence of the household characteristics,
which would require in-depth designed measurements.

• By �tting the models with data of other surveys and monitoring campaigns,
the methodology can be applied to quantitatively estimate temporal and
cultural changes in human behaviour that a�ect energy demand.1 It is to be

1An investigation of cultural/temporal speci�cities is also important to quantify model in-
accuracies of the current study, which is based on Swiss household appliance ownership data of
2005, and French time use and appliance power consumption data of 1998/1999.
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expected that not all aspects of the �ndings on human behaviour are valid
in a di�erent temporal/cultural context. However, the robustness of the
calibration methodologies should ensure that the methodologies are readily
applicable to other contexts.

• The integrated use of the models, as presented in Figure 7.1, would allow
to investigate in more detail the dependence of residential electricity load
pro�le distributions on human behaviour and household characteristics.

• The calibration of the electricity use model with a dataset containing more
detailed individual characteristics of a larger sample of households would
allow to investigate the in�uences of explanatory variables on the usage
behaviour, and thus to describe the involved conditional probabilities more
accurately.

• When realising smart grid concepts, remote control [cf. 166] might gain
importance for speci�c types of electrical appliances, which may lead to a
di�erent relevance of residential presence regarding residential electricity de-
mand. However, the methodologies of the presented modelling approaches
could then be further developed to quantitatively estimate the impacts of
such behavioural changes on electricity loads.

The methodology of Section 6.3.1 may be applied to predict load pro�les
of individual appliances in the context of a more �exible use to match
electricity demand with supply from renewable energy sources [167].
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Appendix A

Dynamics of electric power

consumption distribution

Apart from the speci�c appliance, the distribution of the electric power demand of
electric appliances fPel

as de�ned in Chapter 6 might be in�uenced by many other
factors. Regarding cookers, the distribution might depend most signi�cantly on
the characteristics of the household and its individuals. As these characteristics
are unfortunately not available for the IRISE dataset, and furthermore, the sam-
ple size does not allow for a meaningful investigation of the dependence on the
household size or surface, this is not considered. In this chapter, we will focus on
dependence of fPel

on other temporal characteristics than the time of day.

A.1 Duration of being in use

In Figure A.1, we show the dependence of fPel
on the duration for which the

cooker was already in use (in 10 min time steps; indicated on top of each sub-
graph). In other words, in the upper-left sub-graph fPel

is shown for time steps
where the cooker was not switched on in the time step before. In addition, the
duration data were �tted with a Weibull (cf. Section 4.2.1) [cf. 18], as well as an
exponential probability distribution function

fPel
=

{
1/µ e−1/µ·Pel , if Pel ≥ 0,

0, if Pel < 0.
(A.1)

For the latter their con�dence intervals are shown by dotted lines. There is a
considerable variation of the �tted mean values µ of the exponential distributions,
ranging from 259± 10 W to 551± 5 W. In all time intervals after being switched
on, the estimated value of k of the Weibull distribution is not greater than one,
which implies that smaller power consumption values are more likely to occur
than in an exponential distribution. With increasing cooking duration, the value
of k tends to decrease. This might be explained by the fact that in every of these
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intervals there is a considerable proportion of cooker uses that end during the
considered interval, and therefore the distribution is more pronounced for small
power values (as then, power consumption is only taking place in a fraction of
the time interval). Another reason for the increased proportions of small power
consumption in the distributions is the use of the cooker on low �ame. The latter
might be more likely to occur with increasing cooking duration, whereas the use
might more likely involve strong heating in the beginning.

Regarding appliances other than cookers, the consideration of the duration
already being on might also be of importance. For instance, the power demand of
dishwashers or washing machines may also depend on the duration due to di�erent
phases in the operating mode. In Figure 6.7, for instance, it was shown that
water heating takes an important part of energy consumption, which can take a
considerable part of energy consumed by those two appliances [cf. 153]. Although
for dishwashers and washing machines the power consumption is not in�uenced
by the user but purely determined by the machine program, it would be too
tedious to calibrate a model with all the necessary information of di�erent devices
and cycles. Thus, this methodology would allow to detect common probabilistic
patterns in the ensemble of the latter.

This implies that in simulations, the power demand of appliances would have
to be modelled according to a distribution that depends on the time of day (see
Figure 6.5), as well as on the duration already being in use. The latter cannot
be treated with the approach of Equation (6.4), as it does not explicitly model
durations of appliance use. Instead, an approach would have to be used, where
appliance usage starts and their durations are modelled (cf. Equation (6.6)).

A.2 Transition of power demand

The phenomenon of a decreasing power consumption of cookers with increasing
duration can also be seen in Figure A.2. Here, we show the transition probability
matrix of power consumption intervals IP of successive time steps t and t + 1
that was observed in the measurements of the IRISE dataset. The measured
transition probabilities that a power consumption transits from a value in the
interval IP to one in IP (t+1) is represented by circles whose radii are proportional
to the transition probabilities' magnitude (see examples on the right). The time
steps where the cooker was and stays switched o� at both time steps (IP (t) =
IP (t+ 1) = 0) were omitted as they are several orders of magnitude higher than
the other transition probabilities in this row (being a transition matrix, the sum
of all transition probabilities of the same row is equal to one). An appliance
type where all individual instances have a constant power consumption would be
characterised by a transition matrix where all non-diagonal elements are equal
to zero. As it was discussed together with Figure A.1, this example also shows
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Figure A.1: Dependence of cookers' EPDF of power consumption on the number
of time steps already being in use, with exponential (red) and Weibull �ts (green).
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Figure A.2: Transition probability of the power consumption interval IP between
adjacent time steps t and t+ 1.

that the power consumption of cookers is more likely to decrease than to increase
with increasing duration.

By calibrating these transition matrices for all considered types of appliance,
one could more accurately simulate the appliances' electric power consumption
whilst being in use, by means of a �rst-order Markov process (cf. Section 3.2.1).
However, the transition matrix might be much closer to identity for other appli-
ance types with constant power demand as it was mentioned. In these cases, the
modelling of the distribution of the appliances' load pro�les as a Markov process
would not lead to an improvement of the model's predictive power.

A.3 Discussion and conclusion

The shown dependences of the cookers' power demand distributions can be used
to model the load pro�le distribution of electrical appliances more accurately, as
there are �rst- and higher-order memory e�ects in the evolution of the electric
power demand of appliances that are switched on. However, this also leads to
increases in computational e�ort, which therefore have to be carefully evaluated
against the improvements in predictive power.
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Nomenclature

αj ASC in the utility function of activity j in the MNLmodel of ps,j(x, t).

i Index for appliance type (in Chapter 5), and to specify a household
(in Chapter 6).

βj′,j Parameter in the utility functions of the MNL models accounting for
the utility for transiting from an activity j to a subsequent activity
j′.

Σβ′ Covariance matrix of estimated parameters β′.

η Decadic logarithm of the relative error of the predictions of appliance
ownership.

fPel
(t) Time-Dependent distribution of power consumption.

x̃ Variable indicating the characteristics of a household.

y Vector of principal components.

ᵀ Transpose of a vector/matrix.

jMTUS Activity type according to the �MTUS 41-activity typology�.

λ Scale parameter in the Weibull distribution function.

U Covariance matrix of [x̃− x̃].

C Entire sample population of the TUS.

Cnw Sub-population of individuals not being in paid work.

Cw Sub-population of individuals in paid work.

L Log-likelihood.

Lt Time-Dependent log-likelihood.

Lx Log-likelihood dependent on individual x.
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NOMENCLATURE

H1 Hypothesis that system is represented by model 1.

H2 Hypothesis that system is represented by model 2.

Hc Hypothesis that system is represented by the composite model.

pr Probability.

P ∗ Mean consumed power above 18 W.

P Mean non-zero value of consumed power in Watt.

pO Mean predicted di�usion probabilities over sub-populations by the
OLR model.

pPC Mean predicted di�usion probabilities over sub-populations by the
PCLR model.

psub Mean predicted di�usion probabilities over sub-populations.

βk Parameter capturing the in�uence of the dummy variable xk on the
utility function.

x Variable describing (the characteristics of) an individual.

f Probability distribution function of residential presence durations.

f0,ts(t) Duration PDF of presences started at ts according to the IIM.

fM,ts Duration PDF of presences started at ts according to the FOMP (cf.
Section 3.2.1).

fts,u(t) Probability distribution function of durations which end before mid-
night.

fts(t) Probability distribution function of durations t of presences that were
started at ts.

P Row vector of the probabilities of being present or absent.

y Variable specifying the type of place.

yx(t) Occupancy chain of an individual x as a function of time t.

pi(x̃) Probability that an appliance i is present in the household x̃.

ρts(x) Proportion of durations started at ts that are censored for the sample
sub-population with characteristics x.

Y Random variable of occupancy status y.
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NOMENCLATURE

Tend Random variable indicating the time the presence duration ends.

S(t) Survival function of presence after t.

S0,ts(t) Survival function of presences started at ts according to the IIM.

Sts(t) Survival function of presence that was started at ts after t.

Dtot Observed di�usion percentage of the corresponding appliance in the
survey dataset (cf. Section 5.2.1).

t00 Transition probability to stay away.

t01 Transition probability to come home.

t10 Transition probability to leave home.

t11 Transition probability to stay at home.

T Transition probability matrix.

T h(t) Time-dependent transition probability matrix, calibrated for transi-
tions during a time step of one hour.

T 10 min(t) Time-dependent transition probability matrix for transitions during
a time step of 10 min.

A Average ratio of the total number of time steps, where the residen-
tial activity chain of the TUS has been correctly predicted by the
simulation.

Ans Average ratio of the total number of time steps, where the residen-
tial activity chain of the TUS has been correctly predicted by the
simulation, disregarding sleeping.

ax(t) Activity chain of an individual x as a function of time t.

AIC Akaike Information Criterion.

BIC Bayesian Information Criterion.

Dj(t) Indicator for average di�erence between the predicted probabilities
to perform a residential activity pj,sim(t) and the corresponding pro-
portions that were observed in the TUS (pj,obs(t).

fj(t) Duration probability distribution function of activity j started at
time t.
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NOMENCLATURE

fp(t) Distribution of mean presence over the population C as a function of
time of day t.

Fts(x, t) Cumulative distribution function of durations t started at ts by the
individual x.

j Index for merged activity types (cf. Figure 2.8).

k Shape parameter in the Weibull distribution function.

l Electrical appliance index in Chapter 6.

M Number of dummy variables for the estimation of the MNL/binomial
logit models in Chapters 4 and 5.

N Number of merged activity types.

n Number of individuals in the TUS.

Nhh Number of households in the IRISE dataset.

nmin Minimum size of the disaggregated sub-populations when calibrating
the individual-dependent fj(x, t) (cf. Section 4.2.1).

nr Number of replicates in a sample of simulations.

p(x, t) Probability of individual x to be at home at time t.

p(t) Probability to be at home at time t.

ppr Probability with which the correct outcome is predicted by the mod-
els in Chapter 5.

pj(t) Conditional probability to perform activity j whilst being at home.

pobs(t) Probability to be at home at time t observed in the TUS.

ps,j(t) Probability to start activity j at time t.

pj,obs Mean probability to perform activity j whilst being at home observed
in the TUS.

pj,sim Simulated mean probability to perform activity j whilst being at
home.

R Average percentage of time steps the appliances were in use (con-
suming a non-zero electric power).

R∗ Average percentage of time steps the appliances were consuming an
electric power above 18 W.

154



NOMENCLATURE

T Period of 24 h.

t Time.

tmax Integer denoting the maximum memory of the higher-order Markov
process in Section 3.2.1.

tn Discretised time step.

tend Last time step of the simulation.

tlast Last time step of the day in the discretised Markov chain.

ts Time of day when presence is started.

Vj Utility function of activity j in the MNL model of ps,j(x, t).

xk Dummy variable in the utility function of the MNL/binomial logit
models.

ASC Alternative-Speci�c constant.

CTRW Continuous-Time random walk.

EPDF Empirical PDF.

FOMP First-Order Markov process.

HOMP Higher-Order Markov process.

IIM Individual-Independent model (time-inhomogeneous Bernoulli pro-
cess; cf. Section 3.2.1).

MNL Multinomial logit.

MTUS Multinational Time Use Study [30].

PDF Probability distribution function.

RUM Random utility model.

TUS French time use survey [32].
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D. Robinson, F. Haldi, J. Kämpf, P. Leroux, D. Perez, A. Rasheed, and U. Wilke. Citysim:
Comprehensive micro-simulation of resource flows for sustainable urban planning. In
Proceedings of Building Simulation, 2009.



Monographs

U. Wilke. Probabilistic Bottom-Up Modelling of Occupancy and Activities to Predict Elec-
tricity Demand in Residential Buildings. PhD thesis, EPFL, Lausanne, 2013.

U. Wilke. Magnetization Dynamics of One-Dimensional Chains Studied by Kinetic Monte
Carlo Simulations. Diploma thesis, Institute of Applied Physics, University of Hamburg,
2008.




