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Abstract—We present a novel method for robust reconstruction
of the image of a moving object from incomplete linear measure-
ments. We assume that only few measurements of this object
can be acquired at different instants and model the correlation
between measurements using global geometric transformations
represented by few parameters. Then, we design a method that
is able to jointly estimate these transformation parameters and an
image of the object, while taking into account possible occlusions
of parts of the object during the acquisitions. The reconstruction
algorithm minimizes a non-convex functional and generates a
sequence of estimates converging to a critical point of this
functional. Finally, we show how to apply this algorithm on a
real cardiac acquisition for free breathing coronary magnetic
resonance imaging.

I. INTRODUCTION

We have recently presented a method to reconstruct jointly
a set of images, representing a same scene, from few linear
multi-view measurements [1]. The correlation between images
is modeled using global parametric transformations, such as
homographies, and the proposed algorithm accurately esti-
mates the images and the transformation parameters, while
being robust to occlusions. We have shown the efficiency of the
algorithm for problems such as super-resolution from multiple
frames, or compressed sensing, using numerical simulations.

We show here the potential interest of this method for free
breathing coronary magnetic resonance imaging (MRI) [2]. In
this application, one wants to obtain a single high resolution
image of the heart to visualize the coronaries. To reach this
goal, one of the major challenge is to properly compensate
for the respiratory motion in the image reconstruction process.
Indeed, the acquisition speed in MRI is slow and inevitable
motion of the heart occur during the acquisition. To suppress
motion due to heart contractions, an ECG signal is usually
acquired to ensure that the Fourier measurements are taken
after a fixed time delay from the beginning of the cardiac
cycle. A few measurements are then taken at each cycle
during a period of minimum coronary motion (late diastole).
Unfortunately, the number of measurements acquired during
one cardiac cycle is too small to accurately reconstruct a
high resolution image of the heart. One thus has to combine
measurements acquired at different cycles to gather enough
information. However, it is mandatory to compensate for the
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respiratory motion occurring between cardiac cycles to be able
to visualize high resolution features.

As shown in [3] for two-dimensional MRI of the right coro-
nary artery, global translations are already sufficient to reach
good image quality. In [3], the estimation of the transformation
parameters and the image reconstruction are separated into two
separate tasks. We show here that the algorithm presented in
[1] can be considered as an alternative for joint registration
and reconstruction.

Notations: The Euclidean scalar product of Rn is denoted
〈·, ·〉 and ‖·‖2 is the corresponding `2-norm. The `1-norm of a
vector x = (xi)16i6n ∈ Rn is defined as ‖x‖1 =

∑n
i=1 |xi|.

The transpose operator is denoted ·ᵀ.

II. JOINT REGISTRATION AND RECONSTRUCTION VIA
NON-CONVEX OPTIMIZATION

A. Problem formulation

Let y1, . . . ,yl ∈ Rm be l independent linear observations of
a moving object represented by the image x0 ∈ Rn, m 6 n.
The jth vector yj contains the measurements of the object
when it is at its jth position. We assume that the acquisition
speed is faster than the one of the object, so that we can
consider that the object is not moving during each acquisition.
However, as the object is moving between two different
acquisitions, the image x0 undergoes geometric transforma-
tions. In this work, we consider that these transformations
are not known in advance and need to be estimated from the
measurements. For simplicity, we restrict ourselves to global
transformations, such as translations or homographies, that can
be represented by few parameters θj ∈ Rq , j = 1, . . . , l. We
also assume that the transformed images can be well estimated
using interpolation matrices S(θj) ∈ Rn×n, j = 1, . . . , l, built
using, e.g., bicubic splines [4]. Then, to handle more realistic
acquisitions, we consider possible occlusions of the object and
model them using l foreground images x1, . . . ,xl ∈ Rn. The
image “viewed” at the jth acquisition is thus S(θj)x0 + xj .
In summary, denoting by A1, . . . ,Al ∈ Rm×n the observation
matrices, the measurement model satisfies y1

...
yl

=

 A1S(θ1) A1 . . . 0
...

...
. . .

...
AlS(θl) 0 . . . Al


 x0

...
xl

+

 n1

...
nl

 , (1)



where n1, . . . ,nl ∈ Rm model additive measurement noise.
Estimating the images x = (xᵀ

0 , . . . ,x
ᵀ
l )ᵀ ∈ R(l+1)n and

the transformation parameters θᵀ = (θᵀ1 , . . . ,θ
ᵀ
l )ᵀ ∈ Rlq

using the acquired measurements y = (yᵀ
1 , . . . ,y

ᵀ
l )ᵀ ∈ Rlm

as sole information is an ill-posed inverse problem. Prior
information is needed to restrict the set of admissible solutions.
Concerning the images, we can for example search for the ones
with a sparse decomposition in a wavelet basis by minimizing
the `1-norm of their wavelet coefficients. Alternatively, we
can search for piecewise constant images by minimizing their
Total Variation norm. For the transformation parameters, we
can for example impose that they belong to compact convex
sets Θj = {θj ∈ Rq : θj 6 θj 6 θ̄j}, j = 1, . . . , l,
where θj ∈ Rq and θ̄j ∈ Rq are pre-defined upper and lower
bounds1. Therefore, an estimate x∗ and θ∗ of the images and
the transformations parameters can be obtained by solving

min
(x,θ)

f(x) + κ ‖A(θ)x− y‖22 subjet to θ ∈ Θ, (2)

where f : R(l+1)n → R ∪ {+∞} is a proper lower-
semicontinuous convex function, κ−1 > 0 is a regularizing
parameter that should be adjusted with the noise level ‖n‖2,
Θ = {θ = (θᵀ1 , . . . ,θ

ᵀ
l )ᵀ ∈ Rlq : θj ∈ Θj , j = 1, . . . , l},

and

A(θ) =

 A1S(θ1) A1 . . . 0
...

...
. . .

...
AlS(θl) 0 . . . Al

 ∈ Rlm×(l+1)n.

Unfortunately, the minimization problem (2) is non-linear in
θ and finding a global minimizer is not trivial. Nevertheless,
based on the recent works of Attouch et al., [5], [6], we
developed a novel minimization method for problem (2) that
produces a convergent sequence to a critical point (x∗,θ∗) of
the functional L : R(l+1)n × Rlq → R ∪ {+∞} defined as

L(x,θ) = f(x) + κ ‖A(θ)x− y‖22 + iΘ(θ), (3)

where iΘ is the indicator function2 of Θ. Note that (x∗,θ∗)
is not necessarily a global minimizer of L but might only be
local minimizer or a saddle point of the objective function.
The proposed algorithm generates a sequence of estimates
(xk,θk)k∈N such that L(xk+1,θk+1) 6 L(xk,θk), ∀k ∈ N,
and consists of two main steps.

B. First step of the algorithm

Let (xk,θk) ∈ R(l+1)n×Θ be the estimates obtained after
k iterations of the algorithm. The first step consists in finding
a new estimate xk+1 ∈ R(l+1)n that decreases the value of
the objective function L while keeping θk fixed. We choose
here this new estimate as a solution of

min
x∈R(l+1)n

L(x,θk) +
λkx
2
hµ(Ψᵀ(x− xk)), (4)

1Let θ̄ = (θ̄i)16i6q ∈ Rq , θ = (θi)16i6q ∈ Rq , θ 6 θ̄ means that
θi 6 θ̄i for all i ∈ {1, . . . , q}.

2The indicator function of a non-empty closed convex set C is the proper
lower semicontinuous convex function that satisfies iC(x) = 0 if x ∈ C and
iC(x) = +∞ otherwise.

where λkx > 0 acts as a stepsize parameter, Ψ ∈
R(l+1)n×(l+1)p is a block-diagonal matrix built by repeating
l + 1 times a wavelet tight-frame3 W ∈ Rn×p, p > n, on the
diagonal, and hµ : R(l+1)p → R is the Huber function. It is a
smooth approximation of the `1-norm satisfying

∀α = (αi)16i6(l+1)p ∈ R(l+1)p, hµ(α) =

(l+1)p∑
i=1

hi,

with

hi =

{
α2
i /(2µ), if |αi| < µ,
|αi|+ µ/2, otherwise, ∀i ∈ {1, . . . , (l + 1)p},

and µ > 0. In practice, the smoothing parameter µ can be
chosen small so that the function hµ behaves similarly to the
`1-norm. Let us highlight that the minimization problem (4) is
convex and can be solved efficiently using, e.g., the algorithm
presented in [7].

We noticed experimentally that the addition of the function
hµ in the minimization procedure was improving the accuracy
of the estimated signals and transformations parameters by
producing a coarse-to-fine scales reconstruction of the images.
This function acts as a proximal term and provides, up to some
limits, a control on the evolution of the sequence of estimated
images (xk)k>0. Remembering that the `1-norm favors the
selection of few large coefficients, this function imposes that
the next estimate xk+1 differs from xk by a few large wavelet
coefficients. The bigger the λkx parameter is, the fewer the
number of wavelet atoms that can be added at each iteration
is. In practice, we start form x0 = 0 ∈ R(l+1)n and with a
large value of λkx at k = 0. We then slightly decrease the value
of λkx at each iteration. This allows us to have a coarse-to-fine
scales reconstruction of the images, as illustrated in [1].

C. Second step of the algorithm

In the second step of the algorithm, we update the trans-
formation parameters to further decrease the value of the
objective function. As the function θ 7→ ‖A(θ)xk+1 − y‖22
and iΘ are separable in θj , j = 1, . . . , l, we optimize the
transformation parameters separately for each observations.

To simplify the notations, we introduce l new functions
Qk+1
j : Rq → R, with j = 1, . . . , l, satisfying

Qk+1
j (θj) = ‖AjS(θj)x

k+1
0 + Ajx

k+1
j − yj‖22. (5)

One of our goal is to find parameters θk+1
j ∈ Θj such that

Qk+1
j (θk+1

j ) 6 Qk+1
j (θkj ). These functions are non-linear in

θj . To simplify the estimation of the parameters, we instead
minimize quadratic approximations of these functions. Assum-
ing that the entries of the matrix S(θj) are differentiable with
respect to the transformation parameters, the first order Taylor
expansion of S(θj)x

k+1
0 at θkj is S(θkj )xk+1

0 + Jkj (θj − θkj )
with

Jkj =
(
∂θ1j S(θkj )xk+1

0 , . . . , ∂θqj S(θkj )xk+1
0

)
∈ Rn×q.

3It satisfies WWᵀ = In, with In ∈ Rn×n the identity matrix.



Therefore, Qk+1
j (θkj ) + P k+1

j (θj), with

P k+1
j (θj) =

〈
∇Qk+1

j (θkj ),θj − θkj
〉

+ ‖AjJkj (θj − θkj )‖22,

and

∇Qk+1
j (θkj ) = 2

(
AjJ

k
j

)ᵀ (
AjS(θkj )xk+1

0 + Ajx
k+1
j − yj

)
,

is a quadratic approximation of Qk+1
j at θkj .

To update the transformation parameters, we minimize this
quadratic approximation to which we add another quadratic
term that ensures a decrease of the objective function L. The
next estimate of the transformation parameters is

θk+1
j = argmin

θj∈Θj

P k+1
j (θj) +

2iλθ
2
‖θj − θkj ‖22, (6)

where λθ > 0 and i is the smallest positive integer such that

Qk+1
j (θk+1

j ) 6 Qk+1
j (θkj ) + P k+1

j (θk+1
j )

+
(2i − 1)λθ

2
‖θk+1

j − θkj ‖22. (7)

The above condition ensures that θk+1
j decrease the value of

objective function and is essential for the convergence of the
sequence (xk,θk)k∈N to a critical point of L.

D. Convergence result

We are now in position to state our convergence result,
whose proof can be found in [1].

Theorem 1: Let L be the objective function defined in (3)
with κ > 0. Assume that L is bounded below, that the entries
of Sj , with j = 1, . . . , l, are twice continuously differentiable,
that Ψ ∈ R(l+1)n×(l+1)p satisfies ΨΨᵀ = I(l+1)n, and that
the stepsizes satisfy 0 < λ 6 λkx, λθ 6 λ̄ for all k ∈ N.
Then, the sequence of estimates (xk,θk)k∈N generated by
the algorithm described above is correctly defined and the
following statements hold:

1) For all k > 0,

L(xk, θk)− L(xk+1, θk+1) >

λ

2

[
κ ‖θk+1 − θk‖22 + hµ(Ψᵀ(xk+1 − xk))

]
. (8)

Hence L(xk,θk), k ∈ N, does not increase.
2) The sequences (xk+1 − xk)k∈N and (θk+1 − θk)k∈N

converge. Indeed,

lim
k→+∞

‖xk+1 − xk‖2 + ‖θk+1 − θk‖2 = 0. (9)

3) Assume that L has the Kurdyca-Łojasiewicz property (see
Definition 3.2 in [5]). Then, if the sequence (xk)k∈N is
bounded, the sequence (xk,θk)k∈N converges to a critical
point (x∗,θ∗) of L.

The last point of Theorem 1 applies if L has the Kurdyca-
Łojasiewicz property. As explained in [5], this property is
satisfied by several classes of functions. We detail in [1]
several examples where the conditions required by Theorem
1 are satisfied. For example, if the interpolation matrices Sj ,
j = 1, . . . , l, are built using the bicubic interpolation [8] and

f(x) = ‖Φx‖1 for some basis Φ ∈ R(l+1)n×(l+1)n, then
the sequence of estimates converges to a critical point of the
objective function L for geometric transformations such as
translations, affine transformations or “small” homographies.

III. FREE BREATHING CORONARY MRI

A. Acquisition model

We acquired 2D image data of the right coronary artery in a
healthy adult subject with a clinical 3T scanner (Siemens Trio,
Erlangen, Germany). The field of view was 320×320 mm and
the spatial resolution was 1× 1× 8 mm. Our goal is here to
reconstruct a high resolution image x0 of the heart containing
320× 320 pixels from this set of few Fourier measurements.

Note that in MRI we are dealing with complex images.
For simplicity, and to be able to use the proposed algorithm
without modifications, we treat separately the real and imagi-
nary parts of the images. Therefore, the vector x0 has size
n = 2 × 3202 and satisfies: xᵀ

0 = ((xr0)ᵀ, (xi0)ᵀ), where
xr0 ∈ Rn/2 and xi0 ∈ Rn/2 are the real and imaginary
parts of the image. The same convention is used for the
foreground images. Note that the jth transformed background
image is now obtained by multiplication with the block-
diagonal matrix built by repeating twice S(θj) on the diagonal.
The measurements describing these images are then obtained
as follows.

At each cardiac cycle, we acquire few complex Fourier
coefficients lying along 15 radial lines, as presented in Fig.
1, with each line containing 320 equispaced sampling points.
As before, we separate the real and imaginary parts of the
measurements and stack them in a single measurement vector:
yᵀ
j = ((yrj )ᵀ, (yij)

ᵀ), with yrj ∈ Rm/2 and yij ∈ Rm/2.
The number of acquired measurements at each cycle satisfies
m/n = 4.7 % and a total of l = 24 acquisitions are performed
at different cycles. Note that the radial lines along which the
measurements are acquired change at each cardiac cycle to
cover the Fourier space as much as possible. Let Ωj be the
set of frequencies probed at the jth cycle. We model this
acquisition using the complex Fourier matrix FΩj

∈ Cm/2×n/2
which estimates the Fourier transform of a discrete complex
image on the frequencies Ωj . The observation matrix Aj then
satisfies

Aj =

[
FrΩj

−FiΩj

FiΩj
FrΩj

]
,

where FrΩj
∈ Rm/2×n/2 and FiΩj

∈ Rm/2×n/2 are the real and
imaginary part of FΩj

.
While we are mainly interested in the reconstruction of

x0, the l other foreground images have still their place in
the measurement model (1). Indeed, as we are imaging one
slice of an object moving in a 3D space, trough-plane motion
might occur. The l foreground images can compensate for such
negative effects. However, we have access to only 4.7 % n
measurements to estimate each foreground image. We thus do
not expect to obtain an accurate reconstruction of these images.
On the contrary, all the 4.7 % ln measurements contribute to
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Fig. 1. From left to right: sampling pattern in Fourier space for one cardiac cycle; reconstructed image using the usual method without registration;
reconstructed image x∗

0 using our method; reconstructed image using the usual method with registration by the estimated parameters θ∗ obtained by our
method.

the estimation of x0. Obtaining an accurate reconstruction of
this reference image is thus possible.

Let us remark that we considered only one channel of the
receiving coil in the above measurement model. In total, 32
channels are present and each of them gives access to a local
image of the heart. The images of all these channels are
usually combined to increase the signal-to-noise ratio of the
recovered image and to have a more uniform spatial coverage.
Ideally, we should also combine the measurements provided
by each channel. However, the problem to solve becomes more
challenging and addressing it is beyond the scope of this short
abstract. We thus restrict our study to one channel only (chosen
to have the best coverage of the heart).

B. Reconstruction results

We run our algorithm with κ = 10−1, µ = 10−10, and
f(·) = ‖Ψᵀ · ‖1, where Ψ ∈ R(l+1)n×(l+1)n is built by repeat-
ing 2 (l + 1) times the Haar wavelet basis W ∈ Rn/2×n/2 on
the diagonal. The transformations between cardiac cycles are
assumed to be well modeled by translations. The translation
parameters along both dimensions are initialised to 0 and are
constrained to be in the set [−50 mm,+50 mm]. Finally, the
stepsizes satisfy λkx = max((0.9)k 500, 0.1) and λθ = 0.1.

Fig. 1 presents the reconstruction obtained from the acquired
measurements with the proposed algorithm, as well as the ones
obtained with the usual reconstruction technique without and
with registration with the transformation parameters estimated
by our algorithm. The usual reconstruction technique consists
of a gridding operation and an inverse Fourier transform
[9]. The measurements are also weighted before the gridding
operation to compensate for the fact that the low frequencies
are more densely sampled than the high frequencies.

Compared to the reconstruction obtained without registra-
tion, one can see that the image of the heart is sharper (see
arrows) with our reconstruction method. A part the coronary
previously hidden becomes visible (dotted arrow), and the
borders of the blood pool and the cardiac muscle become
better defined, indicating that the translations are accurately
estimated. Compared to the reconstruction with registration
obtained with the usual technique, our reconstruction contains
less noise, though some details are slightly less visible.

IV. CONCLUSION

We highlighted the interest of a reconstruction technique
initially developed for image reconstruction from multi-view
measurements, for free breathing coronary MRI. The method
reconstructs a high resolution image of the heart from few
Fourier measurements and automatically compensates for the
motion of the heart occurring during the acquisition. The
reconstruction algorithm minimizes a non-convex functional
and the generated sequence of estimates converges to a critical
point of this functional.

The current technique was designed assuming that the mo-
tion can be modeled by global geometric transformations, such
as translations or homographies. This is an obvious limitation
of the technique which prevents us to use it with more compli-
cated types of motion. However, the requirements of Theorem
1 hold for a large class of transformation models. This leaves
us the possibility to choose more general transformations.
For example, we could approximate elastic transformations
using a parametric model similar to [10] and estimate the
corresponding parameters using the proposed algorithm.
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