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Analysis of Descent-Based Image Registration∗

Elif Vural and Pascal Frossard †

Abstract. We present a performance analysis for image registration with gradient descent. We consider a
typical multiscale registration setting where the global 2-D translation between a pair of images
is estimated by smoothing the images and minimizing the distance between them with gradient
descent. Our study particularly concentrates on the effect of noise and low-pass filtering on the
alignment accuracy. We analyze the well-behavedness of the image distance function by estimating
the neighborhood of translations for which it is free of undesired local minima. This is the neigh-
borhood of translations that are correctly computable with a simple gradient descent minimization.
We show that the area of this neighborhood increases at least quadratically with the smoothing
filter size. We then examine the effect of noise on the alignment accuracy and derive an upper
bound for the alignment error in terms of the noise properties and filter size. Our main finding is
that the error increases at a rate that is at least linear with respect to the filter size. Therefore,
smoothing improves the well-behavedness of the distance function; however, this comes at the cost
of amplifying the alignment error in noisy settings. Our results provide a mathematical insight
about why hierarchical techniques are effective in image registration, suggesting that the multiscale
alignment strategy of these techniques is very suitable from the perspective of the trade-off between
the well-behavedness of the objective function and the registration accuracy. To the best of our
knowledge, this is the first such study for descent-based image registration.

Key words. Image registration, hierarchical registration methods, image smoothing, gradient descent, perfor-
mance analysis.

1. Introduction. The estimation of the relative motion between two images is one of
the important problems of image processing. The necessity for registering images arises in
many different applications like image analysis and classification [23], [9], [25]; biomedical
imaging [14], stereo vision [13], motion estimation for video coding [24]. The alignment of
an image pair typically requires the optimization of a dissimilarity (or similarity) measure,
whose common examples are sum-of-squared difference (SSD), approximations of SSD, and
cross-correlation [7], [4]. Many registration techniques adopt, or can be coupled with, a
multiscale hierarchical search strategy. In hierarchical registration, reference and target images
are aligned by applying a coarse-to-fine estimation of the transformation parameters, using
a pyramid of low-pass filtered and downsampled versions of the images. Coarse scales of
the pyramid are used for a rough estimation of the transformation parameters. These scales
have the advantage that the solution is less likely to get trapped into the local minima of
the dissimilarity function as the images are smoothed by low-pass filtering. Moreover, the
search complexity is lower at coarse scales as the image pair is downsampled accordingly. The
alignment is then refined gradually by moving on to the finer scales. Since it offers a good
compromise between complexity and accuracy, the coarse-to-fine alignment strategy has been
widely used in many registration and motion estimation applications [25], [17], [5], [4], [2],
[16].
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In this work, we present a theoretical study that analyzes the effect of smoothing on
the performance of image registration. One of our main goals is to understand better the
mathematical principles behind multiscale registration techniques. Most theoretical results
in the image registration literature (e.g., [21], [32], [31]) investigate how image noise affects
the registration accuracy. However, the analysis of the effect of smoothing on the registration
performance has generally been given little attention in the literature. Although it is widely
known as a practical fact that smoothing an image pair is helpful for overcoming the undesired
local minima of the dissimilarity function [1], [24], to the best of our knowledge, this has not
been extensively studied on a mathematical basis yet. Some of the existing works examine
how smoothing influences the bias on the registration with gradient-based methods [21], and
the bias and model conditioning in optical flow [10], [6], whose scopes are however limited
to methods employing a linear approximation of the image intensity function. Hence, the
understanding of the exact relation between smoothing and the well-behavedness of the image
dissimilarity function constitutes the first objective of this study. Our second objective is to
characterize the effect of noise on the performance of multi-scale image registration, i.e., to
derive the noise performance in the registration of noisy images as a function of the smoothing
parameter.

We consider a setting where the geometric transformation between the reference and
target images is a global 2-D translation. Although the registration problem is formulated
for an image pair in this work, one can equivalently assume that the considered reference and
target patterns are image patches rather than complete images. For this reason, our study
is of interest not only for registration applications where the transformation between the
image pair is modeled by a pure translation (e.g., as in satellite images), but also for various
motion estimation techniques, such as block-matching algorithms and region-based matching
techniques in optical flow that assign constant displacement vectors to image subregions. We
adopt an analytic and parametric model for the reference and target patterns and formulate the
registration problem in the continuous domain of square-integrable functions L2(R2). We use
the squared-distance between the image intensity functions as the dissimilarity measure. This
distance function is the continuous domain equivalent of SSD. We study two different aspects
of image registration in this work; namely, alignment regularity and alignment accuracy.

We first look at alignment regularity ; i.e., the well-behavedness of the distance function,
and estimate the largest neighborhood of translations such that the distance function has
only one local minimum, which is also the global minimum. Then we study the influence of
smoothing the reference and target patterns on the neighborhood of translations recoverable
with local minimizers such as descent-type algorithms without getting trapped in a local min-
imum. In more details, we consider the set of patterns that are generated by the translations
of a reference pattern, which forms the translation manifold of that pattern. In the exami-
nation of the alignment regularity, we assume that the target pattern lies on the translation
manifold of the reference pattern. We then consider the distance function f(U) between the
reference and target patterns, where U is the translation vector. The global minimum of f
is at the origin U = 0. Then, in the translation parameter domain, we consider the largest
open neighborhood around the origin within which f is an increasing function along any ray
starting out from the origin. We call this neighborhood the Single Distance Extremum Neigh-
borhood (SIDEN). The SIDEN of a reference pattern is important in the sense that it defines
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the translations that can be correctly recovered by minimizing f with a descent method. We
derive an analytic estimation of the SIDEN. Then, in order to study the effect of smoothing
on the alignment regularity, we consider the registration of low-pass filtered versions of the
reference and target patterns and examine how the SIDEN varies with the filter size. Our
main result is that the volume (area) of the SIDEN increases at a rate of at least O(1 + ρ2)
with respect to the size ρ of the low-pass filter kernel, which controls the level of smoothing.
This formally shows that, when the patterns are low-pass filtered, a wider range of translation
values can be recovered with descent-type methods; hence, smoothing improves the regularity
of alignment. Then, we demonstrate the usage of our SIDEN estimate for constructing a
regular multiresolution grid in the translation parameter domain with exact alignment guar-
antees. Based on our estimation of the neighborhood of translations that are recoverable with
descent methods, we design an adaptive search grid in the translation parameter domain such
that large translations can be recovered by locating the closest solution on the grid and then
refining this estimation with a descent method.

Then we look at alignment accuracy and study the effect of image noise on the accuracy
of image alignment. We also characterize the influence of low-pass filtering on the alignment
accuracy in a noisy setting. This is an important question, as the target image is rarely an
exactly translated version of the reference image in practical applications. When the target
pattern is noisy, it is not exactly on the translation manifold of the reference pattern. The
noise on the target pattern causes the global minimum of the distance function to deviate
from the solution U = 0. We formulate the alignment error as the perturbation in the global
minimum of the distance function, which corresponds to the misalignment between the image
pair due to noise. We focus on two different noise models. In the first setting, we look at
Gaussian noise. In the second setting, we examine arbitrary square-integrable noise patterns,
where we consider general noise patterns and noise patterns that have small correlation with
the points on the translation manifold of the reference pattern. We derive upper bounds on
the alignment error in terms of the noise level and the pattern parameters in both settings.
We then consider the smoothing of the reference and target patterns in these settings and look
at the variation of the alignment error with the noise level and the filter size. It turns out that
the alignment error bound increases at a rate of O

(

η1/2 (1 − η)−1/2
)

and O
(

ν1/2 (1 − ν)−1/2
)

in respectively the first and second settings with respect to the noise level, where η is the
standard deviation of the Gaussian noise, and ν is the norm of the noise pattern. Another
observation is that the alignment error is small if the noise pattern has small correlation with
translated versions of the reference pattern. Moreover, the alignment error bounds increase at
the rates O

(

ρ3/2 (1 − ρ)−1/2
)

and O
(

(1 + ρ2)1/2
)

in the first and second settings, with respect
to the filter size ρ. Therefore, our main finding is that smoothing the image pair tends to
increase the alignment error when the target pattern does not lie on the translation manifold
of the reference pattern. The experimental results confirm that the behavior of the theoretical
bound as a function of the noise level and filter size reflects well the behavior of the actual
error.

The results of our analysis show that smoothing has the desirable effect of improving
the well-behavedness of the distance function; however, it also leads to the amplification of
the alignment error caused by the image noise. This suggests that, in the development of
multiscale image registration methods, one needs to take the noise level into account as a
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design parameter.

The rest of the text is organized as follows. In Section 2, we give an overview of related
work. In Section 3, we focus on the alignment regularity problem, where we first derive an
estimation of the SIDEN and then examine its variation with filtering. Then in Section 4, we
look into the alignment accuracy problem and present our results regarding the influence of
noise on the alignment accuracy. In Section 5, we present experimental results. In Section 6,
we give a discussion of our results and interpret them in comparison with the previous studies
in the literature. Finally, we conclude in Section 7.

2. Related Work. The problem of estimating the displacement between two images has
been studied extensively in the image registration [33] and motion estimation [24] literatures.
Here we limit our discussion mostly to region-based methods. We first give a brief overview
of some hierarchical multiscale registration and motion estimation methods and then mention
some theoretical results about image alignment.

The coarse-to-fine alignment strategy has been used in various types of image registration
applications; e.g., registration for stereo vision [13], alignment with multiresolution tangent-
distance for image analysis [25], biomedical image registration [17]. The hierarchical search
strategy has proved useful in motion estimation, since it accelerates the algorithm and leads
to better solutions with reduced sensitivity to local minima [24], [2], [5]. It is also used very
commonly in gradient-based optical flow techniques such as those in [4], [16], which apply a
first-order approximation of the variations in the image intensity function. The hierarchical
search that filters and downsamples the images permits the design of gradient-based methods
that remain in the domain of linearity.

Region-based registration and motion estimation methods use different dissimilarity mea-
sures and optimization techniques. Many methods use SSD (sum-of-squared difference) as the
dissimilarity measure [24]. SSD corresponds to the squared-norm of what is usually called the
displaced frame difference (DFD) in motion estimation. The direct correlation is also widely
used as a similarity measure, and it can be shown to be equivalent to SSD [21].

In this work, we consider (the continuous domain equivalent of) SSD as the dissimilarity
measure. We will essentially consider gradient descent as the minimization technique in our
analysis; however, our main motivation is to understand to what extent local minimizers are
efficient in image registration. Hence, the implications of our study concern a wide range
of registration and motion estimation techniques that minimize SSD (or its approximations)
with local minimizers, e.g., [18], [8], [28], [5], [25], and fast block-matching methods relying
on convexity assumptions [24].

We now overview some theoretical studies about the performance of registration algo-
rithms. The work by Robinson et al. [21] studies the estimation of global translation param-
eters between an image pair corrupted with additive Gaussian noise. The authors first derive
the Cramér-Rao lower bound (CRLB) on the translation estimation. Given by the inverse of
the Fisher information matrix, the CRLB is a general lower bound for the MSE of an estima-
tor that computes a set of parameters from noisy observations. The authors then examine the
bias on multiscale gradient-based methods. A detailed discussion of the results in [21] is given
in Section 6 along with a comparison to our results. Another work that examines Cramér-Rao
lower bounds in registration is given in [32], where the bounds are derived for several models
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with transformations estimated from a set of matched feature points with noisy positions.
The studies in [10], [6] have also examined the bias of gradient-based shift estimators and

shown that presmoothing the images reduces the bias on the estimator. However, smoothing
also has the undesired effect of impairing the conditioning of the linear system to be solved
in gradient-based estimators [10]. Therefore, this tradeoff must be taken into account in
the selection of the filter size in coarse-to-fine gradient-based registration. The papers [21],
[20] furthermore show that the bias on gradient-based estimators increases as the amount
of translation increases. Robinson et al. [21] use this observation to explain the benefits of
multiscale gradient-based methods. At large scales, downsampling, which reduces the amount
of translation, and smoothing help to decrease the bias on the estimator. Then, as the change
in the translation parameters is small at fine scales, the estimation does not suffer from this
type of bias anymore. Moreover, at fine scales, the accuracy of the estimation increases as
high-frequency components are no more suppressed. This is due to the fact that the CRLB
of the estimation is smaller when the bandwidth of the image is larger.

Next, in the article [11] the convergence of gradient-based registration methods is exam-
ined. It is shown that, if the images are smoothed with ideal low-pass filters by doubling the
bandwidth in each stage, coarse-to fine gradient-based registration algorithms converge to the
globally optimal solution provided that the amount of shift is sufficiently small. However, this
convergence guarantee is obtained for an ideal noiseless setting.

Lastly, the article [22] is a recent theoretical study on the accuracy of subpixel block-
matching in stereo vision, which has relations to our work. The paper first examines the
relation between the discrete and continuous block-matching distances, and then presents
a continuous-domain analysis of the effect of noise on the accuracy of disparity estimation
from a rectified stereo pair corrupted with additive Gaussian noise. An estimation of the
disparity that globally minimizes the windowed squared-distance between blocks is derived.
A comparison of the results presented in [22] and in our work is given in Section 6.

The previous works that have studied the alignment accuracy of multiscale registration
by examining the effect of smoothing are limited to gradient-based methods, i.e., methods
that employ a linear approximation of the image intensity. Moreover, none of these studies
focus on the alignment regularity aspect of image registration. In this work, we address both
of these issues and derive bounds on both alignment regularity and alignment accuracy in
multiscale registration.

3. Analysis of Alignment Regularity.

3.1. Notation and Problem Formulation. Let p ∈ L2(R2) be a visual pattern with a
non-trivial support on R2 (i.e., p(X) is not equal to 0 almost everywhere on R2). In order
to study the image registration problem analytically, we adopt a representation of p in an
analytic and parametric dictionary manifold

D = {φγ : γ = (ψ, τx, τy, σx, σy) ∈ Γ} ⊂ L2(R2). (3.1)

Here, each atom φγ of the dictionary D is derived from an analytic mother function φ by a
geometric transformation specified by the parameter vector γ, where ψ is a rotation parameter,
τx and τy denote translations in x and y directions, and σx and σy represent an anisotropic
scaling in x and y directions. Γ is the transformation parameter domain over which the
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dictionary is defined. By defining the spatial coordinate variable X = [x y]T ∈ R2×1, we refer
to the mother function as φ(X). Then an atom φγ is given by

φγ(X) = φ(σ−1 Ψ−1 (X − τ)), (3.2)

where

σ =

[

σx 0
0 σy

]

, Ψ =

[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]

, τ =

[

τx
τy

]

. (3.3)

It is shown in [3] (in the proof of Proposition 2.1.2) that the linear span of a dictionary D
generated with respect to the transformation model in (3.1) is dense in L2(R2) if the mother
function φ has nontrivial support (unless φ(X) = 0 almost everywhere). In our analysis,

we choose φ to be the Gaussian function φ(X) = e−XT X = e−(x2+y2) as it has good time-
localization and it is easy to treat in derivations due to its well-studied properties. This
choice also ensures that Span(D) is dense in L2(R2); therefore, any pattern p ∈ L2(R2)
can be approximated in D with arbitrary accuracy. We assume that a sufficiently accurate
approximation of p with finitely many atoms in D is available; i.e.,

p(X) ≈
K
∑

k=1

ck φγk
(X) (3.4)

where K is the number of atoms used in the representation of p, γk are the atom parameters
and ck are the atom coefficients.1

Throughout the discussion, T = [Tx Ty]
T ∈ S1 denotes a unit-norm vector and S1 is the

unit circle in R2. We use the notation tT for translation vectors, where t ≥ 0 denotes the
magnitude of the vector (amount of translation) and T defines the direction of translation.
Then, the translation manifold M(p) of p is the set of patterns generated by translating p

M(p) = {p(X − t T ) : T ∈ S1, t ∈ [0,+∞)} ⊂ L2(R2). (3.5)

We consider the squared-distance between the reference pattern p(X) and its translated
version p(X − tT ). This distance is the continuous domain equivalent of the SSD measure
that is widely used in registration methods. The squared-distance in the continuous domain
is given by

f(tT ) = ‖p(·) − p(· − tT )‖2 =

∫R2

(p(X) − p(X − tT ))2dX (3.6)

where the notation2 ‖.‖ stands for the L2-norm for vectors in L2(R2) and the ℓ2-norm for
vectors in R2.

1In the practical computation of the representation of a digital image in the Gaussian dictionary, the
number of atoms should be chosen such that a substantial part of the energy of the image is captured in
the approximation. Atom parameters and coefficients can be computed in various ways, for instance, by
using pursuit algorithms such as [15], [19] with a redundant sampling of the Gaussian dictionary, or with DC
(difference-of-convex) optimization as in [27].

2The notations ‖p‖ or ‖p(·)‖ are always used to refer to the L2-norm of p, considered as an element of the
vector space of functions. Since it is then clear whether the L2(R2)-norm or the ℓ2-norm is meant, we denote
these in the same way for simplicity of notation.
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Note that in image registration, windowed versions of the image pair centered around a
point of interest can be used as well as the entire images [33]. If the reference and target
images are windowed around a point X0, the distance function becomes

∫R2

(

ϕ(X −X0)p(X) − ϕ(X −X0)p(X − tT )
)2
dX

where ϕ : R2 → [0, 1] is a window function. If the window is chosen sufficiently large such
that it covers the region where the reference pattern p has significant intensity as well as its
translated versions p(X − tT ) for realistic values of tT , one can approximate this function
with the function f(tT ) in (3.6). In this section, we base our analysis on the non-windowed
distance function f(tT ) in order to keep the derivations simple.

The global minimum of f is at the origin tT = 0. Therefore, there exists a region around
the origin within which the restriction of f to a ray tTa starting out from the origin along an
arbitrary direction Ta is an increasing function of t > 0 for all Ta. This allows us to define the
Single Distance Extremum Neighborhood (SIDEN) as follows.

Definition 3.1.We call the set of translation vectors

S = {0} ∪ {ωTT : T ∈ S1, ωT > 0, and
df(tT )

dt
> 0 for all 0 < t ≤ ωT} (3.7)

the Single Distance Extremum Neighborhood (SIDEN) of the pattern p.
Note that the origin {0} is included separately in the definition of SIDEN since the gradient

of f vanishes at the origin and therefore df(tT )/dt|t=0 = 0 for all T . The SIDEN S ⊂ R2 is
an open neighborhood of the origin such that the only stationary point of f inside S is the
origin. We formulate this in the following proposition.

Proposition 3.2.Let tT ∈ S. Then ∇f(tT ) = 0 if and only if tT = 0.
Proof. Let ∇f(tT ) = 0 for some tT ∈ S. Then, ∇Tf(tT ) = 0, which is the directional

derivative of f along the direction T at tT . This gives

∇T f(tT ) =
d

du
f(tT + uT )

∣

∣

∣

∣

u=0

=
d

du
f ((t+ u)T )

∣

∣

∣

∣

u=0

=
d

du
f(uT )

∣

∣

∣

∣

u=t

=
df(tT )

dt
= 0

which implies that t = 0, as tT ∈ S. The second part ∇f(0) = 0 of the statement also holds
clearly, since the global minimum of f is at 0.

Proposition 3.2 can be interpreted as follows. The only local minimum of the distance
function f is at the origin in S. Therefore, when a translated version p(X − tT ) of the
reference pattern is aligned with p(X) with a local optimization method like a gradient descent
algorithm, the local minimum achieved in S is necessarily also the global minimum.

The goal of our analysis is now the following. Given a reference pattern p, we would like to
find an analytical estimation of S. However, the exact derivation of S requires the calculation
of the exact zero-crossings of df(tT )/dt, which is not easy to do analytically. Instead, one can
characterize the SIDEN by computing a neighborhood Q of 0 that lies completely in S; i.e.,
Q ⊂ S. Q can be derived by using a polynomial approximation of f and calculating, for all
unit directions T , a lower bound δT for the supremum of ωT such that ωTT is in S. This does
not only provide an analytic estimation of the SIDEN, but also defines a set that is known to
be completely inside the SIDEN. The regions S and Q are illustrated in Figure 3.1.
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Q

S
δT

ωT

f(tT)

R
2

0

Figure 3.1. SIDEN S is the largest open
neighborhood around the origin within which the
distance f is increasing along all rays starting out
from the origin. Along each unit direction T , S
covers points ωT T such that f(tT ) is increasing
between 0 and ωT T . The estimate Q of S is ob-
tained by computing a lower bound δT for the first
zero-crossing of df(tT )/dt.

In Section 3.2 we derive Q. In particular, Q
is obtained in the form of a compact analytic set
and f is a differentiable function. This guaran-
tees that, if the translation that aligns the image
pair perfectly is in the set Q, the distance func-
tion f can be minimized with gradient descent
algorithms; the solution converges to a local min-
imum of f in Q, which is necessarily the global
minimum of f , resulting in a perfect alignment.
Moreover, we will see in Section 5 that the knowl-
edge of a set Q ⊂ S permits us to design a regis-
tration algorithm that can recover large transla-
tions perfectly.

Finally, as Q is obtained analytically and
parametrically, it is simple to examine its vari-
ation with the low-pass filtering applied to p.
This is helpful for gaining an understanding of
the relation between the alignment regularity and
smoothing. We study this relation in Section 3.3.

3.2. Estimation of SIDEN. We now derive
an estimation Q for the Single Distance Ex-
tremum Neighborhood S. In the following, we
consider T to be a fixed unit direction in S1. We
derive Q ⊂ S by computing a δT which guaran-

tees that df(tT )/dt > 0 for all 0 < t ≤ δT . In the derivation of Q, we need a closed-form
expression for df(tT )/dt. Since f is the distance between the patterns p(X) and p(X − tT )
that are represented in terms of Gaussian atoms (see Eq. 3.4), it involves the integration of
the multiplication of pairs of Gaussian atoms. We will use the following proposition about
the integration of the product of Gaussian atoms [29].

Proposition 3.3.Let φγj
(X) = φ(σ−1

j Ψ−1
j (X − τj)) and φγk

(X) = φ(σ−1
k Ψ−1

k (X − τk)).
Then

∫R2

φγj
(X)φγk

(X)dX =
π |σjσk|
2
√

|Σjk|
exp

(

−1

2
(τk − τj)

T Σ−1
jk (τk − τj)

)

where Σjk := 1
2

(

Ψj σ
2
j Ψ−1

j + Ψk σ
2
k Ψ−1

k

)

.

The symbol Σjk defined in Proposition 3.3 is a function of the parameters of the j-th and
k-th atoms. We also denote

ajk :=
1

2
T T Σ−1

jk T, bjk :=
1

2
T T Σ−1

jk (τk − τj)

cjk :=
1

2
(τk − τj)

T Σ−1
jk (τk − τj), Qjk :=

π |σjσk|e−cjk

√

|Σjk|
.

(3.8)

Notice that ajk > 0 and cjk ≥ 0 since ‖T‖ = 1 and Σjk, Σ−1
jk are positive definite matrices.

By definition, Qjk > 0 as well. Note also that ajk and bjk are functions of the unit direction
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T ; however, for the sake of simplicity we avoid expressing their dependence on T explicitly in
our notation.

We can now give our result about the estimation of the SIDEN.

Theorem 3.4. The region Q ⊂ R2 is a subset of the SIDEN S of the pattern p if

Q = {tT : T ∈ S1, 0 ≤ t ≤ δT }

where δT is the only positive root of the polynomial |α4|t3 − α3t
2 − α1 and

α1 =
K
∑

j=1

K
∑

k=1

cjck Qjk (2 ajk − 4 b2jk)

α3 =

K
∑

j=1

K
∑

k=1

cjck Qjk

(

−8

3
b4jk + 8 b2jk ajk − 2 a2

jk

)

α4 = −1.37

K
∑

j=1

K
∑

k=1

|cjck|Qjk exp

(

b2jk
ajk

)

a
5/2
jk

are constants depending on T and on the parameters γk of the atoms in p.

The proof of Theorem 3.4 is given in [26, Appendix A.1]. The proof applies a Taylor
expansion of df(tT )/dt and derives δT such that df(tT )/dt is positive for all t ≤ δT . Therefore,
along each direction T , δT constitutes a lower bound for the first zero-crossing of df(tT )/dt
(see Figure 3.1 for an illustration of δT ). By varying T over the unit circle, one obtains a closed
neighborhood Q of 0 that is a subset of S. This region can be analytically computed using
only the parametric representation of p and provides an estimate for the range of translations
tT over which p(X) can be exactly aligned with p(X − tT ).

3.3. Variation of SIDEN with Smoothing. We now examine how smoothing the reference
pattern p with a low-pass filter influences its SIDEN. We assume a Gaussian kernel for the
filter. The Gaussian function is a commonly used kernel for low-pass filtering and its distinctive
properties has made it popular in scale-space theory research [12] (see Section 6 for a more
detailed discussion). We assume that p is filtered with a Gaussian kernel of the form 1

πρ2φρ(X)

with unit L1-norm. The function φρ(X) = φ(Υ−1(X)) is an isotropic Gaussian atom with
scale matrix

Υ =

[

ρ 0
0 ρ

]

. (3.9)

The scale parameter ρ controls the size of the Gaussian kernel. We denote the smoothed
version of the reference pattern p(X) by p̂(X), which is given as

p̂(X) =
1

πρ2
(φρ ∗ p)(X) =

K
∑

k=1

ck
1

πρ2
(φρ ∗ φγk

)(X) (3.10)
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by linearity of the convolution operator. In order to calculate p̂, we use the following proposi-
tion, which gives the expression for the Gaussian atom obtained from the convolution of two
Gaussian atoms [29].

Proposition 3.5.Let φγ1(X) = φ(σ−1
1 Ψ−1

1 (X − τ1)) and φγ2(X) = φ(σ−1
2 Ψ−1

2 (X − τ2)).
Then

(φγ1 ∗ φγ2)(X) =
π|σ1σ2|
|σ3|

φγ3(X) (3.11)

where φγ3(X) = φ(σ−1
3 Ψ−1

3 (X − τ3)) and the parameters of φγ3(X) are given by

τ3 = τ1 + τ2, Ψ3 σ
2
3 Ψ−1

3 = Ψ1 σ
2
1 Ψ−1

1 + Ψ2 σ
2
2 Ψ−1

2 .

From Proposition 3.5, we obtain

1

πρ2
(φρ ∗ φγk

)(X) =
|σk|
|σ̂k|

φγ̂k
(X) (3.12)

where φγ̂k
(X) = φ(σ̂−1

k Ψ̂−1
k (X − τ̂k)) and

τ̂k = τk, Ψ̂k = Ψk, σ̂k =
√

Υ2 + σ2
k. (3.13)

Hence, when p is smoothed with a Gaussian filter, the atom φγk
(X) with coefficient ck in the

original pattern p is replaced by the smoothed atom φγ̂k
(X) with coefficient

ĉk =
|σk|
|σ̂k|

ck =
|σk|

√

|Υ2 + σ2
k|
ck =

σx,k σy,k
√

(ρ2 + σ2
x,k)(ρ

2 + σ2
y,k)

ck (3.14)

where σk = diag(σx,k, σy,k). This shows that the change in the pattern parameters due to
the filtering can be captured by substituting the scale parameters σk with σ̂k and replacing
the coefficients ck with ĉk. Thus, the smoothed pattern p̂ is sparsely representable in the
dictionary D as

p̂(X) =

K
∑

k=1

ĉkφγ̂k
(X). (3.15)

Considering the same setting as in Section 3.1, where the target pattern p(X − tT ) is
exactly a translated version of the reference pattern p(X), we now assume that both the
reference and target patterns are low-pass filtered as it is typically done in hierarchical image
registration algorithms. The above equations show that, when a pattern is low-pass filtered,
the scale parameters of its atoms increase and the atom coefficients decrease proportionally to
the filter kernel size, leading to a spatial diffusion of the image intensity function. The goal of
this section is to show that this diffusion increases the volume of the SIDEN. We achieve this
by analyzing the variation of the smoothed SIDEN estimate Q̂ corresponding to the smoothed
distance

f̂(tT ) =

∫R2

(

p̂(X) − p̂(X − tT )
)2
dX (3.16)

with respect to the filter size ρ. Since the smoothed pattern has the same parametric form
(3.15) as the original pattern, the variation of Q̂ with ρ can be analyzed easily by examining
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the dependence of the parameters involved in the derivation of Q̂ on ρ. In the following, we
express the terms in Section 3.2 that have a dependence on ρ with the notation (̂.), such as
âjk, b̂jk, ĉk, σ̂k. We write the terms that do not depend on ρ in the same way as before; e.g.,
t, T , τk, Ψk.

Now, we can apply the result of Theorem 3.4 for the smoothed pattern p̂(X). For a
given kernel size ρ, the smoothed versions âjk, b̂jk, ĉjk, Q̂jk of the parameters in (3.8) can be
obtained by replacing the scale parameters σk with σ̂k defined in (3.13). Then, the smoothed
SIDEN corresponding to ρ is given as Q̂ = {tT : T ∈ S1, 0 ≤ t ≤ δ̂T } where δ̂T is the positive
root of the polynomial |α̂4|t3 − α̂3t

2 − α̂1 such that

α̂1 =
K
∑

j=1

K
∑

k=1

ĉj ĉk Q̂jk (2 âjk − 4 b̂2jk), α̂3 =
K
∑

j=1

K
∑

k=1

ĉj ĉk Q̂jk

(

−8

3
b̂4jk + 8 b̂2jk âjk − 2 â2

jk

)

α̂4 = −1.37

K
∑

j=1

K
∑

k=1

|ĉj ĉk| Q̂jk exp

(

b̂2jk
âjk

)

â
5/2
jk .

Similarly to the derivation in Section 3.2, the terms âjk, b̂jk, ĉjk, Q̂jk are associated with
the integration of the product of smoothed Gaussian atom pairs, and they appear in the
closed-form expression of df̂(tT )/dt.

We are now ready to give the following result, which summarizes the dependence of the
smoothed SIDEN estimate on the filter size ρ.

Theorem 3.6. Let V (Q̂) denote the volume (area) of the SIDEN estimate Q̂ for the smoothed
pattern p̂. Then, the order of dependence of the volume of Q̂ on the filter size ρ is given by
V (Q̂) = O(1 + ρ2). Moreover, the distance δ̂T of the boundary of Q̂ to the origin increases at
a rate of O(

√

1 + ρ2) with ρ along any direction T .

Theorem 3.6 is proved in [26, Appendix A.2]. The proof is based on the examination of
the order of variation of âjk, b̂jk, ĉjk, Q̂jk with ρ, which is then used to derive the dependence

of δ̂T on ρ.
Theorem 3.6 is the main result of this section. It states that the volume of the SIDEN es-

timate increases with the size of the filter applied on the patterns to be aligned. The theorem
shows that the volume of the region of translations for which the reference pattern p̂(X) can
be perfectly aligned with p̂(X − tT ) using a descent method, expands at the rate O(1 + ρ2)
with respect to the increase in the filter size ρ. Here, the order of variation O(1 + ρ2) is
obtained for the estimate Q̂ of the SIDEN. Hence, one may wonder if the volume V (Ŝ) of the
SIDEN Ŝ has the same dependence on ρ. Remembering that Q̂ ⊂ Ŝ for all ρ, one immediate
observation is that the rate of expansion of Ŝ must be at least O(1 + ρ2); otherwise, there
would exist a sufficiently large value of ρ such that Q̂ is not included in Ŝ. One can therefore
conclude that V (Ŝ) ≥ V (Q̂) = O(1 + ρ2). Theorem 3.6 also states that the SIDEN boundary
along any direction T expands at a rate of at least O(

√

1 + ρ2). However, this only gives a
lower bound for the rate of expansion of Ŝ and the exact rate of expansion of Ŝ may be larger.
In the following, we give a few comments about the variation of Ŝ with ρ.
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Remark. As shown in the proof of Theorem 3.4, the derivative of the distance function
f(tT ) is of the form

df(tT )

dt
=

K
∑

j=1

K
∑

k=1

cjck Qjk sjk(t) (3.17)

where

sjk(t) = e−(ajk t2 +2 bjk t) (ajk t + bjk) + e−(ajk t2 − 2 bjk t) (ajk t − bjk) . (3.18)

In order to derive S, one needs to exactly locate the smallest zero-crossing of df(tT )
dt . This is

not easy to do analytically due to the complicated form of the functions sjk(t), which we have
handled with polynomial approximations in the derivation of Q. However, in order to gain an
intuition about how the zero-crossings change with filtering, one can look at the dependence of

the extrema of the two additive terms in sjk(t) on ρ. The function e−(ajk t2 +2 bjk t) (ajk t + bjk)
has two extrema at

µ0 =
1

ajk

(

−
√

ajk

2
− bjk

)

, µ1 =
1

ajk

(
√

ajk

2
− bjk

)

(3.19)

and e−(ajk t2 − 2 bjk t) (ajk t − bjk) has two extrema at

µ2 =
1

ajk

(

−
√

ajk

2
+ bjk

)

, µ3 =
1

ajk

(
√

ajk

2
+ bjk

)

. (3.20)

Now replacing the original parameters ajk, bjk with their smoothed versions âjk, b̂jk and using

the result from the proof of Theorem 3.6 that âjk and b̂jk decrease at a rate of O
(

(1 + ρ2)−1
)

,
it is easy to show that the locations of the extrema µ̂0, µ̂1, µ̂2, µ̂3 change with a rate of O

(

(1+

ρ2)1/2
)

. One may thus conjecture that the zero-crossings of df(tT )/dt along a fixed direction

T might also move at the same rate, which gives the volume of Ŝ as V (Ŝ) = O(1 + ρ2).

On the other hand, V (Ŝ) may also exhibit a different type of variation with ρ depending
on the atom parameters of p. In particular, V (Ŝ) may expand at a rate greater than O(1+ρ2)
for some patterns. For example, as shown in [26, Proposition 4], there exists a threshold value
ρ0 of the filter size such that for all ρ > ρ0, Ŝ = R2 and thus V (Ŝ) = ∞ for patterns that
consist of atoms with coefficients of the same sign. In addition, patterns whose atoms with
positive (or negative) coefficients are dominant over the atoms with the opposite sign are likely
to have this property due to their resemblance to patterns consisting of atoms with coefficients
of the same sign.

Theorem 3.6 describes the effect of smoothing images before alignment. One may then
wonder what the optimal filter size to be applied to the patterns before alignment is, given
a reference and a target pattern. Theorem 3.6 suggests that, if the target pattern is on the
translation manifold of the reference pattern, applying a large filter is always preferable as
it provides a large range of translations recoverable by descent algorithms. The accuracy of
alignment does not change with the filter size in this noiseless setting, since a perfect alignment
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is always guaranteed with descent methods as long as the amount of translation is inside the
SIDEN. However, the assumption that the target pattern is exactly of the form p(X − tT )
is not realistic in practice; i.e., in real image processing applications, the target image is
likely to deviate from M(p) due to the noise caused by image capture conditions, imaging
model characteristics, etc. Hence, we examine in Section 4 if filtering affects the accuracy of
alignment when the target image deviates from M(p).

4. Analysis of Alignment Accuracy in Noisy Settings. We now analyze the effect of noise
and smoothing on the accuracy of the estimation of translation parameters. In general, noise
causes a perturbation in the location of the global minimum of the distance function. The
perturbed version of the single global minimum of the noiseless distance function f will remain
in the form of a single global minimum for the noisy distance function with high probability if
the noise level is sufficiently small. The noise similarly introduces a perturbation on the SIDEN
as well. The exact derivation of the SIDEN in the noisy setting requires the examination of the
first zero-crossings of the derivative of the noisy distance function along arbitrary directions
T around its global minimum. At small noise levels, these zero-crossings are expected to be
perturbed versions of the first zero-crossings of df(tT )/dT around the origin, which define the
boundary of the noiseless SIDEN S. The perturbation on the zero-crossings depends on the
noise level. If the noise level is sufficiently small, the perturbation on the zero-crossings will
be smaller than the distance between S and its estimate Q. This is due to the fact that Q is
a worst-case estimate for S and its boundary is sufficiently distant from the boundary of S in
practice, which is also confirmed by the experiments in Section 5. In this case, the estimate Q
obtained from the noiseless distance function f is also a subset of the noisy SIDEN. Therefore,
under the small noise assumption, Q can be considered as an estimate of the noisy SIDEN as
well and it can be used in the alignment of noisy images in practice.3 Our alignment analysis
in this section relies on this assumption. Since we consider that the reference and target
patterns are aligned with a descent-type optimization method, the solution will converge to
the global minimum of the noisy distance function in the noisy setting. The alignment error
is then given by the change in the global minimum of the distance function, which we analyze
now.

The selection of the noise model for the representation of the deviation of the target pattern
from the translation manifold of the reference pattern depends on the imaging application. It is
common practice to represent non-predictable deviations of the image intensity function from
the image model with additive Gaussian noise. This noise model fits well the image intensity
variations due to imperfections of the image capture system, sensor noise, etc. Meanwhile,
in some settings, one may have a prior knowledge of the type of the deviation of the target
image from the translation manifold of the reference image. For instance, the deviation from
the translation manifold may be due to some geometric image deformations, non-planar scene
structures, etc. In such settings, one may be able to bound the magnitude of the deviation of
the image intensity function from the translation model. Considering these, we examine two
different noise models in our analysis. We first focus on a setting where the target pattern
is corrupted with respect to an analytic noise model in the continuous space L2(R2). The
analytic noise model is inspired by the i.i.d. Gaussian noise in the discrete space Rn. In

3The validity of this approximation is confirmed by the numerical simulation results in Section 5.
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Section 4.1, we derive a probabilistic upper bound on the alignment error for this setting in
terms of the parameters of the reference pattern and the noise model. Then, in Section 4.2,
we generalize the results of Section 4.1 to arbitrary noise patterns in L2(R2) and derive an
error bound in terms of the norm of the noise pattern. In Section 4.3 we discuss how these
results can be adapted to a setting where both the reference image and the target image are
corrupted with noise. Lastly, the influence of smoothing the reference and target patterns on
the alignment error is studied in Section 4.4.

Throughout Section 4, we use the notations (·) and (·) to refer respectively to upper and
lower bounds on the variable (·). The parameters corresponding to smoothed patterns are

written as (̂.) as in Section 3.3. The notations R(.) and C(.) are used to denote important
upper bounds appearing in the main results, which are associated with the parameter in the
subscript.

4.1. Derivation of an Upper Bound for Alignment Error for Gaussian Noise. We con-
sider the noiseless reference pattern p in (3.4) and a target pattern that is a noisy observation
of a translated version of p. We assume an analytical noise model given by

w(X) =

L
∑

l=1

ζl φξl
(X), (4.1)

where the noise units φξl
(X) are Gaussian atoms of scale ǫ. The coefficients ζl and the

noise atom parameters ξl are assumed to be independent. The noise atoms are of the form
φξl

(X) = φ
(

E−1(X − δl)
)

where

E =

[

ǫ 0
0 ǫ

]

, δl =

[

δx,l

δy,l

]

.

The vector δl is the random translation parameter of the noise atom φξl
such that the random

variables {δx,l}L
l=1, {δy,l}L

l=1 ∼ U [−b, b] have an i.i.d. uniform distribution. Here, b is a fixed
parameter used to define a region [−b, b]× [−b, b] ⊂ R2 in the image plane, which is considered
as a support region capturing a substantial part of the energy of reference and target images.
The centers of the noise atoms are assumed to be uniformly distributed in this region. In order
to have a realistic noise model, the number of noise units L ≫ K is considered to be a very
large number and the scale ǫ > 0 of noise atoms is very small. The parameters L and ǫ will
be treated as noise model constants throughout the analysis. The coefficients ζl ∼ N(0, η2) of
the noise atoms are assumed to be i.i.d. with a normal distribution of variance η2.

The continuous-space noise model w(X) is chosen in analogy with the digital i.i.d. Gaussian
noise in the discrete space Rn. The single isotropic scale parameter ǫ of noise units bears
resemblance to the 1-pixel support of digital noise units. The uniform distribution of the
position δl of noise units is similar to the way digital noise is defined on a uniform pixel grid.
The noise coefficients ζl have an i.i.d. normal distribution as in the digital case. If our noise
model w(X) has to approximate the digital Gaussian noise in a continuous setting, the noise
atom scale ǫ is chosen comparable to the pixel width and L corresponds to the resolution of
the discrete image.

Let now pn be a noisy observation of p such that pn(X) = p(X) + w(X), where w and p
are independent according to the noise model (4.1). We assume that the target pattern is a
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translated version of pn(X) so that it takes the form pn(X − tT ). Then, the noisy distance
function between p(X) and pn(X − tT ) is given by

g(tT ) =

∫R2

(

p(X) − pn(X − tT )
)2
dX =

∫R2

(

p(X) − p(X − tT ) − w(X − tT )
)2
dX. (4.2)

This can be written as g(tT ) = f(tT ) + h(tT ), where

h(tT ) := −2

∫R2

(

p(X) − p(X − tT )
)

w(X − tT ) dX +

∫R2

w2(X − tT ) dX. (4.3)

The function h represents the deviation of g from f . We call h the distance deviation function.
The expected value of h is independent of the translation tT and given by µh := E[h(tT )] =
π
2Lη

2ǫ2 where E[.] denotes the expectation [26, Appendix B.1]. Therefore, E[g(tT )] = f(tT )+
µh and the global minimum of E[g(tT )] is at tT = 0. However, due to the probabilistic
perturbation caused by the noise w, the global minimum of g is not at tT = 0 in general. We
consider g to have a single global minimum and denote its location by t0T0. However, the
single global minimum assumption is not a strict hypothesis of our analysis technique; i.e.,
the upper bound that we derive for the distance between t0T0 and the origin is still valid if
g has more than one global minimum. In this case, the obtained upper bound is valid for all
global minima.

We now continue with the derivation of a probabilistic upper bound on the distance t0
between the location t0T0 of the global minimum of g and the location 0 of the global minimum
of f . We show in [26, Appendix B.2] that t0 satisfies the equation

t20
2

(

d2f(tT0)

dt2

∣

∣

∣

∣

t=t1

+
d2f(tT0)

dt2

∣

∣

∣

∣

t=t2

+
d2h(tT0)

dt2

∣

∣

∣

∣

t=t1

)

= |h(0) − h(t0T0)| (4.4)

for some t1 ∈ [0, t0] and t2 ∈ [0, t0]. Our derivation of an upper bound for t0 will be based on
(4.4). The above equation shows that t0 can be upper bounded by finding a lower bound on
the term

d2f(tT0)

dt2

∣

∣

∣

∣

t=t1

+
d2f(tT0)

dt2

∣

∣

∣

∣

t=t2

+
d2h(tT0)

dt2

∣

∣

∣

∣

t=t1

(4.5)

and an upper bound for the term |h(0) − h(t0T0)|. However, h is a probabilistic function;
i.e., h(tT ) and its derivatives are random variables. Therefore, the upper bound that we will
obtain for t0 is a probabilistic bound given in terms of the variances of h(0) − h(t0T0) and
d2h(tT0)/dt

2.
In the rest of this section, we proceed as follows. First, in order to be able to bound

|h(0) − h(tT )| probabilistically, in Lemma 4.1 we present an upper bound on the variance
of h(0) − h(tT ). Next, in order to bound the term in (4.5), we state a lower bound for
d2f(tT )/dt2 in Lemma 4.2 and an upper bound for the variance of d2h(tT )/dt2 in Lemma 4.3.
These results are finally put together in the main result of this section, namely Theorem 4.4,
where an upper bound on t0 is obtained based on (4.4). Theorem 4.4 applies Chebyshev’s
inequality to employ the bounds derived in Lemmas 4.1 and 4.3 to define probabilistic upper
bounds on the terms |h(0) − h(t0T0)| and |d2h(tT0)/dt

2|. Then, this is combined with the
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bound on d2f(tT )/dt2 in Lemma 4.2 to obtain a probabilistic upper bound on t0 from the
relation (4.4).

In the derivation of this upper bound, the direction T0 of the global minimum of g is treated
as an arbitrary and unknown unit-norm vector. Moreover, the variances of h(0) − h(tT ) and
d2h(tT )/dt2 have a complicated dependence on t, which makes it difficult to use them directly
in (4.4) to obtain a bound on t0. In order to cope with the dependences of these terms on
t and T , the upper bounds presented in Lemmas 4.1 and 4.3 are derived as uniform upper
bounds over the closed ball of radius t0 > 0, Bt0

(0) = {tT : T ∈ S1, 0 ≤ t ≤ t0}. The upper
bounds are thus independent of tT and valid for all tT vectors in Bt0

(0). In these lemmas, the
parameter t0 is considered to be a known threshold for t0, such that t0 ≤ t0. This parameter
will be assigned a specific value in Theorem 4.4.

We begin with bounding the variance of term h(0) − h(tT ) in order to find an upper
bound for the right hand side of (4.4). Let us denote ∆h(tT ) := h(0) − h(tT ). From (4.3),
∆h(tT ) = h(0) − h(tT ) = 2

∫R2 (p(X) − p(X − tT ))w(X − tT )dX, where we have used the
fact that

∫R2 w
2(X − tT )dX =

∫R2 w
2(X)dX. Let σ2

∆h(tT ) denote the variance of ∆h(tT ).

In the following lemma, we state an upper bound on σ2
∆h(tT ). Let us define beforehand the

following constants for the k-th atom of p

Φk := Ψk(σ
2
k + E2)−1Ψ−1

k , κk :=
π |σk| |E|
√

|σ2
k +E2|

.

Also, let J− = {(j, k) : cjck < 0} and J+ = {(j, k) : cjck > 0} denote the set of (j, k) indices
with negative and positive coefficient products.

Lemma 4.1. Let t0 > 0, and let tT ∈ Bt0(0). Then, the variance σ2
∆h(tT ) of ∆h(tT ) can be

upper bounded as

σ2
∆h(tT ) < Rσ2

∆h
:= Cσ2

∆h
η2 (4.6)

where

Cσ2
∆h

:= 4L

(

∑

(j,k)∈J+

cjκj ckκk jk +
∑

(j,k)∈J−

cjκj ckκk djk

)

.

Here the terms jk and djk are constants depending on t0 and the atom parameters of p. In
particular, jk and djk are bounded functions of t0, given in terms of exponentials of second-
degree polynomials of t0 with negative leading coefficients.

The proof of Lemma 4.1 is presented in [26, Appendix B.4]. In the proof, a uniform upper
bound jk and a uniform lower bound djk are derived for the additive terms4 constituting the
variance of ∆h(tT ). The exact expressions of jk and djk are given in Appendix A.

We have thus stated a uniform upper bound Rσ2
∆h

for the variance of ∆h(tT ) which will be

used to derive an upper bound for the right hand side of (4.4) in Theorem 4.4. We now continue
with the examination of the left hand side of (4.4). We begin with the term d2f(tT )/dt2. The
following lemma gives a lower bound on the second derivative of the noiseless distance function
f(tT ) in terms of the pattern parameters.

4jk and djk are upper and lower bounds for the terms jk, djk used in [26, Lemma 1].
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Lemma 4.2. The second derivative of f(tT ) along the direction T can be uniformly lower
bounded for all t ∈ [0, t0] and for all directions T ∈ S1 as follows

d2f(tT )

dt2
≥ r0 + r2t

2
0 + r3t

3
0. (4.7)

Here r0 > 0, r2 ≤ 0, and r3 < 0 are constants depending on the atom parameters of p. In
particular, r0, r2, r3 are obtained from the eigenvalues of some matrices derived from the
parameters cj , τj, Qjk, Σjk.

The proof of Lemma 4.2 is given in [26, Appendix B.5] and the exact expressions of r0,
r2, r3 are given in Appendix B. The above lower bound on the second derivative of f(tT )
is independent of the direction T and the amount t of translation, provided that t is in the
interval [0, t0]. In fact, the statement of Lemma 4.2 is general in the sense that t0 can be any
positive scalar. However, in the proof of Theorem 4.4, we use Lemma 4.2 for the t0 value that
represents the deviation between the global minima of f and g.

The result of Lemma 4.2 will be used in Theorem 4.4 in order to lower bound the second
derivative of f in (4.4). We now continue with the term d2h(tT )/dt2 in (4.4). Let h′′(tT ) :=
d2h(tT )/dt2 denote the second derivative of the deviation function h along the direction T .
Since h′′(tT ) can take both positive and negative values, in the calculation of a lower bound
for the term (4.5), we need a bound on the magnitude |h′′(tT )| of this term. It can be bounded
probabilistically in terms of the variance of h′′(tT ). We thus state the following uniform upper
bound on the variance of h′′(tT ).

Lemma 4.3. Let t0 > 0, and let tT ∈ Bt0
(0). Then, the variance σ2

h′′(tT ) of h′′(tT ) can be
upper bounded as

σ2
h′′(tT ) < Rσ2

h′′
:= Cσ2

h′′
η2

(4.8)

where

Cσ2
h′′

:= 4L

(

∑

(j,k)∈J+

cjckκjκk ejk +
∑

(j,k)∈J−

cjckκjκk fjk).
Here ejk is a constant depending on the atom parameters of p; and the term fjk depends on the
atom parameters of p and t0. In particular, ejk is given in terms of rational functions of the
eigenvalues of Φk matrices; and fjk is a bounded function of t0 given in terms of exponentials
of second-degree polynomials of t0 with negative leading coefficients.

The proof of Lemma 4.3 is given in [26, Appendix B.7]. The proof derives uniform upper
and lower bounds ejk, fjk for the additive terms5 in the representation of σ2

h′′(tT ). The exact
expressions for ejk and fjk are given in Appendix C.

Now we are ready to give our main result about the bound on the alignment error. The
following theorem states an upper bound on the distance between the locations of the global
minima of f and g in terms of the noise standard deviation η and the atom parameters of
p, provided that η is smaller a threshold η0. The threshold η0 is obtained from the bounds

5ejk and fjk are upper and lower bounds for the terms ejk, fjk used in [26, Lemma 3].
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derived in Lemmas 4.1, 4.2 and 4.3 such that the condition η < η0 guarantees that the as-
sumption t0 < t0 holds. In the theorem, the parameter t0, which is treated as a predefined
threshold on t0 in the previous lemmas, is also assigned a specific value in terms the constants
r0, r2, r3 of Lemma 4.2.

Theorem 4.4. Let

t0 :=

√

r0

2|r2| + 22/3r
1/3
0 |r3|2/3

. (4.9)

Let Rσ∆h
:=
√

Rσ2
∆h

and Rσh′′ :=
√

Rσ2
h′′

, where Rσ2
∆h

and Rσ2
h′′

are as defined in (4.6) and

(4.8), and evaluated at the value of t0 given above. Also, let Cσ∆h
:=
√

Cσ2
∆h

and Cσh′′ :=
√

Cσ2
h′′

.

Assume that for some s >
√

2, the noise standard deviation η is smaller than η0 such that

η ≤ η0 :=
t
2
0 r0

2 sCσ∆h
+ t

2
0 sCσh′′

. (4.10)

Then, with probability at least 1− 2
s2 , the distance t0 between the global minima of f and g is

bounded as

t0 < Rt0 :=

√

2sRσ∆h

r0 − sRσh′′
. (4.11)

The proof of Theorem 4.4 is given in [26, Appendix B.8]. In the proof, we make use of
the upper bounds Rσ2

∆h
, Rσ2

h′′
on σ2

∆h(tT ), σ
2
h′′(tT ), and the lower bound on d2f(tT )/dt2 given

in (4.7). The upper bound Rt0 in (4.11) shows that the alignment error increases with the
increase in the noise level, since Rσ∆h

and Rσh′′ are linearly proportional to the noise standard
deviation η. The increase of the error with the noise is expected. It can also be seen from
(4.11) that the increase in the term r0, which is proportional to the second derivative of the
noiseless distance f , reduces the alignment error; whereas an increase in the term Rσh′′ , which
is related to the second derivative of h, increases the error. This can be explained as follows.
If f has a sharp increase around its global minimum at 0, i.e., f has a large second derivative,
the location of its minimum is less affected by h. Likewise, if the distance deviation function
h has a large second derivative, it introduces a larger alteration around the global minimum
of f , which causes a bigger perturbation on the position of the minimum.

Theorem 4.4 states a bound on t0 under the condition that the noise standard deviation
η is smaller than the threshold value η0, which depends on the pattern parameters (through
the terms r0, r2, r3, t0) as well as the noise parameters L and ǫ (through the terms Cσ∆h

and
Cσh′′ ). The threshold η0 thus defines an admissible noise level such that the change in the
location of the global minimum of f can be properly upper bounded. This admissible noise
level is derived from the condition Rt0 ≤ t0, which is partially due to our proof technique.
However, we remark that the existence of such a threshold is intuitive in the sense that it
states a limit on the noise power in comparison with the signal power. Note also that the
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denominator r0 − sRσh′′ of Rt0 should be positive, which also yields a condition on the noise
level

η < η′0 =
r0

sCσh′′
.

However, this condition is already satisfied due to the hypothesis η ≤ η0 of the theorem, since
η0 < η′0 from (4.10). Lastly, the fact that the theoretical upper bound tends to infinity at
large values of the noise level should be interpreted in the way that the alignment error bound
is not informative at high noise levels. This is mainly because when the noise level gets too
high, the noise component becomes the determining factor in the estimation of the translation
parameters rather than the noiseless component of the image. As this estimate is unreliable,
no theoretical guarantee can be obtained for the performance of registration algorithms.

4.2. Generalization of the Alignment Error Bound to Arbitrary Noise Models. Here, we
generalize the results of the previous section in order to derive an alignment error bound for
arbitrary noise patterns. In general, the characteristics of the noise pattern vary depending on
the imaging application. In particular, while the noise pattern may have high correlation with
the reference pattern in some applications (e.g., noise resulting from geometric deformations
of the pattern), its correlation with the reference pattern may be small in some other settings
where the noise stems from a source that does not depend on the image. We thus focus on two
different scenarios. In the first and general setting, we do not make any assumption on the
noise characteristics and bound the alignment error in terms of the norm of the noise pattern.
Then, in the second setting, we consider that the noise pattern has small correlation with the
points on the translation manifold of the reference pattern and show that the alignment error
bound can be made sharper in this case.

We assume that the reference pattern p(X) is noiseless and we write the target pattern
as pg(X − tT ), where pg(X) = p(X) + z(X) is a generalized noisy observation of p such that
z ∈ L2(R2) is an arbitrary noise pattern. Then, the generalized noisy distance function is

gg(tT ) =

∫R2

(

p(X) − pg(X − tT )
)2
dX

and the generalized deviation function is hg = gg(tT ) − f(tT ). Let us call u0U0 the point
where gg has its global minimum. Then the distance between the global minima of gg and f
is given by u0.

We begin with the first setting and state a generic bound for the alignment error u0 in
terms of the norm of the noise ν := ‖z‖. In our main result, we denote by Rp := ‖p‖ the
norm of the pattern p, and make use of an upper bound Rp′′ for the norm ‖d2p(· + tT )/dt2‖
of the second derivative of p(X + tT ). It has been derived in terms of the atom parameters of
p in [26, Lemma 4]. We state below our generalized alignment error result for arbitrary noise
patterns.

Theorem 4.5. Let t0 be defined as in (4.9). Assume that the norm ν of z is smaller than
ν0 such that

ν ≤ ν0 :=
t
2
0r0

8Rp + 2Rp′′t
2
0

(4.12)
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where r0 is the constant in Lemma 4.2. Then, the distance u0 between the global minima of f
and gg is bounded as

u0 ≤ Ru0 :=

√

8Rpν

r0 − 2Rp′′ν
. (4.13)

Theorem 4.5 is proved in [26, Appendix C.2]. The theorem states an upper bound on the
alignment error for the general case where the only information used about the noise pattern
is its norm. The alignment error bound Ru0 is a generalized and deterministic version of the
probabilistic bound Rt0 derived for the Gaussian noise model. In the proof of the theorem, the
change hg(0)−hg(u0U0) in the deviation function is bounded by 4Rpν. The second derivative
of the noiseless distance function f is captured by r0 as in the Gaussian noise case. Finally,
the term 2Rp′′ν bounds the second derivative of the deviation hg. Based on these, the above
result is obtained by following similar steps as in Section 4.1.

We now continue with the second setting where the noise pattern z has small correlation
with the points on the translation manifold M(p) of p. We characterize the correlation of
two patterns with their inner product. Assume that a uniform correlation upper bound rpz is
available such that

∣

∣

∣

∣

∫R2

p(X + tT )z(X)dX

∣

∣

∣

∣

≤ rpz (4.14)

for all t and T . The following corollary builds on Theorem 4.5 and states that the bound on
the alignment error can be made sharper if the correlation bound is sufficiently small.

Corollary 4.6. Let t0 be defined as in (4.9) and let a uniform upper bound rpz for the

correlation be given such that rpz < t
2
0r0/8.

Assume that the norm ν of z is smaller than ν0 such that

ν ≤ ν0 :=
t
2
0r0 − 8rpz

2Rp′′t
2
0

. (4.15)

Then, the distance u0 between the global minima of f and gg is bounded as

u0 ≤ Qu0 :=

√

8 rpz

r0 − 2Rp′′ν
. (4.16)

The proof of Corollary 4.6 is given in [26, Appendix C.3]. One can observe that the align-
ment error bound Qu0 approaches zero as the uniform correlation bound approaches zero.
Therefore, if rpz is sufficiently small, Qu0 will be smaller than the general bound Ru0 . This
shows that, regardless of the noise level, the alignment error is close to zero if the noise pattern
z is almost orthogonal to the translation manifold M(p) of the reference pattern.

Remark. In the alignment error bounds derived in this paper, we assume that entire
images are used in the registration rather than windowed regions in the reference and target
images. If the reference and target images are windowed in an image registration application,
this also causes a perturbation in the distance function, in addition to the perturbation caused
by the image noise. In [26, Appendix C.4], we examine how windowing affects the alignment
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error. The analysis in [26, Appendix C.4] shows that the increase in the alignment error due to
windowing can be mitigated by choosing a window function with a sufficiently slow variation.

4.3. Adaptation of the error bounds for two-sided noise models. Throughout our anal-
ysis, we have assumed that the reference image is noiseless and the image noise (w or z) acts
only on the target image. However, in practice the reference image can also be contaminated
with noise. We now discuss how our results can be adapted to this case.

First, it is easy to show that one gets exactly the same error bounds if the noisy distance
function g(tT ) in (4.2) is slightly modified as

∫R2

(

p(X) − p(X − tT ) −w(X)
)2
dX. (4.17)

This corresponds to the situation where the target image p(X − tT )+w(X) is first translated
and then corrupted by the additive noise w. Now, if the reference and the target images are
corrupted respectively with the noise instances w1 and w2, the distance between the reference
image p(X) + w1(X) and the target image p(X − tT ) + w2(X) is given by

∫R2

(

p(X) − p(X − tT ) − (w2(X) − w1(X))
)2
dX.

One can observe that this distance function is the same as the distance function in (4.17)
with w = w2 − w1. Therefore, if w1 and w2 have identical distributions conforming to the
Gaussian noise model in (4.1), the compound noise w = w2 −w1 can also be represented with
the same model such that the number of atoms L is twice the number of atoms in w1 and
w2, and the other model parameters are the same. Hence, one can easily adapt the main
result in Theorem 4.4 to obtain an alignment error bound for the two-sided noise model. We
observe from Lemmas 4.1 and 4.3 that doubling the number of atoms L would increase the
terms Cσ∆h

, Cσh′′ , Rσ∆h
, Rσh′′ by a factor of

√
2. The alignment error bound for the two-sided

Gaussian noise model is thus given as

t0 < Rt0 =

√

2
√

2sRσ∆h

r0 − s
√

2Rσh′′

which holds for the admissible noise threshold

η0 =
t
2
0 r0

2
√

2 sCσ∆h
+

√
2 t

2
0 sCσh′′

with the same probability as in Theorem 4.4.
Next, the analysis in Section 4.2 for arbitrary noise patterns can also be adapted to the

two-sided noise assumption in a similar way. The distance function between the noisy reference
pattern p(X) + z1(X) and the noisy target pattern p(X − tT ) + z2(X) is equal to

∫R2

(p(X) − p(X − tT ) − z(X))2 dX
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where z(X) = z2(X) − z1(X). If the norms of z1 and z2 are bounded by ν, the norm of z is
bounded by 2ν by the triangle inequality. Increasing the norm of the noise level ν by a factor
of 2 in Theorem 4.5, we get the following alignment error bound for the two-sided noise model

u0 ≤ Ru0 =

√

16Rpν

r0 − 4Rp′′ν

which holds if

ν ≤ ν0 =
t
2
0r0

16Rp + 4Rp′′t
2
0

.

4.4. Influence of Filtering on Alignment Error. In this section, we examine how the
alignment error resulting from the image noise is affected when the reference and target
patterns are low-pass filtered. We consider the Gaussian kernel 1

πρ2φρ(X) defined in Section
3.3 and analyze the dependence of the alignment error bounds obtained for the Gaussian noise
and generalized noise models in Sections 4.1 and 4.2 on the filter size ρ and the noise level
parameters η and ν.

We begin with the Gaussian noise model w(X). The filtered reference pattern p̂(X) and
the filtered noisy observation p̂n(X) of the reference pattern are given by

p̂(X) =
K
∑

k=1

ĉkφγ̂k
(X), p̂n(X) = p̂(X) + ŵ(X) =

K
∑

k=1

ĉkφγ̂k
(X) +

L
∑

l=1

ζ̂l φξ̂l
(X).

Remember from Section 3.3 that the rotation and translation parameters of the atoms
of p̂(X) do not depend on ρ; and the scale matrices vary with ρ such that σ̂2

k = σ2
k + Υ2.

The parameters of the smoothed noise atoms can be obtained similarly to the parameters of
the atoms in p̂; i.e., φξ̂l

(X) = φ
(

Ê−1(X − δl)
)

, where Ê2 = E2 + Υ2. This gives the scale
parameter of smoothed noise atoms, which is written as

ǫ̂ =
√

ǫ2 + ρ2. (4.18)

The smoothed noise coefficients are given by ζ̂l = ζl |E|/|Ê| = ζl ǫ
2/(ǫ2 + ρ2). Since all the

coefficients ζl are multiplied by a factor of ǫ2/(ǫ2 + ρ2), the variance of the smoothed noise
atom coefficients is

η̂2 =

(

ǫ2

ǫ2 + ρ2

)2

η2. (4.19)

As the noise atom units are considered to have very small scale, one can assume first that
ρ ≫ ǫ for typical values of the filter size ρ. Then the relations in (4.18) and (4.19) give the
joint variations of ǫ̂ and η̂ with η and ρ as

ǫ̂ = O(ρ), η̂ = O(ηρ−2). (4.20)

We now state the dependence of the bound R̂t0 on ρ and η in the following main result.
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Theorem 4.7. The joint variation of the alignment error bound R̂t0 for the smoothed image
pair with respect to η and ρ is given by

R̂t0 = O

(
√

η ρ−1

(1 + ρ2)−2 − η ρ−3

)

= O

(
√

η ρ3

1 − η ρ

)

.

Therefore, for a fixed noise level, R̂t0 increases at a rate of O
(

ρ3/2 (1 − ρ)−1/2
)

with the in-

crease in the filter size ρ. Similarly, for a fixed filter size, the rate of increase of R̂t0 with the
noise standard deviation η is O

(

η1/2 (1 − η)−1/2
)

.

The proof of Theorem 4.7 is presented in [26, Appendix D.2]. The stated result is obtained
by using the relations in (4.20) to determine how the terms R̂σ∆h

, r̂0, R̂σh′′ in the expression

of R̂t0 vary with ρ and η. We omit the constants in the variation of the error bound for the
sake of simplicity. However, due to the relations (4.6) and (4.8), the constants multiplying
the noise level parameter η in the numerator and the denominator are respectively related
with the parameters Cσ∆h

and Cσh′′ . Similarly, the positive constant in the denominator is
associated with the parameter r0.

Theorem 4.7 constitutes the summary of our analysis about the effect of filtering on the
alignment accuracy for the Gaussian noise model. While the aggravation of the alignment error
with the increase in the noise level is an intuitive result, the theorem states that filtering the
patterns under the presence of noise decreases the accuracy of alignment as well. Remember
that this is not the case for noiseless patterns. The result of the theorem can be interpreted as
follows. Smoothing the reference and target patterns diffuses the perturbation on the distance
function, which is likely to cause a bigger shift in the minimum of the distance function and
hence reduce the accuracy of alignment. The estimation R̂t0 = O

(

ρ3/2 (1 − ρ)−1/2
)

of the
alignment error suggests that the dependence of the error on ρ is between linear and quadratic
for small values of ρ, whereas it starts to increase more dramatically when ρ takes larger values.
Similarly, R̂t0 is proportional to the square root of η for small η and it increases at a sharper
rate as η grows.

Next, we look at the variation of the bounds R̂u0 and Q̂u0 for arbitrary noise patterns,
which are respectively obtained for the general and small-correlation cases. We present the
following theorem, which is the counterpart of Theorem 4.7 for arbitrary noise models.

Theorem 4.8. The alignment error bounds R̂u0 and Q̂u0 for arbitrary noise patterns have
a variation of

O

(

√

ν (1 + ρ2)

1 − ν

)

(4.21)

with the noise level ν and the filter size ρ. Therefore, for a fixed noise level, the errors R̂u0

and Q̂u0 increase at a rate of O
(

(1 + ρ2)1/2
)

with the increase in the filter size ρ. Similarly,

for a fixed filter size, R̂u0 and Q̂u0 increase at a rate of O
(

ν1/2(1 − ν)−1/2
)

with respect to
the noise norm ν.

The proof of Theorem 4.8 is given in [26, Appendix E.1]. The dependence of the generalized
bounds R̂u0 and Q̂u0 on the noise norm ν is the same as the dependence of R̂t0 on η. However,
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the variation of R̂u0 and Q̂u0 with ρ is seen to be slightly different from that of R̂t0 . This
stems from the difference between the two models. In the generalized noise model z, we have
treated the norm ν of z as a known fixed number and we have characterized the alignment
error in terms of ν. On the other hand, w is a probabilistic Gaussian noise model; therefore, it
is not possible to bound its norm with a fixed parameter. For this reason, the alignment error
for w has been derived probabilistically in terms of the standard deviations of the involved
parameters. Since the filter size ρ affects the norm of z and the standard deviations of the
terms related to w in different ways, it has a different effect on these two type of alignment
error bounds. The reason why the two error bounds have the same kind of dependence on
the noise level parameters η and ν can be explained similarly. The standard deviations of the
terms related to w have a simple linear dependence on η, which is the same as the dependence
of the counterparts of these terms in the generalized model on ν.

5. Experiments.
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Figure 5.1. The variations of the true
distance ω̂T of the boundary of Ŝ to the ori-
gin and its estimation δ̂T with respect to the
filter size

5.1. Evaluation of Alignment Regularity Anal-

ysis. We first evaluate our theoretical results about
SIDEN estimation with an experiment that compares
the estimated SIDEN to the true SIDEN. We gener-
ate a reference pattern consisting of 40 randomly se-
lected Gaussian atoms with random coefficients, and
choose a random unit direction T for pattern displace-
ment. Then, we determine the distance ω̂T of the true
SIDEN boundary from the origin along T , and com-
pare it to its estimation δ̂T for a range of filter sizes
ρ (With an abuse of notation, the parameter denoted
as ω̂T here corresponds in fact to sup ω̂T in the defini-
tion of SIDEN in (3.7)). The distance ω̂T is computed
by searching the first zero-crossing of df̂(tT )/dt nu-
merically, while its estimate δ̂T is computed according
to Theorem 3.4. We repeat the experiment 300 times
with different random reference patterns p and direc-

tions T and average the results of the cases where df̂(tT )/dt has zero-crossings for all values
of ρ (i.e., 56% of the tested cases). The distance ω̂T and its estimation δ̂T are plotted in
Figure 5.1. The figure shows that δ̂T has an approximately linear dependence on ρ. This
is an expected behavior, since δ̂T = O

(

(1 + ρ2)1/2
)

≈ O(ρ) for large ρ. The estimate δ̂T is
smaller than ω̂T since it is a lower bound for ω̂T . Its variation with ρ is seen to capture well
the relative variations of the true SIDEN boundary ω̂T with ρ.

5.2. Evaluation of Alignment Accuracy Analysis. We now present experimental results
evaluating the alignment error bounds derived in Section 4. We conduct the experiments
on reference and target patterns made up of Gaussian atoms, where the target pattern is
generated by corrupting the reference pattern with noise and applying a random translation
tT . In all experiments, an estimation teTe of tT is computed by aligning the reference and
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Figure 5.2. Alignment error
of random patterns as a function
of filter size ρ.
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Figure 5.3. Alignment error
of random patterns as a function
of noise standard deviation η.
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Figure 5.4. Alignment er-
ror of random patterns as func-
tions of the noise standard devi-
ation and the filter size, at high
noise levels.

target images with a gradient descent algorithm6, which gives the experimental alignment
error as ‖tT − teTe‖. The experimental error is then compared to the theoretical bounds
derived in Section 4.

5.2.1. Gaussian noise model. In the first set of experiments, we evaluate the results for
the Gaussian noise model. We compare the experimental alignment error to the theoretical
bound given in Theorem 4.4. 7 In all experiments, the parameter s in Theorem 4.4, which
controls the probability, is chosen such that t0 < Rt0 holds with probability greater than 0.5.
For each reference pattern, the experiment is repeated for a range of values for noise variances
η2 and filter sizes ρ. The maximum value of the noise standard deviation is taken as the
admissible noise level η0 in Theorem 4.4.

6In the computation of teTe, in order to be able to handle large translations, before the optimization with
gradient descent we first do a coarse preregistration of the reference and target images with a search on a coarse
grid in the translation parameter domain, whose construction is explained in Section 5.3.

7The bound Rσ2
h′′

given in Lemma 4.3 is derived from the preliminary bound Rσ2
h′′(tT )

in [26, Lemma

3]. In the implementation of Theorem 4.4, in order to obtain a sharper estimate of Rσ2
h′′

, we compute it by

searching the maximum value of σ2
h′′(tT ) over t and T from the expressions for Ej and Fj used in the derivation

of Rσ2
h′′(tT )

.



26 Analysis of Descent-Based Image Registration

We first experiment on reference patterns built with 20 Gaussian atoms with randomly
chosen parameters. The atom coefficients ck in the reference patterns are drawn from a uniform
distribution in [−1, 1]; and the position and scale parameters of the atoms are selected such
that τx, τy ∈ [−4, 4] and σx, σy ∈ [0.3, 2]. The noise model parameters are set as L = 750,
ǫ = 0.1. The experiment is repeated on 50 different reference patterns. Then, 50 noisy target
patterns are generated for each reference pattern according to the Gaussian noise model w in
(4.1) with a random translation tT in the range tTx, tTy ∈ [−4, 4]. The results are averaged
over all reference and target patterns. In Figure 5.2, the experimental and theoretical values
of the alignment error are plotted with respect to the filter size ρ, where different curves
correspond to different η values. Figures 5.2(a) and 5.2(b) show respectively the experimental
value ‖tT − teTe‖ and the theoretical upper bound Rt0 of the alignment error. Figure 5.3
shows the same results, where the error is given as a function of η. The experimental values
and the theoretical bounds are given respectively in Figures 5.3(a) and 5.3(b). Note that,
due to the range of atom translation parameters τx, τy, the energy of the reference pattern is
concentrated in the region [−4, 4]× [−4, 4]. Therefore, the maximum filter size ρ = 3.1 tested
in this experiment is close to the half of the image width. The maximum noise level η = 0.051
corresponds to an SNR of approximately 26 dB.

The results in Figure 5.2 show that, although the theoretical upper bound is pessimistic
(which is due to the fact that the bound is a worst-case analysis), the variation of the exper-
imental value of the alignment error as a function of the filter size is in agreement with that
of the theoretical bound. The experimental behavior of the error conforms to the theoretical
prediction R̂t0 ≈ O

(

ρ3/2 (1 − ρ)−1/2
)

of Theorem 4.7. Next, the plots of Figure 5.3 suggest
that the variation of the theoretical bound Rt0 as a function of η is consistent with the result of
Theorem 4.7, which can be approximated as R̂t0 ≈ O(

√
η) for small values of η. On the other

hand, the experimental value of the alignment error seems to exhibit a more linear behavior.
However, this type of dependence is not completely unexpected. Theorem 4.7 predicts that
R̂t0 is of O(

√
η) for small η; and O

(

η1/2(1 − η)−1/2
)

for large η, while the experimental value
of the error can be rather described as ‖tT − teTe‖ = O(η), which is between these two orders
of variation. In order to examine the dependence of the error on η in more detail, we have
repeated the same experiments with much higher values of η. The experimental alignment
error is given in Figure 5.4, where the error is plotted with respect to the noise standard devi-
ation in Figure 5.4(a) and the filter size in Figure 5.4(b). The maximum noise level η = 19 in
this experiments corresponds to an SNR of approximately -22.5 dB. The results show that, at
high noise levels, the variation of the error with η indeed increases above the linear rate O(η).
The noise levels tested in this high-noise experiment are beyond the admissible noise level
derived in Theorem 4.4; therefore, we cannot apply Theorem 4.4 directly in this experiment.
However, in view of Theorem 4.7, which states that the error is of O

(

η1/2(1 − η)−1/2
)

, these
results can be interpreted to provide a numerical justification of our theoretical finding: at
relatively high noise levels, the error is expected to increase with η at a sharply increasing
rational function rate above the linear rate. The variation of the error with ρ at high noise
levels plotted in Figure 5.4(b) is seen to be similar to that of the previous experiments.

We now evaluate our alignment accuracy results under Gaussian noise on face and digit
images. First, the reference face pattern is obtained by approximating the face image shown
in Figure 5.5(a) with 50 Gaussian atoms. The average atom coefficient magnitude of the
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(a) Face image
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(d)

Figure 5.5. Face pattern and
alignment error as a function of
filter size ρ.

(a) Digit image
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(d)

Figure 5.6. Digit pattern and
alignment error as a function of
filter size ρ.
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(d)

Figure 5.7. Alignment error
for random patterns and generic
noise, as a function of filter size
ρ. (a) and (c) show the error for
noise patterns respectively with
high and low correlation with p.
Corresponding theoretical bounds
Ru0 and Qu0 are given respec-
tively in (b) and (d).
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face pattern is |c| = 0.14, and the position and scale parameters of the pattern are in the
range [−0.9, 0.9] for τx, τy, and [0.04, 1.1] for σx, σy. For the digit experiments, the reference
pattern shown in Figure 5.6(a) is the approximation of a handwritten “5” digit with 20
Gaussian atoms. The pattern parameters are such that the average atom coefficient magnitude
is |c| = 0.87, and the position and scale parameters are given by τx, τy ∈ [−0.7, 0.7], and
σx, σy ∈ [0.05, 1.23]. The atom parameters for the face and digit images are computed with
the matching pursuit algorithm [15]. The range of translation values tTx and tTy is selected
as [−1, 1] for both settings. In both settings, two different noise models are tested. First,
the target patterns are corrupted with respect to the analytical Gaussian noise model w of
(4.1), where the noise parameters are set as L = 750, ǫ = 0.04. Then, a digital Gaussian noise
model is tested, where the pixels in the discrete representation of the images are corrupted
with additive i.i.d. Gaussian noise having the same standard deviation η as w. The digital
Gaussian noise model is supposed to be well-approximated by the analytical noise model.
Again, 50 target patterns are generated with random translations. The alignment errors are
plotted with respect to ρ in Figures 5.5 and 5.6 respectively for the face and digit patterns.
The experimental error with the analytical noise model, the theoretical upper bound obtained
for the analytical noise model, and the experimental error with the digital noise model are
plotted respectively in (b), (c) and (d) in both figures. The results are averaged over all target
patterns. In the face image experiment, the maximum noise level η = 0.0034 corresponds to
SNRs of 46.8 dB and 34.7 dB for the analytical and digital noise models. In the digit image
experiment, the maximum noise level η = 0.011 yields the respective SNRs of 39.3 dB and
28.1 dB.

The plots in Figures 5.5 and 5.6 show that the experimental and theoretical errors have
a similar variation with respect to ρ. The dependence of the error on ρ in these experiments
seems to be different from that of the previous experiment of Figure 5.2. Although the theory
predicts the variation R̂t0 = O

(

ρ3/2 (1 − ρ)−1/2
)

, this result is average and approximate. The
exact variation of the error with ρ may change between different individual patterns, as the
constants of the variation function are determined by the actual pattern parameters. The
similarity between the plots for the analytical and digital noise models suggests that the noise
model w used in this study provides a good approximation for the digital Gaussian noise,
which is often encountered in digital imaging applications. In [26], the alignment error for
face and digit patterns is also plotted with respect to η, and the results are similar to those
of the previous experiment with random patterns.

5.2.2. Generic noise model. In the second set of experiments we evaluate the results of
Theorem 4.5 and Corollary 4.6 for the generic noise model z. In each experiment, the target
patterns are generated by corrupting the reference pattern p with a noise pattern z and by
applying random translations in the range tTx, tTy ∈ [−4, 4]. In order to study the effect of
the correlation between z and the points on M(p) on the actual alignment error and on its
theoretical bound, we consider two different settings. In the first setting, the noise pattern z
is chosen as a pattern that has high correlation with p. In particular, z is constructed with
a subset of the atoms used in p with the same coefficients. The general bound Ru0 is used in
this setting. In the second setting, the noise z is constructed with randomly selected Gaussian
atoms so that it has small correlation with p. The bound Qu0 for the small correlation



E. Vural and P. Frossard 29

case is used in the second setting, where the correlation parameter rpz in (4.14) is computed
numerically for obtaining the theoretical error bound. In both cases, the atom coefficients
of z are normalized such that the norm ν of z is below the admissible noise level ν0. The
theoretical bounds8 are then compared to the experimental errors for different values of the
filter size ρ and the noise level ν.

We conduct the experiment on the random patterns used above, in Figures 5.2-5.4. The
noise pattern z is constructed with 10 atoms. The average alignment errors are plotted with
respect to the filter size ρ in Figure 5.7. The noise levels ν = 0.0099 and ν = 0.28 correspond
respectively to the approximate SNRs of 65.7 dB and 36.7 dB. The plots in Figure 5.7 show
that the variation of the theoretical upper bounds with ρ fits well the behavior of the actual
error in both settings. The results are in accordance with Theorem 4.8, which states that R̂u0

and Q̂u0 are of O((1+ ρ2)1/2). The results of the experiment show that Q̂u0 is less pessimistic
than R̂u0 as an upper bound since it makes use of the information of the maximum correlation
between z and the points on M(p). Moreover, comparing Figures 5.7(b) and 5.7(d) we see
that, when a bound rpz on the correlation is known, the admissible noise level increases
significantly (from around ν0 = 0.01 to ν0 = 0.28). The plots of the errors with respect to ν
are also available in [26]; in short, they show that the variation of the alignment error with ν
bears resemblance to its variation with η observed in the previous experiment of Figure 5.3.
This is an expected result, as it has been seen in Theorem 4.8 that the dependences of R̂u0

and Q̂u0 on ν are the same as the dependence of R̂t0 on η. These plots show also that, at the
same noise level, the actual alignment error is slightly smaller when z has small correlation
with the points on M(p). In [26], this experiment is also repeated with the face and digit
patterns, with results that are similar to those obtained with random test patterns.

The overall conclusion of the experiments is that increasing the filter kernel size results
in a bigger alignment error when the target image deviates from the translation manifold of
the reference image due to noise. The results show also that the theoretical bounds for the
alignment error capture well the order of dependence of the actual error on the noise level
and the filter size, for both the Gaussian noise model and the generalized noise model. Also,
the knowledge of the correlation between the noise pattern and the translated versions of
the reference pattern is useful for improving the theoretical bound for the alignment error
in the general setting. Although the actual values of the theoretical upper bounds are quite
pessimistic, they are roughly the same as the actual alignment errors up to a multiplicative
factor. In a practical image registration application, the value of this factor can be numerically
estimated. The normalization of the theoretical bounds with this factor then yields an accurate
model for the multiscale alignment error.

5.3. Application: Design of an optimal registration algorithm. We now demonstrate the
usage of our SIDEN estimate in the construction of a grid in the translation parameter domain
that is used for image registration. In Section 3.2, we have derived a set Q of translation vectors
that can be correctly computed by minimizing the distance function with descent methods,
where Q is a subset of the SIDEN S corresponding to the noiseless distance function. As

8We compute the bound for the second derivative of p numerically by minimizing ‖d2p(X + tT )/dt2‖ over
t and T . While the bound Rp′′ is useful for the theoretical analysis as it has an open-form expression, the
numerically computed bound is sharper.
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discussed in the beginning of Section 4, in noisy settings, one can assume that Q is also a
subset of the perturbed SIDEN corresponding to the noisy distance function, provided that
the noise level is sufficiently small. Therefore the estimate Q can be used in the registration
of both noiseless and noisy images; small translations that are inside Q can be recovered
with gradient descent minimization. However, the perfect alignment guarantee is lost for
relatively large translations that are outside Q and the descent method may terminate in a
local minimum other than the global minimum. Hence, in order to overcome this problem, we
propose to construct a grid in the translation parameter domain and estimate large translations
with the help of the grid. In particular, we describe a grid design procedure such that any
translation vector tT lies inside the SIDEN of at least one grid point. Such a grid guarantees
the recovery of the translation parameters if the distance function is minimized with a gradient
descent method that is initialized with the grid points. In order to have a perfect recovery
guarantee, each one of the grid points must be tested. However, as this is computationally
costly, we use the following two-stage optimization instead, which offers a good compromise
with respect to the accuracy-complexity tradeoff. First, we search for the grid vector that
gives the smallest distance between the image pair, which results in a coarse alignment. Then,
we refine the alignment with a gradient descent method initialized with this grid vector. In
practice, this method is quite likely to give the optimal solution, which has been the case in
all of our simulations.

We now explain the construction of the grid. First, notice from (3.8) that ajk(T ) =
ajk(−T ) and bjk(T ) = −bjk(−T ). Therefore, the function sjk(t) given in (3.18) is the same
for T and −T by symmetry. As Qjk does not depend on T , from the form of df(tT )/dt in (3.17)
we have df(tT )/dt = df(−tT )/dt. Hence, the SIDEN is symmetric with respect to the origin.
It is also easy to check that the estimation δT of the SIDEN boundary along the direction
T satisfies δT = δ−T . One can easily determine a grid unit in the form of a parallelogram
that lies completely inside the estimate Q of the SIDEN and tile the (tTx, tTy)-plane with
these grid units. This defines a regular grid in the (tTx, tTy)-plane such that each point of
the plane lies inside the SIDEN of at least one grid point. Note that the complexity of image
registration based on a grid search is given by the number of grid points. In our case, the
number of grid points is determined by the area of Q; and therefore, the alignment complexity
depends on the well-behavedness of the distance function f . In particular, as V (Q) increases
with the filter size, the area of the grid units expand at the rate O(1 + ρ2) and the number of
grid points decrease at the rate O

(

(1 + ρ2)−1
)

with ρ. Therefore, the alignment complexity
with the proposed method is of O

(

(1 + ρ2)−1
)

.

The construction of a regular grid in this manner is demonstrated for the image of the
“5” digit used in the experiments of Section 5.2. In Figure 5.8(a), the reference pattern and
its translated versions corresponding to the neighboring grid points in the first and second
directions of sampling are shown. In Figure 5.8(b), the reference pattern is shown when
smoothed with a filter of size ρ = 0.15, as well as the neighboring patterns in the smoothed
grid. The original grid and the smoothed grid for ρ = 0.15 are displayed in Figures 5.9(a)
and 5.9(b), where the SIDEN estimates Q, Q̂ and the grid units are also plotted. One can
observe that smoothing the pattern is helpful for obtaining a coarser grid that reduces the
computational complexity of image registration in hierarchical methods. The corresponding
distance functions f(tT ) and f̂(tT ) are plotted in Figure 5.10, which shows that smoothing
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(a) Original pattern
and grid images

(b) Smoothed
pattern and grid
images

Figure 5.8. Neighboring
grid patterns for the original and
smoothed images.
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Figure 5.9. Grid construction
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Figure 5.10. The varia-
tion of the distance function with
smoothing.
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(a) Random patterns
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(b) Face pattern
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(c) Digit pattern

Figure 5.11. Number of grid points. The decay rate is of O
`

(1 + ρ2)−1
´

.

eliminates undesired local extrema of the distance function and therefore expands the SIDEN.

Then, in order to demonstrate the relation between alignment complexity and filtering,
we build multiresolution grids corresponding to different filter sizes and plot the variation of
the number of grid points with the filter size. The results obtained with the random patterns
and the face and digit patterns used in Section 5.2 are presented in Figure 5.11. The results
show that the number of grid points decreases monotonically with the filter size, as predicted
by Theorem 3.6, which suggests that the number of grid points must be of O

(

(1 + ρ2)−1
)

.
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The performance guarantee of this two-stage registration approach is confirmed by the
experiments of Section 5.2, which use this registration scheme. In the plots of Figures 5.2-
5.7, where the coarse alignment in each experiment is done with the help of a grid adapted
to the filter size using the grid design procedure explained above, we see that the proposed
registration technique results in an alignment error of 0 for the noiseless case (η = 0 or ν = 0)
for all values of the filter size ρ. These alignment error results, together with the grid size
plots of Figure 5.11, show that increasing the filter size reduces the alignment complexity while
retaining the perfect alignment guarantee in the noiseless case. Figures 5.2-5.7 show also that
the proposed grid can be successfully used in noisy settings. The alignment error in these
experiments stems solely from the change in the global minimum of the distance function due
to noise, and not from the grid; otherwise, we would observe much higher alignment errors
that are comparable to the distance between neighboring grid points. This confirms that the
estimate Q remains in the perturbed SIDEN and its usage does not lead to an additional
alignment error if the noise level is relatively small.

Finally, we note that, due to the computations needed for obtaining the SIDEN estimates,
the construction of an optimal grid that is specifically adapted to a reference image is favorable
especially in an application where the reference image is fixed and various target images are to
be aligned with it. In an application where target images are aligned with different reference
images, a more practical solution may be preferred by constructing a non-adaptive, “average”
grid. One may, for instance, compute the SIDEN estimates for some typical patterns that
have similar properties (e.g. frequency characteristics, size, support) with the reference images
at hand and construct a non-adaptive grid based on these typical SIDEN estimates. The
multiscale version of this grid can then be computed by adjusting the grid density to match
a rate of O((1 + ρ2)−1) as discussed previously.

6. Discussion of Results. The results of our analysis show that smoothing improves the
regularity of alignment by increasing the range of translation values that are computable with
descent-type methods. However, in the presence of noise, smoothing has a negative influence
on the accuracy of alignment as it amplifies the alignment error caused by the image noise;
and this increases with the increase in the filter size. Therefore, considering the computation
cost - accuracy tradeoff, the optimal filter size in image alignment with descent methods must
be chosen by taking into account the deviation between the target pattern and the translation
manifold of the reference pattern; i.e., the expected noise level.

Our study constitutes a theoretical justification of the principle behind hierarchical regis-
tration techniques that use local optimizers. Coarse scales are favorable at the beginning of the
alignment as they permit the computation of large translation amounts with low complexity
using simple local optimizers; however, over-filtering decreases the accuracy of alignment as
the target image is in general not exactly a translated version of the reference image. This is
compensated for at finer scales where less filtering is applied, thus avoiding the amplification
of the alignment error resulting from noise. Since images are already roughly registered at
coarse scales, at fine scales the remaining increment to be added to the translation parameters
for fine-tuning the alignment is small; it can be achieved at a relatively low complexity in a
small search region.

In the following, we first take these observations one step further to sketch some rules for
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designing a coarse-to-fine registration algorithm that recovers the correct translation param-
eters. Next, we discuss the links between our results and previous works.

6.1. Design of hierarchical registration algorithms. Consider a descent-type coarse-to-
fine registration method that computes the translation parameters by aligning smoothed ver-
sions of the image pair with a series of low-pass filters of size ρ1, ρ2, . . . , ρn such that the
initial solution in stage k is taken as the estimate obtained in the previous stage k − 1. Let
t∗T∗ denote the optimal translation vector that best aligns the reference image and the target
image; i.e., the target image is a noisy observation of the translated version p(X − t∗T∗) of
the reference image p(X). We now state some conditions under which such a registration
algorithm converges for the Gaussian noise model and the generic noise model.

Gaussian noise model. Let the noise level η be upper bounded inversely proportionally
to the amount of translation t∗ between the reference and target images

η ≤ O

(

1

t∗

)

.

Then, if the size ρ1 of the filter in the first stage is chosen proportionally to the amount of
translation t∗ such that

ρ1 = O
(

√

t2∗ − 1
)

≈ O (t∗)

and if the filter sizes ρk−1, ρk in adjacent stages are selected such that

ρk = O





√

η ρ3
k−1

1 − η ρk−1
− 1



 (6.1)

then the hierarchical registration algorithm converges to the correct solution t∗T∗.

Generic noise model. Assume that the noise level ν is below some sufficiently small
constant threshold. If the filter size ρ1 in the first stage is chosen proportionally to t∗ such
that

ρ1 = O
(

√

t2∗ − 1
)

≈ O (t∗)

and if the filter sizes in adjacent stages are selected such that

ρk = O

(
√

(

ν

1 − ν

)

(

1 + ρ2
k−1

)

− 1

)

(6.2)

then the hierarchical registration algorithm converges to the correct solution t∗T∗.

These results are derived in [26, Appendix F]. The proposed strategies to select the filter
size ρk for both noise models ensure that the SIDEN in stage k is sufficiently large to correct
the alignment error of the previous stage k−1. The bounds on the noise levels then guarantee
that the alignment error decays gradually to zero during the hierarchical alignment.
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It is interesting to compare the conditions (6.1) and (6.2) to common filter selection strate-
gies used in practice. The filter size update relations in (6.1) and (6.2) can be approximated9

in the form ρk ≈ C ρk−1. This is consistent with the practical filter size selection strategy
ρk = 1/2 ρk−1, which is used quite commonly in hierarchical registration and optical flow
estimation algorithms. Our results imply, however, that the noise level must be taken into
account in the selection of the filter size reduction factor C, such that C should be set to a
larger value if the noise level is higher.

6.2. Comparison of results with previous studies. We now interpret the findings of our
work in comparison with some previous results. We start with the article [21] by Robinson et
al., which studies the Cramér-Rao lower bound (CRLB) of the registration. Since the CRLB
is related to the inverse of the Fisher information matrix (FIM) J , the authors suggest to
use the trace of J−1 as a general lower bound for the MSE of the translation estimation.
Therefore, the square root of tr(J−1) can be considered as a lower bound for the alignment
error. It has been shown in [21] that

√

tr(J−1) = O(η), where η is the standard deviation of
the Gaussian noise. In fact, this result tells that the alignment error with any estimator is
lower bounded by O(η), i.e., its dependence on the noise level is at least linear. Meanwhile,
our study, which focuses on estimators that minimize the SSD with local optimizers, concludes
that the alignment error is at most O(

√

η/(1 − η)) for these estimators. Notice that for small
η, O(

√

η/(1 − η)) ≈ O(
√
η) > O(η); and for large η, we still have O(

√

η/(1 − η)) > O(η)
due to the sharply increasing rational function form of the bound. Therefore, the result in
[21] and our results are consistent and complementary, pointing together to the fact that the
error of an estimator performing a local optimization of the SSD must lie between O(η) and
O(
√

η/(1 − η)). Note also that, as it has been seen in the experiments of Figure 5.4(a), the
error of this type of estimators may indeed increase with η at a rate above O(η) in practice, as
predicted by our upper bound. Next, as for the effect of filtering on the estimation accuracy,
the authors of [21] experimentally observe that tr(J−1) decreases as the image bandwidth
increases, which suggests that the lower bound on the MSE of a translation estimator is
smaller when the image has more high-frequency components. This is stated more formally
in [20]. It is shown that the estimation of the x component of the translation has variance
larger than η2/‖(∂xp(·))2‖2, and similarly for the y component, where ∂xp(X) = ∂p(X)/∂x is
the partial derivative of the pattern p with respect to the spatial variable x.10 Therefore, as
smoothing decreases the norm of the partial derivatives of the pattern, it leads to an increase
in the variance of the estimation. These observations are also consistent with our theoretical
results.

Next, we discuss some results from the recent article [22], which presents a continuous-
domain noise analysis of block-matching. The blocks are assumed to be corrupted with ad-
ditive Gaussian noise and the disparity estimate is given by the global minimum of the noisy

9The more precise condition on the noise level η ≤ O(α2/(1 + α2) t−1
∗ ) derived in [26, Appendix F] implies

that the filter size in (6.1) satisfies ρk ≤ O(
q

α2ρ2
k−1 − 1). Therefore, the selection ρk = O(

q

α2ρ2
k−1 − 1) ≈

C ρk−1 assures that the SIDEN at stage k is sufficiently large, while it can also be shown to retain the conver-
gence guarantee.

10This bound is obtained by assuming Gaussian noise on both reference and target patterns and employing
CRLB.
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distance function as in our work. Although there are differences in their setting and ours,
such as the horizontal and non-constant disparity field assumption in [22], it is interesting
to compare their results with ours. We consider the disparity of the block to be constant
in [22], such that it fits our global translation assumption. In [22], an analysis of the devia-
tion between the estimated disparity and the true disparity is given, which is similar to the
distance t0 between the global minima of f and g in our work. Sticking to the notation of
our text, let us denote this deviation by t0. In Theorem 3.2 of [22], t0 is estimated as the
sum of three error terms, where the variances of the first and second terms are respectively
of O(η2) and O(η4) with respect to the noise standard deviation η. These two terms are
stated as dominant noise terms. Then, the third term represents the high-order Taylor terms
of some approximations made in the derivations, which however depends on the value of t0
itself. As the overall estimation of t0 is formulated using the term t0 itself, their main result
is interesting especially for small values of t0, since the third term is then negligible. It can
be concluded from [22] that t0 ≈ O(η + η2 +H.O.), where H.O. represents high-order terms.
This result is consistent with the CRLB of t0 in [21] stating that t0 is at least of O(η), and our
upper bound O(

√
η/

√
1 − η). The analysis in [22] and ours can be compared in the following

way. First, since our derivation is rather rigorous and does not neglect high-order terms, these
terms manifest themselves in the rational function form of the resulting bound. Meanwhile,
they are represented as H.O. and not explicitly examined in the estimation O(η+ η2 +H.O.)
in [22]. For small η, this result can be approximated as t0 = O(η), while our result states
that t0 ≤ O(

√
η). As

√
η > η for small η, this also gives a consistent comparison since our

estimation is an upper bound and the one in [22] is not. Indeed, the experimental results in
[22] suggest that their derivation gives a slight underestimation of the error. Lastly, our noise
analysis treats the image alignment problem in a multiscale setting and analyzes the joint
variation of the error with the noise level η and the filter size ρ, whereas the study in [22] only
concentrates on the relation between the error and the noise level.

Finally, we mention some facts from scale-space theory [12], which may be useful for the
interpretation of our findings regarding the variation of the SIDEN with the filter size ρ. The
scale-space representation of a signal is given by convolving it with kernels of variable scale.
The most popular convolution kernel is the Gaussian kernel, as it has been shown that under
some “well-behavedness” constraints, it is the unique kernel for generating a scale-space. An
important result in scale-space theory is [30], which states that the number of local extrema
of a 1-D function is a decreasing function of ρ. This provides a mathematical characterization
of the well-known smoothing property of the Gaussian kernel. However, it is known that this
cannot be generalized to higher-dimensional signals; e.g., there are no nontrivial kernels onR2 with the property of never introducing new local extrema when the scale increases [12].
One interesting result that can possibly be related to our analysis is about the density of local
extrema of a signal as a function of scale. In order to gain an intuition about the behavior of
local extrema, the variation of the local extrema is examined in [12] for 1-D continuous white
noise and fractal noise processes. It has been shown that the expected density of the local
minima of these signals decreases at rate ρ−1. In the estimation of the SIDEN in our work, we
have analyzed how the first zero crossing of df̂(tT )/dt along a direction T around the origin
varies with the scale. Therefore, what we have examined is the distance f̂ between the scale
space p̂(X) of an image and the scale space p̂(X − tT ) of its translated version. Since this is
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different from the scale-space of the distance function f itself, it is not possible to compare
the result in [12] directly to ours. However, we can observe the following. Restricting f̂ to
a specific direction Ta so that we have a 1-D function f̂(tTa) of t as in [12], our estimation
for the stationary point of f̂(tTa) closest to the origin expands at a rate of O((1 + ρ2)1/2),
which is O(ρ) for large ρ. One can reasonably expect this distance to be roughly inversely
proportional to the density of the local extrema of f̂ . This leads to the conclusion that the
density of the distance extrema is expected to be around O(ρ−1), which interestingly matches
the density obtained in [12].

7. Conclusion. We have presented a theoretical analysis of image alignment with descent-
type local minimizers, where we have specifically focused on the effect of low-pass filtering and
noise on the regularity and accuracy of alignment. First, we have examined the problem of
aligning with gradient descent a reference and a target pattern that differ by a two-dimensional
translation. We have derived a lower bound for the range of translations for which the reference
pattern can be exactly aligned with its translated versions, and investigated how this region
varies with the filter size when the images are smoothed. Our finding is that the volume of
this region increases quadratically with the filter size, showing that smoothing the patterns
improves the regularity of alignment. Then, we have considered a setting with noisy target
images and examined Gaussian noise and arbitrary noise patterns, which may find use in
different imaging applications. We have derived a bound for the alignment error and searched
the dependence of the error on the noise level and the filter size. Our main results state
that the alignment error bound is proportional to the square root of the noise level at small
noise, whereas this order of dependence increases at larger noise levels. More interestingly,
the alignment error is also significantly affected by the filter size. The probabilistic error
bound obtained with the Gaussian noise model has been seen to increase with the filter
size at a sharply increasing rational function rate, whereas the deterministic bound obtained
for arbitrary noise patterns of deterministic norm increases approximately linearly with the
filter size. These theoretical findings are also confirmed by experiments. To the best of our
knowledge, none of the previous works about image registration has studied the alignment
regularity problem. Meanwhile, our alignment accuracy analysis is consistent with previous
results, provides a more rigorous treatment, and studies the problem in a multiscale setting
unlike the previous works. The results of our study show that, in multiscale image registration,
filtering the images with large filter kernels improves the alignment regularity in early phases,
while the use of smaller filters improves the accuracy at later phases. From this aspect,
our estimations of the regularity and accuracy of alignment in terms of the noise and filter
parameters provide insight for the principles behind hierarchical registration techniques and
may find use in the design of efficient, low-complexity registration algorithms.

Appendix A. Exact expressions for jk and djk.

Here we present the expressions for the terms jk and djk used in Lemma 4.1. Let αk =
λmin(Φk) and βk = λmax(Φk) denote respectively the smaller and greater eigenvalues of Φk.
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Since Φk is a positive definite matrix, βk ≥ αk > 0. Let τk = [τx,k τy,k]
T ,

b
x
jk= (βj + βk)max

{

(

b+ t0 −
βjτx,j + βkτx,k

βj + βk

)2

,

(

−b− t0 −
βjτx,j + βkτx,k

βj + βk

)2
}

c
x
jk= (βj + βk)max

{

(

b+ t0
βj

βj + βk
− βjτx,j + βkτx,k

βj + βk

)2

,

(

−b− t0
βj

βj + βk
− βjτx,j + βkτx,k

βj + βk

)2
}

d
x
jk=

βjβk

βj + βk
max

{

(−t0 + τx,k − τx,j)
2, (t0 + τx,k − τx,j)

2
}

and b
y
jk, c

y
jk and d

y
jk be defined similarly by replacing x with y in the above expressions. Let

Hx
jk = −βj τx,j + βk τx,k

βj + βk
, Gx

jk =
βj τ

2
x,j + βk τ

2
x,k

βj + βk

and Hy
jk, G

y
jk be defined similarly by replacing x with y in the above expressions. Also, let

H
x
jk, H

y
jk, G

x
jk, G

y
jk denote the terms obtained by substituting βj , βk with αj , αk in the

expressions of respectively Hx
jk, H

y
jk, G

x
jk, G

y
jk.

11 Then, let

Dx
jk =

√
π

4b

1
√

βj + βk

exp
(

−(βj + βk)
(

Gx
jk − (Hx

jk)
2
))

·
[

erf
(

√

βj + βk (b+Hx
jk)
)

− erf
(

√

βj + βk (−b+Hx
jk)
)]

and Dy
jk be defined similarly, and let us denote by Dx

jk, D
y
jk the terms obtained by replacing

βj , βk with αj, αk in the expressions of Dx
jk, D

y
jk. Then defining

B
jk

= exp

(

−b
x
jk − b

y
jk −

βjβk ‖τk − τj‖2

(βj + βk)

)

, Bjk =
π

4b2 (αj + αk)
exp

(

−αjαk ‖τk − τj‖2

(αj + αk)

)

C
jk

= exp
(

−c
x
jk − c

y
jk − d

x
jk − d

y
jk

)

, Cjk =
π

4b2 (αj + αk)
, Djk = Dx

jk Dy
jk, Djk = Dx

jk D
y
jk

the parameters jk and djk are given by jk = Bjk − 2C
jk

+ Djk, djk = B
jk

− 2Cjk + Djk.

Appendix B. Exact expressions for r0, r2 and r3.
We now give the expressions for the terms r0, r2 and r3 used in Lemma 4.2. Let r0 be the

smaller eigenvalue of the following positive definite matrix

R0 =

K
∑

j=1

K
∑

k=1

cjck Qjk

(

Σ−1
jk − Σ−1

jk (τk − τj)(τk − τj)
T Σ−1

jk

)

.

Next, as shown in [26], the following upper and lower bounds can be obtained

a2
jk ≥ a2

jk =
1

4
λ2

min(Σ
−1
jk ), a2

jk ≤ a2
jk =

1

4
λ2

max(Σ
−1
jk )

b2jkajk≤ b
2
jkajk =

1

8
λmax(R

jk
2 )λmax(Σ

−1
jk ), b4jk ≤ b

4
jk =

1

16
λ2

max(R
jk
2 )

11The terms written as Hx
jk, . . . , G

y

jk here correspond to the terms Hx
jk(0, 0), . . . , G

y

jk(0, 0) in [26].
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where Rjk
2 = Σ−1

jk (τk − τj)(τk − τj)
T Σ−1

jk . Then, we have

r′2 =
∑

(j,k)∈J+

cjckQjk(−8 b
4
jk + −6 a2

jk) +
∑

(j,k)∈J−

cjckQjk(24 b
2
jkajk − 6 a2

jk)

and r2 is given by r2 = min(r′2, 0). Finally,

r3 = −
K
∑

j=1

K
∑

k=1

5.46

25/2
|cjck|

π|σjσk|
√

|Σjk|
(λmax(Σ

−1
jk ))5/2.

Appendix C. Exact expressions for ejk and fjk.
Now we present the terms ejk and fjk used in Lemma 4.3. Let

Lj =

(

(33/4 + 35/4)e−
√

3
2

16
+

3
√
π

29/2

)

1

α
5/2
j

, M j =

√

π

2αj
, N j :=

(

e−
1
2

4
+

√
π

25/2

)

1

α
3/2
j

Ej =
β4

j

4b2

(

2LjM j + 2N
2
j

)

, F j =
1

4b2
M

2
j .

Then, the terms ejk and fjk are given byejk = 16

√

EjEk + 4βjβk Bjk, fjk = −8 βk

√

EjFk − 8 βj

√

F jEk + 4αjαk B
jk
.
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