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Abstract

The advent of high-throughput technologies such as ChIP-seq has made possible the study of histone modifications. A
problem of particular interest is the identification of regions of the genome where different cell types from the same
organism exhibit different patterns of histone enrichment. This problem turns out to be surprisingly difficult, even in simple
pairwise comparisons, because of the significant level of noise in ChIP-seq data. In this paper we propose a two-stage
statistical method, called ChIPnorm, to normalize ChIP-seq data, and to find differential regions in the genome, given two
libraries of histone modifications of different cell types. We show that the ChIPnorm method removes most of the noise and
bias in the data and outperforms other normalization methods. We correlate the histone marks with gene expression data
and confirm that histone modifications H3K27me3 and H3K4me3 act as respectively a repressor and an activator of genes.
Compared to what was previously reported in the literature, we find that a substantially higher fraction of bivalent marks in
ES cells for H3K27me3 and H3K4me3 move into a K27-only state. We find that most of the promoter regions in protein-
coding genes have differential histone-modification sites. The software for this work can be downloaded from http://lcbb.
epfl.ch/software.html.
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Introduction

Histones are proteins that package the DNA into chromosomes

[1]. They are subjected to various types of modifications like

methylation, acetylation, phosphorylation, and ubiquitination,

which alter their interaction with the DNA and nuclear proteins,

thereby influencing transcription and genomic function. These

modifications form an important category of epigenetic changes,

changes that help us understand why various types of cells exhibit

very different behaviors in spite of their shared genome. Thus the

study of histone modifications, and more particularly of the

differential enrichment of these modifications in different cell

types, is a crucial tool in the understanding of genomic function.

The current technology to capture histone modifications is

chromatin immunoprecipitation (ChIP), which uses an antibody

to isolate DNA fragments in contact with histones that carry a

specific modification. ChIP-chip, ChIP-PET, and ChIP-SAGE are

some of the ChIP-based technologies used for the study of histone

modifications or transcription factor binding in genomic regions

[2–4]. Thanks to advances in sequencing technologies, ChIP-seq

has become the main approach for capturing histone modifica-

tions, due to its high throughput, high resolution, and low cost [5–

7]. In the ChIP-seq process, the sequence of one end of the DNA

fragment is read to provide a tag which is then mapped to an

assembled genome to determine the location of the DNA

fragment.

Genome-wide chromatin maps (using ChIP-seq technology) for

three mouse cell types – embryonic stem (ES) cells, neural

progenitor (NP) cells, and embryonic fibroblasts (EF) – have been

published [8]. The authors of the paper compared the occurrence

of histone-modification sites in promoter regions of the three cell

types in a qualitative manner. Subsequently, the first quantitative

comparison of two ChIP-seq libraries using computational

techniques appeared [9]; there the authors addressed the problem

of finding differential regions given two histone-modification

libraries for two different cell types. Their method, ChIPDiff, is

based on hidden Markov models. Recently, Taslim et al. 2009 [10]

proposed a two-step nonlinear normalization method based on

locally weighted regression (LOESS) [11] to compare ChIP-seq

data across multiple samples; they modeled the difference using an

exponential-normalK mixture model, then used this fitted model to

identify genes associated with differential binding sites. Another

recent method is RSEG [12]. From a mathematical viewpoint the

problem of finding genomic regions with differential histone

modifications between two tissues is not fundamentally different

from that of peak finding in ChIP-seq data using an input control
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to correct for technical biases. Many such peak finders have been

proposed [13].

A significant impediment to the analysis of ChIP-seq data is the

high level of noise. Noise or systematic distortion can enter at

various stages of the procedure: variations in the number of cells

used in the experiment, variation in the amount of antibody that

attaches to the DNA fragments, tandem repeats, uneven rates of

success in sequencing different fragments, etc. The type of histone

modification and the cell types can also affect the level of noise.

For example, we show in this paper that histone modification

H3K27me3 (K27) in ES cells has less background noise and a

better signal-to-noise (S/N) ratio than the same modification in NP

cells. In addition, the signal tends to be found mostly in gene-rich

regions of the genome. Therefore computational methods may

produce many false positives. In the case of modification K27 for

ES and NP cells, for instance, false positives are likely in gene-poor

regions for NP cells and in gene-rich regions for ES cells. Such bias

problems are present in microarray data and many authors have

addressed this issue [14]. Similar studies are needed in ChIP-seq

data, as the data characteristics differ [15].

To address the problems of noise and bias in finding differential

regions, we propose a two-stage statistical method, called

ChIPnorm, to remove the noise and the bias from two ChIP-seq

libraries and to normalize the data so as to enable a direct

comparison between the two libraries to identify differential

regions. Our normalization step is similar to quantile normaliza-

tion [16]; however we have simplified the method so that it can be

readily extended for normalization of more than two libraries. Our

method is computationally efficient and can be applied to very

large datasets. We use it to analyze ChIP-seq histone modification

data from different types of mouse and human cells, confirming

previous findings and making some new observations.

Methods

To motivate our work, we examine data for histone modifica-

tion H3K27me3 (K27) in mouse ES and NP cells [8]. Figure 1

displays a window of the data mapped onto the mouse genome

through the UCSC genome browser [17]. ES data has better S/N

ratio as well as more peaks in gene-rich regions than in gene-poor

regions. These characteristics introduce a bias that must be

eliminated before comparing ES data to NP data, as can be seen in

the results of the ChIPDiff method [9] in the same figure: most of

the differentially NP enriched regions proposed by ChIPDiff fall

within gene-poor regions and are almost certainly false positives.

In the following, we use a notation similar to that of Xu et al.

2008 [9]. In particular, we assume that the data has been

processed by dividing the genome into bins and collecting, for each

bin, a count of the mapped sequence tags that fall within the bin.

The result is a ‘‘library’’, which is simply a list of positive integers,

each successive integer associated with the next bin. Let La and Lb

be two libraries containing the same histone modification for two

different cell types – in our example, modification K27 for ES and

NP cell types. Let m be the total number of bins in the library and

set Ya~fyai D1ƒiƒmg and Yb~fybi D1ƒiƒmg to be the

observed counts of the ChIP-seq fragments for libraries La and

Lb respectively, where yai, respectively ybi, are the sum of the

fragments lying in the ith bin. In ChIP-seq, a tag is retrieved by

sequencing one end of the ChIP fragment, and the median length

of this fragment is around 200 bp [5,18]. As was done in Xu et al.

2008 [9], we approximate the center of each fragment by shifting

the tag end position by 100 bp downstream or upstream,

according to its orientation on the chromosome. We choose

different bin sizes for different types of the histone modifications so

as to maximize the discriminative information between the two

libraries of the different cell types and minimize the discrimination

of the two replicates of the same libraries. We use the spread of the

data in the scatter plots as a measure for discriminative

information. A lower bin size favors a better spread (away from

the diagonal) between the data of the two cell types in the scatter

plot.

An observed fragment count yai at the ith bin can be related to

the actual number of histone modifications xai at the ith bin using

the following model:

yai~ga(xai)zeaiznai

ybi~gb(xbi)zebiznbi ð1Þ

Function g is the (unknown) deterministic function that

describes the nonlinear transformation of the actual histone

modifications, accounting for the various experimental conditions

that may influence the observations in a systematic way. The

additive e term accounts for the stochastic (background) noise

introduced by the experimental setup, such as stray fragments

from neighbouring modifications. Finally, the parameter n
accounts for local genomic bias, mainly bias due to open

chromatin regions and mapability, such noise is common in both

the actual ChIP-seq library and the corresponding control dataset.

Naturally, one could choose a stochastic, rather than a determin-

istic model for g; but since our goal is to detect regions with

differential enrichment, and not to produce a detailed predictive

model, the deterministic approach suffices.

Scale
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Figure 1. Histone modification profile as seen in the UCSC genome browser [17]. Tracks 1 (red) and 2 (green) show the H3K27me3
modifications for ES and NP cells, respectively. Track 3 shows the differentially enriched regions found by our ChIPnorm method. Track 4 shows the
differentially enriched regions found by the ChIPDiff method [9]. In tracks 3 and 4, red indicates differential enrichment in ES cells and green indicates
differential enrichment in NP cells. Track 5 shows the UCSC genes.
doi:10.1371/journal.pone.0039573.g001
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ChIPnorm scheme
We will address each source of error separately and proceed in

two main stages. In the first stage, we address the removal of

stochastic background noise and local genomic bias in each

library. In the second stage, we address the problem of

normalization.

Stochastic noise e
To solve the problem of stochastic background noise, both

Bayesian modelling methods [19] and statistical confidence

measure methods have been used. In terms of statistical

confidence, the problem reduces to evaluating the probability

that a particular bincount (bincount is the total number of DNA

fragments captured inside a bin of some size) would occur by

chance [20]. We estimate this probability by defining a ‘‘null

hypothesis’’, which is a random distribution of bincounts, and then

comparing it with the distribution of bincounts of the ChIP-seq

library.

To understand the rationale for choosing the amplified binomial

distribution (ABD) as the random distribution for the bincounts of

ChIP-seq library, we must examine the ChIP-seq process as

illustrated in Fig. 2. The short segments of DNA are treated with a

specific antibody to capture a particular histone modification in

the genome. The rest of the fragments are washed away. The

captured fragments are sequenced by a high-throughput sequenc-

ing method, which typically uses PCR amplification of the

captured fragments [21] before performing the final base-pair

sequencing. The sequenced data is binned to obtain a ChIP-seq

library.

To estimate the null distribution of a ChIP-seq library, we

assume that the fragmented DNA from the sonicated whole cell is

treated with an antibody that randomly captures fragments

without any specificity. The bincounts of captured fragments then

follow a binomial distribution. The captured fragments are

amplified, sequenced, and binned to get the null distribution of

the ChIP-seq library. This binned data follows a random

distribution, in which each of the fragments following the binomial

distribution is amplified; we refer to it as the amplified binomial

distribution (ABD). We assume that each fragment is amplified by

a constant amplification factor.

An ABD can be defined by two parameters: the total number of

fragments Nbino in its corresponding binomial distribution and the

amplification factor a. We made two assumptions to calculate

these parameters for the desired null distribution: (a) the total

number of the fragments in the original ChIP-seq data Ndata and

in the corresponding null distribution Nnull~a|Nbino are the

same, and (b) the total number of bins with zero bincount is the

same in the ChIP-seq library (Zdata) and the null distribution.

Since the amplification does not change the number of bins with

bin-count zero, we can write Zbino~Zdata~(1{
1

B
)Nbino B, where

B is total number of bins in the library. Since Zdata and B are

observed variables, Nbino and a~
Ndata

Nbino

can be evaluated. Now the

probability mass function of the random distribution prior to

amplification is

Figure 2. Overview of ChIP-seq process. We see how we can get the ChIP-seq library, input DNA control, and the random distribution (null
hypothesis).
doi:10.1371/journal.pone.0039573.g002
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Prandom(t)~
Nbino

t

� �
(

1

B
)t(1{

1

B
)Nbino{t,0ƒtƒNbino:

The ABD is thus estimated as PABD(t)~Prandom(t=a).

We calculated the false discovery rate (FDR) for a ChIP-seq

data using its corresponding estimated null distribution (ABD)

[20]. We declared bins with FDR ƒ0:05 as significant bins in the

ChIP-seq library. The value 0.05 is the standard value used in the

field [20].

Local genomic bias n
ChIP-seq data contains many local genomic biases correspond-

ing to open chromatin regions, over-amplified satellite repeats,

GC-rich regions, and unmappable perfect repeat regions. Some of

these biases depend on experimental conditions and others may

vary among the cell lines in a systematic manner. If such cell-

specific biases are not taken care of while comparing ChIP-seq

libraries it will give many false positive differential regions. Some

of these biases can be reduced by using an input DNA control

library. To find differential regions, we must consider only those

regions that are significantly enriched with respect to the input

DNA control. The input DNA control are the DNA fragments in

the ChIP-seq experiment prior to the application of the histone

specific antibody. To find the enriched bins, we need to normalize

the input DNA control with respect to the data.

Yang et al. 2002 [22] recommended the use of locally weighted

regression (LOESS) normalization. The basic assumption is that

the percentage of the differential sites, considered as outliers by

LOESS, is small so that these sites do not affect the normalization.

However, this is not true in the case of a ChIP-seq library. In a

ChIP-seq library, the percentage of bins that are differentially

enriched relative to the input DNA control can exceed 50%.

These differentially enriched bins will affect the LOESS normal-

ization as shown in Figure S1(a) and lead to many false negatives.

We introduce an iterative normalization to overcome this

problem.

In the first stage of iterative normalization, we normalize the

DNA control with respect to the data using quantile normaliza-

tion. For illustration purposes, we first show the LOESS curve of

the MA plot in Figure S1(a). We first classify bins enriched with

respect to the DNA control (fold change w1) after quantile

normalization as outliers. These outliers are then removed from

further iterations. Figure S1(b) shows the LOESS curve after

removing the outliers. We see that the LOESS curve is relatively

less affected by outliers. In the next iteration, we use non-outliers

bins for second quantile normalization to get a more accurate

estimate of the normalization function. Once we get this

normalization function, we normalize (quantile) all bins. The

process of removing outliers and then performing normalization

can be repeated to rescue more bins falsely declared as non-

enriched. Each bin is declared as enriched if its fold-change value

of ChIP-seq data and quantile normalized control data is w1.

(The LOESS normalization is not used in the ChIPnorm method

but is shown here only for illustrating the affects of normalization

and removing outliers. Instead quantile normalization is used).

Bins which are declared both as significant in the ABD

approach and as enriched in the iterative approach, are declared

as ‘enriched-significant’. Bins which are declared as enriched-

significant in either of the two libraries are passed on to the second

stage, with their original bincount values.

Quantile normalization
Since our first stage removed the majority of bins with low S/N

ratios and genomic bias, and since we expect interesting regions to

have good S/N ratios, we now make the simplifying assumption:

eai~ebi~0 and nai~nai~0.

With this assumption the next step is to normalize the data to

the same scale so that bin values in the two libraries are

comparable. Mathematically, given two observed data

yai~ga(xai) and ybi~gb(xbi), find a transformation

f �~(ga0g{1
b ) such that y�bi~f �(ybi)~ga(xbi).

We propose a quantile normalization method (similar to Bolstad

et al. 2003 [16]) to solve this normalization problem. Quantile

normalization assumes that the distribution of the data of the two

libraries that are being compared are similar. This may seem

problematic because histone modifications change significantly

during differentiation. But it is reasonable to assume that their

probability distribution of the bincount over the whole genome is

similar across different cell types. (This might not be true if one of

the two libraries have histone modifications knocked out.) We use

the inverse cumulative distribution function (on the modified data

after removing noisy bins) of the enrichment level, as shown in

Fig. 3. The x axis of this figure is the percentile while the y axis is

the bin values. The figure shows the La and Lb bin values plotted

against their cumulative percentile. To get the desired transfor-

mation of Yb, we must ensure that the post-transformation data ŶYb

follows the same cdf as Ya. We fit a spline smoothing function on

the bin values of library La, then, for all percentile values p, we

perform a transformation f̂f : yb?ŷyb such that ŷyb(p)~ya(p). This

is the desired transformation f �~(ga0g{1
b ). The proof is given in

the supplementary material (Supporting Information S1).

This transformation reduces the problem of comparing two

libraries with different probability distributions to the problem of

comparing two libraries following the same probability distribu-

tion, so that a direct comparison of values can now be used. Since

in the second stage we considered bins which were declared as

enriched-significant in either of the two libraries La and Lb (a

union operation), some bins which are not declared as enriched-

significant would be present in the second stage too. If both

libraries were completely independent events, we would expect

50% of the bins to be enriched-significant, because of the union

operation. In effect, we define a bin in library Lb to be

differentially enriched for the target modification if (i) observed

bin value in libraries Lb lies above the 50% region in the inverse

cumulative distribution function and (ii) for some chosen fold

change threshold t (w1), we have ŷybi=yai§t. Similarly we can

define a bin in library La as differentially enriched if the bin value

in library La lies above the 50% region in the inverse cumulative

distribution function and for for some chosen threshold t (w1), we

have yai=ŷybi§t. All bins are thus reported as differentially

enriched or not. Adjacent bins of the same type of differential

enrichment can be grouped together to form differential regions

(DHE).

The complete ChIPnorm method summarized
The complete ChIPnorm method is summarized in the Fig. 4.

In the first stage, we identify bins having a significant bincount

compared to the estimated random distribution of a ChIP-seq

library as significant bins, by using a false discovery rate (FDR)

analysis. We also identify bins of a ChIP-seq library as enriched

bins, if their bincounts are higher than the corresponding

bincounts of the normalized input DNA control. Those bins

which are both significant w.r.t. null hypothesis and enriched w.r.t.

normalized input control DNA are declared as enriched-signifi-

ChIPnorm: Differential Regions in ChIP-seq Libraries
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cant bins. Bins which are declared as enriched-significant in either

of these two libraries are passed to the second stage. In the second

stage, we normalize the enriched-significant bincounts of the two

ChIP-seq libraries and use a fold change to obtain differentially

enriched bins.

The normalization can also be used to find bins that are

enriched in both libraries, thereafter called constitutively highly
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Figure 3. The new inverse cumulative distribution function on the modified libraries (after stage 1). On the x axis is the percentile, on
the y axis are the bin values.
doi:10.1371/journal.pone.0039573.g003
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Figure 4. The schematic diagram of the ChIPnorm method. In the first stage one we find the enriched-significant bins by removing various
kinds of errors in the data. In the second stage we normalize the two ChIP-seq libraries and find differentially enriched bins.
doi:10.1371/journal.pone.0039573.g004
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enriched (CHE). Bins which are above 50% in La and Lb in the

inverse cumulative distribution function and also below threshold t
are declared as CHE. While differential histone modification

enrichment (DHE) regions help us understand why different types

of cells behave differently, CHE regions are conserved between the

cell types and thus presumably essential to the survival of both

types.

The normalization method also facilitates the comparison of

more than two libraries. Our method is easily extended to handle

multiple types of histone modifications in multiple cell types. Such

analyses can give more insight into combinatorial patterns of

histone modifications, sometimes referred to as ‘‘histone language’’

[23]. For example, Bernstein et al. 2006 [24] hypothesized that a

bivalent domain with both H3K27me3 and H3K4me3 modifica-

tion at the same site plays a crucial functional role in embryonic

stem cells. Finally, the ChIPnorm method can be used with any

ChIP-seq data – not just with histone modifications.

Experimental Design
We carried out a series of experiments with the two libraries for

H3K27me3 and H3K4me3 histone modifications (ES and NP

cells), including experiments for bias and sensitivity. Since

H3K4me3 has sharper peaks than H3K27me3, it needs a finer

resolution, and smaller bin sizes are used. Using the replicate data

analysis described earlier, we chose a bin size of 1000 bp for

H3K27me3 (K27) and a bin size of 200 bp for H3K4me3 (K4).

The bin size of 1000 bp for H3K27me3 has also been used

previously in literature [9]. We compared ChIPnorm with six

other normalization methods: (a) unit mean normalization; (b)

quantile normalization; (c) MACS peak finder; (d) ChIPDiff

method [9]; (e) rank normalization; and (f) two-stage unit mean

normalization. We ran these methods on the H3K27me3 data for

ES and NP mouse cells provided by Mikkelsen et al. 2007 [8] (with

whole cell extract (WCE) control library) and on the H3K27me3

data (of Broad Institute) for ES and GM12878 (replicate 1) from

the human ENCODE project [25,26]. (GM12878 is a lympho-

blastoid cell line produced from the blood of a female donor with

northern and western European ancestry by EBV transformation

[25].) Processing was done on individual chromosomes of the two

libraries.

The five methods not yet described are as follows:

N unit mean normalization: is the standard Affymetrix scaling method

for microarray data [16]. To perform consistent comparison with

the ChIPnorm method, we normalized the two libraries to have

unit mean using a method similar to the Affymetrix scaling

method. To normalize the bin values xi of a library we calculated

its trimmed mean �xx (the mean of the non-zero bins in the library)

and then the normalized bin value is set to xi’~xi=�xx. Finally a

threshold (t) was used to classify bins as differential or not.

N quantile normalization: the two libraries are quantile normalized,

and a fold change threshold (t) is used to classify bins as differential

or not.

N MACS peak finder method: Although MACS is a peak-finding

software [13], we use it indirectly to find differential regions as

follows: peaks for one library are detected by giving the other

library as control, and the bins with peaks are considered as

differential regions.

N rank normalization: the bin values of each of the libraries are sorted

separately; the sorted lists are divided into 10 equal partitions,

which we define as rank. Finally we compare the values of

corresponding ranks at each bin value in both libraries. If the

difference between the values is greater than a threshold n then the

bin is classified as differential.

N RSEG method: RSEG is a recently published method [12] to not

only find peaks in histone modifications but to also identify

differential regions (rseg-diff) between two histone modification

ChIP-seq libraries.

N two-stage unit mean normalization: we removed the noisy bins using

the first stage of the ChIPnorm method before applying the unit

mean normalization and fold change classification.

More details are given in the supplementary material (Support-

ing Information S1).

Results

Our results are of two kinds. First, we present the characteristics

of the ChIPnorm method and compare it to various other methods

for normalization. Next, we use the ChIPnorm method to

investigate the libraries of various cell types, both to confirm

existing findings and to evince new correlations.

Comparative Analysis
Bias with respect to gene density. We now look how the

number of histone modifications change with respect to gene

density. Basically gene-rich regions are those regions of the

genome where there are large number of genes. Even regions of

the genome which are upstream and downstream of genes will fall

into gene-rich/poor regions depending on the number of genes in

that region. Usually the number of histone modifications is

comparatively small in long stretches of the genome which have

less or no genes (inactive regions). Gene poor regions have a high

number of inactive regions. We noticed that most of the earlier

methods for comparing two libraries suffer from bias with respect

to gene density. In order to study this bias quantitatively, we

divided the whole genome (data from Mikkelsen et al. 2007 [8])

into regions of size 1 Mbp each. The size of 1 Mbp was chosen so

that there are sufficient number of genes within each region and

also so that each region is not too big. Each of these regions is then

classified into 10 classes according to the number of genes present

in that region. Then we compared the number of bins declared

enriched by previous methods and by the ChIPnorm method.

Histone modifications like H3K27me3 and H3K4me3 mostly

occur near the promoter regions of genes. Therefore there should

be more differentially enriched regions in gene-rich regions than in

gene-poor regions. First we give evidence that there are more

histone modifications in gene-rich regions than gene-poor regions.

Fig. 5(a) shows the total number of H3K27me3 ChIP-seq

fragments divided by the number of Mbp regions (counts per

megabase) found in each gene density. We see from the figure that

there is an increasing trend of ChIP-seq fragments with gene

density. This is true for both ES and NP cells. We also notice that

the curve for ES cells is steeper than the curve for NP cells. This

shows that NP cells have more background noise than ES cells and

a lower signal-to-noise ratio. We think that the positive correlation

of H3K27me3 levels and gene density is biologically meaningful:

the more genes, the more gene regulatory regions that are

potential targets of H3K27me3-mediated repression. From this

perspective, the reversal of the trend in the top two gene-rich bins

is due to the stronger ‘‘signal’’ (higher number of ChIP-Seq

fragments originating from truly H3K27me3-enriched regions) in

ES cells.

Now we show the bias of various methods with respect to gene

density. Figure 6 shows that other methods, namely unit-mean

normalization (6(a)), quantile normalization (6(b)), ChIPDiff (6(d)),

rank normalization (6(e)), and RSEG method (6(f)) all follow the

trend for ES differentially enriched bins, but show an opposite

ChIPnorm: Differential Regions in ChIP-seq Libraries
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trend for NP differentially enriched bins (For MACs peak-finder

method (6(c)) the trend for NP with respect to gene density is not

exactly opposite but more random). Because of the increased

background noise and lower signal-to-noise ratio in NP data

compared to ES data, these methods incorrectly show an increased

number of H3K27me3 NP differentially enriched regions in gene-

poor regions. This is due to the ineffective normalization

techniques. This ineffectiveness is removed by the first stage of

the ChIPnorm approach, as it removes the noisy or insignificant

bins for each ChIP-seq library separately. The unit-mean and

quantile normalization (Fig. 6 (a) and (b)) methods shows

decreasing trends in gene density for NP cells, but after applying

the first stage of ChIPnorm, this trend is reversed (Fig. 6 (g) and (h)

for two-stage unit-mean normalization and ChIPnorm). This

shows the importance of the first stage of the ChIPnorm method,

which is common to both these approaches.

Sensitivity analysis. From the 13,438 genes whose micro-

array gene expression data is available in Mikkelsen et al. 2007 [8],

we selected genes for which expression levels are at least four-fold

upregulated in ES cells compared to NP cells, and vice-versa. Out

of 13,438 genes, 925 genes were at least four-fold differentially

over-expressed in NP cells, and 1104 genes were at least four-fold

differentially over-expressed in ES cells. We carried out sensitivity

analysis on these genes on the various methods. Since K27 is

thought to be a gene repressor [5,8], we expect that there are more

ES enriched differential regions in the promoter region (which we

define here as +1 kbp of the transcription start site (TSS)) of those

genes which are over-expressed in NP cells, and more NP enriched

differential regions in the promoter region of genes which are over-

expressed in ES cells. Note however that we do not expect a high

correlation in such a test, as H3K27me3 modification of histone

H3 is only one of several mechanisms of gene repression. We are

also aware of recent work that questions the exclusively repressive

role of H3K27me3 in gene regulation. Young et al. 2011 [27]

identified a new subclass of H3K27me3-marked genes, which are

highly expressed. However, as these genes were reported to have

unchanged expression levels between ES and NP cells in the same

paper, they are unlikely to interfere with our evaluation protocol.

The results of our sensitivity analysis are summarized in Table 1

(data from Mikkelsen et al. 2007 [8]). The TSS positions were taken

from the ‘‘knownGene’’ track of the UCSC genome browser. For

each gene all the promoters were considered. Experiment ‘‘sensitivity

(ES K27-enriched)’’ shows the percentage of ES differentially

enriched regions around the TSS +1 kbp of the 925 genes which

are at least four-fold over-expressed in NP cells. Experiment ‘‘error

(NP K27-enriched)’’ was done on the same 925 genes as experiment

‘‘sensitivity (ES K27-enriched)’’, but these regions were erroneously

declared as NP-enriched instead of being declared as ES-enriched.

Likewise, ‘‘sensitivity (NP K27-enriched)’’ and ‘‘error (ES K27-

enriched)’’ was determined for the 1104 genes over-expressed in ES

cells. To compare the output of the various methods we fixed the

parameters so that each of the methods give similar sensitivity for ES

K27-enriched regions (&15%). The MACS peak-finder method

could not be made to get a sensitivity close to 15% by changing the p-

value threshold. We see that all methods give a low ‘‘error (NP K27-

enriched)’’ rate which shows that all methods have a good one-sided

accuracy. However, we see that for the same thresholds, unit-mean,

quantile normalization, MACS peak-finder and rank normalization

methods show very small sensitivity for ES differentially over-

expressed genes (‘‘sensitivity (NP K27-enriched)’’) and a correspond-

ing high error rate (‘‘error (ES K27-enriched)’’). In fact, we find that

the error rates are higher in the quantile normalization method, the

MACS peak-finder method, the ChIPDiff method, the RSEG

method, than the sensitivity for ES differentially over-expressed

genes. This clearly shows a bias towards ES enrichment in promoter

regions. However, for the two-stage unit mean and the ChIPnorm

method, the problem of bias disappears, as these methods give a

higher sensitivity and lower error rate on both the ES and NP

differentially over-expressed genes. The reason the ChIPnorm

method, improves over the other methods is because the first stage

of the ChIPnorm approach, removes the noisy regions, while the

second stage which uses quantile normalization, transforms one

distribution of one library to that of the other library, thereby

reducing the differences in the amplification factors and the SNR of

the two libraries. The two-stage unit mean method also works well

showing the importance of the first stage that we used, which is

common in both these methods.

Since the above sensitivity analysis was done by fixing the

sensitivity value to 15%, we tested the various methods over a wide

range of thresholds. Figure 7 gives the plot of
sensitivity

(sensitivityzerror)
over five different threshold values (T1, T2, T3, T4, T5) in increasing
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Figure 5. Enrichment level of bins with respect to gene density in a 1 Mbp region. The x axis indicates lowest to highest gene density. (a)
The y axis indicates the total number of H3K27me3 ChIP-seq fragments divided by the number of Mbp regions (counts per megabase) found in each
gene density. (b) The plots are re-normalized so that the y axis range is same for both ES and NP cell data. We see that the enrichment level of ChIP-
seq data increases with respect to gene density for both ES and NP cells.
doi:10.1371/journal.pone.0039573.g005
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order. The actual values of these five thresholds for each method is

given in the supplementary material (Supporting Information S1).

The higher the value of this ratio, the better the method works, as it

shows the error is less. Figure 7(a) gives the plots for the case when NP

is differentially over-expressed compared to ES while 7(b) shows the

case when ES is differentially over-expressed compared to NP. We

see from the plots that although most methods work well when NP is

differentially over-expressed, only the two-stage unit mean normal-

ization and the ChIPnorm method works well when ES is

differentially over-expressed compared to NP. In fact the other

methods show a ratio less than 0.5 (Figure 7(b)), indicating that the

error is greater than sensitivity. This clearly indicates that the first

stage of the proposed ChIPnorm approach helps remove the problem

of bias which happens because of the different signal-to-noise ratios in

the two libraries.
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Figure 6. Enriched bins with respect to gene density in 1 Mbp region. The plots are normalized. x axis 1 to 10 indicates lowest to highest
gene density, while y axis 0 to 1 indicates minimum to maximum average number of differentially enriched bins for both ES and NP cells. Blue line
indicates ES differentially enriched bins and red line indicates NP differentially enriched bins. The number of enriched bins per 1 Mbp should increase
with gene density.
doi:10.1371/journal.pone.0039573.g006
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In this paper, we used a bin size of 1000 bp for H3K27me3 data

and 200 bp for H3K4me3 data. However we have done

robustness studies by varying bin sizes. The sensitivity and error

experiments shown in table 0 for the data in Mikkelsen et al. 2007

[8] are repeated here for the ChIPnorm approach by varying the

bin sizes for H3K27me3 and H3K4me3 data. The fold change

threshold (t) is fixed at 3 (as done in Table 1) for the ChIPnorm

method and the bin sizes vary from 200 bp to 2000 bp in steps of

200 bp. We see from Fig. 8 that the sensitivity and error vary little

for bin sizes varying from 400 bp to 2000 bp for H3K27me3 and

200 bp to 800 bp for H3K4me3. (For H3K4me3 data, while the

sensitivity drops after 800 bp bin size, so does the error.) This

shows that the ChIPnorm method is robust over a wide range of

bin sizes and that there is a large range of bin sizes where

ChIPnorm works well for both H3K27me3 and H3K4me3 data.

We repeated the sensitivity tests for the human data from the

ENCODE Broad database (hg18). We tested the experiments on

ES and GM12878 cell lines for H3K27me3 histone modifications

[25]. The corresponding gene expression data (RPKM) is from the

ENCODE Caltech RNA-seq database [25]. The parameters of all

the methods (except rank normalization) were adjusted so that all

of them give almost the same percentage (&11%) of experiment

‘‘sensitivity (HES K27-enriched)’’. For the rank normalization

method we could not further change the threshold to get a

sensitivity close to 11%. The results are summarized in Table 2.

We can clearly see that ChIPnorm and the two-stage unit-mean

approach outperform all other methods. However the two-stage

unit mean approach results vary a lot based on the thresholds.

When the threshold t is changed from 1.4 to 1.89, so as to fix

‘‘sensitivity (GM12878 K27-enriched)’’ to approximately the same

as that of ChIPnorm approach (i.e. approximately 12%), the

results are: ‘‘sensitivity (GM12878 K27-enriched)’’ is 12.07%

while the corresponding ‘‘error (HES K27-enriched)’’ is 0.86%;

‘‘sensitivity (HES K27-enriched)’’ reduces to 4.67% (from the

earlier 10.69% for t~1:4) while the corresponding ‘‘error

(GM12878 K27-enriched)’’ value is 0.21%. Therefore the

sensitivity of the two-stage unit-mean approach (‘‘sensitivity

(HES K27-enriched)’’) reduced with change in threshold. In fact

for this data set, ChIPnorm results varies very little with change in

threshold. For example, for ChIPnorm when we change the

threshold t from 3 to 15, the ‘‘sensitivity (HES K27-enriched)’’

values change from 12.71 to 10.07. Similarly the rest of the results

do not vary much. This leads us to believe that the second stage

quantile normalization approach in ChIPnorm, gives stabler

results as it equates the distributions of the two libraries.

ROC curves. We next plot receiver operating characteristics

(ROC) for H3K27me3 histone modification data (Mikkelsen et al.

2007 [8]) to compare the various techniques. Since what is a ‘true’
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Figure 7. Plot of
sensitivity

(sensitivityzerror)
over five different threshold values. (a) NP is differentially over-expressed compared to

ES, (b) ES is differentially over-expressed compared to NP.
doi:10.1371/journal.pone.0039573.g007

Table 1. Sensitivity analysis percentages using various methods (data from Mikkelsen et al. 2007 [8]).

unit-mean quantile MACS ChIPDiff rank RSEG
two-stage
unit-mean ChIPnorm

thresholds t~7 t~15 p-val ~10{16 t~7 n~7:5 cdf ~0:95 t~1:98 t~3

NP differential (four-fold) expressed: 925 genes

sensitivity (ES
K27-enriched)

14.49 15.24 31.24 14.64 17.62 18.16 15.14 15.14

error (NP K27-
enriched)

0 0 0 0.27 6.05 0.11 0 0

ES differential (four-fold) expressed: 1104 genes

sensitivity (NP
K27-enriched)

0 1.27 0.27 0 12.59 1.9 6.88 7.16

error (ES K27-
enriched)

1.27 1.99 5.07 0.91 5.43 3.08 1.18 1.99

Experiments: unit-mean; quantile; MACS peak finder; ChIPDiff; Rank normalization; two-stage unit-mean; ChIPnorm. The parameters of all the methods (except MACS)
were adjusted so that all of them give almost the same percentage (&15%) of experiment ‘‘sensitivity (ES K27-enriched)’’.
doi:10.1371/journal.pone.0039573.t001
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differential region is unknown, we used indirect ways of calculating

true positives (TP), true negatives (TN), false positives (FP), false

negatives (FN), by comparing the results with gene expression

data. For the sake of plotting the ROC curves, we convert the 3-

sided testing problem (ES differentially enriched, NP differentially

enriched, or non-differential) into a two-sided problem. We plot

two different ROC curves and define the various parameters

keeping in mind that K27 is a repressor.

For the first ROC
Class 1 is defined as four-fold NP differentially over-expressed

genes compared to ES; Class 0 is rest of the genes.

TP – genes were ES (ChIP-seq) is declared differentially

enriched (i.e. above threshold) in Class 1 (since H3K27me3 is a

repressor).

FN – rest of the genes which fall in Class 1.

FP – genes were ES (ChIP-seq) is declared differentially

enriched (i.e. above threshold) in Class 0.

TN – rest of the genes which fall in Class 0.

True positive rate (TPR) = sensitivity = TP/(TP + FN).

False positive rate (FPR) = (1 – specificity) = FP/(FP+ TN).

For the second ROC
Now Class 1 is defined as four-fold ES differentially over-

expressed genes compared to NP; Class 0 is rest of the genes. And

the rest of the parameters are defined for NP differentially

enriched (opposite of the previous case).

The two ROC curves are shown in Figure 9. It is important to

note that this is only an approximate way of calculating ROCs as

gene expression depends on more than just H3K27me3 histone

markers but also on many other factors (like other histone

modifications, transcription factors, etc.). Therefore a 100% TPR

is not necessarily a good result. We varied the thresholds for

various methods. In some methods, the values of TPR and FPR do

not go beyond a certain value, irrespective of the thresholds.

Therefore we show the plots of the regions where maximum value

of the FPR exists for all methods. From the figure, it is seen that

most methods work well for the first ROC, while for the second

ROC curve, ChIPnorm and two-stage unit mean normalization

outperforms all other methods, clearly showing the removal of the

one sided bias.

False-positive rate. Since the ENCODE Broad database for

human histone modifications data [25] has a two replicates for

each cell type, we did a false-positive rate study on this data.

Basically we ran the methods on H3K27me3 libraries for ES cells
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Figure 8. Robustness studies: sensitivity and error analysis for ChIPnorm by fixing the fold-change threshold t~3 and varying
the bin size from 200 bp to 2000 bp in steps of 200 bp. Data from Mikkelsen et al. 2007 [8].
doi:10.1371/journal.pone.0039573.g008

Table 2. Sensitivity analysis for human ES and GM12878 cells (replicate 1 data from ENCODE Broad database) percentages using
various methods.

unit-mean quantile MACS ChIPDiff rank RSEG
two-stage
unit-mean ChIPnorm

thresholds t~5:3 t~15:7 p-val ~10{12 t~7 n~7 cdf ~0:9 t~1:4 t~10

GM12878 differential (four-fold) expressed: 1927 genes

sensitivity (HES K27-enriched) 11.26 11.26 11.26 10.85 17.85 8.27 10.69 11.05

error (GM12878 K27-enriched) 0.10 0.21 0 0.16 5.35 0 0.31 0.16

HES differential (four-fold) expressed: 2908 genes

sensitivity (GM12878 K27-enriched) 1.55 10.97 1.79 4.09 33.29 0.06 14.65 12.00

error (HES K27-enriched) 1.38 0.93 3.54 1.20 2.27 11.81 1.20 0.55

Experiments: unit-mean; quantile; MACS peak finder; ChIPDiff; Rank normalization; two-stage unit-mean; ChIPnorm. The parameters of all the methods (except rank
normalization) were adjusted so that all of them give almost the same percentage (&11%) of experiment ‘‘sensitivity (HES K27-enriched)’’.
doi:10.1371/journal.pone.0039573.t002
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for replicates 1 and 2. Since the two libraries used are replicates,

we do not expect any differentially enriched regions between the

libraries. So any bin declared as differential is considered a false

positive. Since the false-positive rate is dependent on the

thresholds used, we used the same thresholds as used in Table 2

for the various methods. The results are shown in Table 3. We see

that the false-positive rates are below 1% in all the methods (except

rank normalization) and for ChIPnorm it is very close to 0%.

Correlation with gene expression
We analyze the effect of presence of K27 and K4 sites (mouse

data from Mikkelsen et al. 2007 [8]) on gene expression levels. K4

is associated with activation of genes, while K27 is associated with

repression [8]. 13,000 UCSC known genes are used for this

purpose. We divide these genes into five groups (A–E) according to

the increasing log ratio of their expression levels in ES and NP

cells. We take into account the distribution of the number of genes

with respect to the log ratio of their expression levels to make the

division. This grouping ensures enough representation in each

group. Genes in each group are further classified for each K27 or

K4 according to the presence of modifications in the promoter

(+1 kbp of TSS) region. These categories are: type 1 genes have

neither DHE nor CHE bins in their promoter regions; type 2

genes have at least one DHE bin enriched for ES cells, but not

even one CHE or DHE bin with NP enrichment; type 3 genes

have at least one CHE bin or at least two bins with opposite

enrichments; type 4 genes have at least one DHE bin enriched for

NP cells, but no CHE or DHE bin enriched for ES cells.

Figure 10(a) shows the percentages of genes in each group for

H3K27me3. These percentages decrease from group A to group

E, indicating that the number of genes differentially enriched for

modification K27 in ES cells decreases at higher levels of

differential gene expression. On the other hand, type 4 genes,

which are differentially enriched for NP cells, increase from group

A to group E. Thus we see clear evidence of negative correlation of

K27 with gene expression, confirming the repressive regulation by

K27. Similar conclusions can be drawn for K4 from Fig. 10(b),

indicating the positive correlation of K4 with expression levels and

thereby confirming its association with the activation of genes.

Bivalent region analysis
H3K27me3 and H3K4me3 are sometimes present simulta-

neously at the same promoter [8,24]. Such bivalent regions may

repress the developmental genes in ES cells, while keeping them

poised for activation at later stages of development in partially

differentiated cells. Thus bivalent regions could play an important

role in the maintenance of pluripotency for ES cells. We would

therefore expect bivalent regions to be enriched in ES cells as

compared to the better differentiated NP cells. We would also

expect that bivalent regions in ES cells would preferentially lose

the K27 rather than the K4 mark in NP cells.

We applied the ChIPnorm method to investigate these

conjectures about bivalent regions in ES cells. First we selected

333 genes from chromosomal regions that are rich in highly

conserved noncoding elements (HCNEs) which were previously

analyzed by Bernstein et al. 2006 [24]. We classified these genes

into 16 classes according to the presence or absence of K27 or K4

modifications in one or both of ES and NP cells (data from

Mikkelsen et al. 2007 [8]). Figure 11(a) shows the representation of

each class of genes among these selected HCNE genes.

The ‘‘A–B’’ in a label indicates the presence of modification

‘‘A’’ in ES cells and of modification ‘‘B’’ in NP cells; as before,

detected but depleted modifications are treated as if they were

absent; labels marked with an asterisk denote bivalent regions. We

found that about 20% of these 333 genes had bivalent regions

within 1 kb from the promoter in ES cells – a result consistent with
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Figure 9. Two ROC curves are shown for various methods. (a) first ROC: Class 1 – four-fold NP differentially over-expressed genes compared to
ES; Class 0: rest of the genes. (b) second ROC: Class 1 – four-fold ES differentially over-expressed genes compared to NP; Class 0: rest of the genes.
doi:10.1371/journal.pone.0039573.g009

Table 3. False-positive rate (FPR) analysis for human ES cells (H3K27me3 data from ENCODE Broad database) for the two
replicates.

unit-mean quantile MACS ChIPDiff rank RSEG two-stageunit-mean ChIPnorm

thresholds t~5:3 t~15:7 p-val ~10{12 t~7 n~7 cdf ~0:9 t~1:4 t~10

FPR 0.3924 0.0004902 0.0053 0 8.2753 0.4845 0.8652 0.0088

We see the percentage of false positive using various methods. Experiments: unit-mean; quantile; MACS peak finder; ChIPDiff; Rank normalization; two-stage unit-mean;
ChIPnorm. The thresholds used are same as those in Table 2.
doi:10.1371/journal.pone.0039573.t003
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Bernstein et al. 2006 [24]. We then examined the whole genome

for the presence of bivalent regions. Figure 11(b) shows the

representation of such classes among UCSC known genes.

Though the percentage of genes with bivalent regions drops to

about 10%, it remains surprisingly high, suggesting that bivalent

histone marks in ES cells are not confined to key developmental

regulators. We also note that bivalent marks specific to NP cells are

extremely rare, while bivalent mark present in both cell types

occur at an intermediate frequency. Contrary to our expectation,

bivalent marks of ES cells do not preferentially lose their K27

mark. A substantial fraction loses the K4 mark instead, which may

reflect a transition into a permanently repressed state.

Finally we studied the connection between bivalent regions and

gene expression levels. We divided the UCSC known genes in the

same A–E groups according to the log ratio of expression levels in

ES and NP cells. Within each class we further classified genes into

16 classes according to the presence of one or both histone

modifications in ES and NP cells. Figure 12 shows a strong over-

representation of the K4+K27-K4 transition in the class of genes

that are strongly up-regulated in NP cells, indicating that the fate

of a bivalent mark indeed influences the expression of the

corresponding gene in a progenitor cell. Overall, our findings

support the hypothesis of Bernstein et al. 2006 [24] that bivalent

K4+K27 marks are frequent in ES cells and associated with a

temporary repression of genes that need be activated later in

development. Our results extend Berstein’s hypothesis in that we

show that bivalent marks are not confined to HCNE-associated

key-regulatory genes, and that a sizable fraction of them transits
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Figure 10. Gene profile according to expression and histone modifications. Genes are grouped in (A–E) according to increasing ratio of
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into a K27-only state possibly reflecting permanent repression.

Moreover, using our normalization method, we show that

transition of a bivalent state into a K27-only state is a rather

frequent event rather than an exception as reported in previous

papers (e.g. Cui et al. 2009 [28]).

Differential enriched regions along protein-coding genes
We analyzed the human ENCODE ES and GM12878

H3K27me3 ChIP-seq data [25] using Segtools [29]. When we

looked at protein-coding genes, we found some evidence that

most of the promoter regions have differentially enriched

histone-modification sites, and very few non-differential sites.

Please see supplementary material (Supporting Information S1)

for details.

Conclusion
We have presented an approach for the analysis of ChIP-seq

data, with particular emphasis on the discovery of differentially

enriched histone-modification sites. The problem of the bias

inherent in the comparison of two sets of data with different noise

backgrounds is biologically more relevant because such bias shows

a false correlation between computationally identified differential

regions with gene density. The ChIPnorm removes most of this

bias and provides a normalization that enables direct comparison

of values. We have conducted experiments that demonstrate that

this new approach improves significantly on the state of the art.

Finally, we have used our approach to highlight some aspects of

K27 modifications in mouse embryonic stem cells and neural

progenitor cells, including a so far unnoticed transition of bivalent

mark of K4 and K27 in embryonic stem cell to a K27-only state in

differentiated cells, possibly reflecting permanent repression of

developmental genes. For the human ENCODE H3K27me3 data

for ES and GM12878 cells, when we look at protein-coding genes,

we provide evidence that most of the promoter regions have

differentially enriched histone-modification sites. Recently, the

ChIPnorm approach has also been used to study histone

methylation changes associated with leaf senescence in Arabidop-

sis [30].

Our approach is not restricted to the identification of

differentially enriched sites nor is it limited to pairwise compar-

isons. A natural next step, therefore, is to apply it to more complex

data (multiple cell types with multiple histone modifications, for

instance), to verify its efficacy, and to use it to shed light on the

complex interactions described in the ‘‘histone language’’.

Supporting Information

Figure S1 Iterative normalization of input DNA. (a) before first

iteration. (b) after first iteration, post removal of outliers.

(PDF)

Supporting Information S1 Supplementary material contain-

ing Supplementary figures, Supplementary table, Supplementary

methods, Supplementary results, and Supplementary references

[8,9,12,13,16,25,26,29,31].

(PDF)
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